
Chapter 72
Regime Shifts and the Term Structure of Interest Rates

Chien-Chung Nieh, Shu Wu, and Yong Zeng

Abstract Since the seminal paper of Duffie and Kan (1996),
most empirical research on the term structure of interest rates
has focused on a class of linear models, generally referred to
as “affine term structure models.” Since these models pro-
duce such a closed-form solution for the entire yield curve,
they become very tractable in empirical applications.

Nonlinearity can be introduced into dynamic models of
the term structure of interest rates either by generalizing the
affine specification to a quadratic form or by including a
Poisson jump component as an additional state variable.

In our paper, we survey some recent studies of dynamic
models of the term structure of interest rates that incorporate
Markov regimes shifts. We not only summarize an early lit-
erature of regime-switching models that mainly focus on the
short-term interest rate, but also the recent studies consider-
ing regime-switching models in discrete-time and continu-
ous-time, respectively.
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72.1 Introduction

Since the seminal paper of Duffie and Kan (1996), most
empirical research on the term structure of interest rates have
focused on a class of linear models, generally referred to
as “affine term structure models.” In this class of models,
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the yield on a �-period bond (free of default risk), i�;t , can
be obtained as a linear function of some underlying state
variables, Xt

i�;t D A� CB=
� Xt

where the coefficientsA£ and B£ are determined by a system
of differential equations. Since these models produce such a
closed-form solution for the entire yield curve, they become
very tractable in empirical applications. Piazzesi (2003) and
Dai and Singleton (2003) provide excellent surveys of affine
term structure models.

Nonlinearity can be introduced into dynamic models of
the term structure of interest rates either by generalizing the
affine specification to a quadratic form along the line of Ahn
et al. (2002), or by including a Poisson jump component as
an additional state variable as in Ahn and Thompson (1988),
Das (2002) or Piazzesi (2005) among others. Another ap-
proach is to incorporate Markov regime shifts into an oth-
erwise standard affine model. Bansal and Zhou (2002), Wu
and Zeng (2005), Dai et al. (2007) are some recent exam-
ples. These nonlinear models not only are more general than
models without regime shifts, but also retain much of the
tractability of the standard affine models. Moreover, there
are natural economic interpretations of regime shifts. For
example, much documented empirical evidence shows that
the aggregate economy experiences recurrent shifts between
distinct regimes of the business cycle. Such regimes shifts
ought to be reflected into the dynamics of asset prices, and
bond yields in particular. Another motivation for the regime-
switching models is the impact of the monetary policy on
interest rates. Most central banks in the world have now used
some short-term interest rates as their policy instruments.
A notable feature of the monetary policy behavior is that
changes in the policy rate’s target of the same direction are
usually very persistent. For example, in the U.S. the Fed de-
creased its interest rate target 12 times consecutively between
January 2001 and November 2002, and since June 2003 there
have been 11 interest rate hikes by the Fed without a single
decrease. Presumably such shifts in the overall monetary pol-
icy stance (from accommodative to tightening or vice versa)
have more important effects on interest rates than a single

C.-F. Lee et al. (eds.), Handbook of Quantitative Finance and Risk Management,
DOI 10.1007/978-0-387-77117-5_72, c� Springer Science+Business Media, LLC 2010

1121

niehcc@mail.tku.edu.tw


1122 C.-C. Nieh et al.

interest rate change does. A model with regime shifts is the
most convenient tool to capture such policy behavior.

In this chapter we survey some recent studies of dy-
namic models of the term structure of interest rates that
incorporate Markov regimes shifts. In Sect. 72.2 we sum-
marize an early literature of regime-switching models that
mainly focus on the short-term interest rate. The success of
these models has since motivated fully fledged dynamic as-
set pricing models for the whole yield curve under regime-
switching. The next two sections attempt to summarize
these recent studies. Section 72.3 considers regime-switching
models in a discrete-time framework while Sect 72.4 con-
tains continuous-time models. Section 72.5 provides some
concluding remarks.

72.2 Regime-Switching and Short-Term
Interest Rate

The misspecification of existing single-regime models of
short-term interest rate has been widely discussed. One
potential description for this misspecified phenomenon is
that the structural form of conditional means and variances
is held fixed over the sample period. Ultimately, all such
single-regime models, assuming that the short rate is mean-
reverting, involve the estimation of a set of parameters that
are assumed to be fixed throughout the entire sample pe-
riod. However, the later discussed literature about the short-
term interest rate in favor of a regime-switching model since
it is more flexible and constitutes an attractive line in de-
scribing the “style fact” of the short-term interest rate pro-
cess. The regime-switching model is more attractive owing
to its feature of incorporating significant nonlinearity in con-
trast to the traditional linear property of the speed of revi-
sion and long-run mean inherent in most single-regime mod-
els. The regime-switching model is flexible enough to incor-
porate a different speed of revision to a different long-run
mean at different times. The parameters in regime-switching
model differing in different regime can account for the pos-
sibility that the short rate DGP may undergo a finite num-
ber of changes over sample period, which can capture the
stochastic behavior of time-varying short-term interest rates.
Since the regimes are never observed and the parameters are
unknown and have to be estimated, probabilistic statements
can be made about the relative likelihood of their occurrence,
conditional on an information set.

The period of unprecedented interest rate volatility always
coincides with changes in business cycle caused by various
economic or noneconomic shocks. In general, changes in
monetary or fiscal policies result in a business cycle fluctu-
ation, which may cause interest rates to behave quite differ-
ently in different time periods. The real world has also expe-
rienced various shocks in the economic environment within

past few decades. For examples, the 1973 OAPEC oil crisis,
the October 1987 stock market crash, 1997 Asian financial
crisis, 2000 dot com crash, 2001 911-event, 2007 subprime
mortgage crisis, and so on.1 Since the stochastic behav-
ior of short-term interest rates is well-described by regime-
switching models, the earlier literature of regime-switching
models applied to the interest rate process mainly focuses
on the short-term interest rate. Those researches addressed
on the earlier regime-switching models of the short-term in-
terest rate follow the classical paper by Hamilton (1988).
In this strand of literature, the models are mainly about the
short-term interest rate alone, and long-term rates are usu-
ally related to the short-term rate via the expectation hypoth-
esis. Examples include Lewis (1991), Cecchetti et al. (1993),
Evans and Lewis (1995), Sola and Driffill (1994), Garcia and
Perron (1996), Gray (1996), Bekaert et al. (2001), Ang and
Bekaert (2002), among others. Most of the past literature has
estimated the two-state regime-switching models, with the
exception of Garcia and Perron (1996) and Bekaert et al.
(2001) that focused mainly on the three-state models.

