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1. Introduction

The primary objective of macroeconomic policies is to attain high
and sustainable output growth rates alongwith low and stable inflation
rates. Therefore, the relationship between output growth rate and
inflation rate is vital for policymakers. If growth and inflation rates are
interrelated, then policymakers would like to control these variables
depending on the structure of such relationship in order to achieve
policy targets. Considering the importance of the inflation–growth
relationship, it is not surprising that this topic has been one of themost
widely studied topics in the economics literature.

The inflation–growth relationship has been investigated extensively
on theoretical grounds (Arın and Omay, 2006).1 Recent studies have
shown that financial markets play a crucial role in non-linear
interrelationship between inflation rate and output growth (Khan et
al., 2001; Khan, 2002). Many studies have detected a threshold effect
in both inflation–finance and inflation–growth relationships (Boyd et
al., 1997; Khan et al., 2001; Bullard and Keating, 1995; Bruno and
Easterly, 1998; Khan and Senhadji, 2001). The general model used to
explain the non-linear and negative correlation in the inflation–
growth nexus states that when inflation reduces real returns to
savings, it exacerbates an informational friction afflicting the financial
system. Such financial frictionsmay cause credit rationing, hence limit
investment level, and reduce investment efficiency. These may cause
an adverse effect on long run economic growth.

Previous empirical research on the interrelationship between
inflation rate and growth rate used linear models (e.g., Barro, 1995,
1996; Levine andRenelt, 1992; LevineandZervos, 1993).However, non-
linearities in the inflation–growth nexus have attracted a huge interest
of economists in recent years. These studies provide mixed results.
Fischer (1993) uses a spline regression for analyzing this relationship
and estimates inflation coefficients for the ranges of 0–10%, 10–40%, and
over 40%. He finds a negative but diminishing effect of inflation on
growth, indicating that the statistical significance of the inflation's
negative effect on output growth rate decreases as inflation interval is
extended. Sarel (1996) tests for a structural break in the inflation–
growth regression, and finds that the coefficient estimate for inflation at
rates below8% is positive but statistically insignificant, but negative and
significant above 8%. Barro (1996, 1997) finds that inflation does not
significantly affect growth in countries where average annual inflation
lies above 15% whereas in countries where inflation rate is below 15%,
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inflation has a negative and a statistically significant effect on growth.
Khan and Senhadji (2001) and Drukker et al. (2005) use unbalanced
panelmethod in order to determine threshold effects for a larger sample
of 140 and 138 countries, respectively. Khan and Senhadji (2001) find
the thresholds to be around 1–3% for developed countries. Drukker et al.
(2005) find two thresholds at 2.51% and 12.61% for industrialized
countries. Hineline (2007) uses Bayesian Model Averaging (BMA)2

approach to examinewhether the inflation's effect on economic growth
is robust tomodel uncertainty across alternative specifications. Hefinds
that cross-sectional data provide little evidence of a robust inflation–
growth relationship, even after allowing for non-linear effects. On the
other hand, inflation becomes one of themore robust variables affecting
growth when panel data with fixed effects model is used. His findings
suggest that high inflation observations drive these results.3

Although previous researches provide some evidence that inflation
has a negative effect on growth for different time intervals (Barro,
1991; Fischer, 1983, 1993; Bruno and Easterly, 1998), they are based
either on linear models or non-linear models that are not adequate to
model non-linearities properly. Particularly, inadequacy of these
models stems, in part, from exogenous determination of the threshold
levels. Moreover, the lack of consensus regarding the critical threshold
level calls for a more advanced estimation techniques that allow for
controlling unobserved heterogeneity at both country and time levels.
In addition, estimating an accurate threshold level for the inflation–
growth link would increase policymakers' ability to control macro-
economic stability. Therefore, this important issue has called forth a
further investigation in parallel to the theoretical improvements in
non-linear estimation techniques.

We contribute to this literature by applying panel smooth tran-
sition regression (PSTR) model, developed by González et al. (2005),
which provides endogenous determination of the threshold levels.We
believe that this model may give new insights for threshold effects in
inflation–growth relationship with its advantages over old techniques
like the panel threshold (PTR) model.4 First, the PSTR model is a
generalization of the PTR5 model, which is used by Khan and Senhadji
(2001) and Drukker et al. (2005) for finding appropriate threshold
levels in the inflation–growth nexus. Second, although there seems to
be a consensus in the literature about the effects of inflation on growth
to be statistically insignificant or positive in low inflation regimes, and
statistically significant and negative in high inflation regimes6 the
evidence on the threshold level is still mixed and scant.

In addition to estimating threshold values endogenously, another
main contribution in this paper is that we propose new methodology
to solve the cross-section dependency problem in a non-linear
framework. There are numerous problems, such as heterogeneity,
endogeneity and cross-section dependency in applying panel estima-
tion techniques. The PSTR approach solves the heterogeneity and the
endogeneity problems, as further discussed in Section 3. In order to
solve the cross-section dependency problem, we generalize Pesaran's
(2006) method to a non-linear framework, which makes use of cross-
sectional averages to provide valid inference for stationary panel
regressions with multifactor error structure. The estimated values by
using these techniques show that there are no considerable differences
2 Bayesian Model Averaging is a technique designed to help account for the
uncertainty inherent in the model selection process. By averaging over many different
competing models, BMA incorporates model uncertainty into conclusions about
parameters and prediction.

3 However, this robustness is lost when estimation is carried out with instrumental
variables (Hineline, 2007). We discuss endogeneity problem in the Data and results
section of this paper.

4 Threshold estimation technique is developed by Chan and Tsay (1998) and
extended to panel data estimation by Hansen (1999, 2000).

5 Khan and Senhadji (2001) estimate the most likely threshold level in a spline
regression of inflation and growth which they have used exogenous determination of
threshold value by using the Hansen (1999, 2000) technique. Thus, we shortly call
their technique as panel threshold regression (PTR).

6 See Fischer(1993), Sarel (1996), Khan and Senhadji (2001) and others.
between the original estimates and new estimates. Besides Pesaran's
(2006) method, we use the traditional remedy, SURE-GLS (Seemingly
Unrelated Regression Equations andGeneralized Least Squares)which
is feasiblewhen the cross-section dimensionN is smaller than the time
series dimension T to remove the cross-section dependency. With all
these contributions, we believe that the PSTR model will be the best
method which obtains a specific inflation threshold level for selected
industrialized countries. By applying this model to a sample of six7

industrialized countries, we find that the critical threshold level for
inflation above which it becomes harmful for growth is smaller than
the previously suggested threshold levels. Our results are most
comparable with those of Khan and Senhadji (2001).

