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Abstract This paper seeks to extend the extant empirical evidence regarding asym-
metric adjustment to equilibrium of short and long interest rates. Using an adaptation of
the exponential smooth transition model to allow for sign asymmetry in the transition
function, we show that equilibrium reversion exhibits two broad characteristics. First,
small deviations are random, while large deviations are reverting. Second, deviations
that arise when the long rate exceeds the short rate are characterised by quicker rever-
sion than the opposite case. These results are consistent with the effects of arbitrage
and central bank intervention. Finally, forecasting exercises support this model over
alternate linear and non-linear specifications.
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JEL Classification C22 · G12

1 Introduction

An ongoing research theme in financial econometrics is the examination of asym-
metric adjustment between pairs of cointegrating series. Most notably, the dynamics
of interest rates, and US interest rates in particular, have been a major source of
interest.1 More specifically, Balke and Fomby (1997), Enders and Granger (1998) and

1 The examination of non-linear cointegration and adjustment has also been extended to other economic
settings, see, for example, Granger and Lee (1989) and Escribano and Pfann (1998) who consider adjustment
in sales and employment, respectively, Escribano and Granger (1998) who examine gold and silver prices,
and Dwyer et al. (1996), Martens et al. (1998) and Tse (2001) who examine equity spot-futures data.
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592 D. G. McMillan

Enders and Siklos (2001) use threshold models to examine the adjustment dynamics
of long and short term interest rates. While the behaviour of non-US rates has been
examined by van Dijk and Franses (2000) and McMillan (2004), both of whom use
smooth-transition models for Dutch and UK interest rates, respectively.

The typical view in this extant research is that such asymmetry is motivated through
policy-orientated explanations, whereby central banks, which are primarily interested
in some inflation target, will respond asymmetrically in periods of rising and falling
inflation (or inflationary expectations).2 The results from the studies noted above gene-
rally support this view of asymmetric intervention through reporting that adjustment of
the short rate, which is effectively set by the central bank, is quicker when it is excee-
ded by the long rate, which is indicative of rising future inflation, than in the converse
case. Alternatively, such asymmetry can also arise from investors who require different
premiums (perhaps due to different preferences for liquidity or different risk conside-
rations) in periods of rising and falling rates. For example, in periods of falling rates,
where reinvestment risk is high, investors may be willing to pay a higher premium
to hold long-term assets, than in periods of rising rates. As such empirical modelling
has generally focussed upon those models that differentiate between periods of rising
and falling rates or changes in rates. More specifically, for US rates the momentum
threshold model was supported over the standard threshold approach (Enders and Sik-
los 2001), for Dutch rates the smooth-transition testing procedure selected the logistic
version (van Dijk and Franses 2000), while in a competing models exercise for UK
data McMillan (2004) also selected a logistic smooth-transition model.

However, the bond market is, of course, an arbitrage market and bonds of different
maturity will be linked by an arbitrage relationship, such that we would expect any
deviations from an equilibrium position to be arbitraged away. Therefore, it may
be expected that pressures on the movements of rates would not only arise from
those exerted according to the sign of the equilibrium deviation but also the size of
the deviation. More specifically, whereas the sign of any disequilibrium may trigger
asymmetric behaviour as noted above, arbitrageurs might be more interested in the
size of the disequilibrium. That is, whether the one period return on bonds of different
maturity has drifted apart, for example, should the return on a short rate bond exceed
that of a long rate bond, then arbitrageurs will buy the short bond and sell the long
bond, so pushing up the price of the short bond and pushing down the price of long
bond, until their respective one-period returns are equalised subject to any liquidity
or other risk premium on the long bond. Furthermore, of course, arbitrageurs’ actions
may be limited due to the presence of market frictions such as transaction costs, such
that the arbitrage activity must be delayed until the benefits from engaging in trade
outweigh the costs (Anderson 1997).

Given this, the empirical models noted above are only able to capture one aspect
of the potential dynamic influences impacting upon the adjustment of short and long
rates to equilibrium. That is, the threshold and logistic smooth-transition models only
the capture sign asymmetry, perhaps arising from central bank or asymmetric investor
behaviour. While a model such as the exponential smooth-transition model is only

2 See, for example, Murchison and Siklos (1999) and Svensson (1999).
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Non-linear cointegration and adjustment 593

capable of capturing size non-linearity, perhaps arising from trading cost considera-
tions.3 Therefore, in this paper we consider a model that is capable of capturing both
these influences on the dynamic interaction between short and long rates, the asym-
metric exponential-smooth transition (AESTR) model. The remainder of the paper is
as follows: Sect. 2 presents the theoretical arguments underlying the paper; Sect. 3
presents the AESTR model; Sect. 4 introduces the data and presents our empirical
results, including a forecasting exercise; Sect. 5 concludes.

