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Application of Modern Regression Techniques and Artificial Neural Networks to 
Pavement Prediction Modeling 

Y. H. Lee, Y. B. Liu, and H. W. Ker 

 
Abstract: This study strives to illustrate the benefits of incorporating the principles of dimensional analysis, 
subject-related knowledge, and statistical knowledge into pavement prediction modeling process. Modern 
regression techniques including local regression and regression splines as well as back propagation neural 
networks were briefly introduced. Factorial 2-D and 3-D finite element runs and BISAR runs for different 
pavement systems were conducted to generate the deflection databases for the analysis. The resulting ANN 
model using all dominating dimensionless parameters was proved to have higher accuracy and require less 
network training time than the other counterpart using purely input parameters. Increasing the complexity of 
ANN models does not necessarily improve the modeling statistics. The results also showed that using higher 
number of neurons and hidden layers sometimes lead to even worse modeling statistics which was an indication 
of over training and should be avoided. Several local regression models requiring minimal amount of modeling 
time were also developed using the same databases.  
Key words: Pavement deflection, prediction modeling, dimensional analysis, local regression, artificial neural 
networks. 
 

INTRODUCTION 

Predictive models have been widely used in various pavement design procedures, evaluation, rehabilitation, and 
network management systems. Empirical and mechanistic-empirical approaches using statistical regression 
techniques have been utilized extensively in predicting extremely complicated pavement responses and 
performance indicators for more than four decades. Using purely empirical concepts to develop predictive 
models is not recommended. Lee (1) proposed a systematic statistical and engineering modeling approach which 
strongly recommends to incorporate theoretical engineering knowledge, expert experience, heuristics, and 
statistical data analysis and regression techniques altogether into the framework to develop more mechanistic-
based predictive models. In additional to the conventional “parametric” linear and nonlinear regression 
techniques, several ingenious iterative regression techniques in the area of “robust” and “nonparametric” 
regressions were also incorporated. The proposed approach has been successfully implemented in the 
development of many purely empirical predictive models (2, 3), purely mechanistic predictive models (4, 5), as 
well as the mechanistic-empirical predictive models adopted in the early analyses of LTPP general pavement 
studies data (6). 

Significant progress has been reported in pavement prediction modeling of simulated data using 
artificial neural networks (ANN). Back propagation networks (BPN) can be taught from one data space to 
another using representative set of data to be learned. The learning process actually refers to a multi-layered, 
feed-forward neural network trained by using an error back propagation algorithm or an error minimization 
technique (7, 8). Ceylan (9) conducted a literature search summarizing recent ANN applications in pavement 
structural evaluation such as backcalculating pavement layer moduli and predicting primary pavement responses 
(e.g., stress and deflection). As with many ANN applications in the literature (10-15), original pertinent input 
parameters were used to generate the training and testing databases. This approach often requires tremendous 
amount of time and efforts in network training and testing. To reduce the size of the required factorial databases, 
researchers sometimes opt to fix certain input parameters to some prescribed values as a special case study, 
which may result in limiting the inference space of the resulting model. 

Nevertheless, some earlier ANN literature has also illustrated that the incorporation of the principles of 
dimensional analysis lead to significant savings during the training set generation. Ioannides et al. (16) trained a 
back propagation neural network (BPN) to determine the in situ load transfer efficiency of rigid pavement joints 
from Falling Weight Deflectometer (FWD) data. Khazanovich and Roesler (17) developed an ANN-based 
backcalculation procedure for composite pavements. The multilayer elastic program DIPLOMAT was used to 
analyze a three-layer pavement system consisting of an AC surface layer over a PCC slab resting on a Winkler 
foundation. Ioannides et al. (18) trained BPN models to predict the critical slab bending stress for loading-only, 
curling-only, and loading-and-curling cases. BPN predictions were compared against the Westergaard closed-
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form solutions as well as the statistical regression models developed by Lee and Darter (4) using a small set of 
factorial data with dimensionless mechanistic variables. It was re-emphasized that mature engineering judgment 
and in-depth understanding of the mechanics of the phenomenon remain the most reliable guides in the 
formation of the problems to be analyzed.  