The remainder of the paper proceeds as follows: Section 2 briefly
reviews PSTR models and provides results of the linearity tests
(homogeneity test) against STR type non-linearity, and the sequence
of F tests for determining the order of logistic transition function.
Section 3 proceeds with estimation of linear fixed effects panel model
and the PSTR model. Section 4 provides a new technique which
eliminates cross-section dependency from the non-linear panel esti-
mation, and Section 5 concludes.

2. Specification and estimation of the PSTR model

Panel Smooth Transition Regression (PSTR) allows for a small
number of extreme regimes where transitions in-between are smooth
(González et al., 2005). Let us first consider the simplest case with two
extreme regimes:

Δyit = μ i + β′0xit + β′1xitF sit; γ; cð Þ + uit ð1Þ

for i=1, ..., N, and t=1, ..., T, where N and T denote the cross-section
and time dimensions of the panel, respectively. The dependent
variable Δyit is a scalar and denotes growth rates of GNP for the six
industrialized countries. In this study, the independent variable k-
dimensional vector xit of time-varying exogenous variables are
selected to be investment (It), openness to trade (Ot) and inflation
(πt), following Hineline (2007). μ i represents the fixed individual
effects, and finally uit are the errors. Transition function F (sit; γ, c) is a
continuous function of observable variable sit. It is normalized to lie
between 0 and 1, which denote the two extreme values for regression
coefficients. Following Granger and Teräsvirta (1993), González et al.
(2005) consider the following logistic transition function:

F sit; γ; cð Þ = 1 + exp −γ ∏
m

j=1
Sit−cj
� � !−1 !

withγ N 0

andcm≥…≥c1≥c0

ð2Þ

where c=(c1, ..., cm)′ is an m-dimensional vector of location
parameters, and the slope parameter γ denotes the smoothness of
the transitions. A value of 1 or 2 form, often meets the common types
of variation. In cases where m=1, low and high values of sit
correspond to the two extreme regimes. For γ→∞ the logistic
transition function F (sit; γ, c) becomes an indicator function I[A],
which takes a value of 1 when event A occurs and 0 otherwise. Thus,
the PSTR model reduces to Hansen (1999)'s two-regime panel
threshold model. Whereas for m=2, F (sit; γ, c) takes a value of 1 for

both low and high values of sit, minimizing at (
c1 + c2

2
). In that case, if

γ→∞, F (sit;γ, c) reduces into a three-regime thresholdmodel. Ifγ→0,
7 These six countries are Canada, France, Italy, Japan, the UK and the USA. This group
constitutes G7 by adding Germany. Germany has some data problems due to the
unification of East Germany and West Germany in the beginning of the 1990s. Because
of this problem, we remove Germany from the sample. Thus, we can manage to
organize a balanced panel. The method that we use in this study is adapted from
González et al. (2005).
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the transition function F(sit; γ, c) will reduce into a homogenous or
linear fixed effects panel regression for any value of m.8

The empirical specification procedure for the PSTRmodels consists
of the following steps (González et al., 2005):

1. Without looking at the non-linearity features, specify an appro-
priate linear (homogenous) panel estimation model for the data
under investigation.9

2. Test the null hypothesis of linearity against the alternative of the
PSTR-type non-linearity. If linearity is rejected, select the appro-
priate transition variable sit and the form of the transition function
F(sit; γ, c).

3. Estimate the parameters in the selected PSTR model.
4. Evaluate the model using diagnostic tests.
5. Modify the model if necessary.
6. Use the model for descriptive purposes.

Linearity tests are necessary for estimation of the PSTR models
which contain unidentified nuisance parameters. To overcome this
problem, onemay replace the transition function F(sit; γ, c) by its first-
order Taylor expansion around γ=0 following Luukkonen et al.
(1988). This will yield the following auxiliary regression:

Δyit = μ i + β′⁎0 xit + β
0
⁎
1 xitsit + ::: + β′⁎1 xits

m
it + u⁎it ð3Þ

where β1
′⁎, ..., βm

′⁎ are the parameter vectors. Consequently, testing
H0:γ=0 in Eq. (1) is equivalent to testing the null hypothesis
H0⁎:β1⁎=...=βm

⁎=0 in Eq. (3). This test can be done by LM type tests.
Denoting the panel sum of squared residuals under H1 as SSR0 (which
is the two-regime PSTR model), the corresponding F-statistic is then
defined by:

LMF =
SSR0−SSR1ð Þ=mk

SSR0 = TN−N−m k + 1ð Þð Þ ð4Þ

with an approximate distribution of F(mk, TN−N−m(k+1)). A set of
candidate transition variables are tested to detect the one for which
linearity is strongly rejected. Besides, linearity tests also serve to
determine the appropriate order of m of the logistic transition
function in Eq. (2). Teräsvirta (1994) proposed a sequence of tests for
choosing between m=1 and m=2. Within PSTR framework, this
testing sequence reads as follows: using the auxiliary regression (3)
with m=3, test the null hypothesis H0⁎:β1⁎=β2⁎=β3⁎=0. If it is
rejected, test H03⁎ :β3⁎=0, then exclude β3⁎=0 and test H02⁎ :β2⁎=
0|β3⁎=0. and H01⁎ :β1⁎=0|β2⁎=β3⁎=0.

H⁎
03 : β⁎3 = 0

H⁎
02 : β⁎

2 = 0 jβ⁎3 = 0

H⁎
01 : β⁎1 = 0 jβ⁎2 = β⁎3 = 0

ð5Þ

These hypotheses are tested by the ordinary F tests, and denoted as
F3, F2, and F1 respectively. The decision rule is as follows: m=2
transition functions is selected for cases where p-value corresponding
to F2 is the smallest and m=1 transition function is chosen for other
cases.

Once the transition variable and form of the transition function are
selected, the PSTR model can be estimated by using non-linear least
8 There are two interpretations of the PSTR model which are clearly explained in
González et al. (2005). First, it may be thought of as a linear heterogeneous panel
model with coefficients that vary across individuals and over time. Second, the PSTR
model can simply be considered as a non-linear homogenous panel model. Because of
these reasons throughout the text, linear, homogenous and non-linear, heterogeneous
are used interchangeably or one of them given in parenthesis if it's necessary. For more
detailed discussion, see González et al. (2005).

9 We follow Hineline (2007) for selecting appropriate variables for panel estimation
where he used BMA method for selecting these variables.
squares. The optimization algorithm can be disburdened by using
good starting values. For fixed values of the parameters in the
transition function, γ and c, the PSTR model is linear in parameters β0′

and β1′, and therefore can be estimated by using linear estimation
techniques such as OLS. Hence, a convenient way to obtain reasonable
starting values for the Non-linear Least Squares (NLLS) is to perform a
two-dimensional grid search over γ and c, and select those estimates
that minimize the panel sum of squared residuals. After parameter
estimation, we perform a diagnostic check to evaluate the estimated
PSTR model. Particularly, misspecification tests are used to test for
parameter constancy and the remaining non-linearity (heterogene-
ity), as suggested by González et al. (2005). If the estimated model
passes all misspecification tests, then the model can be used for
descriptive purposes, meaning that the estimated model will not lead
to biased estimates and spurious inference.

