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This paper constructs estimates of daily stock index volatilities and correlation
using high-frequency (one-minute) intraday stock indices. The key feature of these
‘realized’ volatilities and correlations is that they are not only model-free but also
approximately measurement-error-free. In fact, they can be treated as observed
rather than latent, so that direct modeling and forecasting of the realized volatilities
can be performed using conventional time series approaches. Some interesting
results appear in the analysis. Despite the fact that the unstandardized returns
are skewed to the right and have fatter tails than normal, the distributions of the
raw returns scaled by the realized standard deviations appear to be approximately
Gaussian. The unconditional distributions of the realized variances and covariances
are leptokurtic as well as highly right-skewed, but the realized correlation tends
to be approximately normally distributed. There is no evidence in support of
asymmetric volatility effects commonly found in previous findings. However, we
find strong evidence to support the fact that there exists high contemporaneous
correlation between realized volatilities and high comovement between realized
correlation and volatilities.
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I. Introduction

Without doubt, volatility in financial markets has been one of the most analyzed
issues in the past decades. This may not appear so surprising due to the fact
that volatility is a key element for pricing financial instruments such as options,
is a measure of tradeoff between return and risk for allocating assets, and is
closely related to portfolio return fractiles which is central to risk management
measure like VaR (Value at Risk). Therefore, understanding how to obtain

* Constructive suggestions from the referees are highly appreciated. Any remaining errors are our
own responsibility.
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reliable measures of asset volatility and how their dynamics evolve over time
can be very important for both academic research and practical use.

However, volatility is inherently unobservable. As a result, measures of
volatility have to rely on alternative approaches by either parametric or non-
parametric estimation. For example, the generalized autoregressive conditional
heteroskedasticity (GARCH) model proposed by Engle (1982) and Bollerslev
(1986) is a popular parametric method to estimate the conditional volatility.
Alternatively, the stochastic volatility (SV) model is another parametric approach
to obtain the latent volatility (see Ghysels, Harvey and Renault, 1996). Although
these models can characterize the well-documented time-varying and clustering
features of the conditional volatility, the validity of the volatility measure relies
heavily on the parametric model specifications as well as the specific distri-
butional assumptions. As argued in Andersen, Bollerslev, Diebold and Labys
(2001), hereafter ABDL, the existence of multiple competing models indicates
the problem of model misspecification. Thus, it remains unclear which or whether
any of these specifications provides an appropriate description of the latent vola-
tility behavior. After all, at most, one of the models could be correct and, even
worse, they might be all wrong. In addition, the GARCH and SV models are
difficult to implement in a multivariate framework for most practical applications.

As an alternative, the data-driven or model-free unbiased estimates of the ex
post realized volatility can be proxied by the squared returns over the relevant
horizons (see Ding, Granger and Engle, 1993). Nevertheless, it is found, for
example in Andersen and Bollerslev (1998), that these volatility estimators can
be very noisy in standard practice. Thus, the method does not provide a reliable
inference for the true underlying latent volatility. On the other hand, Alizadeh,
Brandt and Diebold (2002) use the price range, defined as the difference between
the highest and lowest log asset price, as a proxy for the latent volatility. In
contrast, conventional empirical approach employs data of different sampling
frequencies to construct volatility estimators. For instance, Officer (1973) uses
monthly returns on an equity index to calculate the annual volatilities. In line
with this work, French, Schwert and Stambaugh (1987) construct monthly
volatilities from daily returns, whereas Schwert (1990a, b) exploits 15-minute
returns in the measurement of daily stock market volatilities. More recently, due
to the availability of higher-frequency data, Taylor and Wu (1997), Barndorff-
Nielsen and Shephard (2002) and ABDL (2001, 2003) rely on five-minute
exchange rate returns for construction of daily exchange rate volatilities, and
Andersen, Bollerslev, Diebold and Ebens (2001), henceforth ABDE, obtain the
stock return volatilities using a five-year sample of five-minute returns for thirty
Dow Jones Industrial Average (DJIA) stocks.

Notably, ABDE (2001) and ABDL (2001, 2003) introduce a novel measure of
volatility, termed realized volatility. Motivated by the theoretical work of Merton
(1980), they use the sum of high-frequency (five- or 30-minute) returns to con-
struct the measure of volatility at lower frequencies dates. For example, we can
obtain daily realized volatility by summing the intraday squared returns. Although
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the derivation seems trivial, the theory behind this is deep, as discussed in ABDL
(2001, 2003). The theory of quadratic variation shows that realized volatility
estimates constructed as above are not only model-free, and, as the sampling
frequency of the returns approaches infinity, those estimates are measurement-
error-free as well. Furthermore, the realized volatility is also an unbiased ex post
estimator of the daily return volatility. Based on a simulation of integrated vola-
tility implied by the GARCH(1,1) diffusion limit, Andersen and Bollerslev (1998)
find that the realized volatility provides a less noisy estimate of the latent volatility
than does the squared daily returns. More importantly, the measure of realized
volatility allows us to deal with high-dimensional returns situations which might
not be feasible using either the multivariate version of GARCH or SV models.