Attoh-Okine (19) proposed the use of ANN models in predicting roughness progression of flexible 
pavements. Although the results were promising, some built-in functions including learning rate and momentum 
term which form key neural network algorithm were not investigated. Attoh-Okine (20) used real pavement 
condition and traffic data and specific architecture to investigate the effect of learning rate and momentum term 
on BPN models for the prediction of flexible pavement performance. Sorsa et al. (21) indicated that adding many 
hidden layers gets the network to learn faster and the mean square error becomes a little smaller, but the 
generalization ability of the network reduces. 

Ripley (22) discussed many statistical aspects of neural networks and tested it with several benchmark 
examples against traditional and modern regression techniques, such as generalized discriminant analysis, 
projection pursuit regression, local regression, tree-based classification, etc. Ripley concluded that in one sense 
neural networks are little more than non-linear regression and allied optimization methods. “That two-layer 
networks can approximate arbitrary continuous functions does not change the validity of more direct 
approximations such as statistical smoothers, which certainly ‘learn’ very much faster (22).” Projection pursuit 
regression highlights the value of differentiated units and other training schemes and offers computation 
shortcuts through forward and backward selection. Statistical and subject-related knowledge can be used to guide 
modeling in most real-world problems and so enable much more convincing generalization and explanation, in 
ways which can never be done by ‘black-box’ learning systems (22). 

As part of continuous research efforts in pavement design and analysis (4, 23, 24), modern regression 
techniques and artificial neural networks (ANN) are utilized in this study to improve the prediction accuracy of 
simulated pavement deflections (25, 26). Factorial 2-D and 3-D finite element runs and BISAR runs for different 
pavement systems are conducted to generate the deflection databases for the analysis. This study strives to 
illustrate the benefits of incorporating the principles of dimensional analysis, subject-related knowledge, and 
statistical knowledge into prediction modeling process.  

MODERN REGRESSION TECHNIQUES 

Revised Two-Step Modeling Approach Using Projection Pursuit Regression 

The proper selection of regression techniques is one of the most important factors to the success of prediction 
modeling. Since most of the regression algorithms currently available do not directly consider interaction effects 
during the modeling process, the interaction terms must be subjectively determined prior to performing a 
regression analysis. With the multi-dimensional pavement engineering problems in mind, several unresolved 
deficiencies are frequently identified in the use of stepwise regression and nonlinear regression. These include 
problems in the selection of correct functional form, violations of the embedded statistical assumptions, and 
failure to satisfy some engineering boundary conditions. 

The projection pursuit regression (PPR), however, appears to have the most favorable features in 
handling these problems, which strives to model the response surface (y’s) as a sum of nonparametric functions 
of projections of the predictor variables (x’s) through the use of super smoothers. More technical details about 
the development process, the application, and the demonstration on modeling interactions of the PPR algorithm 
can be found in the literature (27-29). The S-PLUS statistical package, which has been widely used by 
statisticians, was selected for the analysis due to the availability of this regression technique. 

As a result, a two-step regression analysis procedure was proposed by Lee and Darter (5) to better find 
the correct functional form and to better fit the response surface. With the help of the PPR, a multi-dimensional 
response surface is broken down into the sum of several smooth projected curves which are graphically 
representable in two dimensions. Plausible functional forms and applicable boundary conditions may then be 
easily identified and specified through visual inspection and/or engineering knowledge of physical relationships 
to model these individual projected curves separately. Traditional parametric regression techniques such as linear, 
piecewise-linear, and nonlinear regressions are then utilized for these purposes with higher confidence in the 
parameter estimates.  

In this study, regression spline algorithm (30) was adopted in lieu of piecewise-linear regressions at the 
second step to assure smooth junctions at the change points. A spline function is a piecewise polynomial 
regression. An n-spline function is an n-degree polynomial with n-1 continuous derivatives at the change points. 
These change points are called “knots” in spline literature. Spline functions can be viewed as a data-smoothing 
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regression function and/or a way to improve polynomial approximation of regression function. In most cases, a 
spline can be represented as a linear combination of some basis functions that have polynomial forms. 
Polynomials can be viewed as a special case of spline with no knots (31). In fitting a spline model, the prediction 
should be within the data range. Cubic splines with continuous second derivatives at the knots are most 
commonly used in most applications (32). Cubic splines are most popular in spline applications because they are 
of low degree and relatively smooth (assuming continuity restriction up to second derivative only), and possess 
the power to incorporate several different trends in the range of the data by increasing the number of knots (31). 

