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Development of Fatigue Cracking Performance Prediction Models for Flexible 
Pavements Using LTPP Database 

H. W. Ker, Y. H. Lee, and P. H. Wu 

Abstract: The main objective of this study is to develop improved fatigue cracking models for flexible 
pavements using the Long-Term Pavement Performance (LTPP) database. The retrieval, preparation, and 
cleaning of the database were carefully handled in a more systematic and automatic approach. The prediction 
accuracy of the existing prediction models implemented in the recommended Mechanistic-Empirical Pavement 
Design Guide (NCHRP Project 1-37A) was found to be inadequate. Exploratory data analysis indicated that the 
normality assumption with random errors and constant variance using conventional regression techniques might 
not be appropriate for this study. Therefore, several modern regression techniques including generalized linear 
model (GLM) and generalized additive model (GAM) along with the assumption of Poisson distribution and 
quasi-likelihood estimation method were adopted for the modeling process. The resulting mechanistic-empirical 
model included several variables such as yearly KESALs, pavement age, annual precipitation, annual 
temperature, critical tensile strain under the AC surface layer, and freeze-thaw cycle for the prediction of fatigue 
cracking. The goodness of the model fit was further examined through the significant testing and various 
sensitivity analyses of pertinent explanatory parameters. The tentatively proposed predictive models appeared to 
reasonably agree with the pavement performance data although their further enhancements are possible and 
recommended.  

INTRODUCTION  

Performance predictive models have been used in various pavement design, evaluation, rehabilitation, and 
network management activities. Since fatigue cracking is one of the major flexible pavement distress types 
primarily caused by the accumulated traffic loads. Extensive research has been conducted to predict the 
occurrence of this distress type using various empirical and mechanistic-empirical approaches. Conventional 
predictive models usually correlate fatigue damage to the critical tensile strain and the stiffness of the AC surface 
layer (1). As pavement design evolves from traditional empirically based methods toward mechanistic-empirical, 
the equivalent single axle load (ESAL) concept used for traffic loads estimation is no longer adopted in the 
recommended Mechanistic-Empirical Pavement Design Guide (MEPDG) (NCHRP Project 1-37A) (2). The 
success of the new design guide considerably depends upon the accuracy of pavement performance predictions. 
Thus, this study will first investigate its goodness of fit and strive to develop improved fatigue cracking 
prediction models for flexible pavements using the Long-Term Pavement Performance (LTPP) database 
(http://www.datapave.com or LTPP DataPave Online) (3-5). 

BRIEF REVIEW OF EXISTING MECHANISTIC-EMPIRICAL PREDICTION MODELS 

Since fatigue cracking is primarily caused by accumulated traffic loads, various predictive models as shown in 
Table 1 based on the following expressions have been proposed to estimate the maximum allowable number of 
repetitions (Nf) using the critical tensile strain (εt) and the dynamic modulus (E*) of AC surface layer (6-9):  

3
2 *

1 )(
kk

tf EkN
−−= ε  (1) 

TABLE 1  Models for Predicting Allowable Load Repetitions (7) 
Organization  Author (Year) k1 k2 k3 
Asphalt Institute AI  (1981) 0.0796 3.291 0.854
Shell Oil Shook (1982) 0.0685 5.671 2.363
Belgian Road Research Center Verstraeten (1984) 4.92×10-14 4.76 0
UC-Berkeley Craus (1984) 0.0636 3.291 0.854
Transport and Road Research Laboratory Powell (1984) 1.66×10-10 4.32 0
Illinois  Thompson (1987) 5×10-6 3.0 0
U.S. Army Department of Defense (1988) 478.63 5.0 2.66
Indian Das, Pandey (1999) 0.1001 3.565 1.474
Mn/ROAD Timm (2003) 2.83 3.21 0
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In which, k1, k2, and k3 are regression coefficients. The pavement is considered to be failed when there 
exists 20 percent of fatigue cracking in the entire lane area (or equivalent to 45 percent in the wheel path area) 
(10). Cumulative fatigue damage (Df) is then calculated by adding the damage caused by each individual load 
application based on Miner’s hypothesis: 

∑
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f N
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Where, k is the number of axle load type, ni is the number of axle applications, and Nfi is the 
corresponding maximum allowable number of repetitions. 

