
12 假設檢定 學習目的 1. 了解假設檢定的基本概念與型 錯誤與型 錯誤。 2. 學習假設檢定的進行的步驟。 3. 學習一尾與兩尾假設檢定的方法。 4. 學習傳統檢定方法與/值法。 5. 了解/值、作業特性曲線與檢定力函數。 6. 了解母體平均數的假設檢定的方法、步驟及其應用。 7. 了解母體比例、母體變異數的假設檢定的方法、步驟及其應用。 8. 了解檢定時,在控制《、//的水準下,樣本數的選擇。 9. 利用Excel 來做假設檢定。

古法知應用

假設檢定的步驟

〇 兩個決策

①不拒絕 H_0 (或接受 H_0)

若樣本統計量落在接受域,則「不拒絕」或「接受」虛無假設。

②拒絕 H₀

若樣本統計量落在拒絕域,則「拒絕」虛無假設,推斷對 立假設 H,為真。

古法知確照

假設檢定的步驟

〇 兩個錯誤

①型I錯誤

當 H_0 為真,而拒絕 H_0 所發生的錯誤,稱為型I錯誤(type Ierror)。型I錯誤的機率為 ,表為

 $\alpha = P(拒絕H_0|H_0為真)$

又稱為為顯著水準(significance level)。

②型II錯誤

當 H_0 為假(或 H_1 為真),而不拒絕 H_0 所發生的錯誤,稱為型 Π 錯誤(type Π error)。型 Π 錯誤的機率以 表示:

 $\beta = P(II) = P(不拒絕H_0 | H_0為假)$

 $1-\beta$ 稱為檢定力,表示H為假,不拒絕H的機率。

方法與應用

49

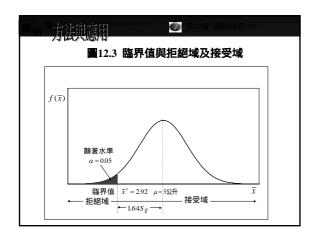
表12.1 假設檢定的行動與錯誤

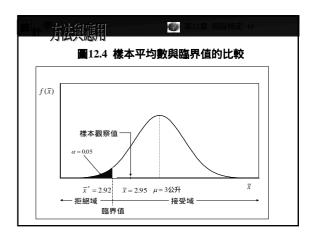
決策(或行動)	情況		
	H_0 為真	H_1 為真	
不拒絕H ₀ (A ₀)	正確	型 錯誤	
拒絕 $H_0(A_1)$	型 錯誤 正確		

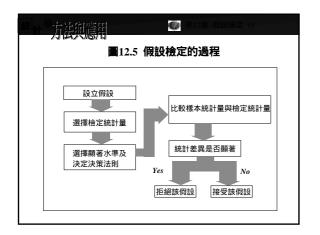
方法與應用

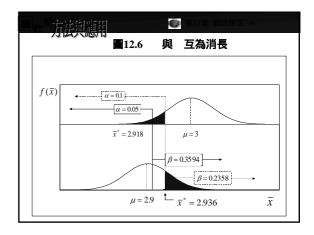
表12.2 假設檢定決策正確與錯誤的機率

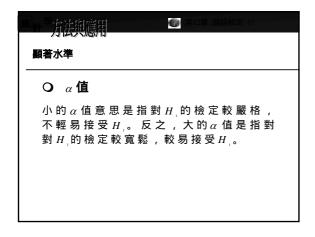
決策(或行動)	情況		
_	H_0 為真	H_1 為真	
不拒絕H ₀ (A ₀)	1-α	β	
拒絕H ₀ (A ₁)	α	$1 - \beta$	