As argued above, the theory for continuous-time arbitrage-free processes
indicates that, by sampling the intraday returns at a sufficiently high rate, the
realized volatility can be made arbitrarily close to the underlying integrated
volatility. This striking feature can allow us, in practice, to treat the volatility as
effectively observable rather than latent. Therefore, conventional time series
approaches can be readily implemented to directly characterize the distributional
properties as well as to model and forecast the dynamics of the realized volatility
and correlation. For example, ABDE (2001) use high-frequency intraday prices
on thirty stocks in the DJIA over a five-year period to obtain realized volatilities
and correlations. They show that the raw returns are symmetric, with fatter tails
relative to normal, but returns standardized by the realized standard deviations
are near normal. They also find that the realized variances and covariances for
all stocks are right-skewed and leptokurtic. However, they document that the
realized logarithmic standard deviations and correlations are approximately
normal, display strong temporal dependence, and can well be characterized by
a fractionally-integrated long-memory process. ABDL (2001) also find quite
similar features when high-frequency intraday exchange rate data are used. Built
on these empirical regularities, ABDL (2003) proceed to specify and estimate a
multivariate fractionally-integrated long-memory Gaussian tri-variate VAR for
a set of daily logarithmic realized volatilities of exchange rate returns. When
compared with the resulting volatility forecasts obtained from GARCH and
other related models, they argue that their approach provides strikingly superior
volatility forecasts and well-calibrated density forecasts. In contrast, Maheu and
McCurdy (2002) use the realized volatility to explore the nonlinear time series
features of latent volatility. In particular, they consider a doubly stochastic process
with duration-dependent mixing, and find evidence of time-varying persistence
and time-varying variance of volatility. They also argue that the finding of non-
linearity in realized volatility has important implications for measuring forecast
performance as well as pricing derivative securities.

Motivated by the work of ABDE (2001) and ABDL (2001, 2003), we
examine the stock index return volatilities in both Taiwan Stock Exchange
(TSE) and Over the Counter (OTC) using high-frequency intraday return data.
However, our analysis is distinct in many aspects. First, ABDE (2001) examine
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30 common stock return volatilities, while ABDL (2001, 2003) investigate
exchange rate volatility. In contrast, our focus is on the stock index return
volatilities. Second, the frequency of data used in ABDE (2001) and ABDL
(2001) is five-minute, while we use the intradaily stock index returns data at
one-minute frequency over the whole year in 2000.1 This seems to be the highest
frequency available in the literature for constructing realized volatility and makes
the theory of quadratic variation more appropriate to apply.

The rest of the paper is organized as follows. In Section II, we provide a brief
review of the theoretical background, that is, quadratic variation theory, for
constructing the realized volatility. The data used are also detailed and the
practical issues involved in measuring daily volatility is discussed. Section III
provides a thorough description of the distributional characteristics of the returns
(raw vs standardized), volatilities, covariance and correlation. In Section IV,
we investigate the dynamics of realized volatilities and correlation. Brief con-
clusions are finally given in Section V.

II. Measures of Realized Stock Index Return Volatility

Although no formal justification is provided, conventional work such as French,
Schwert and Stambaugh (1987) and Schwert (1989) obtained the monthly realized
volatilities using daily return observations while Schwert (1990a, b) relied on
the 15-minute returns to obtain the daily realized volatilities. A rigorous treat-
ment of the theoretical background can be found in ABDL (2001, 2003) and is
briefly reviewed in the following subsection.2

II.1 Quadratic variation theory

Consider the following simple multivariate continuous-time stochastic volatility
diffusion process,

dpt = µt dt + QdWt (1)

where pt is the k × 1 instantaneous logarithmic price, µt is a drift parameter, and
dWt is a k × 1 standard Brownian motion. The k × k positive definite diffusion
matrix Qt follows a strictly stationary process and satisfies Qt Q ′t = Ωt. For this
diffusion, the integral of the instantaneous variances over the day, that is,

8t =
      �t

t+1

Ωωdω (2)

provides an ex post measure of the true latent volatility associated with day t.

1. We do not use the most recent data since the trading period has been extended from 3 hours to
4.5 hours per day starting from January 1, 2001. In order to avoid possible biases caused by the
different trading hours, we restrict ourselves in using the data in 2000 only.
2. The following review relies heavily on ABDL (2001, 2003).
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By cumulating the intraday squared returns, as shown in Merton (1980), we
can approximate the integrated volatility in equation (2) to any arbitrary pre-
cision. In particular, we can obtain an estimate, denoted by 7t, of 8t as

7t =
    j=
∑

1

δ

rt+j/δ · r′t+j/δ (3)

where rt+j/δ ≡ pt+j/δ − pt+( j−1)/δ denotes the continuously-compounded returns, sampled
δ times per day. Note that the subscript t indexes the day while j indexes the
time within day t. In our applications, we are interested in the analysis of daily
volatility. The stock indices of TSE and OTC are available for every minute in
the 180-minute trading period (three hours) of a day, implying that δ = 180. The
measure, 7t, is termed realized volatility as in ABDE (2001) and ABDL (2001,
2003).