72.2.1 Short-Term Interest Rate Models

Short-term interest rate models should capture two well-
known properties of the short rate process, mean-revision
and leptokurtic unconditional distribution. Two most com-
mon classes of short rate models are known as diffusion
models and GARCH (general autoregressive conditional het-
eroskedasticity) models.2 We review the diffusion model first
in this paper and construct a regime-switching model later,
which follows the framework of the diffusion model.

In continuous time or diffusion models, the short-term in-
terest rate is usually described as based on the Brownian mo-
tion. The dynamics of the short rate is thus expressed by the
stochastic differential equation as the following framework.

dr D .˛ C ˇr/dt C �
p
rdW (72.1)

where dW is the increment from a standard Brownian
motion.

This stochastic differential equation is usually transferred
to an autoregressive (AR) model for an estimation purpose.3

rt D ˛ C ˇrt�1 C "t (72.2)

1 OAPEC is an abbreviation for Organization of Arab Petroleum Ex-
porting Countries consisting of the Arab members of OPEC plus Egypt
and Syria.
2 Engle (1982) shows that a possible cause of the leptokurtosis in the
unconditional distribution is conditional heteroskedasticity.
3 See Chan et al. (1992) and Gray (1996) for more details.
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where EŒ"t=ˆt�1	 D 0 and E
�
"2t =ˆt�1

� D �2r
2�
t�1. ˆt�1

is the agents’ information set at time t � 1. From this
equation, mean revision and leptokurtosis can be captured
by setting ˇ <0 and � > 0 (conditional heteroskedasticity),
respectively.

72.2.2 Regime-switching

Regime-switching can be viewed as the state changes in a
finite Markov chain.

For a general model considered in Gray (1996), we spec-
ify a special case that allows the short rate regime-switching
setting held with regime-switching mean and variance.

rt D ˛st C ˇst rt�1 C "t ; "t � N
�
0; �2st

�
(72.3)

where st is the unobserved state variable presumed to follow
a two-state Markov chain with transition probability, pij. ˇst
is the parameter for the measurement of the speed of revision
to long-run mean in state st . The error term, "t , follows a
normal distribution with 0 mean and a standard deviation of
�st in state st .

Equation (72.3) is thought to follow a regime-switching
framework by quasimaximum likelihood as described in
Hamilton (1989). The testable scheme is expressed as
follows.

.˛St ; ˇSt ; �St / D
�
.˛1; ˇ1; �1/ if st D 1

.˛2; ˇ2; �2/ if st D 2

The evolution of the unobservable state variable is assumed
to follow a two-state first-order Markov chain process sat-
isfying p11 C p12 D p21 C p22 D 1, where pij D Pr.st D
j=st�1 D i/ gives the probability that state i followed by state
j.4 The state in each time point determines which of the two
normal densities is used to generate the model. For our case
of short-term interest rate, it is assumed to switch between
two regimes (different long-run mean and speed of revision)
according to transition probabilities.

72.2.2.1 Quasimaximum Likelihood Estimation
of Parameters

There are various ways to estimate the regime-switching
model.5 The estimation of the MS setting of Equation (72.3)
mainly follows Garcia and Perron (1996), which employs

4 Markov property argues that the process of st depends on the past
realizations only through st�1.
5 See Kim and Nelson (1999).

Hamilton’s (1989) Markov-switching estimation by quasi-
maximum likelihood.6

Let yt D Rt ; xt D .1; Vt /
0 and ıst D .˛st ; ˇst /.

Equation (72.3) can be expressed as7:

yt D x0
t ıst C "t ; "t � N

�
0; �2st

�

This regime-switching model assumes that the variance is
also shifting between regimes. st is the unobserved state vari-
able presumed to follow a two-state Markov chain with tran-
sition probability, pij.

As usual, we use capital letters Xt and Yt to represent all
the information available up to time t and � to denote the
vector of the unknown population parameters.

i.e., Xt D .x1; x2; : : : ; xt /
0; Yt D .y1; y2; : : : ; yt /

0
and � D �

� 0
1; �

0
2

�0
, where Xt is exogenous or predeter-

mined and conditional on st�1, and st is independent of
Xt . The grouping parameter vector can be decomposed by
�1 D .˛1; ˛2; ˇ1; ˇ2; �1; �2/

0 and �2 D .p11; p22/
0.

By denoting QXT D .x1; x2; : : : ; xT /
0; QYT D

.y1; y2; : : : ; yT /
0, and QST D .s1; s2; : : : ; sT /

0, the joint den-
sity of QYT and QST is as:

f
� QYT ; QST I QXT ; �

�

D f
� QYT

ı QST I QXT ; �1
� 
 f � QST I QXT ; �2

�

D
TY

tD1
f .yt=st I xt ; �1/ 


TY

tD1
f .st =st�1I xt ; �2/

The log likelihood function can thus be expressed as:

ln. QYT ; QST I QX; �/ D
TX

tD1
lnŒf .yt =st I xt ; �1/	



TX

tD1
lnŒf .st =st�1I xt ; �2/	

If the state is known, the parameter vector �2 would be ir-
relevant and the log likelihood function would be maximized
with respect to �1.

@ lnŒf . QYT ; QST I QXT ; �/	
@�1

D
TX

tD1

@ lnŒf .yt =st I xt ; �1/	
@�1

Now, let’s introduce the estimation produces as the follow-
ing way.

6 Garcia and Perron (1996) employs Hamilton’s (1989) regime-
switching model to explicitly account for regime shifts in an autore-
gressive model with three-state regime-switching mean and variance.
7 For simplicity, the following analysis is based only on one industry.
We thus omit the symbol i.
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72.2.2.2 Filter Probability

We assume that � is already observed.8 Based on Hamilton
(1994), the derivation begins with the unconditional proba-
bility of the state of the first observation.
p.st D 1/ D 1�p22

.1�p11/C.1�p22/ D � , and consequently,
p.st D 2/ D 1 � �

Given Yt�1, the joint probability of st�1 and st is:

p.st ; st�1=Yt�1IXt/
D p.st=st�1; Yt�1IXt�1/ 
 p.st�1=Yt�1IXt�1/
D p.st=st�1/p.st�1=Yt�1IXt�1/ (72.4)

where the first equality is given by Bayes’ theorem and
the second one is by the independence principle of the
Markov chain. Since the transition probability p.st =st�1/
and the filter probability at time t � 1, p.st�1=Yt�1IXt�1/,
are both known at time t, it is not difficult to calculate
p.st ; st�1=Yt�1IXt/ in Equation (72.4).