Locally-Weighted Regression (Loess) Technique 

The locally weighted regression (loess) technique is an approach to regression analysis by local fitting developed 
by Cleveland and Devlin (33). Cleveland and Grosse (34) provided computational methods for local regression. 
A particular data structure called k-d tree is used for partitioning space by recursively cutting cells in half by a 
hyperplane orthogonal to one of the coordinate axes. The loess approach uses a smoothing technique for fitting a 
nonlinear curve to the data points locally, so that any point of the curve depends only on the observations at that 
point and some specified neighboring points. The number of neighbors (k) is specified as the percentage of the 
total number of points or “span”. Local regression models provide much greater flexibility in fitting a multi-
dimensional response surface as a series of many sub-divided regions with single smooth functions of all the 
predictors. There are no restrictions on the relationships among the predictors.  

Figure 1 depicts the concept of loess k-d tree algorithm. This algorithm is available in the S-PLUS 
statistical package (29). As currently implemented, locally quadratic models may have at most 4 predictor 
variables and locally linear models may have at most 15 predictors. The original FORTRAN and C codes for the 
loess algorithm can also be obtained from the ftp site: “ftp research.att.com.”  

   
FIGURE 1  Illustration of loess k-d tree algorithm (34). 

ARTIFICIAL NEURAL NETWORKS 

The concept of ‘neural network’ was originated by the work on ‘perceptrons’ around 1960. There were pictured 
as networks with a number of inputs xi and an output (or outputs) y, where the inputs are connected to one or 
more neurons in the input layer and they are further connected in one or more hidden layers until they reach the 
output neuron. Artificial Neural Networks (ANN) provides a flexible way to generalize linear regression 
functions. They are nonlinear regression models but with so many parameters extremely flexible to approximate 
any smooth function. The most commonly used rule is the generalized delta rule or back propagation algorithm. 
Ripley (22) provided the detail definitions and brief derivation of a back propagation network (BPN). The 
learning procedure has to select the weights and the biases by presenting the training examples in turn several 
times, while striving to minimize the total squared error: 

∑ −=
p

pp cyE
2

2
1

 (1) 

Where y p is the output for input x p, and c p is the target output; the index p runs through the data in the 
training set. However, the questions of how many layers and how many neurons should be used were treated 
very lightly in the literature. 

A neural network modeling software package called Qnet v2000 for Windows (35) was adopted for this 
study. The convergence characteristics of various activation (or transfer) functions including step function, 
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logistic or sigmoid function, hyperbolic tangent function, and radial basis function as shown in Figure 2 will be 
further investigated (36, 37). 

(a) (b) 

 
(c) (d) 

 
FIGURE 2  Illustration of various activation (or transfer) functions: (a) step function, (b) logistic or 
sigmoid function, (c) hyperbolic tangent function, and (d) radial basis function. 

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS AND MODERN REGRESSION 
TECHNIQUES 

Rigid Pavement Deflection Prediction Models of Infinite Slab Size 

Based on the principles of dimensional analysis, Ioannides et al. (38) indicated that the structural responses of a 
rigid pavement such as or the dimensionless deflection parameter (δkl2/P) are dominated by the following four 
dimensionless variables: the normalized load radius (a/l), the normalized finite slab length (L/l), the normalized 
finite slab width (W/l), and the normalized radial distance (r/l) for 2-D FEM analysis. In which δ is the 
deflection, [L]; k is the modulus of subgrade reaction, [FL-3]; P is the single wheel load, [F]; l=(E*h3/(12*(1-
μ2)*k))0.25 is the radius of relative stiffness of the slab-subgrade system [L]; E is the modulus of the concrete slab, 
[FL-2]; h is the thickness of the slab, [L]; μ is the Poisson’s ratio. Note that primary dimension for force is 
represented by [F], and length is represented by [L]. To illustrate the benefits of incorporating the principles of 
dimensional analysis into the modeling process, the following case studies were conducted: 