A related issue in panel estimations is cross-section dependency.
Most of the panel data models assume that disturbances in panel
models are cross-sectionally independent. However, cross-section
dependence may arise for several reasons often, due to spatial
correlations, spillover effects, economic distance, omitted global
variables and common unobserved shocks. In the presence of cross-
section dependence, it is well known that neglecting cross-section
dependence can lead to biased estimates and produce misleading
inference. In large panels, where N is a sizeable amount cross-section
dependency is not a serious problem to control. In the empirical part
of González et al. (2005) they apply their method to 565 US firms,
hence they are not subject to cross-section dependency problem in
this respect. But Pesaran (2004) pointed out that cross-section
dependency continues to exist in large panels as well as small panels.
Therefore, these twomisspecification tests are sufficient when there is
no cross-section dependency. Thus, we propose a diagnostic check for
cross-section dependency for non-linear panel models following
Pesaran (2004).

Because of these reasons, we apply a cross-section dependency
(CD) test proposed by Pesaran (2004). Pesaran (2004) showed that
his CD test can also be applied to a wide variety of models, including
small/large N and T. Additionally, this simple diagnostic test does not
require an a priori specification of connection or spatial matrix. CD
test is based on simple average of all pair-wise correlation coefficients
of the OLS residuals from the individual regressions in the panel:

Δyit = μ i + β′i xit + uit ð6Þ

where, on the time domain t=1,2,…,T, for the cross-section units
i=1,2,…,N. xit is a k×1 vector of observed time-varying regressors.
The individual intercepts, μi and slope coefficients βi are defined on a
compact set permitted to vary across i. For each i, uit∼ iid(0,σi,u

2 ), for all
t although they could be cross-sectionally correlated.

The sample estimate of the pair-wise correlation of the residuals
is:

ρ̂ij = ρ̂ji =
∑
T

t=1
eitejt

∑
T

t=1
e2it

 !1=2

∑
T

t=1
e2jt

 !1=2 ð7Þ

And the eit is the OLS estimates of uit defined by

eit = Δyit−μ̂ i−β̂′i xit ð8Þ

The proposed CD test by Pesaran (2004) is:

CD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

NðN−1Þ

s
∑
N−1

i=1
∑
N

j= i + 1
ρ̂ij

 !
ð9Þ
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CD test statistic has exactly mean zero for fixed values of T and N,
under a broad class of panel data models. The CD test is based on a
simple average of all pair-wise correlation coefficients of the NLLS
residuals from the individual regressions in the smooth transition
panel model:

Δyit = μ i + β′0xit + β′1xitF sit;γ; cð Þ + uit ð10Þ

and the eit is the NLLS estimates of uit defined by

eit = Δyit−μ̂ i−β̂′0xit−F s·it; γ̂; ĉ
� � ˆ̃β′1xit

Where F s·it; γ̂; ĉ
� �

=
1

1 + e−γ̂ ṡit− ĉð Þ
ð11Þ

These are the estimated values of the slope (γ) and threshold (c)
parameters. The dot on the transition variablemeans that it is selected
from the linearity tests. In non-linear models, the definition of the
residual is ambigous and can be defined in a number of different ways.
The above representation is the definition of disturbance of the non-
linear models analogous to the linear case. For the sake of clarity, we
denote cross-section dependency test for the linear model as CDLM

L ,
whereas CDLM

NL denotes the same test for the non-linear model.

3. The empirical analysis: data and results

In this paper, we consider annual data from six industrialized
countries (Canada, France, Italy, Japan, UK and US) which spans the
period 1972–2005. We begin modeling the growth–inflation relation-
ship by estimating a balanced panel datamodel for output growth (Δyit)
using inflation (πit), investment (Iit), and openness (Oit) as explanatory
variables. The output growth rate (Δyit) is constructed as annual GDP
growth rate. The inflation rate (πit) ismeasured as percentage change of
consumer price index, investment (Iit) is defined as the ratio of gross
fixed capital formation to GDP, and opennessOit is defined as the ratio of
exports of goods and services to GDP. All variables are extracted from
the World Development Indicators (WDI) database. Any empirical
analysis of the inflation's impact on economic growth has to control for
the influence of other variables that are correlated with the rate of
inflation. There are numerous studies which can be followed to choose
such control variables (e.g., Khan and Senhadji, 2001; Drukker et al.,
2005). But the most detailed and advanced technique is used by
Hineline (2007). Hence, we follow Hineline (2007) in choosing control
variables. Hineline (2007) uses different model specifications for
inflation–growth relationship in order to investigate fragility of using
inflation as a regressor in explaining growth. Hineline (2007) bases his
analysis on the Bayesian Model Averaging (BMA) method.10 In respect
of the BMA results, Hineline (2007)finds that theprobability of affecting
growth is 100% for investment, 92% for openness to trade and 89% for
inflation using the Khan and Senhadji (2001) estimation technique. In
the light of these results, we decided to apply fixed effect panel data
analysis and include investment and openness variables in our model
specification in order to check the impact of other covariates.11

All the asymptotic theories for the STRmodels and also PSTR exten-
sion by González et al. (2005) are for stationary regressors. Therefore,
the specification procedures described in the previous section rely on
the assumption that the output growth, inflation, investment and
openness to trade are I(0) processes. In order to analyze stationarity
properties of the data, prior to estimation of the linear model, we first
10 This analysis showed that inflation does not give robust results when cross-
sectional or fixed effect instrumental methods are used, but it does when fixed effect
panel data method is used. Besides, in this study, investment and openness are found
to be the most robust variables in the fixed effect panel data method.
11 There are arguments, however, that there are country specific factors that cannot
be ignored, which suggests the use of the fixed effects methods (Knight et al. (1993)
and Hineline (2007)).
test whether the data have a unit root by using panel unit root tests. It is
well known that conventional unit root tests have low power if the true
data generatingprocess is non-linear.Hence, in addition to conventional
panel unit root test IPS, we also applied the non-linear panel unit root
test newly proposed by Ucar and Omay (2009), whichwe call as the UO
test. The UO test has a good power when the series under investigation
follow a non-linear process. A brief review of the UO test can be given as
follows.