Summing up st�1 to get the conditional marginal distribu-
tion of st :

p.st=Yt�1IXt/ D
2X

st�1D1
p.st ; st�1=Yt�1IXt/ (72.5)

The joint probability of yt and St at time t is then calcu-
lated as9:

p.yt ; st =Yt�1IXt/
D f .yt =st ; Yt�1IXt�1/ 
 p.st=Yt�1IXt�1/ (72.6)

The first term on the right hand side is the sample likeli-
hood function and the second term is from Equation (72.5),
so Equation (72.6) can be calculated. Therefore, the filter in-
ference about the probable regime at time t is given by:

P.st=Yt IXt/ D p.yt ; st =Yt�1IXt/
p.yt=Yt�1IXt/

D f .yt =st ; Yt�1IXt/p.st=Yt�1IXt/
2P

stD1
f .yt=st ; Yt�1IXt/p.st =Yt�1IXt/

8 The following derivations are mainly from Shen (1994).
9 f(.) and p(.) denote the continuous and discrete density function,
respectively.

72.2.2.3 Smoothed Probability

The derivation of filter probability utilizes the information
up to time t. Alternatively, we can use the full sample of s
available information to draw the inference. It is therefore
more efficient in the sense that all the information up to time
T is utilized instead of t. Similarly, the smoothed probability
of the first observation has to be derived. Consider the joint
probability of yt ; st and s1:

p.yt ; st ; s1=Yt�1IXt/
D f .yt=st ; s1; Yt�1IXt/ 
 p.st ; s1=Yt�1IXt�1/
D f .yt=st ; s1; Yt�1IXt/ 
 p.st=s1/ 
 p.s1=Yt�1IXt�1/

(72.7)

where the first equality is given by Bayes’ theorem and the
second one is by the Bayes’ theorem and the independence
principle of Markov chain. The first term on the right hand
side of Equation (72.7) is the sample likelihood function. The
second term can be derived by:

p.st=s1/ D
2X

stD1
p.st ; st�1=s1/

D
2X

stD1
p.st =st�1/p.st�1=s1/

D
2X

st�1D1

2X

st�2D1
p.st =st�1/p.st�1=st�2/p.st�2=s1/

� �
� �
� �

D
2X

st�1D1

2X

st�2D1
: : : : : : : : : : : : : : : : : : :

2X

s2D1
p.s1=st�1/


p.st�1=st�2/ : : : p.s2=s1/

and the third term is the filter probability at time t � 1. These
terms are all known at time t and can be used to calculate
Equation (72.7).

The joint probability of st and s1 is thus given by:

P.st ; s1=Yt IXt/ D p.yt ; st ; s1=Yt�1IXt/
p.yt=Yt�1IXt/

The numerator is from Equation (72.7) and the denominator
can be derived by summing up st and s1 of Equation (72.7).
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The conditional marginal probability of s1 is then given by
summing up st :

p.s1=Yt IXt/ D
2X

stD1
p.st ; s1=Yt IXt/

and this is the smoothed probability of the first observation at
time t. Similarly, the smoothed probability at time t C 1 can
be obtained by:

P.stC1; s1=YtC1IXtC1/ D p.ytC1; stC1; s1=Yt IXtC1/
p.ytC1=Yt IXtC1/

where,

p.ytC1; stC1; s1=Yt IXtC1/
D f .ytC1=stC1; s1; Yt IXtC1/ 
 p.stC1; s1=Yt IXtC1/
D f .ytC1=stC1; s1; Yt IXtC1/ 
 p.stC1=s1/p.s1=Yt IXtC1/

and

p.stC1=s1/

D
2X

st�1D1

2X

st�2D1
: : : : : : : : : : : : : : : : : : :

2X

s2D1
p.s1=st�1/


p.stC1=st /p.st =st�1/ : : : p.s2=s1/

Summing up stC1 to get the smoothed probability of the first
observation at time t C 1 yields:

p.s1=YtC1IXtC1/ D
2X

stC1D1
p.stC1; s1=YtC1IXtC1/

By repeating the above steps, we are able to get the smoothed
probability of the first observation at time T:

p.s1=YT IXT / D
2X

sT D1
p.sT ; s1=YT IXT /

Similarly, the smoothed probability of the ith observation at
time T is given by:

p.st=YT IXT / D
2X

sT D1
p.sT ; st =YT IXT /; t D 1; 2; : : : ; T

72.2.2.4 Estimation

According to the smoothed probability derived in the previ-
ous section, we can say that the observations were generated
from the first state with probability p.st D 1=YT IXT / and
from the second state with probability p.st D 2=YT IXT /.

Hamilton (1994) shows that the relevant conditions of the
maximum likelihood estimates of the 'st are:

TX

tD1
.yt D x0

t O'j /xt 
 p.st jYt IXt/ D 0; j D 1; 2

(72.8)

O�2 D

TP
tD1

2P
jD1

.yt � x0 O'j / 
 p.st jYt IXt/

T
(72.9)

Equation (72.8) implies that O'j satisfies a weighted OLS or-
thogonality condition where each observation is weighted by
the probability that it came from regime j. In particular, O'j
can be found from an OLS regression of y�

t .j / on x�
t .j /:

O'D
j

"
TX

tD1
x�
t .j /x

�
t .j /

0
#�1 " TX

tD1
x�
t .j /y

�
t .j /

0
#
; j D 1; 2

where,

y�
t .j / D yt 


p
p.st D j jYT IXT /

x�
t .j / D xt 


p
p.st D j jXT IYT /

where j denotes the present state and “�” is used to distin-
guish the terms of the weighted observations from the origi-
nal observations.

The estimate of ¢2 in Equation (72.9) is just the combined
sum of the squared residuals from these two regressions di-
vided by T.