In the recommended MEPDG, the revised MS-1 fatigue cracking model which was originally 
developed by Asphalt Institute for bottom up alligator cracking is shown as follows (2, Appendix II-1): 
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Where, βf1, βf2, βf3 are calibration factors; βf1=β′f1*k′1; β′f1 is a numerical value; k′1 is a function of the AC 
layer thickness; C is laboratory to field adjustment factor; εt is the critical tensile strain and E is the stiffness of 
the AC surface layer; Va stands for air voids (%); and Vb is the effective binder content (%). The alligator 
cracking model calibration process included the following steps: estimation of coefficients βf2 and βf3 for the MS-
1 number of load repetitions; finding the fatigue cracking damage transfer function by correlating fatigue 
cracking with the damage using only sections with AC layer thickness greater than 4 inches; and then shifting 
the thin sections using the k′1parameter. The results showed that choosing βf2 equal to 1.2 and βf3 equal to 1.5 
provided a more realistic prediction. The final transfer function to calculate fatigue cracking from cumulative 
fatigue damage (Df) is based on the assumption that the alligator cracking of the total lane area would be 50% at 
a fatigue damage of 100%. The calibrated model for the bottom up fatigue cracking (F.C., %) is as follows: 
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In which, C1=1.0; C2=1.0; C′1= -2* C′2; C′2= -2.40874-39.748*(1+hac)-2.856; and hac is the total 
thickness of the asphalt concrete layer (in.). The fatigue damage is calculated in a similar way using equation (2) 
based on more complex Axle Load Spectra (ALS) concept. 

DATABASE PREPARATION 

Initially, the DataPave 3.0 program was used to prepare a database for this study. However, in order to obtain 
additional variables and the latest updates of the data, the Long-Term Pavement Performance database retrieved 
from http://www.datapave.com (or LTPP DataPave Online, Release 18.0) (4) became the main source for this 
study. Starting from 1987, the LTPP program has been monitoring more than 2,400 asphalt and Portland cement 
concrete pavement test sections across the North America. Very detailed information about original construction, 
pavement inventory data, materials and testing, historical traffic counts, performance data, maintenance and 
rehabilitation records, and climatic information have been collected. There are 8 general pavement studies (GPS) and 
9 specific pavement studies (SPS) in the LTPP program. Of which, only asphalt concrete (AC) pavements on 
granular base (GPS1) and on bound base (GPS2) was used for this study. 

This database is currently implemented in an information management system (IMS) which is a 
relational database structure using the Microsoft Access program. Automatic summary reports of the pavement 
information may be generated from different IMS modules, tables, and data elements. The thickness of pavement 
layers was obtained from the IMS Testing module rather than the IMS Inventory module to be consistent with 
the results of Section Presentation module in the DataPave 3.0 program. Several other material properties such as 
air voids, effective binder content, etc were queried from the Inventory module. Detailed traffic counts and 
equivalent single axle load (ESAL) were obtained from the Traffic module. The cumulated ESAL during the 
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performance analysis period was calculated by multiplying pavement age with mean yearly ESAL (or kesal) 
which could be easily estimated from the database. Environmental data were retrieved from the IMS Climate 
module and the associated Virtual Weather Station (VWS) link. The alligator cracking data (including low, 
medium, and high severities) used in this study was obtained from MON_DIS_AC_REV table in the IMS 
Monitoring module. Maintenance and rehabilitation activities could effectively reduce the distress quantities. 
Thus, the records in both Maintenance and Rehabilitation modules were used to assure that this study only chose 
the performance data of those sections without or before major improvements.  