By the theory of quadratic variation, it can be shown that (3) provides a
consistent estimate of latent volatility as

plimδ→∞7t = 8t (4)

In other words, as the sampling frequency of the returns increases, δ → ∞ , the
ex post realized volatility measures so constructed will converge to the integrated
latent volatilities.

II.2 Data and construction of realized stock index volatilities

Our empirical analysis is based on the data downloaded from the websites of
TSE and OTC, respectively.3 Since its inception in 1961, TSE has kept pace
with market development and the most up-to-date technologies. In contrast, an
independent non-profit legal entity, GreTai Securities Market (the OTC market)
was established on November 1, 1994.

For those listed companies in the TSE (OTC), the following criteria must be
met. First, the corporate has to last over five (two) years since its incorporation.
Second, the amount of paid-in capital in its final accounts for the most recent
two fiscal years shall be NT$300 (NT$50) million or more. Third, each of the
operating profit and before-tax profit for the most recent two years (one year)
represents 6% (4%) or greater of the amount of paid-in capital in its final accounts;
or the average operating profit and before-tax net profit for the most recent
two years represent 6% (2%) or greater of the amount of paid-in capital in its
final accounts, and the profitability for the most recent year is greater than that
for the immediately preceding year. Besides, it does not have accumulative loss
in the most recent fiscal year. Fourth, the number of name-bearing shareholders

3. Most of the introductory description is mainly taken from the following websites. Interested
readers can visit http://www.tse.com.tw/docs/eng_home home.htm as well as http://www.gretai.org.tw/
e_index.htm for more detailed information.

http://www.tse.com.tw/docs/eng_home
http://www.gretai.org.tw/
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shall be one thousand (three hundred) or more. Among them, the shareholders
holding between one thousand and fifty thousand shares shall not be less than
five hundred (three hundred), and the total number of shares they hold shall be
20% (10%) or greater of the total issued shares (or at least 10 (5) million). It can
easily be seen that the criteria for listing in the OTC are less stringent than those
for listing in TSE.

The stock indices for TSE and OTC are continuously recorded each minute
in every trading day.4 The constituent stocks for the indices are often heavily-
traded. One of the measures for liquidity, the overall turnover rate, is about
178.5% for TSE and 771.5% for OTC in the year 2000. Our sample covers the
periods starting from January 4, 2000 to December 31, 2000, resulting a total of
271 trading days. In a typical trading day, the market opens at 9:00 and closes
at 12:00. This three-hour trading period provides a total of 180 continuously
compounded one-minute returns for each day, corresponding to δ = 180 in the
notation above.

Based on the one-minute return series, constructed from the logarithmic
stock index difference, we can obtain the realized daily volatilities for the index
returns of TSE (s2

tse,t) and OTC (s2
ots,t) as

s2
tse,t =

    j=
∑

1

180

r2
tse, t+j/180 (5)

s2
otc,t =

    j=
∑

1

180

r2
otc, t+j/180 (6)

and the realized covariance between rtse,t and rotc,t, denoted by covt, can be
formed by the cross product series,

covt =
    j=
∑

1

180

(rtse, t+j/180)(rotc, t+j/180) (7)

ABDL (2001, 2003) show that, for sufficiently large sampled times (δ), the
above realized volatilities and covariance will provide an arbitrarily good
approximation to the quadratic variation and covariation.

In addition, we follow ABDE (2001) and ABDL (2001) to examine several
related measures of realized volatilities and covariance, including realized stand-

ard deviations stse,t =
    

stse t,
2  and sotc,t =

    
sotc t, ,2 realized logarithmic standard

deviations lstse,t = ln(stse,t) and lsotc,t = ln(sotc,t), and realized correlation cort = covt /
(stse,t · sotc,t).

4. Since the stock indices are computed using the most recent transaction prices of constituent
stocks for every minute, one might expect the indices to be highly autocorrelated as suggested by the
referee.
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Table 1 Summary Statistics of Daily Return distributions, unstandardized as well as
standardized, for the TSE and OTC indices

rtse rotc srtse srotc

mean −0.2081 −0.2775 −0.2394 −0.2722
std. 1.8852 2.2490 1.4792 1.8000
skew. 0.3576 0.3019 0.2609 0.2338
kurt. 4.5648 4.1139 2.7947 3.0262
JB 33.4246*** 18.1282*** 3.5507 2.4761

Q(22) 50.3350*** 50.0631*** 34.2600** 78.5455***
Q2(22) 64.0659*** 47.7661*** 30.0565 37.7552**
ADF −7.9560*** −6.8351***  −7.5431*** −6.8450***
PP −19.1971*** −16.7272*** −17.9057*** −15.8567***

Notes: *** Significant at the 1% level. ** Significant at the 5% level. JB represents the Jarque-Bera
normality test statistic. Q(22) denotes the Ljung-Box test for returns up to 22nd order
autocorrelation whereas Q2(22) is for squared returns. The Augmented Dickey-Fuller and
Phillips-Perron tests for a unit root null hypothesis involving 4 augmentation lags are denoted
by ADF and PP, respectively.