Hamilton (1994) also shows the maximum likelihood es-
timates for the transition probabilities:

pij D

TP
tD2

p.st D j; st�1 D j jYT IXT /
TP
tD2

p.st�1 D i jYT IXT /
;

which is essentially the number of times state i followed by
state j divided by the number of times the process was in
state i .
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72.3 Regime-Switching Term Structure
Models in Discreet Time

Instead of focusing on a single interest rate, dynamic models
of the term structure of interest rates attempt to model the
joint movements of interest rates across the whole spectrum
of maturities. The standard approach begins by first postulat-
ing a set of state variables, denoted as Xt , that underlie the
dynamics of interest rates. Under the no-arbitrage condition,
a positive stochastic discount factor, denoted as Mt, exists
and determines all bond prices, we can, therefore, make
further parametric assumptions about Mt , and the market
price of risk in particular. Affine models of the term struc-
ture of interest rates are obtained after assuming both the
short-term interest rate and the market price of risk are linear
functions of Xt .10

The main advantage of this class of models is their
tractability. Because the solution of the term structure of in-
terest rates can be obtained as a linear function of the state
variable Xt , which makes it easy to implement the models
empirically. In this section, we generalize the standard affine
models by incorporating Markov regime shifts in the dynam-
ics of Xt and Mt . We can see that regime shifts not only

10 In the case of stochastic volatility, affine models assume that the prod-
uct of the market price of risk and the volatility term is a linear func-
tion of the state variable Xt . In other words, it is assumed that, under
the risk-neutral probability measure, Xt follows a linear mean-reverting
process

make an otherwise standard model more flexible, they also
introduce a new regime-switching risk premium in addition
to the risk premiums due to shocks to the state variable Xt .

72.3.1 State Variables

Let’s assume that there are K possible regimes, and let St
denote the regime at time t . St follows a Markov-switching
process with transition probability�.St ; StC1/. For example,
if St D s; StC1 D s0; �.St ; StC1/ gives the probability of
switching from regime s at time t to regime s0 at time t C 1

LetXt be anN 
1 vector that contains all other state vari-
ables. We assume thatXt follows a stationary mean-reverting
process conditional on each regime; that is,

Xt D �.St/Cˆ.St /Xt�1 C
X

.Xt�1; St /"t (72.10)

where "tC1 is an N 
 1 standard normal random variable,
�.St/ and ˆ.St / are regime-dependent N 
 1 vector and
N 
N matrix, respectively, and

P
.Xt�1; St / is an N 
N

diagonal matrix given by11

11 Of course, some regularity conditions need to be imposed on the pa-
rameters so that the term inside the square root is non-negative and the
process is well defined. See Dai et al. (2006) for more details.

X
.Xt�1; St / D

0
BBB@

q
�0;1.St /C � 0

1;1.St /Xt�1
: : : q

�0;N .St /C � 0
1;N .St /Xt�1

1
CCCA

Again the presence of St indicates that the coefficients in
† are regime-dependent. We can collect all the �0;i .St /
.i D 1; : : : ; N ) in an N 
 N diagonal matrix,

P
0.St /, and

collect all �1;i .St / in an N 
N matrix
P

1.St /, with the i th
column being �1;i . In some models such as Dai et al. (2007),
the regime-dependence of the parameters is specified slightly
differently. Parameters such as �; ˆ depend on the regime
at time t � 1; St�1, instead of the regime at time t . In other
models such as those of Bansal and Zhou (2002), the param-
eters are assumed to depend on regime at time t; St , as in the
current paper.

72.3.2 The Stochastic Discount Factor

Under fairly general condition (see, for example, Harrison
and Kreps 1979), the absence of arbitrage in financial mar-
kets implies that there exists a positive stochastic discount
factor, Mt , such that the price of an asset at time t , Pt, is
given by

Pt D Et.MtC1XtC1/

where XtC1 is the random payoff of this asset at time t C 1.
In the case of bonds, if we let Pn;t denote the price of an
n-period zero-coupon bond at time t , we have

Pn;t D Et.MtC1Pn�1;tC1/
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The model is completed by making specific assumptions
about the stochastic discount factor, Mt , and the short-term
interest rate. In particular, let

MtC1 D e�mtC1 D e�it� 1
2 �

0

t �t��0

t "tC1

where it is the (one-period) short-term interest rate, �t is
the market price of risk, and "tC1 is the fundamental shocks
that drive the state variables. Models differ in their assump-
tions about the market price of risk. For example, in Gaussian
affine models, it is assumed that �t is a linear function of the
state variable Xt .

Under regime shifts, we assume that

mtC1 D it C 1

2
�0
t .St ; StC1/�t .St ; StC1/C �0

t .St ; StC1/"tC1

(72.11)

where �0
t .St ; StC1/ indicates that the market price of risk not

only is a function of Xt , but also depends on regime St and
StC1. As pointed out by Dai and Singleton (2003), the pres-
ence of StC1 has an important implication. If �t depends only
on St , it implies that a regime shift at time t C 1 will not
have an impact on the stochastic discount factor,MtC1, or in-
vestors’ intertemporal marginal rate of substitution. In order
words, the regime-switching does not present a systematic
risk to investors and hence will not be priced in the bond mar-
ket. Assets are risky only because of the shock "tC1. What
the regime-switching will do, however, is to make risk pre-
miums, or the expected excess return on risky assets, regime-
dependent. The risk premiums will be time-varying not only
because they depend on Xt , but also because the parameters
are regime-dependent. On the other hand, if �t depends on
StC1 as well, there will be an additional risk premium asso-
ciated with regime-switching. Because in this case, regime
shifts have a direct impact on MtC1 and will be regarded as
a systematic risk just as the shock "tC1.

To obtain a closed-form solution for the term structure of
interest rates, in general we need �t to satisfy

X
t
�t .St ; StC1/ D �0.St ; StC1/Cƒ.St ; StC1/XtC1

(72.12)

or equivalently

�t .St ; StC1/ D
X�1

t
Œ�0.St ; StC1/Cƒ.St ; StC1/XtC1	

(72.13)

where �0.St ; StC1/ is an N 
 1 vector of regime-dependent
(onSt and StC1) constant,ƒ.St ; StC1/ is a regime-dependent
(on St and StC1/N 
N matrix.

P
t is the conditional volatil-

ity term of the state variable XtC1 as defined in Equation
(72.10).

The last component of a dynamic model of the term struc-
ture of interest rates is a specification of the short-term in-
terest rate, it . Here, following the standard affine models, we
assume that

it D A1.St/C B 0
1.St /Xt (72.14)

where A1.St/ and B1.St / (an N 
 1 vector) are all regime-
dependent parameters.