For the purpose of this study, a Microsoft Excel summary table containing the pavement inventory, 
material and testing, traffic, climatic, and distress data was created using the relational database features of the 
Access program. The Excel table was then stored as S-Plus datasets for subsequent analysis. The summary, table, 
cor, plot, pairs, and coplot functions were heavily utilized to summarize the information of interest and to 
provide more reliable data for this study. To estimate the critical tensile strain (εt) of the AC surface layer, a 
systematic approach was utilized and implemented in a Visual Basic software package to automatically read in 
the pavement inventory data from the summary table, generate the BISAR input files, conduct the batch runs, as 
well as summarize the results (3). In which, the static (or laboratory tested) elastic modulus data recorded in the 
IMS Testing module and a single wheel load of 40 kN (9,000 lbs) with a tire pressure of 0.482 MPa (70 psi) 
were used for the analysis. 

Furthermore, the aforementioned mechanistic-empirical models also require the dynamic Young’s 
modulus of AC surface layer. LTPP program utilized the MODCOMP4 program to (11) backcalculate the 
dynamic modulus of each pavement layer which could be retrieved from the IMS Monitoring module. Thus, it 
would be interesting to compare the laboratory tested layer moduli versus the backcalculated dynamic Young’s 
moduli so as to have a better understanding of their associated variability. As shown in Figure 1, the variability 
of the relationship between the dynamic and the static (or laboratory tested) moduli could not be ignored. The 
average ratios of which are approximately 2.6, 2.7, 7.3, and 3.4 by eliminating some apparent outliers for AC 
surface, base, subbase, and subgrade layers, respectively.  
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FIGURE 1  Comparison of layer moduli of (a) AC surface layer; (b) base layer; (c) subbase layer; and (d) 
subgrade obtained from laboratory testing (x axis, MPa) and backcalculation program (y axis, MPa).  

A data cleaning process must be conducted before any preliminary analysis or regression analysis can 
be performed. With the help of graphical representation, fatigue cracking data were plotted against surveyed 
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years for each section in the database with additional information displayed. For example, a plot as shown in 
Figure 2 was used to examine the distress trends in order to identify possible data errors. The upper left-hand 
corner plot labeled as “51/1002, h1=14 cm, temp=11, kesal=87.8, trfopen=1980” indicated that a pavement 
located in Virginia (state code = 51), SHRP identification number (SHRP id) = 1002, thickness of AC layer (h1) 
= 14 cm, mean annual temperature (temp) = 11 oC, mean yearly ESAL (kesal) = 87.8 (thousands), and traffic 
open year = 1980, respectively. Each section was carefully examined. Two additional codes were assigned to 
each section to indicate the findings of the examination, i.e., whether the fatigue cracking is reasonable 
according to the distress history, or which year of data is questionable and could be deleted if necessary. Data 
correction and preparation were made in a way that could be easily traced back. By doing so, different subsets of 
the final database providing more reliable data might be analyzed for different purposes. Of the 185 observations 
(40 sections) as shown in Figure 2, 9 data points were identified possibly having some maintenance or 
rehabilitation activities although not recorded in the database. Thus, the remaining 176 data points were used in 
the subsequent analysis. 
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FIGURE 2  Actual fatigue cracking history of the database. 
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PRELIMINARY ANALYSIS OF THE FATIGUE CRACKING DATABASE 

Univariate Data Analysis 
Univariate data analysis consists of statistical methods for describing the distribution and spread of each 
individual variable. Some basic descriptive statistics regarding the data range, its variation, and the number of 
missing values for each individual variable are given in Table 2. Univariate data analysis procedure is often used 
to investigate the possibility of data errors and potential distribution problem for each variable considered in a 
regression analysis. A few extreme (or unusual) data points may be identified or deleted from the analysis. In 
which, age stands for pavement age (years); cesal is the cumulative ESALs (millions); kesal is the yearly ESALs 
(thousands); h1 and h2 are the thickness of the AC surface layer and base layer (cm), respectively; e1 is the 
stiffness of the AC layer (MPa); epsilon.t (εt) is critical tensile strain; ft is yearly freeze-thaw cycle; temp is mean 
annual temperature (oC); precip is mean annual precipitation (mm); act.fc is actual fatigue cracking (%). 