III. The Univariate Distributions

III.1 Returns

Our analysis begins with a summary of the distributions for the raw, or unstand-
ardized, daily TSE (rtse) and OTC (rotc) stock index returns. A standard menu of
moments, including mean, standard deviation, skewness and kurtosis, are reported
in the first two columns of Table 1 to summarize the unconditional distributions
of the daily returns series rtse and rotc respectively. In addition, Figure 1 provides
the time series plots as well as the kernel densities of rtse and rotc.

The mean returns for both markets in the year 2000 are both negative,
−0.2081 for rtse and −0.2775 for rotc, possibly reflecting a consequence of the
bear stock markets in 2000. The stock index of TSE drops from the highest
10393.50 to the lowest 4555.91 while that of OTC falls from the highest 329.47
to the lowest 99.86, with corresponding falling percentages being 56.17% and
69.69% respectively. The standard deviation of rotc is 2.2490 which is larger than
that of rtse (1.8852), meaning that the OTC is more volatile. As regards sample
skewness, both return series have positive estimates as 0.3576 and 0.3019,
implying that the distributions of the returns are not symmetric and are actually
slightly right-skewed. This asymmetry is further confirmed by the kernel density
estimates shown in the bottom panel of Figure 1. The estimates of the sample
kurtoses are well above the normal value of 3, indicating that the distributions of
the returns are leptokurtic. These findings are consistent with those found in
ABDE (2001). The Jarque-Bera statistics for normality test of rtse and rotc are
33.4246 and 18.1282 with p-values being 0.0000 and 0.0001, respectively. Without
doubt, the null of normality can be easily rejected for both series.
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Note: The dotted lines in the bottom panels refer to normal densities.

Figure 1 The Time Series Plots (top) and Kernel Densities (bottom) of
rtse (left) and rotc (right)

The standard Ljung-Box portmanteau test for the joint significance of the
first 22 auto-correlations (about one month of trading days) of rtse, rotc and the
corresponding squared terms r2

tse and r2
otc are also provided in Table 1. Judged

by the p-values of the corresponding Q(22) statistics, the hypothesis of zero
autocorrelations is clearly rejected for both series, suggesting the returns are
highly persistent. On the other hand, the Q2(22) statistics for both the squared
returns series overwhelmingly reject the null of no serial correlation, indicating
that there is strong volatility clustering effect in asset returns. However, when
we test for the unit root for both returns series, the empirical results reject the
null hypothesis of unit root and strongly favor that the returns series are stationary,
both by ADF and PP tests.

We now proceed to examine the standardized returns, denoted by srtse and
srotc, which are obtained by dividing the raw returns with their correspond-
ing realized standard deviation stse and sotc. Notationally, they are expressed as
srtse = rtse/stse and srotc = rotc/sotc.

The last two columns of Table 1 also present the moments of the standardized
returns. The mean returns for both standardized series remain negative while the
standard deviations become smaller. Although the sample skewness coefficients
are still positive, the values have been decreased. More strikingly, the sample
kurtosis coefficient of srtse now has a value 2.7947 and that of srotc becomes
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Figure 2 Kernel Densities and Histograms

3.0262. Both values are reduced significantly and are very close to the normal
value of 3. When we perform the normality test on the standardized returns, we
find that the Jarque-Bera statistics provide values of 3.5507 and 2.4761 for the
series srtse and srotc respectively. The corresponding p-values are 0.1694 and
0.2900, indicating that the null hypothesis of normality can not be rejected at the
commonly-used significance level such as 5%. Similarly, the results can also be
seen from the kernel densities and histograms of srtse and srotc shown in Figure 2.
In contrast to the unstandardized returns, the distributions of the standardized
returns are approximately normal. Our findings are consistent with ABDE (2001)
and ABDL (2001, 2003), who show that both the stock returns and exchange
rate returns standardized by their respective realized standard deviations are
approximately Gaussian.

Similarly, we also report the Ljung-Box serial correlation test statistics for the
standardized returns srtse and srotc. The values are 34.2600 and 78.5455, and are
significant at 5% and 1% levels respectively. As a result, we conclude that the
strong persistence in standardized returns still remains. As regards the test for
autocorrelation in squared standardized returns, we find that the Q2(22) test
statistic for srtse has been highly decreased and appears insignificant, despite the
value for srotc remaining significant at 5% level. The results suggest that the
volatility clustering effects are reduced, or even disappear, once the raw returns
are standardized by the realized standard deviations. Not surprisingly, the ADF
and PP tests, again, strongly reject the unit root null hypotheses and confirm that
both the standardized returns are stationary.
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III.2 Volatilities

