

Problem Statements

- Extensive re-backcalculation analysis of LTPP test sections indicated extremely difficulties in interpreting in situ rigid pavements deflection data exist
- Probably due to temperature curling, moisture warping and loss of subgrade support
- → Objectives: study the effects of adjacent slabs and temperature curling on rigid pavement deflections

Research Approach

- Literature Review
 - Various backcalculation analyses
 - Theoretical closed-form equations, FE solutions
- Modification and Validation of FE Program
- Effects of Temperature Curling
 - Additional controlling dimensionless variables
- Effects of Adjacent Slabs
- Deflection Databases & Adjustment Factors
- On-going Development & Future Directions

Various Backcalculation Analyses

- AREA Concept
- Closed-form Procedures
 - ILLI-BACK (Ioannides 1989, 1990)
 - NUS-BACK (Li, Fwa, 1997, 1998)
- Regression Models
 - Hall (1991); AASHTO (1993)
- Modified Deflection Ratio Procedures
 - Lee (1997,1998)
- Extensive Re-backcalculation Analysis of LTPP GPS Test Sections (1997)

Closed-Form Deflection Equations

- **Losberg** (1960)
 - Dense Liquid & Elastic Solid Foundations
- Maximum Deflections
 - Winkler Foundation
 - Interior, Edge, and Corner (Westergaard)
 - Elastic Solid Foundation
 - Interior (Losberg, 1960)
 - Edge and Corner: regression models (Crovetti, 1994)

Modification and Verification of F.E. Program

- ILLI-SLAB F.E. Solutions (Korovesis, 1990)
 - Workstation Version → PC Version
 - Microsoft FORTRAN PowerStation Software (1994)
 - Winkler Foundation: L + C Analysis is OK!
- Sheu (1999)
 - Debug Some Syntax Errors
 - Elastic Foundation: L + C Analysis is Possible!
 - Verified Numerically and Graphically Through Extensive Structural Response Investigations

Parameter Study of Temperature Curling Effect

- Westergaard (1926)
 - Did NOT Explicitly Consider Self-Weight
- ILLI-SLAB (Korovesis, 1990)
 - Include Self-Weight and Loss of Subgrade Support
- Lee & Darter (1994)
 - Two Dimensionless Variables (D_p and D_γ) Identified for L+ C Analysis on Winkler Foundation

Loading + Curling Analysis on Winkler Foundation

- Concise Structural Response Relationships
 - All Dimensionless Parameters

$$\left(\frac{\sigma}{E}, \frac{\delta h}{\ell^2}, \frac{qh}{k\ell^2} = f\left(\frac{a}{\ell}, \alpha \Delta T, \frac{L}{\ell}, \frac{W}{\ell}, D_{\gamma}, D_{\rho}\right)\right)$$

$$D_{\gamma} = \frac{\gamma h^2}{k\ell^2}$$

$$D_P = \frac{Ph}{k\ell^4} = 12(1-\mu^2) \frac{P}{Eh^2}$$

Two Additional Dimensionless Variables Identified for Elastic Foundation

Relative Deflection Stiffness due to Slab Self-Weight & Loss of Subgrade Support

$$D_{pe} = \frac{\gamma h^2}{E_s \ell_e}$$

 Relative Deflection Stiffness due to External Wheel Load & Loss of Subgrade Support

$$D_{Pe} = \frac{Ph}{E_s \ell_e^3}$$

Verification of Dimensionless Variables

- Self-Weight & Curling
 - Numerically Verified (16 ILLI-SLAB Runs)

$$\frac{\partial h}{\ell_e^2} = f\left(\alpha \Delta T, \frac{L}{\ell_e}, \frac{W}{\ell_e}, D_{\gamma e}\right)$$

- Loading & Curling
 - Numerically Verified (16 ILLI-SLAB Runs)

$$\frac{\delta h}{\ell_e^2} = f\left(\frac{a}{\ell_e}, \alpha \Delta T, \frac{L}{\ell_e}, \frac{W}{\ell_e}, D_{pe}, D_{pe}\right)$$

Loading + Curling Analysis on Elastic Solid Foundation

- Concise Structural Response Relationships
 - All Dimensionless Parameters

$$\frac{\sigma}{E}, \frac{\partial h}{\ell_e^2}, \frac{qh}{E_e\ell_e} = f\left(\frac{a}{\ell_e}, \alpha\Delta T, \frac{L}{\ell_e}, \frac{W}{\ell_e}, D_{pe}, D_{pe}\right)$$

$$D_{\gamma e} = \frac{\gamma h^2}{E_s \ell_s}$$

$$D_{Pe} = \frac{Ph}{F \ell^3}$$

Parameter Study of Adjacent Slabs Effect

Adjacent Slabs Model in ILLI-SLAB

- Only Winkler Foundation Considered
- Doweled & Undoweled: Corner Loading, Transverse & Longitudinal Edge Loading

