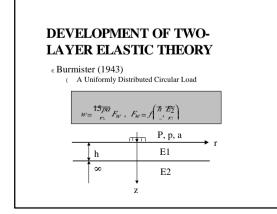
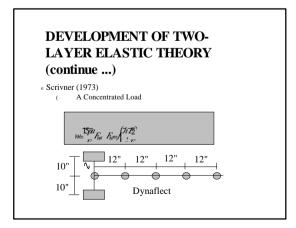
PRELIMINARY ANALYSIS ON BACKCALCULATION OF PAVEMENT LAYER MODULI FROM SURFACE **DEFLECTION DATA**

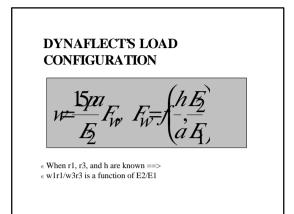
Ying-Haur Lee Jean-Hwan Chen Tamkang University Taiwan, R.O.C.

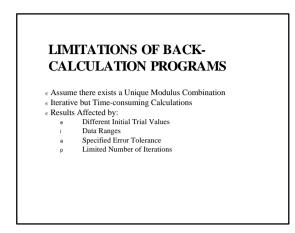
OBJECTIVES

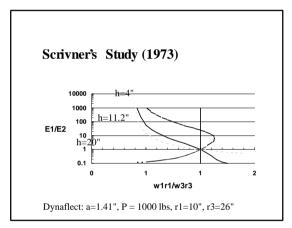
- e Major Deficiencies of Traditional Backcalculation Procedures
 - Uniqueness Problem Iterative but Time-consuming Calculation n
 - Subjective Selection of Initial Trial Values and Input Data
 - Ranges
- a Violation of the Specified Convergence Criteria
 c Scope: A Two-Layer Elastic Pavement System

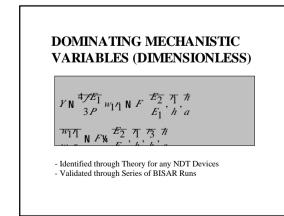

RESEARCH APPROACH


- e Theoretical Investigation Burmister (1943) and Scrivner's (1973)
 Deflection Equations
- e Identification of Functional Forms
- ε Validation of the Dominating Dimensionless Variables Identified
- e Development of a Backcalculation Database e Development of Backcalculation Prediction Equations
- e Validation of the Proposed Prediction Equations


CLASSIFICATION OF BACK-CALCULATION PROCEDURES


« Existing:


- Iterative Approach (BISDEF, ELSDEF, etc.) х

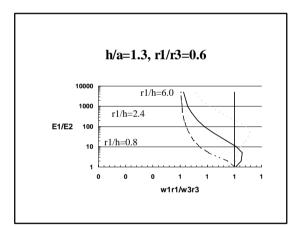


UNIQUENESS PROBLEM FOR BACKCALCULATION

w1r1/w3r3	h11.2"	h<11.2"
1	Unique	None / Two
<1	Unique	None / Two

Validation of Variable (h/a)

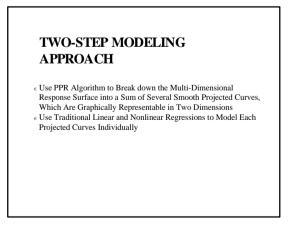
h/a	h in.	a in.	r1 in.	r3 in.	w1 mil	w3 mil	w1r1/w 3r3
2.5	5	2	7.5	15	3.99	3.16	0.631
2.5	8	3.2	12	24	2.49	1.98	0.629
2.5	14	5.6	21	42	1.42	1.13	0.628


Note: r1/h=1.5, r3/h=3, E2/E1=100, E1=500,000 psi, E2=5,000 psi, P=1,000 lbs

A BACKCALCULATION DATABASE

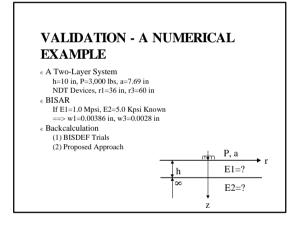
- e Based on Four Dimensionless Variables Identified e E1/E2 = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000r1/h = 0.8, 1.2, 1.8, 2.4, 3.6, 4.8, 6.0 r3/h = 1.2, 1.8, 2.4, 3.6, 4.8, 6.0, 7.2h/a = 0.8, 1.3, 2.5, 3.5, 5.0(r1>r3, P = 2400 lbs, E2 = 1000 psi, h = 10 in.) e FORTRAN Programs Written for Batch Processing
- e Total of 1680 Data Sets


USE OF THE DATABASE


- « A Computer Program, Look-up Tables or Figures for
 - Linear Interpolation
- e "DIRECT" Calculation is Possible if "Uniqueness" is Guaranteed.