72.3.3 Solving for the Term Structure
of Interest Rates

Again letPn;t being the price of a n-period zero-coupon bond
at time t , we have

Pn;t D Et.e
�mtC1Pn�1;tC1/

We guess the solution to the bond price is, for some regime-
dependent coefficients An.St / an Bn.St /,

Pn;t D e�An.St /�B0

n.St /Xt

Substituting into the asset pricing equation above, we obtain

e�An.St /�B0

n.St /Xt

D Et.e
�it� 1

2 �
0

t �t��0

t "tC1 
 e�An�1.StC1/�B0

n�1.Sn�1/XtC1 /

(72.15)

Note that �t D �t.St ; StC1/ depends on Xt; St and StC1.
Since the regime-switching (from St to StC1) probability is
given by �.St ; StC1/, Equation (72.15) can be written as

e�An.St /�B0

n.St /Xt D
X

StC1

�.St ; StC1/E.e�tC1.St ;StC1/jIt ; StC1/

(72.16)

where It is the information set at time t , and �tC1 is given by

�tC1.St ; StC1/ D
�
�it � 1

2
�0
t �t � �0

t "tC1
�

C ��An�1.StC1/� B 0
n�1.StC1/XtC1

�

(72.17)

First note that

E.e�tC1.St ;StC1/jIt ; StC1/ D eE.�tC1jIt ;StC1/C 1
2Var.�tC1jIt ;StC1/
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which is approximately12

E.e�tC1.St ;StC1/jIt ; StC1/ � 1C E.�tC1jIt ; StC1/

C1

2
Var.�tC1jIt ; StC1/

Substituting back into Equation (72.16) and using the same
approximation for e�An.St /�B0

n.St /Xt ,
we have

� An.St /� B 0
n.St /Xt D

X

StC1

�.St ; S tC1/
h
E.�tC1jIt ; StC1/

C1

2
Var.�tC1jIt ; StC1/

i
(72.18)

where �tC1 is given in Equation (72.17). Equation (72.18)
gives a system of difference equations forAn.St / andBn.St /
that can be solved recursively, with the initial condition that
A0.St/ D 0; Bn.St / D 0 for all St , and A1.St / and B1.St /
are given in Equation (72.14).

For example, if there are K possible regimes at each
time t , Equation (72.18) results in the following equations
for An.s/ and Bn.s/ .s D 1; 2; : : : ; K/.

Bn.s/ D
KX

s�

�.s; s�/
h �
ˆ �ƒ.s; s�/

�0
Bn�1.s�/

C1

2

X
1
B2
n�1.s�/

i
C B1.s/ (72.19)

An.s/ D
KX

s�

�.s; s�/ŒAn�1.s�/C B 0
n�1.s�/.� � �0/.s; s�//

�1
2
B 0
n�1.s�/

X
0

X0
0
Bn�1.s�/ (72.20)

Note that Equation (72.19) and Equation (72.20) define a sys-
tem of 2
K difference equations that must be solved jointly.

Denote in;t as continuously compounding n-period inter-
est rate, or the yield on the n-period bond. By definition,

Pn;t D e�nin;t

Therefore, the term structure of interest rates can be obtained
as, for any maturity n and time t,

in;t D an.St /Cb0
n.St /Xt D An.St/

n
CBn.St /

n
Xt (72.21)

In this model we have to rely on log-linear approximation
to get an analytical solution to the terms structure of interest

12 This is the approximation used in Bansal and Zhou (2002).

rates as in Bansal and Zhou (2002) because of the assump-
tions that the coefficientƒ in Equation (72.12) and the coef-
ficient B1 in Equation (72.14) are regime-dependent. Exact
solutions can be obtained if we assume that both ƒ and B1
do not depend on regimes. This is essentially the assump-
tion made in Dai et al. (2007). In their models, the factor
loading coefficient Bn in the solution of the term structure
is also independent of regimes. More general models can be
obtained by making the regime-switching probability time-
varying. That is, we can assume that the conditional prob-
ability �.St ; StC1/ depends on Xt as in Dai et al. (2007).
However, in this case, we needMtC1 to be separable in StC1
and "tC1 and place some additional restrictions on �t . This
generalization can be more easily discussed in a continuous-
time model below.

72.4 Regime-Switching Term Structure
Models in Continuous Time

Continuous-time models provide more analytical tractability.
The affine term structure model of Duffie and Kan (1996)
has been further studied in Dai and Singleton (2000) and
generalized to “essentially affine” models in Duiffie (2002)
and “semi-affine” models in Duarte (2004). Das (2002) and
Chacko and Das (2002) incorporated jumps in an otherwise
standard affine model. Cheridito et al. (2007) considers more
general specification of the market price of risk. Quadratic
term structure models are studied in Ahn et al. (2002). See
the survey paper by Dai and Singleton (2003) and see the
book by Singletons (2006) for more recent development.
This section focuses on the continuous-time term structure
models with regime-shifting.

To the best of our knowledge, Landen (2000) provides
the first continuous-time regime-switching model of the term
structure of interest rates. Under the risk-neutral pricing mea-
sure, she derives the dynamics of the yield curve and ob-
tains an explicit solution for a special regime-switching affine
case. Dai and Singleton (2003) propose a fully fledged dy-
namic model of the term structure of interest rates under
regime-switching. Their model characterizes the dynamics
of interest rates under both the risk-neutral and the physi-
cal measures in the presence of regime-switching risk pre-
miums. Following the approach of Cox et al. (1985a, b) and
Ahn and Thompson (1988), Wu and Zeng (2005) developed a
regime-switching models from a general equilibrium frame-
work under the systematic risk of regime shifts. Other stud-
ies of regime-switching term structure models include Elliott
and Mamon (2001), Wu and Zeng (2004, 2007), and so forth.
Papers for regime-switching models of the term structure of
interest rates under default risk can be found in Bielecki and
Rutkowski (2000, 2001).
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In the rest of this section, we present a slightly more gen-
eral framework than the one in Wu and Zeng (2006). We
first review a useful representation of regime shifts intro-
duced in Wu and Zeng (2007) with a slight generalization.
We then follow the no-arbitrage approach to develop a gen-
eral tractable multifactor dynamic model of the term struc-
ture of interest rates that includes not only regime shifts but
also jumps. The model allows for regime-dependent jumps
while both jump risk and regime-switching risk are priced.
A closed-form solution for the term structure is obtained for
an affine-type model under log-linear approximations.