Let zit be the panel exponential smooth transition autoregressive
process of order one (PESTAR(1)) on the time domain t=1,2,…,T for
the cross-section units i=1,2,…,N. Consider zit generated by the
following PESTAR process with fixed effect parameter αi:

Δzit = αi + ϕzit−1 + γizit−1 1− exp −θiz
2
it−d

� �h i
+ εit ð12Þ

where d≥1 is the delay parameter and θi≥0 represents the speed of
revision for all units; ɛit is a serially and cross-sectionally uncorrelated
disturbance term with zero mean and variance σi

2.
Following previous literature, Ucar and Omay (2009) set ϕi=0 for

all i and d=1 which gives specific PESTAR(1) model:

Δzit = αi + γizit−1 1− exp −θiz
2
it−d

� �h i
+ εit ð13Þ

Non-linear panel data unit root test based on regression (13) with
augmented lag variables in empirical application is simply to test the
null hypothesis θi=0 for all i against θi≥0 for some i under the
alternative.

However, direct testing of the null hypothesis is problematic since
γi is not identified under the null. This problem can be solved by
taking first-order Taylor series expansion to the PESTAR(1) model
around θi=0 for all i. Hence the obtained auxiliary regression is given
by:

Δzit = αi + δiz
3
it−1 + εit ð14Þ

where δi=θiγi. In empirical application Eq. (14) is augmented by
lagged variables of dependent variables by using AIC and SIC criteria.
Based on Eq. (14), the hypothesis for unit root testing is

H0 : δi = 0; for all i; LinearNonstationaryð Þ
H0 : δi b 0; for all i; Non� linear Stationaryð Þ

The UO test is constructed by standardizing the average of
individual KSS statistics across the whole panel. First, the KSS test
for the ith individual is the t-statistics for testing δi=0 in Eq. (14)
defined by:

ti;NL =
ΔziVMtz

3
i;−1

σ̂ î;NL zi;−1V Mtzi;−1

� �3=2

where σ̂ i,NL
2 is the consistent estimator such that σ̂i

2
, NL=Δzi′Mtzi /(T−

1), Mt= IT−τT(τT′τT)−1τT′ with Δzi=(Δzi−1, Δzi−2, ...Δzi−T)′ and τT=
(1, 1, ..., 1).

Furthermore, when the invariance property and the existence of
moments are satisfied, the usual normalization of t ̅NL statistic yields
as follows12:

Z
P

NL =

ffiffiffiffi
N

p
t
P
NL−E ti;NL

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti;NL
� �r
12 Until here z represents variable, hereafter it is z statistics.



Table 2
Estimation results of linear (homogeneous) panel.

Δyit=−0.630(0.091)πit+0.079(0.036)Iit
+0.488(0.064)Oit

Model 1 CDLM
L =10.737 (0.000)

Δyit=−0.323(0.093)πit Model 2 CDLM
L =9.873 (0.000)

Note: the values under the coefficient estimates are standard error. Except Ii,t, all the
variables are significant at the 1% significance level.
Ii,t is significant at the 5% level.

Table 3
Linearity (homogeneity) tests.

Transition variable m=1 m=2 m=3

Model 1 (πit) 20.438 14.329 13.671
(0.000) (0.000) (0.000)

Model 2 (πit) 86.912 47.693 67.610
(0.000) (0.000) (0.000)

⁎ The values in the parentheses are p values.

Table 4
Sequence of linearity (homogeneity) tests for selecting m.

Transition variable H01 H02 H03

Model 1 (πit) 3.679 0.586 0.988
(0.013) (0.624) (0.399)

Model 2 (πit) 9.897 4.428 3.165
(0.001) (0.036) (0.076)

* The values in the parentheses are p values.
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where t
P

NL = N−1 ∑
N

i=1
tNL; E(ti,NL) and var(ti,NL) can be found in

Table 1 of Ucar and Omay (2009). The test statistics are:
The UO and IPS tests reject the null hypothesis of unit root at 1% and

10% significance levels in the examined series. As regards to openness to
tradeOit, the IPS test failed to reject thenull hypothesis of unit rootwhen
intercept and trend are included. This result may be due to the fact that
the IPS test has a low power against non-linear stationary process. From
thenon-linear panel unit root test,we can conclude that all the variables
in the study are I(0). From both linear and non-linear panel unit root
tests,we can conclude that the variables in the study are I(0). The results
of the linear fixed effect panel data are presented below:

The results in Table 2 coincide one-to-one with Hineline (2007)'s
study. Inflation variable has a statistically significant and negative effect
on growth. Investment and openness to trade are also found to have a
statistically significant but positive effect on growth. Fixed effects and
time dummies have been included (but not reported) to control for
unobserved heterogeneity at country and time levels. The fixed effect
linear panel data analysis shows that we have obtained the right model
specification in order to estimate the PSTR model, as the linear model
specification constitutes a very important stage in the identification
procedure.

After estimating the linear model, we apply the LMF test of linearity,
described in Section 2, using lagged inflation as transition variables. We
only test linearity of the coefficients of πit (inflation), Iit (investment, or
gross capital formation as a percentage of GDP) and Oit (openness, or
exports to GDP ratio), assuming that their macroeconomic effects on
GDP growth do not differ across countries. Restricting coefficients of
some variables to be constant in the PSTR model has no effect on the
distribution theory (González et al. (2005)). For this purpose, LMF test
form=1, 2, and 3 are applied to auxiliary regression in Eq. (3) and the
following results are obtained (Table 3).

Linearity is significantly rejected for the first lag of the inflation
rate for bothmodels 1 and 2. By checking out the smallest p values, we
find that the lag order 1 is an appropriate transition variable and the
most suitable transition function for this selection ism=1. This shows
that the inflation–growth nexus exhibits different dynamics in both
regimes, suggesting that this relationship is non-linear.

Following these linearity tests, we apply a sequence of F tests in
order to check whether the order m is one or not. The results of the
specification test sequence are given in the table below:

The decision rule is as follows:m=2 transition function is selected
for the cases where p-value corresponding to F2 is the smallest and
m=1 transition function is chosen for all other cases. The results of
the specification test sequence in Table 4, point out that for both
Table 1
Non-linear and linear panel unit root tests without cross-section dependency.