As discussed earlier, the realized volatilities (s2
tse and s2

otc) can be computed by
cumulating intradaily one-minute squared returns as shown in equations (5) and
(6). The realized standard deviations, that is, stse and sotc, can be calculated by
taking square root of s2

tse and s2
otc and the realized logarithmic standard deviations,

i.e., lstse and lsotc, are obtained by taking the natural logarithm of stse and sotc

respectively.
From the first two columns of Table 2, we find that the mean realized volatilities

of s2
tse and s2

otc for the TSE and OTC index returns are approximately equal, with
values being 1.4143 and 1.4890 respectively. Clearly, the standard deviation of
the realized volatility is relatively smaller for s2

otc with a value of 0.7485. The
sample skewness coefficients are both positive, implying that the distributions
for s2

tse and s2
otc are skewed to the right. Specifically, the skewness value of s2

tse is
2.2085 which is larger than that of s2

otc. This suggests that the distribution of s2
tse

is more right-skewed than that of s2
otc, and this result is confirmed from the kernel

density estimates in the top panels of Figure 3. Turning to the coefficients of the
sample kurtoses, we find that the values are much larger than the normal value 3,
indicating that the distributions are highly leptokurtic. This is especially true for
the realized volatility of TSE returns, that is, s2

tse. The top panels (left panel for
s2

tse and right panel for s2
otc) of Figure 3, again, confirm these impressions. As

argued in ABDE (2001) and ABDL (2001, 2003), the strong persistence in
intraday returns renders the normal distribution a poor approximation, even
though the realized volatilities are constructed by cumulating the 180 squared
one-minute returns.

While the distributions of the realized volatilities s2
tse and s2

otc are obviously
skewed to the right, transforming to the realized standard deviations, that is, stse

and sotc, moves them toward symmetry. The evidence can be seen from the third
and fourth columns of Table 2 and the kernel density estimates as well as
histograms in the middle panels of Figure 3. The means of stse and sotc become
smaller, as do their standard deviations. Both the sample skewness coefficients
have reduced remarkably. In particular, the skewness of the sotc has a value of
−0.0760 which is quite close to symmetric value of 0. Combined with the
impression from the middle right panel of Figure 3, we can conclude that the
distribution of sotc is symmetric. In contrast, the stse has a sample skewness value
of 1.1258, suggesting that the distribution of stse remains slightly right-skewed,
as can be seen from the left middle panel of Figure 3. However, again, the large
kurtosis coefficients indicate that the distributions are still leptokurtic. When
turning to the logarithmic standard deviations, we find that the distribution of
lstse appears to be more symmetric, judged by the near-zero skewness coefficient
0.0710 and the kernel density in the bottom left panel of Figure 3. Although the
kernel density estimate of lsotc in the bottom right panel of Figure 3 looks like
a normal one, it is actually skewed to the left and has a fat tail due to a few
outliers. In sum, the evidence leads us to conclude that the distributions of lstse
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Table 2 Summary Statistics of Daily Volatilities, Covariance and Correlation for the TSE and OTC index returns

s2
tse s2

otc stse sotc lstse lsotc cov cor

mean 1.4143 1.4890 1.1484 1.1800 0.1046 0.1195 0.5142 0.3289
std. 0.8342 0.7485 0.3096 0.3112 0.2589 0.3439 0.4100 0.1502
skew. 2.2085 1.1250 1.1258 −0.0760 0.0710 −2.8073 1.3289 −0.1275
kurt. 10.2772 5.1160 5.1896 4.4066 4.0687 17.3566 4.6992 2.9404

Q(22) 573.0324*** 182.5943*** 645.7015*** 142.3981*** 544.7126*** 78.7582*** 187.2189*** 122.1705***
ADF −4.3128*** −4.2910*** −3.9490*** −4.5027*** −3.8727*** −5.0330*** −5.0492*** −5.2346***
PP −8.3775*** −11.9453*** −8.6096*** −11.5581*** −9.5217*** −12.1715*** −11.6895*** −12.6011***

Notes: *** Significant at the 1% level. ** Significant at the 5% level. Q(22) denotes the Ljung-Box test up to 22nd order autocorrelation. The Augmented Dickey-
Fuller and Phillips-Perron tests for a unit root null hypothesis involving 4 augmentation lags are denoted by ADF and PP, respectively.
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and lsotc are not normal. This is in contrast to ABDE (2001) and ABDL (2001,
2003), who find that the realized logarithmic standard deviations for all stock
returns and exchange rate returns appear to be approximately Gaussian.

Turning again to the serial correlation tests, from Table 2, the Ljung-Box
statistics indicate strong autocorrelation in the realized volatilities s2

tse and s2
otc at

any reasonable significance level. Clearly, the tests also show that realized standard
deviations as well as realized logarithmic standard deviations are strongly per-
sistent. This result is consistent with the significant Ljung-Box statistics for the
raw squared returns in Table 1. However, as noted in ABDL (2003), the Q2(22)
statistics in Table 1 have smaller magnitudes than those in Table 2, reflecting the
fact that the daily squared returns are very noisy volatility proxies relative to the
daily realized volatilities. The implication is that the realized volatility should
be viewed as the object of intrinsic interest and this is exactly the main
topic investigated in later sections. For completeness, we also perform unit root
tests. The results from both ADF and PP tests do not show any evidence of
nonstationarity. The null hypotheses of unit root can be rejected at 1% signifi-
cance level for all series, including realized volatilities, standard deviations and
realized logarithmic standard deviations.

III.3 Covariance and correlation

Many key financial and economic applications rely on the particular way that
volatilities move across assets and markets. In the literature, these issues have
been addressed using multivariate ARCH or SV models (Bollerslev, Engle and

Figure 3 Kernel Densities and Histograms
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Figure 4 The Kernel Densities

Note: The dotted lines refer to normal densities.