72.4.1 A Useful Representation for Regime
Shift

Regime-shifting can be viewed as the state changes in a
finite-state Markov chain. There are three commonly used
mechanisms to model a Markov chain with time-varying
transition probabilities. Each mechanism has its applications
in the literature of interest rate term structure. The first is
Conditional Markov Chain approach, which is discussed
in the book of Yin and Zhang (1998) with many applica-
tions. Bielecki and Rutkowski (2000, 2001) and Dai and
Singleton (2003) are applications of this mechanism in mod-
eling the term structure of interest rates. Hidden Markov
Model (HMM) approach is the second mechanism, which
is summarized in a book by Elliott et al. (1995). Elliott and
Mamon (2001) utilize the HMM approach to derive a model
of the term structure of interest rates. The third is the Marked
Point Process or the Random Measure approach, which is
employed in Landen (2000). The mark space in Landen’s
representation is E D f.i; j / W i 2 f0; 1; : : : ; N g; j 2
f0; 1; : : : ; N g; i ¤ j g, the product space of regimes includ-
ing all possible regime switching. The third mechanism has
an important advantage over the previous two mechanisms.
Namely, the regime process has a simple integral form so that
Ito’s formula can be applied easily.

Along the line of the third mechanism, a simpler integral
form for the regime process is developed using only the space
of regime as the mark space. This is introduced in Wu and
Zeng (2007) and we discuss such representation here with a
slight generalization.

Let St represent the most recent regime. There are two
steps to obtain the simple integral representation of St .

First, we define the random counting measure m.t; �/ for
every t > 0.

Denote the mark space U D f0; 1; : : : ; N g as all possi-
ble regimes with the power �-algebra. Denote u as a generic
point in U and A as a subset of U . We denote m.t; A/ as
the cumulative number of entering a regime in A during the

period .0; t/. For example, m.t; fug/ counts the cumulative
times to shift to regime u during .0; t/. Then, m is the suit-
able random counting measure.

A marked point process or a random measure is uniquely
characterized by its stochastic intensity kernel.13 To define
the stochastic intensity kernel for m.t; �/, we denote ˜ as
the usual counting measure on U . Note that ˜ has these
two properties: For A 2 U; �.A/ D R

IA�.du/ (i.e., �.A/
counts the number of elements in A) and

R
A
f .u/�.du/ DP

u2A f .u/. The stochastic intensity kernel can depend on
the current time and regime. We also allow m.t; �/ to depend
on Xt , another state variable to be defined later.

We define the stochastic intensity kernel as

�m.dt; du/ D h.uIX.t�/; S.t�/; t�/�.du/dt; (72.22)

where h.uIX.t�/; S.t�/; t�/ is the conditional regime-shift
(from regime S.t�/ to u) intensity at time t givenX.t�/ and
S.t�/. Note that h.uIX.t�/; S.t�/; t�/ corresponds to the
hij in the infinitesimal generator matrix of the Markov chain.
We assume

h.u; X.t�/; S.t�/; t�/ D eh0.u;S.t�/;t�/Ch0

1.u;S.t�/;t�/X.t�/

where h0.u; X.t�/; S.t�/; t�/ is a real value and
h1.u; X.t�/; S.t�/; t�/ is a L 
 1 vector. We choose
h.u; X.t�/; S.t�/; t�/ as an exponential affine form so that
we can obtain an approximate close form solution for the
dynamics of the term structure. Intuitively, we can consider
�m.du; dt/ as the conditional probability of shifting from
Regime S.t�/ to Regime u during Œt; t C dt	, given X.t�/
and S.t�/. We can express �m.t; A/, the compensator of
m.t; A/, as

�m.t; A/ D
Z t

0

Z

A

h.uIX.��/S.��/; ��/�.du/d�

D
X

u2A

Z t

0

h.uIX.��/S.��/; ��/d�

Second, we express S.t/ in the integral form below using the
random measure defined above:

S.t/ D S.0/C
Z

Œ0;t 	�U
.u � S.��//m.d�; du/ (72.23)

Note thatm.d�; du/ takes two possible values: 0 or 1. It takes
one only at the regime-switching time ti and with u D S.ti /,
the new regime at time ti . Hence, the above expression is but

13 See Last and Brandt (1995) for detailed discussion on marked point
process, stochastic intensity kernel, and related results.
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a telescoping sum: S.t/ D S.0/C P
ti <t
.S.ti / � S.t.i�1//.

The corresponding differential form is:

dS.t/ D
Z

U

.u � S.t�//m.dt; du/ (72.24)

To understand the above differential equation, we can assume
there is a regime switching from S.t�/ to u occurs at time t ,
then S.t/ � S.t�/ D u � S.t�/ implying S.u/.

These two forms are crucial, because they allow the
straightforward application of Ito’s formula in the following
subsections.

72.4.2 Regime-Dependent Jump Diffusion
Model for the Term Structure
of Interest Rates

This section proposes a general multifactor term structure
model under regime-switching jump diffusion. A closed-

form solution of the term structure is obtained for an affine-
type model using log-linear approximation.

72.4.2.1 State Variables

In this section, the most recent regime S.t/ follows
Equation (72.23) or (72.24). Other L state variables, Xt , are
described by the following equation, which is a continuous-
time analogue of Equation (72.10) but includes an additional
jump component:

dXt D Œ‚0.St ; t/C‚1.St ; t/Xt 	dt

C
X

.Xt ; St ; t/dWt C J.St�; t�/dNt
(72.25)

where ‚0.St ; t/ and ‚1.St ; t/ are regime-dependent L 
 1

vector and L 
 L matrix, respectively.
P
.Xt ; St ; t/ is an

L 
 L diagonal matrix given by

X
.Xt ; St ; t/ D

0
BBB@

q
�0;1.St ; t/C � 0

1;1.St ; t/Xt

: : : q
�0;L.St ; t/C � 0

1;L.St ; t/Xt

1
CCCA

where �0;i .St ; t/ .i D 1; : : : ; N / are regime-dependent coef-
ficients and all �1;i .St ; t/ are regime-dependent L 
 1 vec-
tors. Wt is a L 
 1 vector of independent standard Brownian
motions; Nt is a L 
 1 vector of independent Poisson pro-
cesses with L
 1 time-varying and regime-dependent inten-
sity ıJ .St�; t�/IJ.St�; t�/ is an L 
 L matrix of regime-
dependent random jump size with a conditional density
g.J jSt�; t�/. Given fSt�; t�g, we assume that J.St�; t�/
are serially independent and are also independent of Wt

and Nt .