Ucar–Omay (UO) IPS

t N̅T t N̅T

Intercept
Δyit −3.624⁎ −3.857⁎
πit −2.825⁎ −2.869⁎
Oit −2.143⁎⁎⁎ −2.032⁎⁎
Iit −2.091⁎⁎⁎ −2.002⁎⁎

Intercept±trend
Δyit −4.275⁎ −4.298⁎⁎
πit −3.506⁎ −3.528⁎⁎
Oit −2.591⁎⁎⁎ −2.535
Iit −3.068⁎ −3.107⁎⁎⁎

Notes: asymptotic critical values of t N̅T for UO test statistics at 1%, 5% and 10%
significance levels are −2.44, −2.21, and −2.08 and for trend-intercepts are −2.94,
−2.72, and −2.57. For intercept only, the values are taken from Table 2 of Ucar and
Omay (2009, p: 6). Asymptotic critical values of t-bar statistics at 1%, 5% and 10%
significance levels are−2.20,−1.95 and−1.85 and for the trend-intercepts are−4.50,
−3.35, and −3.02. These values are taken from Table 2 IPS (2003, p 61–62). ⁎, ⁎⁎, and
⁎⁎⁎ denote significance at 1%, 5% and 10% levels, respectively. Besides, optimal lag
length in these tests were selected using AIC with maximum lag order of 8.
models 1 and 2, F1 has the strongest rejection whichmeans thatm=1
transition function is selected. In the next step, we start a grid search,
discussed in Section 2, in order to obtain the initial values for the non-
linear fixed effect panel estimation. The estimates of the two-regime
PSTR model are as follows:

The choice of logistic function as a transition function suggests that
the relationship between the inflation rate and output growth rate
varies considerablywith the past values of the inflation rate. The logistic
transition function defines two different regimes. These regimes can be
defined with respect to the past values of πit relative to the estimated
threshold values c=2.518 and 3.460. When the transition variable (i.e.
πit) takes on values less than the estimated threshold values
(approximately 2.52% formodel 1 and 3.46% formodel 2), the transition
function approaches zero, and hence the coefficients of inflation rate,
investment and openness are given by βπit

, βIit, βOit
, respectively. We call

this regime as low inflation regime. When the transition variable
exceeds specified threshold variables, however, the transition function
takes onvalue one, and hence, the coefficients of variables of interest are
given by βπit+ β̃π̃it

, βIit+ β̃Ĩit, and βOit
+ β̃Õit

, respectively. We call this
regime as a high inflation regime.

There aremany observations lying on both sides of these parameters
clearly implying the existence of two distinct regimes. The results
suggest that parameter estimates are quite different for each regime.
Therefore, the PSTR model implies asymmetric responses of output
growth to covariates. Furthermore, country specific averges of inflation
rate in the sample period are 2,525, 2,579, 2.941, 1.893, 2.821, and 2.489
for Canada, France, Italy, Japan, UK and US, respectively. Therefore, we
can conclude that the estimated threshold values are appropriate.13

The estimated values of the location (threshold) parameter c and
transition parameter γ as well as the graph of the estimated transition
13 We also estimate country by country LSTR models, but these estimates are carried
out using 35 data points which is very insufficient to handle a time series analyses. The
estimated threshold values are close to those reported here and are available upon
request.



Fig. 1. Transition functions with respect to transition variable for models 1 and 2. * y axis is the transition function F(sit; γ, c) and the x axis is the transition variable. For models 1 and
2 the transition variable is the first lag of inflation.
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function as a function of πit−1 provides useful information about the
features of the transition itself and the interpretation of themodel. Fig. 1
shows the transition functions. As the graph of the transition functions
suggest,the change between regimes is quite gradual for the model 1
and moderate for the model 2.14 These are also indicated by the
estimated transition parameters γ=3.308 and 69.052, respectively for
models 1 and 2. The estimated threshold values of c=2.518 and 3.460
points to the half way of the transition, meaning that when πit−1=c, F
(sit; γ, c)=1/2. It indicates the half-way point between the low
inflationary and high inflationary regimes for selected industrialized
countries.

The inflation threshold value is very close to the threshold value of
Khan and Senhadji (2001) who use yearly data. They find the threshold
value for industrialized countries as 3%. The problem with the 5 year
averaged data stems from the fact that there are only a few observations
with an inflation rate below the threshold level of industrial countries.
From Fig. 1, we see that this problem is overcome by using the annual
data. Though the majority of observations lie in either one of the
extreme regimes, a number of them are located in-between.

For low inflation regimes, inflation coefficients are found to be
−0,150 and 0,140 in the 1st and 2nd models, respectively. These
estimates are statistically insignificant. For high inflation regime, on the
other hand, the 1st and 2ndmodels yield inflation coefficient estimates
of −0.729 and −0.327 respectively. Coefficient estimates in both
models are found to be statistically significant at a significance level of
1%. These results are consistent with Hineline (2007), who calculated
BMA probabilities of low and high inflation regimes for the fixed effect
panel data method by the means of a threshold model. Hineline (2007)
determines that inflation coefficient is not a robust estimator in low
inflation regimes, with a probability of as low as 0.09 whereas on the
other hand, BMA the probability of inflation coefficient is found to be as
high as 0.84 for the high inflation regimes.15 Indeed, the most widely-
14 Regime change is seemed to be discontinuous in Fig. 1 model 2, but this is not a
problem for the STR modeling. The main purpose of STR modeling is to set a slow
change in regimes. For example in González et al. (2005) they state their explanations
“A clear majority of observation lie either one of the extreme regimes, but there is also
a number of them located in-between”. They also find a high speed of regime change
with respect to our slope parameter, gamma. Our gamma parameter estimates for
models 1 and 2 are 3.308 and 69.052, respectively, whereas González et al. (2005)
estimate is 118.77. See also Béreau et al. (2010).
15 Along with BMA probabilities, Hineline (2007) notes that coefficient estimates are
negative for both regimes; statistically insignificant in low regimes (−0.059) because
of the low BMA probability, but significant in high regimes (−0.026) due to the high
BMA probability.
accepted relationship in the literature is that inflation has an adverse
effect on economic growth only after it crosses a certain threshold level,
below which it has a positive effect on growth (Singh and Kalirajan,
2003). Sarel (1996) allows for a structural break and determines that
inflation rates below 8% do not affect growth, but higher inflation rates
do. Fischer (1993) uses a spline regression to estimate coefficients of
inflation for the ranges of 0–10%, 10–40% and over 40%, and finds a
negative but diminishing effect on growth.