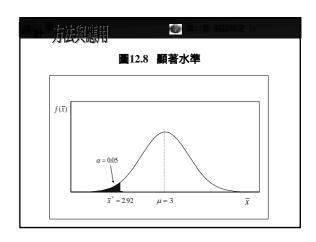


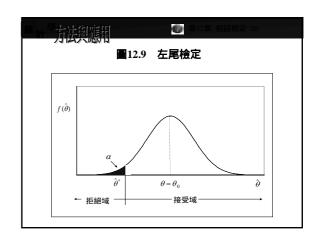

月长兴應用

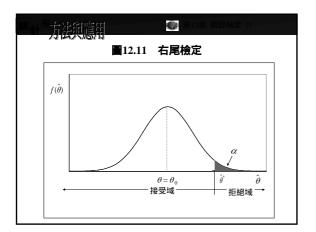

0

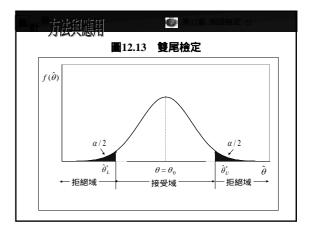

假設檢定的決策法則


先設定可容許的 α (型 錯誤的機率),再根據 α 水準決定臨界值。









一尾檢定與兩尾檢定 ○ 一尾檢定 只有一個拒絕域的檢定稱為一尾檢定。拒絕域在左尾的稱為 左尾檢定,拒絕域在又尾的尾檢定稱為右尾檢定。 ○ 兩尾檢定 有兩個拒絕域的檢定稱為兩尾檢定,兩尾各有一個拒絕域。

	雙尾檢定	左尾檢定	右尾檢定
虚無假設 <i>H</i> ₀ 的符號	=	= 或 ≥	= 或 ≤
對立假設 <i>H</i> ₁ 的符號	≠	<	>
拒絕域	在左右兩尾	在左尾	在右尾
α值	$\alpha/2$	α	α

kt ₁₁ ¹²)	方法與應用 · · · · · · · · · · · · · · · · · · ·
傳統假	設檢定法
•	臨界值檢定法
	在 既 定 顯 著 水 準 α 下 , 計 算 出 臨 界 值 , 決 定 拒 絕 域 與 接 受 域 以 決 定 拒 絕 或 接 受 虚 無 假 設 的 方 法 。
•	標準檢定統計量法
	標 準 檢 定 統 計 量 法 是 先 將 檢 定 統 計 量 化 為 標 準 檢 定 統 計 量 , 再 進 行 檢 定 。
0	信賴區間法 若 θ 的 $1-\alpha$ 的信賴區間包含虛無假設 $\theta=\theta_*$,則在顯著水準。下可接受 H_* ,若該信賴區間不包含 $\theta=\theta_*$,則拒絕 H_* 。

P值法

p 值 法

左尾檢定的 p 值 $p \stackrel{\cdot}{\mathbf{d}} = P (\hat{\theta} \leq \hat{\theta}_{\circ} | \theta = \theta_{\circ})$

右尾檢定的ρ值 $p \stackrel{\cdot}{\mathbf{d}} = P (\hat{\theta} \geq \hat{\theta} \mid \theta = \theta)$

兩尾檢定的 p 值

p 値 = $2 \times P(\hat{\theta} \ge \hat{\theta}_{\circ} | \theta = \theta_{\circ})$, 若 $\hat{\theta}_{\circ} > \theta_{\circ}$ p 値 = $2 \times P(\hat{\theta} \le \hat{\theta}_{\circ} | \theta = \theta_{\circ})$, 若 $\hat{\theta}_{\circ} < \theta_{\circ}$

其中 $\hat{\theta}$ 為 θ 的檢定統計量 , $\hat{\theta_0}$ 為 $\hat{\theta}$ 的觀察值 , θ 為 假 設 值 。

O p值檢定法的決策法則

① 若 p 値 $\geq \alpha$, 則接受虚無假設H。。 ②若 p值 < α , 則拒絕虛無假設 H。

母體平均數的假設檢定—大樣本

- 母體變異數 σ^2 已知

大樣本

- 母體變異數 σ^2 未知 $\frac{\overline{X} - \mu_0}{S_{\bar{x}}} \sim Z$

母體平均數的假設檢定—大樣本

〇 臨界值檢定法

在既定顯著水準 下,計算出臨界值,決定拒絕域與接受 域以決定拒絕或接受虛無假設的方法。

〇 臨界值法的決策法則

①左尾檢定:若 $\overline{X} \ge \overline{X}^*$,則接受虛無假設。

若 $\overline{X} < \overline{X}^*$,則拒絕虛無假設。臨界值 $\overline{X}^* = \mu_0 - Z_a \sigma_{\overline{X}}$ 。

②右尾檢定:若 $\overline{X} \leq \overline{X}^*$,則接受虛無假設。

若 $\overline{X} > \overline{X}^*$,則拒絕虛無假設。臨界值 $\overline{X}^* = \mu_0 + Z_a \sigma_{\overline{v}}$ 。