TABLE 2  Univariate Statistics and Multiple Correlations 
(a) Univariate Statistics: 
            N      MEAN   STD DEV        SUM       MIN        MAX  
      age 176   14.4317    5.6884 2.540e+003    4.0521    30.2621 
    cesal 176    1.8807    3.1713 3.310e+002    0.1481    27.1239 
    kesal 176  127.2544  181.4683 2.240e+004   14.2143  1559.8800 
       h1 176   12.2136    6.6022 2.150e+003    3.5560    30.4800 
       h2 176   23.5700   14.3070 4.148e+003    0.0000    57.9120 
       e1 176 5565.0727 2156.8489 9.795e+005 1489.9970 11237.5004 
epsilon.t 176    0.0002    0.0001 3.170e-002    0.0000     0.0003 
       ft 176   82.0481   48.2164 1.444e+004    3.0882   156.6522 
     temp 176   12.9434    5.8603 2.278e+003    3.9826    22.7559 
   precip 176  817.3577  440.9776 1.439e+005   72.6306  1526.0435 
   act.fc 176    4.4500   10.6897 7.832e+002    0.0000    65.3549 
 
(b) Correlation Matrix:  
             age  cesal  kesal     h1     h2     e1 epsilon.t     ft   temp precip act.fc  
      age  1.000  0.234  0.043  0.137 -0.200  0.023    -0.017 -0.204  0.001 -0.003  0.112 
    cesal  0.234  1.000  0.958  0.325 -0.118 -0.139    -0.162 -0.256  0.245 -0.067 -0.010 
    kesal  0.043  0.958  1.000  0.345 -0.102 -0.109    -0.238 -0.267  0.288 -0.039 -0.037 
       h1  0.137  0.325  0.345  1.000 -0.205 -0.181    -0.552 -0.089 -0.121  0.205 -0.120 
       h2 -0.200 -0.118 -0.102 -0.205  1.000  0.048     0.000  0.105  0.030 -0.220 -0.172 
       e1  0.023 -0.139 -0.109 -0.181  0.048  1.000    -0.126 -0.415  0.447  0.148 -0.147 
epsilon.t -0.017 -0.162 -0.238 -0.552  0.000 -0.126     1.000  0.120  0.009 -0.085  0.296 
       ft -0.204 -0.256 -0.267 -0.089  0.105 -0.415     0.120  1.000 -0.844 -0.525 -0.109 
     temp  0.001  0.245  0.288 -0.121  0.030  0.447     0.009 -0.844  1.000  0.366  0.102 
   precip -0.003 -0.067 -0.039  0.205 -0.220  0.148    -0.085 -0.525  0.366  1.000  0.327 
   act.fc  0.112 -0.010 -0.037 -0.120 -0.172 -0.147     0.296 -0.109  0.102  0.327  1.000 
 