Furthermore, we estimate the threshold value endogenously by
taking advantage of the PSTR modeling approach (Table 5). The
endogenously obtained threshold values from model 1 and model 2
are 2.518 and 3.460, respectively for inflation. Threshold values are
estimated at a significance level of 1% for models 1 and 2. Threshold
values are decreasing significantly as new explanatory variables are
introduced. Thisfinding leads us to conclude that the highest threshold
value for inflation is 3.460. This result is absolutely opposite to Khan
and Senhadji (2001) andDrukker et al. (2005) findings.16Whenwefix
the threshold values in our estimation,17 we find that the coefficient
estimates and their significance levels are affected, but the effect is
only minor. In this study, we concentrate on finding the threshold
levels, as the estimation results show that the exogenous determina-
tion of threshold levels does not permit to establish a precise threshold
level. If the threshold is estimated exogenously in a band out of the
estimation process, this can lead to an error. For example, our
estimated threshold values for the first and second models change
approximately by 1% as new explanatory variables are included. If we
fix the threshold value to 3.00 (an integer number), we find
approximately the same coefficient estimates. This finding indicates
a similar relationship structure that has been previously identified. In
low inflation regimes, coefficient estimates of the inflation rate are
insignificant and low compared to high inflation regimes, and high
inflation regime has significant coefficient estimates. Although these
values are not exact, one may think that these are the true model and
precise threshold levels. The methodology of Khan and Senhadji
(2001) and Drukker et al. (2005) does not permit to see this effect,
because of the exogenous determination of the threshold values.
Moreover, if variables that are found to be robust in the empirical
16 As explained in Khan and Senhadji (2001) only variables that were found to be
robust in the empirical growth literature were included in regression equation linking
inflation to growth. Furthermore, their inclusion does not significantly change the
results. In fact, the threshold values remain the same in Khan and Senhadji (2001).
17 We have given constant numbers to gamma and c, and change c in order to see the
effects of c on the parameter estimates. These results are available upon request.



Table 5
Estimation results of two-regime PSTR models.

Dependent variable Δyit

Coefficients Model 1 Model 2

βπit
−0.150 0.140
(0.284) (0.140)

βIit 0.418⁎⁎⁎ –

(0.089)
βOit

0.050 –

(0.033)
β̃π̃it

−0.579⁎ −0.467⁎⁎⁎
(0.347) (0.107)

β̃ Ĩit 0.043 –

(0.053)
β̃Õit

−0.010 –

(0.043)
γ 3.308 69.052

(4.453) (388.916)
c 2.518⁎⁎⁎ 3.460⁎⁎⁎

(0.576) (0.132)

(⁎) 10% significance level, (⁎⁎) 5% significance level, and (⁎⁎⁎) 1% significance level.
The values in the parentheses are standard deviations.

Table 6
Misspecification test.

Models 1 2

Remaining non-linearity (heterogeneity)
Transition variable used πtHAC πt πtHAC πt
m=1 1.51 5.07 0.00 0.00

(0.67) (0.00) (0.97) (0.99)
m=2 4.16 2.81 1.14 2.57

(0.65) (0.00) (0.56) (0.03)
m=3 9.18 2.19 3.93 2.50

(0.42) (0.01) (0.26) (0.02)

Parameter constancy
Transition variable used t HAC T t HAC t
m=1 3.95 1.51 2.22 1.63

(0.26) (0.16) (0.13) (0.17)
m=2 7.17 4.16 2.84 2.72

(0.30) (0.00) (0.24) (0.02)
m=3 13.26 2.95 3.51 1.67

(0.15) (0.00) (0.31) (0.13)

Cross-section dependency test CDLM
NL

CDnon-linear 8.31 8.95
(0.00) (0.00)

* The values in the parentheses are p values.
* HAC values are robust versions of the standard test.
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inflation–growth literature are introduced into the model, the
threshold level changes. Still, we can conclude that the threshold
level is i.

The results in Table 6 suggest that according to the standard tests,
the model does not completely capture non-linearity in regression
coefficient across countries, while some indication of the time-
variation in the parameters is found as well. This finding complies
with results of Lundbergh et al. (2003), Huang and Chang (2005),
Telatar and Hasanov (2009), who found that both structural change
and non-linearity might govern the dynamics of many economic
variables. However, as the robustness tests indicate, no evidence is
found for remaining non-linearity and parameter instability. Thus,
based on the robustness tests, we conclude that the two-regimemodel
is adequate.18 Both models pass misspecification tests proposed by
González et al. (2005), but, they fail to pass CDLM

NL test discussed in
Section 2. Hence,we cannot use thesemodels for descriptive purposes.

Two important issues, namely, endogeneity problem and cross-
section dependency must also be addressed. It is well known that
when the inflation is not an exogenous variable in the growth–
inflation regression, the coefficient estimates may be biased. This is a
serious problem for the related estimations. The estimation methods
used in Khan and Senhadji (2001) andDrukker et al. (2005)19 have not
been extended to the standard econometric methods of handling
simultaneity like the method that we use here. Thus, they postpone
this issue. Khan and Senhadji (2001) stated that the seriousness of this
problem will depend, to a large extent, on whether the causality runs
mainly from inflation to growth, in which case the endogeneity
problemmay not be serious, or the other way around, in which case a
bias may be present. Fischer (1993) found out that causality is more
likely to run predominantly from inflation to growth. Besides, Andres
and Ignacio (1997) use instrumental variables in a study of OECD
countries and find the causation runs from inflation to growth. On the
other hand, Fouquau et al. (2008) apply IV estimation technique to the
18 From the linearity test, we can conclude that our sample countries have a single
threshold value. This finding is consistent with Li (2007). Li (2007) has found out that
developed countries have a single threshold in determining the inflation–growth
relationship, whereas developing countries have two thresholds.
19 Drukker et al. (2005) state that “In cross-sectional growth literature, some of these
variables are treated as endogenous and instrumental (IV) estimates are used. The
method used in this paper has not yet been extended to the case of instrumental
variables. This paper assumes that any endogenous component are perfectly
correlated with fixed effects, and therefore controlled by our fixed effect estimation
procedure”. Moreover, they excluded initial income from their growth regression to
avoid the endogeneity problem.
PSTR model; they conclude that the PSTR estimation technique
reduces the potential endogeneity bias. Moreover, Hineline (2007)
states that the aggregate supply shocksmay drive inflation and output
in the opposite directions. In this case, the direction of causality is
reversed and the regressions within the framework of the inflation–
output relationship simply detect supply shocks. Instead of using IV
estimation techniques, he proposes a method, which uses a proxy for
aggregate supply shocks in estimating growth regression. One of the
proposed potential variables is terms of trade and the other is time
dummy. Furthermore, in order to eliminate cross-section dependency,
which may occur because of spillover effects or common shocks, one
may use spatial matrices or common factors in the estimation of the
model. These common factors can proxy the aggregate supply shocks.
Therefore, eliminating cross-section dependency by including com-
mon factors into themodel estimationmay eliminate the endogeneity
biaswhichmay be observed in the growth–inflation nexus. From these
discussions, we can conclude that the main problem is cross-section
dependency, thus, we concentrate on this problem at the rest of the
study.
4. Cross-section dependency

The test of the panel unit root explained in the previous sectionwas
based on the assumption of independence over the cross-section units.
However, we see from the diagnostic check that this assumption is
violated. To overcome the cross-section dependency problem, we
implemented sieve bootstrap approach which is very well outlined in
Ucar and Omay (2009). The test results for the UO and IPS with Sieve
bootstrap is given in the table below:

As can be seen from Table 7, the UO and IPS tests suggest that
growth Δyit and inflation πit variables are stationary for intercept and
intercept+trend regression models. As regards to investment Iit and
openness to trade Oit, the IPS test failed to reject the null hypothesis of
the unit root when intercept and trend are included. This result may
be due to the fact that the IPS test has a low power against non-linear
stationary process. From the non-linear panel unit root test, we can
conclude that all the variables in the study are I(0). Hence, we can
proceed to remedy cross-section dependency.