Dowel-Bar Stiffness Matrix Errors

- Agree with Guo, et al. (1993, 1995)
- Deflection at Loaded Side (δ_{I}) < Unloaded Side (δ_{IJ})
- → Pure Shear Load Transfer Used in This Study

Development of Pavement Deflection Databases

Finite Slab Size

$$R_{LW} = \frac{\mathcal{S}_i}{\mathcal{S}_w} = f\bigg(\frac{a}{\ell}, \frac{L}{\ell}, \frac{W}{\ell}\bigg) \qquad \qquad R_{LW} = \frac{\mathcal{S}_i}{\mathcal{S}_{Losberg}} = f\bigg(\frac{a}{\ell_e}, \frac{L}{\ell_e}, \frac{W}{\ell_e}\bigg)$$

$$R_{LTE} = \frac{\delta_m}{\delta_s} = f(LTE_\delta)$$

Thermal Curling

$$R_{T} = \frac{\delta_{T+P} - \delta_{T}}{\delta} = f\left(\frac{a}{\ell}, \frac{L}{\ell}, \frac{W}{\ell}, \alpha \Delta T, D_{\gamma}, D_{P}\right)$$

Adjustment of Adjacent Slabs Effect

Load Transfer Efficiency (LTE₈)

Backcalculate Joint Stiffness or AGG Factor (Infinite Slab)

$$LTE_{\delta} = \frac{\delta_{U}}{\delta_{L}} = \frac{1}{0.01 + 0.012 \left(\frac{AGG}{k\ell}\right)^{-0.849}}$$

Deflection Adjustment Factor (R_{LTE})

$$R_{LTE} = \frac{\delta_m}{\delta} = f(LTE_{\delta})$$

 $R_{LTE} = 0.992127 - 0.008069961(LTE_{\delta}) + 0.00003178733(LTE_{\delta})^2$

• R_{LTE} is independent of a/ℓ

Thermal Curling: Relative Deflections

$$R_T = rac{\delta_{T+P} - \delta_T}{\delta_{_{W}}} = f\left(rac{a}{\ell}, rac{L}{\ell}, rac{W}{\ell}, lpha \Delta T, D_{_{\gamma}}, D_{_{P}}
ight)$$

- δ_{T+P} = ILLI-SLAB deflections for loading plus curling
- $\delta_{\rm T}$ = ILLI-SLAB deflections due to thermal curling

On-going Development of an Integrated Backcalculation Program

Windows-based TKUBAK Program

- Valid for a Single Slab and Loading Only
- Prediction Models (Projection Pursuit Regression)
- Closed-form Procedures: Closely Simulate ILLI-BACK **Backcalculation Program**

Application of Locally-Weighted Regression (LOESS) Technique: S-PLUS Program

- Cleveland & Devlin (1988), Cleveland & Grosse (1991)
- Attempt to Increase the Prediction Accuracy

Conclusions and Recommendations

- Investigated the Effects of Adjacent Slabs & Thermal Curling on Rigid Pavement Deflections
- Debugged Some Syntax Errors in the F.E. Program
 - Workstation Version → PC Version
 - Elastic Foundation: L + C Analysis is Possible!
 - Verified Numerically and Graphically
- Identified Two Additional Dimensionless Variables $(D_{ve} \& D_{Pe})$ due to L+C for Elastic Foundation
- Parameter Study of Adjacent Slab Effects

Conclusions and Recommendations

- Dowel-Bar Stiffness Matrix Errors
- Only Pure Shear Load Transfer Considered
- Deflection Databases & Adjustment Factors
 - Adjacent Slabs Effect
 - Deflection Adjustment Factor (R_{LTE}): R_{LTE} = $f(LTE_{\delta})$
 - R_{LTE} is independent of a/ℓ
- Loading & Curling Effects
 - Relative Deflection Adjustment Factor (R_T)
- On-going Development of an Integrated Backcalculation Program

THANKS FOR YOUR ATTENTION!

Ying-Haur Lee, Ph.D.
Professor of Civil Engineering
Tamkang University, Taiwan
Republic of China
http://teg.ce.tku.edu.tw/