ANN Models 

For an infinite single slab resting on a Winkler foundation under interior loading condition, factorial ILLI-SLAB 
runs were conducted based on the following input parameters: single wheel load P=40 kN (9,000 lbs); tire 
pressure p=0.62 MPa (90 psi); modulus of the concrete slab E= 13.78~48.23 GPa (2~7 Mpsi); modulus of 
subgrade reaction k=13.5~175.5 MN/m3 (50~650 pci); and slab thickness h= 15.2~76.2 cm (6~30 in.). These 
input parameters were such selected to cover wider ranges of practical cases. The dependent variable is the 
deflection δ and the explanatory variables are E, k, h, and r. The resulting deflection database consists of 12,329 
data points, in which 11,329 observations were randomly selected for actual training and the remaining 1,000 
data points was used to monitor the training process. Step activation function was first tried with extreme 
difficulty in achieving convergence. Subsequently, sigmoid activation function was chosen for the modeling 
process. The summary statistics of the NET1 model is shown in Table 1. Note that since certain input parameters 
were fixed to some prescribed values to reduce the size of the required factorial database, the applicability of this 
special case study is rather limited. 
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TABLE 1  Comparison of Two Different ANN Models  
ANN Type NET1 NET2 
Outputs 　 R 
Inputs  E, k, h, r a/l, r/l 

Data Points 
Training: 11,329 
Monitoring: 1,000 

Training: 394 
Monitoring: 100 

Hidden Layer(s)  2 1 
Neurons in Each Hidden Layer 12-12 6 
Learning Cycle 30,000 10,000 
Learning Rate 0.5 0.1 
Modeling Time 6 hrs 43 min. 42 min. 

RMS 
Training: 0.00290 
Monitoring: 0.00420 

Training: 0.00377 
Monitoring: 0.00360 

Coefficient of Determination, R2 0.999 0.9999 

Alternatively, the aforementioned factorial ILLI-SLAB runs may be generalized based on the following 
dimensionless parameters: a/l=0.05~0.4 (step by 0.01) and r/l ranges from 0 to 3.2 determined by automatic 
mesh generation. To simulate infinite slab size conditions, L/l and W/l were greater than or equal to 8. Thus, a 
2-D rigid pavement deflection database with 494 data points was obtained (26), of which 394 data points were 
used for actual ANN training and the remaining 100 observations were used to monitor the training process. The 
dependent variable is the deflection ratio (R) defined as the ratio of the deflection at any radial distance to the 
resulting maximum deflection. The convergence characteristics of various activation functions were investigated. 
As shown in Figure 3(a), it was noted that sigmoid activation function has better convergence characteristics 
than hyperbolic tangent function. Using a single hidden layer with only 5 neurons, sigmoid function completed 
10,000 training cycles in 35 minutes whereas hyperbolic tangent function needed 60 minutes, although the 
resulting root mean squared errors (RMS) have little difference. Radial basis activation function was also tried 
with extreme difficulty in achieving convergence. In addition, increasing the number of neurons during the 
network training process does not necessarily improve the modeling statistics. On the contrary, as shown in 
Table 2 and Figure 3(b) the resulting RMS and training time increased while increasing the number of neurons in 
the hidden layer. Since the model with only six neurons had the lowest RMS, it was chosen as the proposed 
model (NET2) as summarized in Table 1. It was also concluded that with the incorporation of dimensional 
analysis in the modeling process, the requirements on database generation and network training time could be 
greatly reduced. 

 (a) (b) 
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FIGURE 3  Comparison of Convergence Characteristics due to Different: (a) Activation Functions; and 
(b) Number of Neurons in the Hidden Layer. 

Rigid pavement deflection predictions of finite slab size 

To further investigate the convergence characteristics of different ANN models and to illustrate the possibility of 
over training, the following case studies were conducted. 
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ANN models 

Similarly, for a finite single slab resting on a Winkler foundation under interior loading condition, factorial ILLI-
SLAB runs were conducted based on the following input parameters: a/l=0.05~0.4, L/l= 2~7, W/l=2~7, and r/l 
ranges from 0 to 3.2 determined by automatic mesh generation. A 2-D rigid pavement deflection database with 
2,227 data points was obtained (26), of which 2,027 data points were randomly selected for actual ANN training 
and the remaining 200 observations were used to monitor the training process. The dependent variable is the 
deflection ratio (R) defined as the ratio of the deflection at any radial distance to the resulting maximum 
deflection. The explanatory variables are the following dimensionless variables: a/l, L/l, W/l, and r/l. 