Nelson, 1994; Ghysels, Harvey and Renault, 1996; and Kroner and Ng, 1998).
Due to the curse of dimensionality, the target analyzed in those specific parametric
models is limited to only a few assets and, thus, severely restricts their practical
applications. In contrast, the realized covariance and correlation constructed
by the high-frequency intraday returns provide us with a straightforward way to
analyze the high-dimensional returns dynamics.

Similarly, we also discuss the distributional properties of realized covariance
and correlation. The basic statistics for both series are reported in the last two
columns of Table 2. First, we find that both realized covariance (cov) and corre-
lation (cor) between rtse and rotc are positive, often strongly so. The mean values of
the covariance and correlation are 0.5142 and 0.3289, respectively. This sug-
gests that the indices of TSE and OTC move, in general, in the same direction.

The realized covariance has sample skewness and kurtosis coefficients of
1.3289 and 4.6992, suggesting that the distribution of the realized covariance is
skewed to the right and has fat tails relative to the normal. The Jarque-Bera test
of normality provides a statistic 112.3603 with p-value 0.0000, suggesting that
the distribution of cov is not Gaussian. The kernel density estimates provided in
the left panel of Figure 4 confirm this finding. In addition, the Ljung-Box test
indicates that the realized covariance series is highly persistent while no evidence
of nonstationarity is found by either ADF or PP test.

In contrast, the realized correlation has a near-zero sample skewness coef-
ficient of −0.1275 and a sample kurtosis value of 2.9404 which is very close to
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the normal value of 3. The Jarque-Bera normality test provides a statistic of
0.7746 with corresponding p-value 0.6789, indicating that the null hypothesis
of normality can not be rejected at any conventional significance level. To
illustrate this result, the kernel density of the realized correlation in the right
panel of Figure 4 was graphed. Clearly, the normal reference distribution affords
a close approximation. Furthermore, the long-run dependence found in realized
volatilities and covariance is also present in realized correlation. This is jus-
tified by the highly significant value of the Ljung-Box portmanteau statistic of
122.1705 reported in the last column of Table 2. However, the null hypothesis
of a unit root for the realized correlation is overwhelmingly rejected when
judged by the conventional −3.4566 (−3.4562) 1% critical value using the ADF
(PP) test.

IV. The Dynamics of Realized Standard Deviations and Correlation

In this section, the different aspects of volatilities, correlation and their relation-
ship will be examined. In particular, following ABDL (2003), we focus on the
realized standard deviations for analysis of volatilities. The main reason for
doing this is because the realized standard deviations are measured on the same
scale as the returns, and thus, provides a naturally interpretable measure of
volatilities. The time series plots of the realized standard deviations stse,t, sotc,t and
the realized correlation cor are provided in Figure 5. Clearly, all series display
large variations.

Figure 5 The Time Series Plots of the Realized Standard Deviations
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IV.1 Asymmetric volatility effect

It is well documented in the literature that there is an asymmetric association
between volatility and return, namely, negative returns have a larger impact on
future volatility than positive returns of the same absolute magnitude. As argued
in Bekaert and Wu (2000), the asymmetry may be caused by either the leverage
effect (e.g., Christie, 1982), or volatility feedback effect (e.g., Campbell and
Hentscel, 1992). In particular, Bekaert and Wu (2000) use data constructed from
Nikkei 225 stocks to find support for a volatility feedback explanation but not
for leverage effect. ABDE (2001) also confirm the asymmetric relationship that
positive returns are associated with smaller volatility innovations than negative
returns of the same absolute magnitude.

It is naturally interesting to see if the asymmetry also exists using the realized
standard deviations constructed by the intraday stock index returns. First, we
report the preliminary results based on the following standard regressions,

stse,t = 0.4884 + 0.5690 stse,t−1 + 0.0107 stse,t−1I(rtse,t−1 < 0) (8)
[0.0605] [0.0506] [0.0266]

sotc,t = 0.7464 + 0.3475 sots,t−1 + 0.0339 sotc,t−1I(rots,t−1 < 0) (9)
[0.0698] [0.0585] [0.0294]

where figures in brackets are standard errors and I(·) refers to the indicator
function. It is found that the coefficients of the lag realized standard deviations,
that is, sj,t−1, j = tse, otc, are both positive and significant at 1 percent level. This
strong dynamic dependence seems to suggest the existence of volatility cluster-
ing effect. Although the estimates of the terms for capturing asymmetry, that is,
sj,t−1I(rj,t−1 < 0), are positive, they are not significantly different from 0 at any
conventional level. Thus, it provides no evidence to support the fact that there is
asymmetry in the impact of past returns on future volatility. This finding is in
sharp contrast with previous work where the asymmetric effect is commonly
documented.