In the presence of cross-sectionally correlated error terms,
traditional OLS-based estimations are inefficient and invalidate



Table 7
Non-linear and linear panel unit root tests with cross-section dependency.

Ucar–Omay (UO) IPS

T-bar p_value t-bar p_value

Intercept
Δyit −2.708 0.000 −3.682 0.000
πit −1.924 0.076 −1.964 0.057
Oit −1.990 0.096 −1.967 0.093
Iit −1.950 0.090 −1.965 0.072

Intercept±trend
Δyit −3.244 0.001 −4.107 0.000
πit −2.336 0.005 −2.947 0.013
Oit −2.361 0.060 −2.437 0.251
Iit −2.341 0.015 −2.632 0.105

Notes: t-bar statistic was computed by bootstrapping with 2000 replications and the p
value results are byproducts of these bootstraps.

20 This method can be used for the unit root test in order to eliminate cross-section
dependency. Instead of Eq. 14whereweusebootstrap technique to eliminate cross-section
dependecy, one can use the derived auxiliary regression by Pesaran (2006) technique.
The auxiliary regression is as followsΔz=αi+δizit−1

3+aliΔz̅+biz̅+bizt−1
3εitfor removing

cross-section dependency. Therefore, from this auxiliary regression the test statistics can be
obtained byMonte Carlo simulations and used for panel unit root test. All derivations and
RATS program are available upon request.
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much inferential theory of the panel data models as discussed above.
The traditional remedy, SURE-GLS (Seemingly Unrelated Regression
Equations and Generalized Least Squares) is feasible when the cross-
section dimension N is smaller than the time series dimension T. The
standard approach is to treat the equations from the different cross-
section units as a system of seemingly unrelated regression equations
and then estimate the system by Generalized Least Squares technique.
If both of these dimensions are same, the disturbance covariance
matrix will be rank deficient. In our case, we have the opportunity to
apply SURE-GLS method to remedy cross-section dependency.
However, when the non-zero covariance is between the errors of
different cross-section units due to commonomitted variables, it is not
apparent that SURE-GLS is always the correct approach (Coakley et al.,
2002). For this reason, we search for a more efficient method which is
not subject to these kinds of problems. Therefore, we use Pesaran's
(2006) approach, which suggests a method that makes use of cross-
sectional averages to provide valid inference for stationary panel
regressions withmultifactor error structure. In this section, we extend
this work to non-linear framework. We suggest a new approach by
noting that the linear and non-linear combinations of the observed
factors can be well approximated by cross-section averages of the
dependent, independent and state dependent variables. The estima-
tion procedure has the advantage that it can be computed by least
squares estimation of the auxiliary regressions where the observed
regressors are augmented with cross-sectional averages of dependent
variables, individual specific regressors and state dependent variables.
This leads to a new set of estimators, which is mentioned in Pesaran
(2006), referred to as the Common Correlated Effects (CCE) estima-
tors, that can be computed by running smooth transition panel
regressions augmented with cross-section averages of the dependent,
independent and state dependent variables. CCE procedure is
applicable to panels with single or multiple unobserved factors so
long as the numbers of the unobserved factors is fixed.

Consider the following non-linear model with a single factor:

yit = μ i + β′i xit + F sit ;γ; cð Þ β̃′i xit + uit ð15Þ

where

F sit ;γ; cð Þ = 1
1 + e−γ sit−cð Þ ;

uit = φift + εi;t ;

xit = δi f̃t + vit

Notice here that ft and ft̃ are different factor variables that affect
dependent, independent and state dependent variables, respectively.
Now suppose that uit and xit specifications are plugged into original
Eq. (15). Thus, we have:

yit = μ i + β′iδi f̃t + F sit ;γ; cð Þ β̃′i δi f̃ t + βivit + F sit ;γ; cð Þ β̃′i vit
+ φi ft + εit

ð16Þ

f t̃ can be removed by using proxy variable, xt̅ where xPt = N−1 ∑
N

i=1
xit

which can be obtained through taking the average of xit: x=̅δ ̅ f t̃+v t̅
which implies that f̃t =

xPt− vPt

δ
P . Substituting this into Eq. (16) we

obtain:

yit = μ i + β′iδi
xPt− vPt

δ
P

 !
+ F sit ;γ; cð Þ β̃′i δi

xPt− vPt

δ
P

 !
+ βivit

+ F sit ;γ; cð Þ β̃′i vit + φi ft + εit

ð17Þ

In order to remove the factor ft from Eq. (17), we first take the
averages of the above equation and obtain ft appropriately:

yPt = μP+ β
P

δ
P xPt− vPt

δ
P

 !
+ F

P
·ð Þ β̃

P
′
i δ
P xPt− vPt

δ
P

 !
+ β

P
vPt

+ F
P

·ð Þ β̃
P

vPt + φPft + εPt

ð18Þ

then, with some algebra, yt̅ can be written as:

yPt = μP + β
P

xPt + F
P

·ð Þ β̃
P
′
i xPt + φPft + εPt ð19Þ

Hence ft is:

ft =
1

φP
yPt− μP− β

P′ xPt−
�
F ·ð Þ β̃

P
′
i xPt− εPt

� �
ð20Þ

we obtain ft from Eq. (20) and substitute it in Eq. (15):

yit = μ i+β′i xit+F ·ð Þ β̃′i xit+
φi

φP
yPt− αP− β

P
xPt− F

P
·ð Þ β̃

P
′
i x
P

t− εPt

h i
ð21Þ

again with relevant algebra, we obtain the auxiliary regression:

yit = μ̃i + β′i xit + F ·ð Þ β̃′i xit + ai y
P

t + bi x
P

t + F
P

·ð Þci xPt + ηit ð21Þ

where μ̃i = μ̃i−
φi

φP
μP, bi =

φi β
P

φP
, ai =

φi

φP
, ci =

φi β̃
P

φP
, and ηit =

εit−
φi

φP
εPt

Nowwe can estimate themodels by this transformation in order to
eliminate the cross-section dependency.20

In order to remove the cross-section dependency from the PSTR
estimates, we use Pesaran's (2006) CCE estimator and SURE-GLS. In
Table 8,we report the results of these estimations alongwith theoriginal
estimates. We observe that the estimated parameters are similar to the
parameters reported in Table 5. More accurately, we observe that the
individual inflation estimates and the threshold values derived from
these PSTR estimates corrected for cross-section dependency are
reasonably close to the estimated individual inflation estimates and
the threshold values based on non-remedied PSTR model which we put
as original estimates in Table 8. Our primary PSTR results seem therefore
to offset the occurrence of cross-section dependency but not fully. This



Table 8
Estimation results of two-regime PSTR models which remedy cross-section
dependency.