TABLE 2  Summary Statistics of Different ANN Models 
Number of Neurons in the Hidden Layer ANN Type 
5 6 7 8 9 10 

Training RMS 0.00416 0.00377 0.00524 0.00569 0.00554 0.00520 
Monitoring RMS 0.00384 0.00360 0.00492 0.00529 0.00520 0.00490 
R-Squared 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
Training Time 35 min. 42 min. 52 min. 60 min. 67 min. 82 min. 

Similarly, it was noted that sigmoid activation function has better convergence characteristics than 
hyperbolic tangent function. Using a single hidden layer with only 8 neurons and learning rate = 0.01, sigmoid 
function completed 30,000 training cycles in 11 minutes whereas hyperbolic tangent function needed 20 minutes, 
although the resulting root mean squared errors (RMS) had no much difference. Radial basis activation function 
was also tried, but extreme difficulties were encountered in achieving convergence. By increasing the number 
the hidden layers from 1 to 2 and the number of neurons from 8 to 13 during the network training process, the 
resulting RMS and training time are summarized in Table 3. The convergence characteristics of different ANN 
models with 8 neurons in the first hidden layer were shown in Figure 4. The ANN model with 8 neurons in the 
first hidden layer and 1 neuron in the second hidden layer was chosen as the proposed model due to its relatively 
small RMS. The results also showed that more complicated  

TABLE 3  Summary Statistics of ANN Models with Different Number of Layers and Neurons 
Number of Neurons in the First Hidden Layer ANN 

Type 
Summary Statistics 

8 9 10 11 12 13 
Training RMS 0.01037 0.00965 0.00974 0.00782 0.00887 0.00925

Monitoring RMS 0.01007 0.00966 0.01046 0.00785 0.00923 0.01011
R-Squared 0.9988 0.9989 0.9989 0.9993 0.9991 0.9989

0 

Training Time 11 min. 12 min. 13 min. 15 min. 16 min. 17 min.
Training RMS 0.00552 0.00550 0.00562 0.00553 0.00602 0.00539

Monitoring RMS 0.00565 0.00594 0.00518 0.00513 0.00562 0.00568
R-Squared 0.9997 0.9997 0.9996 0.9997 0.9997 0.9997

1 

Training Time 11 min. 12 min. 13 min. 16 min. 17 min. 21 min.
Training RMS 0.00714 0.00620 0.00563 0.00668 0.01102 0.00589

Monitoring RMS 0.00711 0.00604 0.00581 0.00613 0.01028 0.00713
R-Squared 0.9994 0.9996 0.9994 0.9995 0.9988 0.9995

2 

Training Time 13 min. 13 min. 15 min. 18 min. 19 min. 22 min.
Training RMS 0.00599 0.00751 0.00581 0.00817 0.00981 0.01008

Monitoring RMS 0.00549 0.00831 0.00588 0.00864 0.00904 0.01061
R-Squared 0.9997 0.9988 0.9991 0.9988 0.9979 0.9978

3 

Training Time 15 min. 16 min. 17 min. 19 min. 21 min. 24 min.
Training RMS 0.00570 0.00748 0.00558 0.01005 0.00673 0.00671

Monitoring RMS 0.00569 0.00803 0.00559 0.01074 0.00656 0.00726
R-Squared 0.9993 0.9988 0.9994 0.9978 0.9978 0.9991
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Training Time 18 min. 18 min. 19 min. 22 min. 24 min. 25 min.
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ANN models using higher number of hidden layers and neurons sometimes lead to even worse modeling 
statistics which was an indication of over training and should be avoided. 
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FIGURE 4  Comparison of convergence characteristics for: (a) training data; and (b) testing data. 