Note that the above approach uses the lagged returns as the threshold variable
with threshold value 0 to examine the possibility of different volatility response
to return shocks. In the following, we actually estimate the unknown threshold
value rather than restrict the value to be 0. In particular, we first estimate the
following threshold autoregressive (TAR) regression for stse,t using the lagged
returns rtse,t−1 as the threshold variable. The results are reported as follows,
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We find that there are two thresholds with values being −1.9774 and 1.9224. The
LM-test for no threshold (linearity) can be rejected at 1% and 5% significance
level, respectively. As a result, there are three distinct regimes with a linear first-
order autoregressive (AR(1)) process within each regime. Clearly, all AR(1)
coefficients are significantly positive. Among which, the AR estimate in the first
regime, that is, rtse,t−1 < −1.9774, is the smallest while the AR coefficient is
the largest in the middle regime, that is, −1.9774 ≤ rtse,t−1 < 1.9224. Again, there
seems no evidence of asymmetry but we find that the volatility dynamics can
be characterized by a nonlinear threshold process.

Turning to the modeling of sotc,t, we also use the lagged returns rotc,t−1 as the
threshold variable to fit a TAR regression as follows,
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In contrast to the above case, we only find a threshold value −3.1324. The null
of linearity can be rejected at 1% significance level, suggesting that the volatility
movement can be well characterized by a two-regime TAR process. The AR
coefficients in both regimes are significantly positive. Specifically, the smaller
AR estimate 0.2315 in the first regime, that is, rotc,t−1 < −3.1324, offer little
support of asymmetric volatility effect.

In sum, either judged by the empirical results via the conventional regression
approach or the nonlinear threshold modeling, we find no evidence in support of
the well-documented asymmetric effect in volatilities stse,t or sotc,t. We also find
that the volatility dynamics can be characterized by the multiple-regime nonlinear
TAR regressions. In addition, no formal justification, at least statistically, is
provided by restricting the threshold values of the lagged returns to be 0 as is
done in the literature.

IV.2 The relation between realized standard deviations

Here we investigate various aspects of the relation between the realized standard
deviations stse and sotc. First, in the left panel of Figure 6, we show the bivariate
scatter plots of these two series. Clearly, the graph and the regression line
indicate a strong positive relation between these two index return volatilities.
This is further confirmed by the large value of correlation, 0.6474, between sotc

and stse. In particular, we regress sotc on a constant and stse to obtain

sotc,t = 0.4327 + 0.6508 stse,t (12)
[0.0761] [0.0687]

The slope coefficient estimate is 0.6508 with t test statistic 9.4731. The p-value
is 0.0000 and the R2 is 0.4191, confirming that the relation between sotc and stse is
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Figure 6 The Bivariate Scatterplots

significantly positive. Thus, we find that not only do the two stock index return
series move together in the same direction, as indicated by the positive means of
cov and cor in Table 2, but so also do their volatilities.

On the other hand, the causation in conditional variance across various financial
asset price movements has attracted increasing attention from both investors and
academics. The reason is that understanding how the volatilities transmit across
markets may allow us to assess how the market reacts, assimilates and evaluates
the arrival of new information. In addition, the causation pattern in variance
may provide information in understanding the temporal dynamics of returns
series. The examples include Cheung and Ng (1996), Hu, Chen, Fok and Huang
(1997), Laopodis (1998), Ng (2000), among others. These studies often require
the estimation of the conditional variance by, for instance, a parametric model
such as GARCH. In contrast, the realized standard deviations obtained using
intraday returns allow us to directly deal with the problem by the conventional
Granger-causality test.

Specifically, we consider the following bivariate regression:
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First, we employ both Akaike information criterion (AIC) and Schwarz Bayesian
information criterion to select the appropriate lag length p, both information
criteria suggesting the identical lag length 2, that is, p = 2. We further apply the
Granger causality test to check for the causal relation between stse and sotc. The
F-statistic for testing the null hypothesis that sotc does not Granger-cause stse is
1.553, which is not signficantly different from zero at any conventional level,
indicating that we cannot reject the null hypothesis. In contrast, the F-statistic
shows a value of 9.145, which is different from zero at 1% significance level,
suggesting the null hypothesis that stse does not Granger-cause sotc can be rejected.
Thus, the test results show that Granger-causality runs one-way from stse to sotc

but not the other way around.

IV.3 Volatility-in-correlation effect

It is found, for example by ABDL (2001), that realized correlation is highly
correlated with the realized volatilities, which they call the ‘volatility effect in
correlation’. Along the same line, we now move our attention to the relation
between realized volatilities and realized correlation. To get a preliminary idea,
the bivariate scatterplots of the [cor, stse] and [cor, sotc] in the middle and right
panels of Figure 6 are shown. Not surprisingly, the plots and the regression line
clearly indicate a positive association between realized correlation and volatilities.
Specifically, cor on a constant and the realized volatility (either stse or sots) are
also regressed by the following simple linear regressions:

cort = 0.1076 + 0.1927 stse,t (15)
[0.0474] [0.0421]

cort = 0.0479 + 0.2382 sotc,t (16)
[0.0450] [0.0374]

In equation (15), the estimated slope coefficient of cor on stse is 0.1927 with
standard error 0.0421. The estimate is significantly different from 0 at any
conventional level, showing that the positive association between stse and cor is
significant. Similar results obtained by regressing cor on a constant and sotc

are also shown in equation (16). Again, the slope estimate is significantly posi-
tive and with a larger value of 0.2382. The preliminary analysis shows that the
realized correlation is highly correlated with realized volatilities stse and sotc. In
fact, it is found that the correlation between cor and stse is equal to 0.3973 and
that between cor and sotc is 0.4935. The results tend to support that there exists
a so-called volatility-in-correlation effect.