(c)Trimmed Correlation Matrix (Deleted 3 Percent of the Data): 
             age  cesal  kesal     h1     h2     e1 epsilon.t     ft   temp precip act.fc  
      age  1.000  0.379 -0.012  0.183 -0.154  0.058    -0.015 -0.190 -0.005  0.031  0.165 
    cesal  0.379  1.000  0.907  0.502 -0.012 -0.220    -0.295 -0.216  0.145  0.200  0.322 
    kesal -0.012  0.907  1.000  0.455  0.008 -0.177    -0.389 -0.296  0.293  0.175  0.268 
       h1  0.183  0.502  0.455  1.000 -0.149 -0.157    -0.669 -0.109 -0.120  0.206 -0.029 
       h2 -0.154 -0.012  0.008 -0.149  1.000  0.120    -0.058  0.030  0.055 -0.175 -0.191 
       e1  0.058 -0.220 -0.177 -0.157  0.120  1.000    -0.211 -0.464  0.508  0.048 -0.159 
epsilon.t -0.015 -0.295 -0.389 -0.669 -0.058 -0.211     1.000  0.124  0.005 -0.117  0.192 
       ft -0.190 -0.216 -0.296 -0.109  0.030 -0.464     0.124  1.000 -0.862 -0.627 -0.108 
     temp -0.005  0.145  0.293 -0.120  0.055  0.508     0.005 -0.862  1.000  0.483  0.080 
   precip  0.031  0.200  0.175  0.206 -0.175  0.048    -0.117 -0.627  0.483  1.000  0.368 
   act.fc  0.165  0.322  0.268 -0.029 -0.191 -0.159     0.192 -0.108  0.080  0.368  1.000 

A graph is always far more perceptible than thousands of numbers. A single plot which well describes 
the spread of the data may be created by combining these univariate statistics with a histogram. A simplified 
distribution plot which graphically displays the variability of data including median, lower and upper quantiles, 
95 percent confidence intervals, and extreme points (if any) may be made in a boxplot. A boxplot displays not 
only the location and spread of the data but also skewness as well. A histogram only displays a rough and crude 
shape of the distribution of data. To have a smoother look, a continuous curve of the nonparametric estimate of 
the probability density may also be obtained. A normal probability plot or a quantile-quantile plot can be used to 
have a quick visual check on the assumption of normal distribution. If the distribution is close to normal, the plot 
will show approximately a straight-line relationship (12, 13). The distribution of fatigue cracking (act.fc) is 
shown in Figure 3. The solid horizontal white line in the box plot indicates the median of the data whereas the 
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upper and lower ends of the box show the upper and lower quantiles, respectively. These plots reveal a relatively 
skewed distribution for actual fatigue cracking.  
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FIGURE 3  Exploratory data analysis: fatigue cracking of flexible pavements. 

Bivariate and Multivariate Analysis 
A correlation matrix of these variables is also given in Table 2. In addition, trimmed correlation matrices show 
the variable correlations after a certain portion of influential data points or possible outliers are eliminated (say 3 
percent in this example) such that more reliable indices of the correlations are obtained. Note the difference 
between the resulting traditional correlation matrix and trimmed correlation matrix. A scatter plot matrix can 
graphically represent their relationships and scatters. Applying a data smoothing technique (lowess) on the same 
scatter plot matrix, the pairwise relationships as shown in Figure 4 become clearer and possible data errors may 
also be easily identified (12, 13). 

INVESTIGATION OF THE EXISTING PREDICTIVE MODELS 

To investigate the goodness of prediction, cumulative fatigue damage (Df) was calculated and plotted against the 
actual fatigue cracking using equations (1) and (2) and the coefficients given in Table 1 for AI, Shell Oil, U.S. 
Army, and Mn/Road models. Except for the Mn/Road model, the results of this analysis are quite similar as 
depicted in Figure 5. 

Together with the aforementioned AI model, the following relationship developed by Ali and Tayabji (9, 
14) was adopted to illustrate the goodness of fatigue cracking predictions using LTPP GPS-1 data (AC 
pavements on granular base) as shown in Figure 6.  

( )fDe
ckingFatigueCra *85.0027.0

021.0% −+
=  (5) 
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FIGURE 4  Using scatter plot smoother (lowess) on the scatter plot matrix. 
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FIGURE 5  Comparison of prediction results using (a) AI model; (b) Shell Oil model; (c) U.S. Army model; 
and (d) Mn/Road model.  
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FIGURE 6  Prediction results using AI model together with equation (5) for LTPP GPS-1 data. 