③兩尾檢定:若 $\overline{X}_L^* \le \overline{X} \le \overline{X}_L^*$,則接受虛無假設。

若 $\overline{X} < \overline{X}_L^*$ 或 $\overline{X} > \overline{X}_U^*$,則拒絕虛無假設。下臨界值

ø

 $\overline{X}_{L}^{*} = \mu_{0} - Z_{\alpha/2} \sigma_{\overline{Y}}$, 上臨界值 $\overline{X}_{U}^{*} = \mu_{0} + Z_{\alpha/2} \sigma_{\overline{Y}}$ 。

母體平均數的假設檢定—大樣本

O Z值法的決策法則

①左尾檢定:若 $Z \ge -Z_{\alpha}$,則接受虛無假設。

若 $Z < -Z_a$,則拒絕虛無假設。

②右尾檢定:若 $Z \le Z_{\alpha}$,則接受虛無假設。

反之,若 $Z > Z_{\alpha}$,則拒絕虛無假設。

③兩尾檢定:若 $-Z_{\alpha/2} \le Z \le Z_{\alpha/2}$,則接受虛無假設。

反之,若 $Z < -Z_{al2}$ 或 $Z > Z_{al2}$,則拒絕虛無假設。

母體平均數的假設檢定—大樣本

○ 信賴區間檢定法

 $\Xi(1-\alpha)$ 的信賴區間包含虛無假設 $\mu=\mu_{\alpha}$, 則在顯著水準 α 下,接受 H_{\circ} ,否則拒絕 H_{\circ} 。

信賴區間的求法如下:

①左尾檢定:求最高限值的信賴區間

 $\mu \leq \overline{X} + Z_{\sigma}$

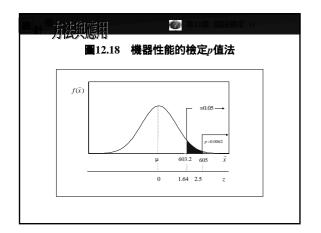
②右尾檢定:求最低限值的信賴區間 $\mu \geq \overline{X} - Z_{\circ} \sigma_{\tau}$

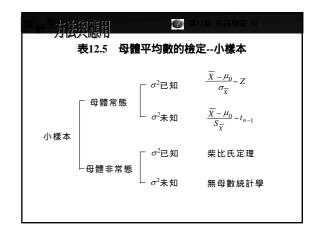
③兩尾檢定:求兩端的信賴區間 $\overline{X} - Z_{\pi/2} \sigma_{\overline{x}} \le \mu \le \overline{X} + Z_{\pi/2} \sigma_{\overline{x}}$

式中若 σ_v 未知,則以 S_v 代替。

母體平均數的假設檢定—大樣本

O 左尾檢定的p值


p值 = $P(\overline{X} \leq \overline{X}_{\circ} \mid \mu = \mu_{\circ})$


O 右尾檢定的p值

p值 = $P(\overline{X} \ge \overline{X}_{\circ} \mid \mu = \mu_{\circ})$

O 雙尾檢定的p值

若 $\overline{X}_{\circ} > \mu_{\circ}$,則p值 = $2 \times P(\overline{X} \ge \overline{X}_{\circ} \mid \mu = \mu_{\circ})$ 若 $\overline{X}_{\circ} < \mu_{\circ}$,則p值 = $2 \times P(\overline{X} \le \overline{X}_{\circ} \mid \mu = \mu_{\circ})$

母體平均數的假證

母體平均數的假設檢定-小樣本

○ℓ分配在假設檢定時的適用條件

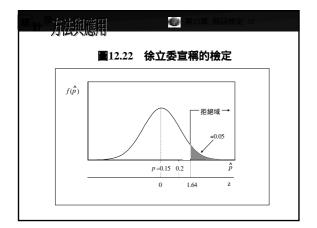
- ①小樣本的情況下(n<30)
- ②母體為常態分配
- ③母體標準差σ未知

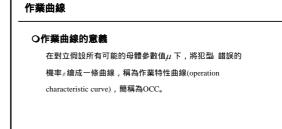
O t檢定統計量

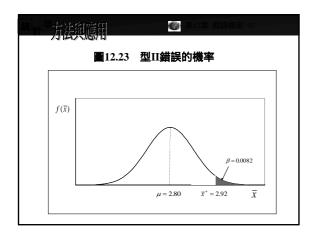
$$t = \frac{\overline{X} - \mu_0}{S_{\overline{X}}}$$