Loess Models 

Several S-PLUS trials of local regressions were conducted using the same database. The response variable was 
chosen as the deflection ratio (R) and the explanatory variables were a/l, L/l, W/l, and r/l. The resulting loess 
model was easily obtained requiring minimal amount of modeling time, in which the smoothing parameter 
“span” was chosen as 0.1, whereas the “cell” argument was chosen as 0.01. The following regression statistics 
were obtained: the number of observations = 2,227; equivalent number of parameters = 31.9; residual standard 
error = 0.006376; and multiple R-squared = 1. The resulting errors were still relatively small even when the 
proposed loess model was quite simple. 

Three-dimensional rigid pavement deflection predictions 

With the introduction of three-dimensional (3-D, ABAQUS) FEM (39) and all the promising features reported in 
the literature, its applications on pavement engineering become inevitable (25). Based on the principles of 
dimensional analysis, Ioannides and Salsilli-Murua (40) indicated that the dimensionless deflection parameter 
(δkl2/P) is only a function of a/l, L/l, and W/l for 2-D FEM analysis. Extreme difficulties were encountered 
while using only these three dimensionless variables (a/l, L/l, W/l) to determineδkl2/P for 3-D FEM analysis. 
Subsequently, an additional dominating dimensionless variable (h/a) which is defined as the ratio of slab 
thickness (h) and load radius (a) was identified to account for the theoretical differences between 2-D and 3-D 
FEM analyses (24). A series of 3-D FEM factorial runs was conducted for a single squared slab resting on a 
Winkler foundation under interior loading condition with the following dimensionless parameters: a/l=0.05, 
0.1~0.5 (step by 0.1); L/l=2~8 (step by 1); W/l=L/l; and h/a=0.5~6 (step by 0.5). These ranges were carefully 
selected to cover a very wide range of highway and airfield rigid pavement conditions. An automated analysis 
program was developed using the Visual Basic software package to automatically construct FEM models, 
generate the input files, conduct the runs, as well as summarize the results to avoid untraced human errors. A 3-
D rigid pavement deflection database with 504 data points was obtained (26).  

ANN Models 

A total of 404 observations were randomly chosen for actual training and the remaining 100 data points were 
used for monitoring the training process. Deflection ratio (R) defined as the ratio of 3-D FEM results to 
Westergaard solutions was treated as the response variable. Sigmoid activation function was chosen in this case 
study. The learning rate was set as 0.02 for the cases analyzed. In the first ANN model (NET1), no 
transformation was made on the response variable. As shown in Table 4 and in Figure 5, the modeling statistics 
and the convergence characteristics of the NET1 model were satisfactory. 

Nevertheless, it is worth mentioning that since Westergaard’s closed-from deflection is very small for 
thicker pavements or larger load sizes (larger h/a and a/l), the resulting 3-D FEM deflections can be several 
times of the theoretical solutions due to possible compression across the slab thickness. Since the resulting 3-D 
FEM deflections are always higher than the Westergaard solutions, the reciprocal of the deflection ratio (1/R) 
always ranges from 0 to 1. Wu (25) has illustrated that using 1/R as the response variable lead to better physical 
meanings (or interpretations) of the proposed PPR model. With the incorporation of subject-related knowledge 
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into the modeling process, it was shown that smaller root mean squared errors (RMS) and higher coefficient of 
determination (R2) have been achieved in the NET2 model, although the convergence rate was slightly slower. 

TABLE 4  Comparison of Two Different ANN Models  
ANN Type NET1 NET2 
Outputs R 1/R 
Inputs  a/l, L/l, h/a a/l, L/l, h/a 
Hidden Layer(s)  2 2 
Neurons in Each Hidden Layer 10-4 10-4 
Learning Cycle 30,000 30,000 

RMS 
Training: 0.00989 
Monitoring: 0.01019 

Training: 0.00539 
Monitoring: 0.00478 

Coefficient of Determination, R2 0.9988 0.9999 
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FIGURE 5 Comparison of the convergence results of two trained ANN modles. 
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FIGURE 6  Proposed PPR model for the 3-D deflection database. 
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Revised Two-Step Modeling Approach Using PPR and Regression Splines  