The prediction accuracy of the proposed models implemented in the recommended MEPDG (NCHRP 
Project 1-37A) was further investigated. To avoid undesirable misunderstanding of the new guide’s prediction 
algorithm due to the complexity involved, it was decided to directly use the MEPDG software for the prediction 
of alligator cracking. The beta version of the software could be downloaded from http://www.trb.org/mepdg/ 
software.htm. The goodness of fatigue cracking prediction using AI model and equation (5) as well as the 
recommended MEPDG models is shown in Figure 7. Unfortunately, the prediction accuracy of the existing 
prediction models was found to be inadequate. 

DEVELOPMENT OF IMPROVED FATIGUE CRACKING MODELS 

The occurrence of fatigue cracking in field depends on various factors namely traffic, environment, structure, 
construction, maintenance and rehabilitation. Wang et al. (15) developed a relationship to predict the median 
failure time due to fatigue cracking using the following explanatory parameters: traffic (different ESAL levels), 
thickness of AC layer, thickness of base layer, mean annual precipitation, and freeze-thaw cycles per year. Thus, 
it is prudent to develop improved fatigue cracking prediction models using not only the critical strain and the 
stiffness of AC layer but the aforementioned parameters as well.  
 
(a) (b) 

Act. Fatigue Cracking (%)

P
re

. F
at

ig
ue

 C
ra

ck
in

g 
(%

)

0 10 20 30 40

0
20

40
60

80
10

0

Act. Fatigue Cracking (%)

P
re

. F
at

ig
ue

 C
ra

ck
in

g 
(%

)

0 10 20 30 40

0
20

40
60

80
10

0

 
FIGURE 7  Comparison of goodness of fatigue cracking prediction using (a) AI model; and (b) MEPDG 
models. 

To develop a more reliable predictive model for practical engineering problems, Lee and Darter (16, 17) 
proposed a predictive modeling approach to incorporate robust (least median squared) regression, alternating 
conditional expectations, and additivity and variance stabilization algorithms into the modeling process. The 
robust regression is proposed due to its favorable feature of analyzing highly contaminated data by detecting 
outliers from both dependent variable and independent variables. Through the iterative use of the combination of 
these outlier detection and nonparametric transformation techniques, it is believed that some potential outliers 
and proper functional forms may be identified. Subsequently, traditional regression techniques can be more 
easily utilized to develop the final predictive model. Nevertheless, many preliminary trials using these regression 
techniques have shown extreme difficulty to achieve a satisfactory predictive model for this set of data. 

Exploratory data analysis of the response variable as shown in Figure 3 indicated that the normality 
assumption with random errors and constant variance using conventional regression techniques might not be 
appropriate for prediction modeling. The Shapiro-Wilk W-statistic for testing for departures from normality was 
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also used to test the distribution of fatigue cracking (12, 13). Apparently, the logarithm of fatigue cracking has 
better data scatter, though the W-statistic still indicated that the distribution of fatigue cracking is not lognormal 
distributed. Furthermore, since various distribution functions have been assumed for fatigue cracking analysis in 
the literature (2, Appendix II-1; 15), the Kolmogorov-Smirnov goodness-of-fit test was also used to test whether 
the fatigue cracking could be characterize by normal, exponential, gamma, lognormal, or Poisson distribution 
(13). Unfortunately, no apparent conclusion in distribution function selection could be reached for this dataset. 

Preliminary Models Using Poisson Regression Techniques 

“When events of a certain type occur over time, space, or some other index of size, it is often relevant to model 
the rate at which events occur (18).” Due to the data collecting nature of fatigue cracking, it could be treated as 
rate data, i.e., percent of the entire lane area. Agresti (18) also suggested that using Poisson regression for rate 
data is an appropriate decision. Therefore, generalized linear model (GLM) (19) along with the assumption of 
Poisson distribution was adopted in this analysis. In which, a Poisson loglinear model is a GLM that assumes a 
Poisson distribution for the response variable and uses the log link. After going through several trails in 
eliminating insignificant and/or inappropriate parameters, the following model was obtained: 

fttepsilontemp
precipkesalageFC

*0133.0.*5.12319*0473.0
*00269.0*00168.0*121.0455.7)ln(

+++
+++−=

 (6) 