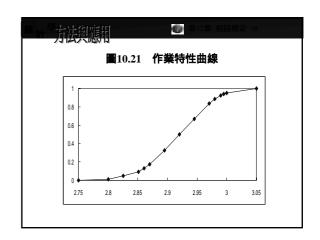
式中: μ_0 為猜測值。 \overline{X} 為樣本平均數,樣本平均數的標

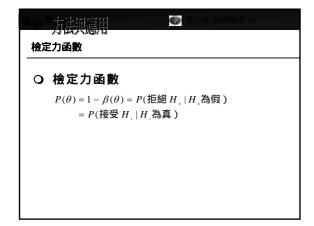
準差 $S_{\overline{X}} = S/\sqrt{n}$ 。 t的自由度為 n-1。

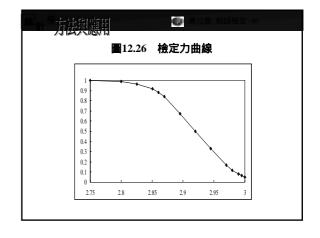

一方法與應用

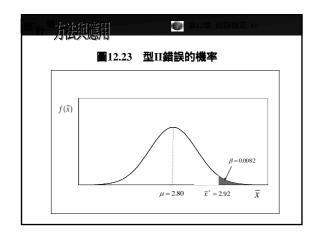

母體比例的假設檢定

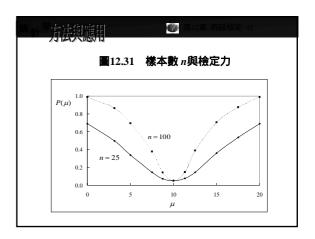

〇 檢定統計量


$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}}$$


式中: P_0 為猜測值 , \hat{p} 為樣本比例 , $\sigma_{\hat{p}} = \sqrt{P_0 q_0/n}$ 為樣本比例的標準差。







方法與應用

樣本數的選擇與假設檢定

〇 母體平均數假設檢定的樣本數

①單尾檢定

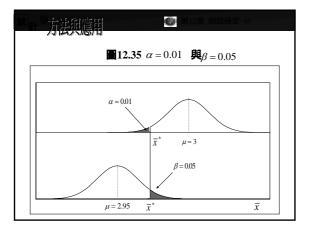
$$n = \frac{\sigma^2 (Z_\alpha + Z_\beta)^2}{(\mu_1 - \mu_0)^2}$$

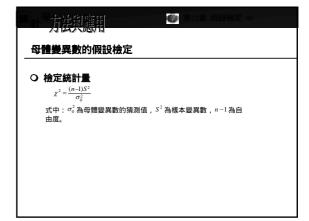
②雙尾檢定

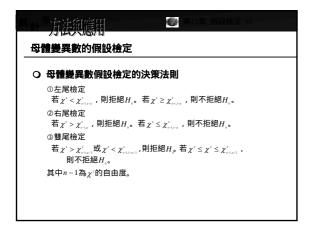
$$n = \frac{\sigma^2 (Z_{\alpha / 2} + Z_{\beta})^2}{(\mu_1 - \mu_0)^2}$$

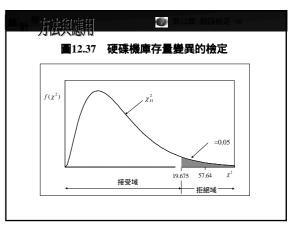
方法與應用

樣本數的選擇與假設檢定


〇 母體比例假設檢定的樣本數


①單尾檢定


$$n = \frac{(Z_{\alpha}\sqrt{p_0(1-p_0)} + Z_{\beta}\sqrt{p_1(1-p_1)})^2}{(p_1 - p_0)^2}$$


②雙尾檢算

$$n = \frac{\left[Z_{\alpha/2}\sqrt{p_0(1-p_0)} + Z_{\beta}\sqrt{p_1(1-p_1)}\right]^2}{(p_1 - p_0)^2}$$