This so-called ‘volatility-in-correlation effect’ is well documented in the
literature. King and Wadhwani (1990) find that correlation across major inter-
national stock market tends to increase during periods of market crises. Alterna-
tively, Longin and Solnik (1995) use a bivariate GARCH model and find that the
correlations between the major stock markets rise in periods of high volatility.
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Ramchand and Susmel (1998), using a regime-switching ARCH model, docu-
ment that the correlations between the USA and other world markets are on
average 2 to 3.5 times higher when the USA market is in a high-variance regime
as compared to a low-variance state. This phenomenon is also confirmed by
using direct model-free measures of realized correlations and volatilities as in
ABDL (2001) and ABDE (2001). In particular, ABDL (2001) plot two kernel
density estimates of realized correlation, depending upon whether the volatility
measures (logarithm of the realized standard deviations) are less than or larger
than their median value of −0.46. They find evidence in support that the realized
exchange rate correlations tends to rise on high-volatility days. Similar results
are also found in ABDE (2001) when realized stock return volatility and corre-
lation are examined.

In contrast to ABDE (2001) and ABDL (2001), who use the median realized
volatility measure as the threshold value for separating small versus large vola-
tility days, we formally estimate the threshold volatility value via the threshold
regression of Hansen (2000). In particular, we first examine the following thresh-
old regression
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to see if the means (µ1 and µ2) of cor remain the same in both small (sj,t ≤ γ) and
large (sj,t > γ) volatility regimes. The subscript j denotes either ‘tse’ or ‘otc’.
From Table 3, we find that the LM-tests of no threshold hypothesis using stse and
sotc as threshold variables yield F statistics 17.9750 and 12.5177, respectively.
The bootstrap p-values in both cases are 0.0010 and 0.0080, suggesting that
there is a threshold effect in cor with respect to the realized volatilities stse and
sotc. Furthermore, the mean correlation is 0.2721 (0.2594) in the low-volatility
state, that is, stse ≤ 1.1420 (sotc ≤ 1.1627). In contrast, in the high-volatility state,

Table 3 Volatility-in-Correlation Effect

stse sotc

estimate 2.5% 97.5% estimate 2.5% 97.5%

µ1 0.2721 0.2529 0.2943 0.2594 0.2372 0.2989
µ2 0.4060 0.3761 0.4343 0.3949 0.3721 0.4470
γ 1.1420 1.0879 1.2112 1.1627 1.1248 1.2747

F 17.9750 12.5177
p 0.0010 0.0080

Notes: The table summarizes the results of the threshold regressions in equation (17) using stse and
sotc as the threshold variable, respectively. The values of µ1 and µ2 denote the mean correlation
in the low- and high-volatility regimes whereas the value of γ denotes the estimated threshold
volatility value for classifying the correlation into different regimes. The F statistic tests
whether there exists a threshold effect with p-value obtained from the bootstrap approach.
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that is, stse > 1.1420 (sotc > 1.1627), the mean correlation becomes larger, as 0.4060
(0.3949). Note that the threshold values for classifying cor into different regimes
are quite close using either stse or sotc as the threshold variable. This volatility-in-
correlation effect is again confirmed by looking at the kernel density estimates
illustrated in Figure 7. It is clear that the distribution of realized correlation
shifts rightward when realized volatility increases.

V. Conclusions

This paper investigates the distributional characteristics of the realized volatilities
and correlation dynamics using high-frequency intraday stock index returns
observations from Taiwan Stock Exchange (TSE) and Over The Counter (OTC).
Those measures so constructed are model-free, approximation-error-free and can
be, in fact, treated as observed rather than latent. This striking feature can greatly
facilitate modeling and forecasting using conventional time series approaches
based directly on the observable variables.

Our findings are strikingly similar to those found in the existing work such as
ABDE (2001) and ABDL (2001). In particular, the following interesting results
come out. First, although the raw returns are right-skewed and leptokurtic, the
distributions of the raw returns standardized by the realized standard deviations

Figure 7 Kernel Densities
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are approximately normal. Second, the unconditional distributions of the realized
variances and covariance are leptokurtic and, in general, highly right-skewed,
while the realized correlation appears to be approximately Gaussian. Third, no
asymmetric volatility effects are found, that is, negative returns and positive
returns have similar impact on future volatilities. In addition, the volatilities of
TSE and OTC stock index returns series move closely in the same direction and
we find that the volatility in TSE Granger-causes that in OTC but not the other
way around. Fourth, we also find evidence in support of comovement between
volatilities and correlation. This volatility-in-correlation effect may reduce the
benefits to portfolio diversification when the market is most volatile as argued
in ABDE (2001).

Last, but definitely not least, one important point made by one referee is that
the intradaily one-minute returns are likely to be autocorrelated. The possible
autocorrelation might have effect on the moment of the series, in a sense that
the series is not drawn out independently from some particular distribution. As
a result, it would be more meaningful and appropriate to analyze the residuals
after taking into account the autocorrelation. As we concur, this important obser-
vation is very constructive and deserves further attention and examination in
future related studies.5
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