In which, dispersion parameter for Poisson family taken to be 1; null deviance = 2536.613 on 175 
degrees of freedom; residual deviance = 1403.364 on 169 degrees of freedom; age stands for pavement age 
(years); kesal is the yearly ESALs (thousands); precip stands for mean annual precipitation (mm); temp stands 
for mean annual temperature (oC); epsilon.t (εt) is the critical tensile strain; ft stands for yearly freeze-thaw cycle; 
FC is fatigue cracking in percent of entire lane area (%).  

Figure 8 shows two diagnosing plots of the above model. A plot of residuals versus the fitted values can 
be used to check the adequacy of the model. If any curvature is observed, then the model might be improved by 
adding additional, nonlinear terms to the model. A plot of the response versus fitted values is always provided to 
illustrate the goodness of the fit. Since the main objective is to predict the rate of fatigue cracking, it is desirable 
to rearrange the above equation into the following expression and obtain new regression summary statistics: 

176 n  8.741,  SEE 0.3352,  R :Statistics

)*0133.0.*5.12319*0473.0
*00269.0*00168.0*121.0455.7exp(

2 ===

+++
+++−=

fttepsilontemp
precipkesalageFC

 (7) 

Note that R2 is the coefficient of determination, SEE is the standard error of estimate and n is the number 
of observations. 
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FIGURE 8  Diagnosis plots of the preliminary Poisson loglinear model: (a) residuals against fitted values; 
and (b) response against fitted values. 
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To improve the model fits, it is possible to develop separate models for different climatic zones to account 
for other factors not considered in the above model implicitly. Due to the unbalanced data structure, of which 38, 
85, 48, and 5 data points were obtained from Wet-Freeze, Wet-NonFreeze, Dry-Freeze, and Dry-NonFreeze 
zones, respectively, the following models were develop by regrouping the data into either Wet or Dry, or Freeze 
or NonFreeze zones: 

123n 3.137,SEE 0.452,R :Statistics

)*0272.0.*15097*0914.0
*000673.0*00187.0*078.0539.6exp()(

2 ===

+++
+++−=

fttepsilontemp
precipkesalageFC wet

    (8) 

53n 1.117,SEE 0.421,R :Statistics

)*0272.0.*2729

*774.1*025.0*119.0411.48exp()(

2 ===

++

+++−=

fttepsilon

tempprecipageFC dry

       (9) 

86n 1.624,SEE 0.498,R :Statistics

)*4.0*002.0                   

.*768.41*00583.0944.5exp()(

2 ===

+−

++−=

trangevisco

tepsilonprecipFC freeze

 (10) 

90n 2.99,SEE 0.577,R :Statistics

)*0476.0.*15172*0472.0

*00102.0*00219.0*102.087.7exp()(

2 ===

+++

+++−=

fttepsilontemp

precipkesalageFC nonfreeze

   (11) 

Also note that new variables such as the viscosity of the AC layer (visco) and temperature range (trange, 
oC) were included to improve the model fits after eliminating some insignificant and inappropriate parameters. In 
which, trange is defined as the difference of maximum and minimum mean annual temperature. 

Proposed Model Using Additional Modern Regression Techniques 

Since the primary assumption of the above preliminary GLM models is that a linear function of the parameters 
was used in the model. Generalized additive model (GAM) extends GLM by fitting nonparametric functions 
using data smoothing techniques to estimate the relationship between the response and the predictors (13). To 
further enhance the model fits, generalized additive model (GAM) techniques were adopted in this analysis. 
Box-Cox power transformation technique was routinely utilized to estimate a proper, monotonic transformation 
for each variable based on the resulting preliminary GAM model. The fatigue cracking data was refitted with 
these transformed predictors using generalized linear model (GLM) techniques. To alleviate the assumption of 
Poisson distribution, the quasi-likelihood estimation method was also used to estimate regression relationships 
without fully knowing the error distribution of the response variable. Visual graphical techniques as well as the 
systematic statistical and engineering approach proposed by Lee (16, 17) were frequently adopted during the 
prediction modeling process.  