72.4.2.2 The Short Rate

The instantaneous short-term interest rt is a linear function
of Xt given St and t

rt D 
0.St ; t/C 
1.St ; t/
0Xt (72.26)

where 
0.St ; t/ is a scalar and 
1.St ; t/ is a L 
 1 vector.

72.4.2.3 The Stochastic Pricing Kernel

Using no arbitrage argument (see Harrison and Kreps 1979
for technical conditions), we further specify the pricing

kernel, Mt , which is also called stochastic discount factor
in Sect. 72.3.2. We first present it in a stochastic differential
equation (SDE) form as

dMt

Mt�
D�rtdt��D;tdWt�ƒ0

J;t�.dNt� ıJ .St�; t�/dt/

�
Z

U

�S.X.t�/; S.t�/; t�/Œm.dt; du/��m.dt; du/	:

(72.27)

TheL
1 vector of market prices of diffusion risk condition-
ing on Xt; St , and t is

�D;t D �D;t .Xt ; St ; t/ D ƒ0
D.St ; t/

X
.Xt ; St ; t/

where ƒ0
D.St ; t/ D .�D;1.St ; t/; � � ��D;L.St ; t// is an L 
 1

vector. The L 
 1 vector of market prices of jump risk con-
ditioning on St� and t� is

�0
J;t� D �0

J .St�; t�/ D .�J;1.St�; t�/; � � ��J;L.St�; t�//

And the market price of regime-switching (from regime
S.t�/ to regime u) risk given X.t�/; S.t�/ and t� is

�S.X.t�/; S.t�/; t�/ D 1 � e�0;S .u;S.t�//C�
0

1;S .u;.S.t�//X.t�/

where �0
1;S D .�1;S;1; � � ��1;S;L/
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The specifications above complete the model for the term
structure of interest rates, which can be solved by a change of

probability measure. Specifically, for fixed T > 0, we define
the equivalent martingale measure Q by the Radon–Nikodym
derivative dQ

dP D �T =�0 where for t 2 Œ0; T 	

�t D
�
e� R T

t r� d�

 �
e� R t

0 �
0

D;� dW.�/� 1
2 �

0

D;��D;� d�





�
e
R t
0 �

0

J;� ıJ;� d�CR t0 log.1��J;� /0dNt





�
e
R t
0

R
U �S .uIX��;S��/�m.d�;du/CR t0

R
U log.1��S .uIX��;S��//m.d�;du/



(72.28)

Observe that the first two terms of �t correspond to the
discrete time MtC1 D e�mtC1 where mtC1 is given in
Equation (72.11). The extra two terms correspond to the mar-
ket prices of jump and regime-shift.

In the absence of arbitrage, the price at time t� of a
default-free pure discount bond that matures at T, P.t�; T /,
can be obtained as

P.t�; T / D E
Q
t�
�
e� R T

t r� d�



D EQ
n
e� R T

t r� d� jFt
o

D EQ
n
e� R T

t r� d� jXt�; St�
o

(72.29)

with the boundary condition P.T�; T / D P.T; T / and the
last equality comes from the Markov property of .Xt ; St /.

72.4.2.4 The Dynamics Under Q

To present the dynamics of state variables, Xt and St under
equivalent martingale measure Q, we first define

X0
0

D
X0

0
.St ; t/ D .�0;1.St ; t/; � � � ; �0;L.St ; t//

X
1

D
X

1
.St ; t/ D

0
B@
�1;1.St ; t/

: : :

�1;L.St ; t/

1
CA

and

ƒD D ƒD.St ; t/ D

0

B@
�D;1.St ; t/

: : :

�D;L.St ; t/

1

CA

Then, the dynamics of Xt and St under Q are given by the
following stochastic differential equations respectively,

dXt D Q‚.Xt ; St ; t/ dt C
X

.Xt ; St ; t/ deW t

CJ .Xt�; St�/ deN t (72.30)

dSt D
Z

U

.u � St�/em.dt; du/ : (72.31)

The drift term is

Q‚.Xt ; St ; t/ D Œ‚0 .St ; t/C‚1 .St ; t/ Xt 	

�†.Xt ; St ; t /2 �D .St ; t/ (72.32)

D e‚0 .St ; t /C e‚1 .St ; t / Xt (72.33)

with

e‚0 .St ; t / D ‚0 .St ; t /�ƒD .St ; t /†0 .St ; t /

and

e‚1 .St ; t / D ‚1 .St ; t /�ƒD .St ; t /†
0
1
.S; t/

eW t is a L 
 1 standard Brownian motion under QI eN t

is a L 
 1 vector of Poisson processes with intensity
eıJ .St�; t�/ whose elements are given byeıi;J .St�; t�/ D
Œ1 � �i;J .St�; t�/	 ıi;J .St�; t�/ for i D 1; : : : ; LIem.t; A/
is the marked point process with intensity matrix
eH .uIXt�; St�/ D

n
eh .uIXt�; St�/

o
D fh .uIXt�; St�/

.1 � �S .uIXt�; St�//g D
n
eeho.u;S.t�//Ceh0

1.u;S.t�//Xt
o

with

eh0 .u; .St�// D h0 .u; S .t�//C �0;S .u; S .t�// andeh1 .u;
S .t�// D h1 .u; S .t�// C �1;S .u; S .t�//. The com-
pensator of em.t; A/ under Q becomes �em .dt; du/ D
.1 � �S .uIXt�; St�// �m .dt; dz/ Deh .uIXt�; St�/ � .du/ dt,

72.4.2.5 Bond Pricing

Let P.t�; T / D F.t�;Xt�; St�; T / D F.t�; X; S; T /
where X D Xt� and S D St�. The following proposition
gives the partial differential equation (PDE) determining the
bond price.
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Proposition 1. The price of the default-free pure discount
bond F (t�, X, S, T) defined in Equation (72.29) satisfies the
following partial differential equation

@F

@t
C @F

@X 0e‚C 1

2
tr

	
@2F

@X@X 0
XX0


C E
Q
s;t� .
sF /Ceı0

JE
Q
J;t� .
XF / D rF (72.34)

with the boundary condition F.T�; X; S; T / D F.T; X;

S; T / D 1. Note that 
SF D F .t�; Xt�; u; T / � F .t�;
Xt�; St�; T / andEQ

S;t� .
SF / D R
U

SFeh .uISt�/ � .du/;

that is, the mean of 
SF conditioning on Xt� and St�
under Q;


XF D

0
B@
F .t�; Xt� C JL; St�; T / � F .t�; Xt�; St�; T /

:::

F .t�; Xt� C J1; St�; T /� F .t�; Xt�; St�; T /

1
CA

and EQ
J;t� .
XF / D R


XFeg .J jXt�; St�/ dJ; that is, the
mean of 
XF conditioning on Xt� and St� under Q.