- « "Projection" (PPR) Algorithm by Friedman and Stuetzle, 1981
 « Capable of Modeling Variable Interactions
- Model the Response Surface as a Sum of Nonparametric Prediction Functions of Explanatory Variables Using Local Smoothing Techniques

PROPOSED PREDICTION EQUATIONS FOR 'DIRECT'' CALCULATION - E1/E2


 $\log_{10} \frac{E_1}{E_2} \, \mathbb{N} f \, \frac{w_1 \eta}{w_3 r_3}, \frac{h}{a}, \frac{\eta}{h}, \frac{r_3}{h}, \frac{\eta}{r_3}, \frac{\eta}{a}, \frac{r_3}{a}$ Statistics and Limits: $N \, \mathbb{N} \, \mathbb{N} \, \mathbb{1} \, 247, \, \mathbb{R}^2 \, \mathbb{N} \, \mathbb{0} \, 995, \, SEE \, \mathbb{N} \, \mathbb{0} \, \mathbb{0} \, 64, \, CV \, \mathbb{N} \, \mathbb{2} \, 8\%$

1 ½ $\frac{E_1}{E_2}$ ½ 5000, 0.8 ½ $\frac{\eta}{h}$ ½ 6.0, 1.2 ½ $\frac{r_3}{h}$ ½ 7.2

0.8 ½ $\frac{h}{a}$ ½ 5.0, $\frac{w_1 r_1}{w_3 r_3}$ ½ 1.0, r_1 **0** r_3

PROPOSED PREDICTION EQUATIONS FOR 'DIRECT'' CALCULATION - E1

$$\begin{split} &\log_{10} \; \frac{E_1}{E_2} \; \; \mathbb{N} \; f \; \frac{w_1 \eta}{w_3 r_3}, \frac{h}{a}, \frac{\eta}{h}, \frac{r_3}{h}, \frac{\eta}{r_3}, \frac{\eta}{a}, \frac{r_3}{a} \\ & \text{Statistics and Limits:} \\ & \mathcal{N} \; \mathbb{N} \; 1247, \; \mathcal{R}^2 \; \mathbb{N} \; 0.995, \; \textit{SEE} \; \mathbb{N} \; 0.064, \; \textit{CV} \; \mathbb{N} \; 2.8\% \\ & 1 \; \& \; \frac{E_1}{E_2} \; \& \; 5000, \; 0.8 \; \& \; \frac{\eta}{h} \; \& \; 6.0, \; 1.2 \; \& \; \frac{r_3}{h} \; \& \; 7.2 \\ & 0.8 \; \& \; \frac{h}{a} \; \& \; 5.0, \; \frac{w_1 \eta}{w_3 r_3} \; \& \; 1.0, \; r_1 \; \mathbf{0} \; r_3 \end{split}$$

BISDEF TRIALS

E1	E2	E1	E2	E1	E2	Within
Start	Start	Range	Range			Toler-
Mpsi	Kpsi	Mpsi	Kpsi	Mpsi	Kpsi	ance*
0.5	3	0.1~	1~50	1.61	4.71	Y, N
		2.5				
1.61	4.71	0.1~	1~10	ERR	ERR	-
etc.	etc.	2.0				
1.1	4.0	0.8~	1~8	0.98	5.28	Y, N
		1.5				

* - Absolute Sum of % Difference

- Change in Modulus Values

THE PROPOSED APPROACH

THE PROPOSED APPROACH

(2) Use as a Pre-Processor

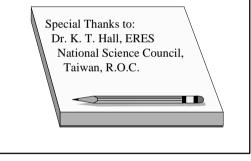
Assist in Selection of Initial Trial Values, Data Ranges to Speed Up the Convergence

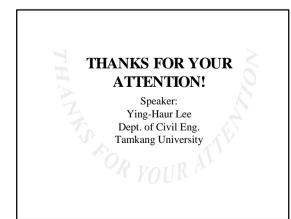
E1	E2	E1	E2	E1	E2	Within
Start	Start	Range				Toler-
Mpsi	Kpsi	Mpsi	Kpsi	Mpsi	Kpsi	ance*
0.01	4.60	0.1	1 12	0.09	5.12	V V
0.91	4.69	0.1~	1~12	0.98	5.13	Y, Y
		1.2				

CONCLUSIONS

- e Discussed the "Uniqueness" Problem and Short Comings of Traditional Approach
- Proposed an Alternative Approach Using Database and Modern Regressions
- e Identified Dominating Dimensionless Variables for More
- Complete Coverage « Strive to Develop Prediction Equations to Allow "DIRECT" Modulus Calculations

CONCLUSIONS (continue ...)


« Tentative Applications:


- A Calculator, a Spreadsheet, or a Computer Program for "Direct" Modulus Calculations (Instantly) A Pre-Processor of Traditional Backcalculation Programs
- 0 In-field Modulus Determinations and NDT Data Checking
- e Obtain More Accurate and Consistent Results

LOOKING AHEAD ...

- e Further Improve the Prediction Accuracy
- e Investigate a Three- or Four-Layer System e Must also Assure "Uniqueness" of Solutions
- « Possible Use of Local Regression Techniques or Any Database
- Search Algorithms
- e Lots of Research Remain to be Done!

ACKNOWLEDGMENTS