After considerable amount of trails, the quasi family with the same link and variance functions from 
Poisson family appeared to be the best choice among several different distribution functions conducted in this 
analysis, i.e., normal/Gaussian, gamma, Poisson, and quasi (12, 13). Note that the Poisson family is useful for 
modeling count or rate data that typically follows a Poisson distribution. Consequently, the proposed model for 
predicting the fatigue cracking of AC pavements (in percent of entire lane area) is given as follows: 

( )(
)

176n 7.605,SEE 0.4967,R :Statistics

)log(*242.3)1000*.(*489.31*869.0

*121.0log*832.0*943.008.18exp

2

2

===

+++

+++−=

fttepsilontemp

precipkesalageFC

     (12) 

In which, the dispersion parameter for quasi-likelihood family was taken to be 7.701441, suggesting 
over-dispersion; null deviance = 2536.613 on 175 degrees of freedom; and residual deviance = 1160.759 on 169 
degrees of freedom. Figure 9 displays two diagnosing plots of the proposed model. No apparent curvature is 
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observed in the residual plot, which is considered to have significant improvements over that reported in the 
Appendix II-1 of the recommended MEPDG (NCHRP Project 1-37A) (2). The plot of the response versus fitted 
values also showed that the proposed model has substantial improvements over the existing models (as shown in 
Figure 7 and in the above reference) in an attempt to uncover the underlying relationships.  

(a) (b) 

FIGURE 9  Diagnosis plots of the proposed model: (a) residuals against fitted values; and (b) response 
against fitted values. 

Sensitivity Analysis of the Proposed Model 

The goodness of the model fit was further examined through the significant testing and various sensitivity 
analyses of pertinent explanatory parameters. Some plots showing the sensitivity of the various factors in the 
proposed model are presented in Figure 10. These plots were prepared based on the range of the actual data while 
setting the remaining parameters to the corresponding mean values as shown in Table 2. The plots show the 
relationships among yearly ESAL (kesal), pavement age (age), the critical strain of AC layer (epsilon.t), mean annual 
precipitation (precip, mm), yearly freeze-thaw cycle (ft), and the predicted fatigue cracking (pre.fc, %). The general 
trends of these effects seem to be fairly reasonable.   

DISCUSSIONS AND CONCLUSIONS 

The prediction accuracy of the existing fatigue cracking models for flexible pavements using the Long-Term 
Pavement Performance (LTPP) database was found to be inadequate and greatly in need for improvement. A 
relatively skewed distribution for actual fatigue cracking was identified, which also indicated that normality 
assumption using conventional regression techniques might not be appropriate for this study. Thus, generalized 
linear model (GLM) and generalized additive model (GAM) along with the assumption of Poisson distribution 
and quasi-likelihood estimation method were adopted for the modeling process.  

After many trails in eliminating insignificant and inappropriate parameters, the resulting proposed model 
included several variables such as yearly KESALs, pavement age, annual precipitation, annual temperature, 
critical tensile strain under the AC surface layer, and freeze-thaw cycle for the prediction of fatigue cracking. 
The goodness of the model fit was further examined. The residual plot and the plot of the response versus fitted 
values all indicated that the proposed model has substantial improvements over the existing models. Sensitivity 
analysis of the explanatory variables indicated their general trends seem to be fairly reasonable. The tentatively 
proposed predictive models appeared to reasonably agree with the pavement performance data although their 
further enhancements are possible and recommended. 
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FIGURE 10  Sensitivity analysis of the proposed model. 
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