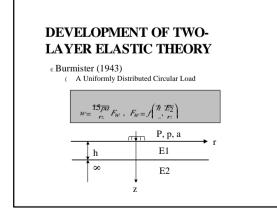
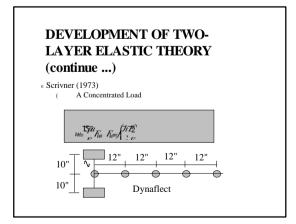
由面層撓度值回算鋪面彈性 模數的初步研究

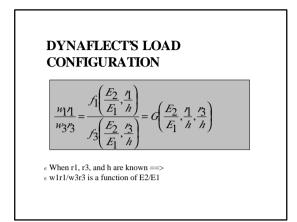
陳建桓 李英豪 淡江大學土木系

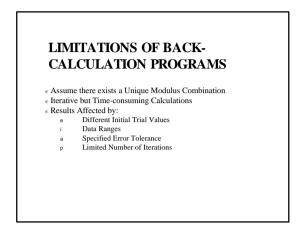
OBJECTIVES

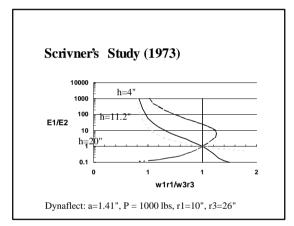
- e Major Deficiencies of Traditional Backcalculation Procedures
 - Uniqueness Problem Iterative but Time-consuming Calculation n
 - Subjective Selection of Initial Trial Values and Input Data
 - Ranges
- a Violation of the Specified Convergence Criteria
 c Scope: A Two-Layer Elastic Pavement System

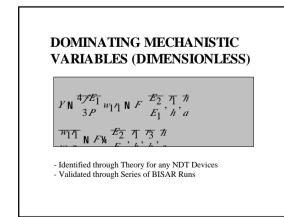

RESEARCH APPROACH


- e Theoretical Investigation Burmister (1943) and Scrivner's (1973) Deflection Equations
- e Identification of Functional Forms
- ε Validation of the Dominating Dimensionless Variables Identified
- e Development of a Backcalculation Database
 e Development of Backcalculation Prediction Equations
- e Validation of the Proposed Prediction Equations


CLASSIFICATION OF BACK-CALCULATION PROCEDURES


e Existing:


- Iterative Approach (BISDEF, ELSDEF, etc.) х

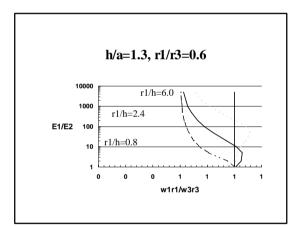


UNIQUENESS PROBLEM FOR BACKCALCULATION

w1r1/w3r3	h11.2"	h<11.2"
1	Unique	None / Two
<1	Unique	None / Two

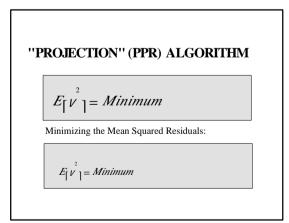
Validation of Variable (h/a) w1r1/w h/a h а r1 r3 w1 w3 in. in. in. in. mil mil 3r3 7.5 2.5 5 2 15 3.99 3.16 0.631 2.5 8 3.2 12 24 2.49 1.98 0.629

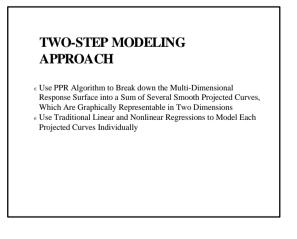
2.5 14 5.6 21 42 1.42 1.13 0.628 Note: r1/h=1.5, r3/h=3, E2/E1=100,

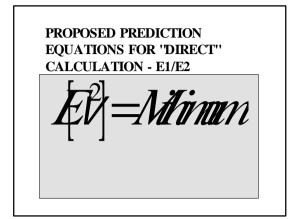

E1=500,000 psi, E2=5,000 psi, P=1,000 lbs

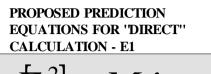
A BACKCALCULATION DATABASE

- e Based on Four Dimensionless Variables Identified e E1/E2 = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000r1/h = 0.8, 1.2, 1.8, 2.4, 3.6, 4.8, 6.0 r3/h = 1.2, 1.8, 2.4, 3.6, 4.8, 6.0, 7.2 h/a = 0.8, 1.3, 2.5, 3.5, 5.0(r1>r3, P = 2400 lbs, E2 = 1000 psi, h = 10 in.) e FORTRAN Programs Written for Batch Processing
- e Total of 1680 Data Sets

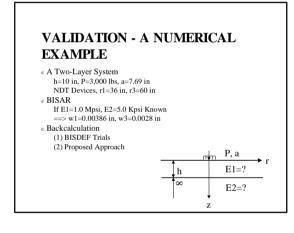

USE OF THE DATABASE


- « A Computer Program, Look-up Tables or Figures for
 - Linear Interpolation
- e "DIRECT" Calculation is Possible if "Uniqueness" is Guaranteed.





- « "Projection" (PPR) Algorithm by Friedman and Stuetzle, 1981
 « Capable of Modeling Variable Interactions
- Model the Response Surface as a Sum of Nonparametric Prediction Functions of Explanatory Variables Using Local Smoothing Techniques



=Mnimm

BISDEF TRIALS	
----------------------	--

E1	E2	E1	E2	E1	E2	Within
Start	Start	Range	Range			Toler-
Mpsi	Kpsi	Mpsi	Kpsi	Mpsi	Kpsi	ance*
0.5	3	0.1~	1~50	1.61	4.71	Y, N
		2.5				
1.61	4.71	0.1~	1~10	ERR	ERR	-
etc.	etc.	2.0				
1.1	4.0	0.8~	1~8	0.98	5.28	Y, N
		1.5				

* - Absolute Sum of % Difference

- Change in Modulus Values

THE PROPOSED APPROACH

THE PROPOSED APPROACH

(2) Use as a Pre-Processor

Assist in Selection of Initial Trial Values, Data Ranges to Speed Up the Convergence

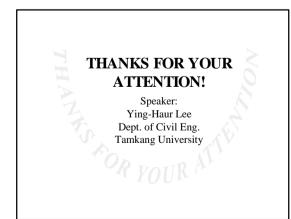
E1	E2	E1	E2	E1	E2	Within
Start	Start	Range	Range			Toler-
Mpsi	Kpsi	Mpsi	Kpsi	Mpsi	Kpsi	ance*
-	-	-	-		-	
0.91	4.69	0.1~	1~12	0.98	5.13	Y, Y
		1.2				

CONCLUSIONS

- e Discussed the "Uniqueness" Problem and Short Comings of Traditional Approach
- Proposed an Alternative Approach Using Database and Modern Regressions
- e Identified Dominating Dimensionless Variables for More
- Complete Coverage « Strive to Develop Prediction Equations to Allow "DIRECT" Modulus Calculations

CONCLUSIONS (continue ...)

« Tentative Applications:


- A Calculator, a Spreadsheet, or a Computer Program for "Direct" Modulus Calculations (Instantly) A Pre-Processor of Traditional Backcalculation Programs
- 0 In-field Modulus Determinations and NDT Data Checking
- e Obtain More Accurate and Consistent Results

LOOKING AHEAD ...

- e Further Improve the Prediction Accuracy
- e Investigate a Three- or Four-Layer System e Must also Assure "Uniqueness" of Solutions
- « Possible Use of Local Regression Techniques or Any Database
- Search Algorithms
- e Lots of Research Remain to be Done!

ACKNOWLEDGMENTS