M1:original M1:CCE M1:S–G M2:original M2:CCE M2:S–G

βπt
−0.150 0.895 0.271 0.140 0.542 −0.178
(−0.528) (0.261) (1.141) (0.997) (1.516) (−0.600)

βIt 0.418⁎⁎⁎ 0.133 0.218 – – –

(4.680) (0.956) (0.691)
βOt

0.050 0.089⁎⁎ –0.219 – – –

(1.485) (2.157) (–1.114)
β̃π̃t –0.579⁎ –0.958⁎⁎ –0.802⁎⁎⁎ –0.467⁎⁎⁎ –0.717⁎⁎⁎ –0.427⁎⁎⁎

(–1.665) (–2.306) (–4.448) (–4.370) (2.423) (–2.941)
β̃Ĩt 0.043 0.420 0.093 – – –

(0.802) (1.226) (0.356)
β̃Õt

–0.010 –0.342 –0.038⁎⁎⁎ – –

(–0.239) (–0.917) (–3.414)
γ 3.308 5.067⁎ 3.062⁎⁎⁎ 69.052 49.032 43.272

(0.742) (1.859) (2.840) (0.147) (0.164) (2.338)
c 2.518⁎⁎⁎ 2.427⁎⁎⁎ 3.181⁎⁎⁎ 3.460⁎⁎⁎ 3.251⁎⁎⁎ 3.449⁎⁎⁎

(4.371) (8.289) (42.547) (26.107) (21.033) (118.956)

Misspecification test: cross-section dependency CDLM
NL

0.494 1.581
(0.620) (0.113)

(⁎) 10% significance level, (⁎⁎) 5% significance level, and (⁎⁎⁎) 1% significance level.
⁎⁎ The values in the parentheses are t statistics.
⁎⁎⁎ Common correlated effects (CCE) estimators and S–G: SURE-GLS.

Table 9
Summary of cross-section dependency tests.

Linear panel
estimation

Linearized panel
estimation

Non-linear panel
estimation

Non-linear panel;
factor removement
CCE estimation

CDLM
L CDLM

TL CDLM
NL CDLM

NLF

Model 1 9.873 9.338 8.317 0.494
(0.000) (0.000) (0.000) (0.620)

Model 2 10.737 9.349 8.950 1.581
(0.000) (0.000) (0.000) (0.113)

⁎ Under the null hypothesis the CD statistics converge to a normal standard
distribution. The values in the parentheses are p values.
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result can be read as PSTR models limit the cross-section dependency
bias. We can see the evidence in Table 9 below.

From the cross-section dependency test that we compute in each
stage, we see that the cross-section dependency diminishes. From the
diagnostic check of linear panel estimations, we obtain test statistics
9.873 and 10.737 for models 1 and 2, respectively. Both of these test
statistics confirm the existence of cross-section dependency. In the
identification process of PSTR, we compute the CD statistics from the
linearity testswhereweuse πt−1 as a transition variable in Eq. (3). From
these computations, we obtain test statistics 9.338 and 9.349. When
compared to linear panel CD tests, these results verify significantdecline
in cross-section dependency, but it is not removed fully. From the
diagnostic check of non-linear panel estimation,we obtain test statistics
8.317 and 8.950 for models 1 and 2, respectively. Both of these test
statistics are smaller than the previous test statistics. The progress of the
test statistics demonstrates that non-linear estimation removes some
parts of the cross-section depency due tomodel misspecification. There
can be alternative explanations, but the scope of this study does not
cover this issue.21 Finally from the last column,we see thatwhenweuse
CCE estimator, cross-section dependency is fully removed from our
PSTR estimations.

5. Concluding remark

This paper provides new evidence on the non-linear impact of
inflation on long-term economic growth. Recent empirical growth
literature consistently suggests a negative non-linear inflation–growth
relationship. Moreover, many studies addressing this issue explain this
non-linear relationship with the threshold effects. That is, below a
specific threshold value, inflation is found to have a statistically
insignificant small positive or negative effect on growth, whereas
above it, the effect becomes negative and statistically significant.

The empirical results reported in this paper strongly support the non-
linear relationship between inflation and growth by using linearity tests
used for the specification of PSTR models. Hence, the non-linear
21 Instead of Pesaran's (2006) method, we examine some empirical methods to find
factor which can remove cross-section dependency. For this purpose, we use CD test
with grid search techniques in order to find relevant factor. From these computations,
we found out that there can be common factors which can be used instead of CCE
estimator. The results and the RATS program are available upon request.
inflation–growth relationship is structured by the help of PSTRmodeling.
Moreover, this model specification allows empirical researchers to
determine the number of thresholds. In particular, one can test whether
there is a single or two threshold levels. A key issue inmodel specification
is the endogenous determination of the threshold values. PSTRmodel, as
opposed to many other models in the existent literature, which only
allows for exogenous determination, is capable of determining the
threshold values endogenously. Endogenous determination of threshold
levels leads the researcher to find the precise levels which in turn give
great advantage in analyzing the true relationship between inflation and
growth. Threshold level for inflation is settled around 2.52% for six of the
industrialized countries.

Panel estimations are subject to some problems due to sample and
variables features. The problems can be summarized as heterogeneity,
endogeneity and cross-section dependency. Regarding our sample and
variables in the study, our estimation contaminated with all of these
problems. Heterogeneity problem is solved automatically by adapting a
PSTR modeling approach. For the endogeneity problem, the PSTR model
and the new method that we propose for cross-section dependency
present some remedies. To remedy the cross-section dependency
problem, first of all, we introduce a new diagnostic check for cross-
section dependency which is generalized to non-linear context. Then, we
propose a new method which remedies cross-section dependency from
the non-linear PSTRmodel. Besides, the newmethod thatwe introduce in
this study may reduce endogeneity bias as well. By applying these
methods, i.e., CCE and SURE-GLS, we compute threshold values as 2.44%,
and 3.18%, respectively. For selected industrialized countries, our results
suggest inflation targets around 2%. This level of inflation is more or less
clearly announced by many central banks, for instance European Central
Bank and the Bank of England. In conclusion, policymakers in these eco-
nomies can achieve high growth rates by reducing inflation level below
this threshold level. This information gives very important signal for the
policymakers to impose new policies to provide economic stabilization.

Further avenues for research include applying the very same
methodology to a larger group of developing countries, as well as
improving the misspecification tests to control for a possible endo-
geneity bias.
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