The above proposition follows from the Feynman–Kac
formula and the Markov property of .X; S/.

When we letF.t�;Xt�;St�;T /DeA.S.t�/;t�/CB0.S.t�/;t�/X.t�/
with A .S .t�/ ; t�/ D A .S .t�/ ; t�; T / and B .S .t�/ ;
t�/ D B .S .t�/ ; t�; T / Equation (72.34) becomes

	
@A

@t
.S .t�/ ; t�/C @B 0

@t
.S .t�/ ; t�/X .t�/




C B 0 .S .t�/ ; t�/ �f‚0 .S .t�/ ; t�/C f‚1 .S .t�/ ; t�/X .t�/
�

C 1

2

�X0
0
.S .t�/ ; t�/ B2 .S .t�/ ; t�/C �

B2
�0
.S .t�/ ; t�/

X
1
.S .t�/ ; t�/X .t�/




C
Z

U

�
e
SA.S.t�/;t�/C
SB0.S.t�/;t�/X.t�/ � 1



e
eh0.u;S.t�/;t�/Ceh0

1
.u;S.t�/;t�/X.t�/� .du/

C E
Q
J;t�

�
eB

0.S.t�/;t�/J .S.t�/;t�/ � 1



D  0 .St ; t/C  1 .St ; t/
0Xt :

To solve for A .S .t�/ ; t / and B .S .t�/ ; t�/, we apply the
following log-linear approximations

e.
SB
0.S.t�/;t�/Ceh0

1.u;S.t�/;t�/Xt�/ � 1C
�

SB

0 .S .t�/ ; t�/Ceh0
1 .u; S .t�/ ; t�/X.t�/




and

eeh0

1.u;S.t�/;t�/X.t�/ � 1Ceh0
1 .u; S .t�/ ; t�/X .t�/

Under these approximations:

�
e
SA.S.t�/;t�/C
SB0.S.t�/;t�/X.t�/ � 1



eeh0.u;S.t�/;t�/Ceh0

1.u;S.t�/;t�/X.t�/

D e.
SA.S.t�/;t�/Ceh0.u;S.t�/;t�//C.
SB0.S.t�/;t�/Ceh0

1.u;S.t�/;t�/X.t�// � eeh0.u;S.t�/;t�/Ceh0

1.u;S.t�/;t�/X.t�/

� e
SA.S.t�/;t�/Ceh0.u;S.t�/;t�/
�
1C
SB

0 .S .t�/ ; t�/Ceh0
1 .u; S .t�/ ; t�/X.t�/




� eeh0.u;S.t�/;t�/
�
1Ceh0

1 .u; S .t�/ ; t�/X .t�/



D eeh0.u;S.t�/;t�/
�
e
SA.u;S.t�/;t�/ � 1



C eeh0.u;S.t�/;t�/



h
e
SA.u;S.t�/;t�/

�

SB

0 .u; S .t�/ ; t�/Ceh0
1 .u; S .t�/ ; t�/




�eh0
1 .u; S .t�/ ; t�/

i
X .t�/
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Now by matching coefficients, we obtain a set of differ-
ential equations for A .S; t�/ D A .S .t�/ ; t�; T / and
B .S; t�/ D B .S .t�/ ; t�; T /, which can be solved for the
term structure of interest rates.

Proposition 2. The price at time t� of a default-free pure
discount bond with maturity T � t is given by P .t�; T / D
eA.S;t�/CB.S;t�/0Xt� and the T� t-period interest rate is given
by R .t�; T / D �A.S;t�/

T�t � B.S;t�/0Xt�
T�t , where A .S; t�/

and B .S; t�/ are determined by the following differential
equations

� @B .S; t�/
@t

C e‚1 .S; t/
0B .S; t�/C 1

2

X
1
.S; t�/ B2 .S; t�/

C
Z

U

h
e
SA

�

SB Ceh1 .uIS; t�/



�eh1 .uIS; t�/

i
eeh0.uIS;t�/� .du/ D  1 .S/ (72.35)

and

� @A .S; t�/
@t

C e‚0 .S/
0B .S; t�/

C 1

2
B2 .S; t�/0

X
0
.S; t�/

CeıJ .S; t�/0EJ
h
eJ

0B.S;t�/ � 1
i

C
Z

U

�
e
SA � 1� eeh0.uIS;t�/� .du/ D  0 .S/ (72.36)

with boundary conditions A .S; 0/ D 0 and B .S; 0/ D 0,
where 
SA D A .u; t/ � A .S; t�/ ; 
SB D B .u; t/ �
B .S; t�/, and B2 .S; t/ D �

B2
1 .S; t/ ; : : : ; B

2
L .S; t/

�0
.

72.5 Conclusion

Interest rate is probably one of the more important macroe-
conomic variables that is closely watched by financial mar-
ket participants and policy makers. Much research effort has
been devoted to econometric modeling of the dynamic be-
havior of interest rates. This chapter provides a brief review
of models of the term structure of interest rates under regime
shifts. These models retain the same tractability of the single-
regime affine models on one hand, and allow more general
and flexible specifications of the market prices of risk, the
dynamics of state variables, as well as the short-term interest
rates on the other hand. These additional flexibilities can be
important in capturing some silent features of the term struc-
ture of interest rates in empirical applications. The models
can also be applied to analyze the implications of regime-
switching for bond portfolio allocations and the pricing of
interest rate derivatives.

An implicit assumption in the models reviewed in this
chapter is that investors can observe the regimes. One
extension is to assume that regimes are not observable or can
only be imperfectly observed by investors. For example, if

regimes represent different stances of the monetary policy,
investors have to use observable state variables such as in-
terest rates to learn the current regime when the monetary
policy is not completely transparent.

Another possible extension is to tie the regimes more
closely to economic fundamentals. Most regime-switching
models are motivated by the business cycle fluctuations or
shifts in policy regimes. In the term structure models re-
viewed in this chapter, however, regimes are only identified
by the dynamics of interest rates and lack clear economic
interpretations. Introducing other macroeconomic variables
that are better indicators of the business cycle or the policy
as additional state variables can give us deeper insight into
the dynamic properties of interest rates across different eco-
nomic regimes.
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