To facilitate future possible applications of the 3-D rigid pavement deflection database, the following predictive 
model was developed using projection pursuit regression technique (5, 27). As shown in Figure 6, the response 
variable was chosen as the reciprocal of the deflection ratio (1/R) and the explanatory variables were aol=a/l, 
Lol=L/l, hoa=h/a, and their variations (h/l= h /l, a/L= a/L, h/L= h/L). In addition, the result of projection 
modeling where A1, A2, �1, and �2 were labeled ATX1, ATX2, 1st Projected Term, and 2nd Projected Term, 
respectively. A plot of the fitted values versus the response variable is always provided to illustrate the goodness 
of the fit. A plot of residuals versus the fitted values can be used to check the adequacy of the model. If any 
curvature is observed, then the model might be improved by adding additional, nonlinear terms to the model. 
Regression spline algorithm was adopted in lieu of piecewise-linear regressions at the second step to assure 
smooth junctions at the change points. A Boolean-valued function coded 0=“false” or 1=“true” was used for 
such operations. Consequently, the coefficient of determination (R2) was slightly reduced from 0.996 to 0.9942 
as the expense of this smoothing. The tentative predictive model and its regression statistics are as follows: (In 
which, N is the number of observations and SEE is the standard error of the estimation.) 

lllllll

lllllll
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AAAA
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  (2) 

0.02241SEE 0.9942,R 504,N:Statistics 2 ===  

Loess Models 

Several S-PLUS trials of local regressions were conducted using the same database. Again, the response variable 
was chosen as the reciprocal of the deflection ratio (1/R) and the explanatory variables were a/l, L/l, and h/a. 
The resulting loess model was easily obtained at a greatly reduced amount of modeling time, in which the 
smoothing parameter “span” was chosen as 0.1, whereas the “cell” argument was chosen as 0.1. The following 
regression statistics were obtained: the number of observations = 504; equivalent number of parameters = 56.6; 
residual standard error = 0.004784; and multiple R-squared = 1.  

Flexible Pavement Deflection Predictions 

Based on the multi-layer elastic theory and the principles of dimensional analysis, the following dominating 
dimensionless variables were identified for a three-layer pavement system: E1/E2, E2/E3, h1/h2, and a/h2. In which, 
a is the radius of the applied load, [L]; h1 and h2 are the thickness of the surface and base layers, [L]; E1, E2, and 
E3 are the Young’s moduli of the surface layer, base layer, and subgrade, respectively, [FL-2]. A series of 
factorial BISAR runs was conducted with the following ranges to cover most practical pavement data: 
0.5≦E1/E2≦170, 0.5≦E2/E3≦170, 0.2≦h1/h2≦2.4, and 0.5≦a/h2≦5.0. A BASIC program written by Dr. 
Alaeddin Mohseni was used to automatically generate the input files and summarize the results to avoid untraced 
human errors. A pavement response database including the aforementioned dimensionless variables, deflections 
at the center of load (D0), horizontal strain (εt) and vertical strain (εv) at the bottom of the surface layer was 
obtained. A training database with 3,600 data points and an independent testing database with 1,728 data points 
were used in this study (26). 

ANN Models 

The training database was randomly separated into 3,400 data points for actual training and the remaining 200 
observations for monitoring the training process. Hyperbolic tangent activation function was chosen in this case 
study. The learning rate was set as 0.01. At the first trial (NET1) as shown in Table 5, no transformation was 
made on both explanatory and response variables. Extreme difficulty was encountered in obtaining reasonable 
convergence. 
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Based on the basic assumptions of conventional regression techniques that the random errors are 
mutually uncorrelated and normally distributed with zero mean and constant variance, and additive and 
independent of the expectation function, it is desirable to check the normality of the response variable. The Box-
Cox (41) transformation procedure was adopted to find the approximate power transformation of the response 
variable (D0). As shown in Figure 7(a), the maximum likelihood estimator λ was approximately 0 indicating that 
a logarithm transformation was appropriate for D0 (42). Figure 7(b) is the normal Q-Q plot which graphically 
compares the distribution of log(D0) to the normal distribution represented by a straight line. This indicates that 
the logarithm of D0 is approximate to normally-distributed. In the second trial (NET2), convergence was 
obtained though the number of learning cycles and modeling time were still very high. The root mean squared 
(RMS) errors were computed accordingly.  

TABLE 5  Comparison of Three Different ANN Models  
ANN Type NET1 NET2 NET3 
Outputs D0 Log(D0) Log(D0) 

Inputs  
E1/E2, E2/E3, h1/h2, 
a/h2 

E1/E2, E2/E3, h1/h2, a/h2 
log(E1/E2), log(E2/E3), 
h1/h2, a/h2 

Hidden Layer(s)  3 3 2 
Neurons in Each Hidden 
Layer 

20-10-5 15-10-5 
12-6 
 

Learning Cycle Cannot converge 200,000 27,000 

Modeling Time > 24 hrs 10 hrs 26 min 

RMS --- 
Training: 0.0048 
Monitoring: 0.0045 

Training: 0.0040 
Monitoring: 0.0039 
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FIGURE 7  (a) Box-Cox transformation result; and (b) normal Q-Q plot of log(D0). 

According to general statistical principles or using the alternating conditional expectations (ACE) 
algorithm (43) together with the Box-Cox power transformation technique proposed by Lee (1), logarithm 
transformations of D0, E1/E2, and E2/E3 were recommended for NET3 model. As shown in Table 5, with more 
statistical knowledge incorporated into the ANN modeling process, the resulting ANN model was proved to have 
higher accuracy and less network training time than the other counterpart using purely input parameters. Figures 
8(a) and 8(d) depict the network convergence results for NET2 and NET3 during the training process. The 
goodness of the prediction of log(D0) and the goodness of the prediction of D0 for NET2 and NET3 were also 
provided in Figures 8(b)~8(c) and 8(e)~8(f) during the testing phase, respectively. With more statistical 
knowledge incorporated into the modeling process, the resulting ANN model was proved to have higher 
accuracy and less network training time than the other counterpart using purely input parameters. 
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FIGURE 8  (a) ~ (c) NET2 network convergence results, goodness of the prediction of log(D0), and 
prediction of D0; and (d) ~ (f) for NET3 network, respectively. 

Loess Models 

Several S-PLUS trials of local regressions were conducted using the same training and testing databases. Again, 
the logarithm transformations of D0, E1/E2, and E2/E3 were adopted here. The response variable is log(D0) and 
the explanatory variables are log(E1/E2), log(E2/E3), h1/h2, and a/h2. The resulting loess model was obtained at a 
greatly reduced amount of modeling time, in which the smoothing parameter “span” was chosen as 0.1, whereas 
the “cell” argument was chosen as 0.1. The following regression statistics were obtained: number of observations 
= 3,600; equivalent number of parameters = 31.9; residual standard error = 0.02792; and multiple R-squared = 1. 
The goodness of the prediction of log (D0) and D0 were presented in Figures 9(a) and 9(b), respectively. 
The resulting loess model was compared to the aforementioned NET2 and NET3 models for the goodness of D0 
predictions during the testing phase. Reasonably good predictions can be achieved using both ANN and modern 
regression techniques.  
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FIGURE 9  Local regression model: (a) goodness of the prediction of log (D0) and (b) goodness of the 
prediction of D0. 

CONCLUDING REMARKS 

Several case studies were conducted to illustrate the benefits of incorporating the principles of dimensional 
analysis, subject-related knowledge, and statistical knowledge into pavement prediction modeling process. The 
resulting ANN model using all dominating dimensionless parameters was proved to have higher accuracy and 
require less network training time than the other counterpart using purely input parameters. Increasing the 
complexity of ANN models does not necessarily improve the modeling statistics. The results also showed that 
using higher number of neurons and hidden layers sometimes lead to even worse modeling statistics which was 
an indication of over training and should be avoided. Several local regression models requiring minimal amount 
of modeling time were also developed using the same databases. The resulting loess model was compared to the 
aforementioned ANN models for the goodness of predictions. Reasonably good predictions can be achieved 
using both ANN and modern regression techniques. Statistical and subject-related knowledge can be used to 
guide modeling in most real-world problems and so enable much more convincing generalization and 
explanation, in ways which can never be done by ‘black-box’ learning systems (22). 
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