2 Theoretical background

Let R(t, m) be the continuously compounded yield to maturity of a m period pure
discount (zero-coupon) bond at time t . In a standard “no arbitrage” framework this
implies that:

R(t, m) = 1

m

[
m∑

i=1

Et {R( t + i − 1, 1)}
]

+ L(t, m) (1)

where Et denotes expectations at time t and L(t, m) represent the term premium.
Equation (1) can be viewed as the fundamental relationship that states the long rate is
a weighed average of current and expected future short rates. Rearranging the equation
in terms of the spread we have the usual expectation hypothesis expression:

S(t, m, 1) = 1

m

[
m∑

k=1

k∑
i=1

Et�R( t + i, 1)}
]

+ L(t, m) (2)

where S(t, m, 1) represents the spread between the m maturity bond and a one-period
bond. This equation shows that, assuming yields are integrated of order one and that
premia are stationary, the right-hand side of (2) is stationary, which implies the long
and short rates are cointegrated with a vector (1,−1). Furthermore, the spread will
equal a constant value, here denoted z, which depends upon investor expectations
about future one-period bills and their attitude towards risk.

Deviations of the spread from the relationship identified in Eq. (2) therefore
represent arbitrage opportunities, such that should long and short rates deviate from
this long-run equilibrium position then arbitrageurs will enter the market to ensure
reversion to equilibrium. That is, if the spread S(t, m, 1) > z then arbitrageurs will
sell short term bonds and buy long term bonds, whilst if S(t, m, 1) < z then arbitra-
geurs will sell long term bonds and buy short term bonds. Both actions will ensure
adjustment towards equilibrium S(t, m, 1) = z.

Non-linear dynamics have been introduced into the empirical examination of the
spread through the presence of transactions costs. That is, arbitrageurs will not enter

3 As discussed by Anderson (1997) where individual arbitrageurs face different transaction costs then the
market process of adjustment aggregating over all individual traders will appear smooth, rather than abrupt
as suggested by Heaviside threshold models.
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the market until the gains from engaging in trade outweigh the costs of trade, such
that a band of inaction can arise around the equilibrium position. Where c represents
transactions costs an arbitrageur will only sell short bonds and buy long bonds if
S(t, m, 1)− z > c, and conversely sell long bonds and buy short bonds if S(t, m, 1)−
z < −c. Should the equilibrium deviation lie in the region −c < S(t, m, 1) < c
then no arbitrage will take place. This extension, of course, suggests a Heaviside
threshold, that is, abrupt reversion around |S(t, m, 1)− z| > c and therefore implicitly
assumes that all traders face the same identical transaction costs. However, given that
individual investors may face different transactions costs, due to different liquidity
constraints, time spent obtaining information and processes the transaction, as well as
individual specific fees, commissions and tax liabilities, the threshold is more likely to
be blurred. That is, because not all traders will trade at the same time, as we aggregate
over individuals it may be more appropriate to assume a smooth-transition between
regimes of behaviour. The allowance for a smooth-transition would therefore support
the view that as the deviation from equilibrium becomes larger so the adjustment back
to equilibrium will become stronger, which is intuitively plausible.

Finally, whilst the above arguments suggest that the speed of reversion differs
between small and large deviations from equilibrium, it remains symmetric for positive
and negative deviations. However, it is plausible that the adjustment process may
depend on whether it is the long or short-term bond that is over/under-valued, although
there is no theoretical guidance as to which sign of deviation will engender stronger
reversion. That is, investors may require different term premia in periods of rising
or falling rates. Related, a further strand of the literature supports the potential for
asymmetric reversion due to the actions of the monetary policy authority. Here the
belief is that where, for example, central banks have an explicit inflation target, they
pay more attention to rising interest rates than to falling rates due to their different
implications for inflation. That is, where the movement of long-term rates provides a
guide to inflationary expectations, central banks may respond more quickly in adjusting
short-term rates to rising long rates (rising inflationary expectations) than falling to
long rates.4 Thus, we may expect the short rate response to be quicker in periods of
rising inflation than falling inflation (see for example Murchison and Siklos 1999;
Svensson 1999). Furthermore, in the UK context a recent paper (Martin and Milas
2004) has provided evidence that the Bank of England actively pursues an asymmetric
policy by responding more to positive deviations from its inflation target than negative
deviations despite the symmetrical nature of the target.

3 Asymmetric exponential smooth-transition model

A standard approach to examine the issue of stationarity in a two-variable system is
the Engle and Granger (1987) two-step approach. That is, the long-run relationship is
estimated as such:

4 Supportive empirical evidence is provide by Enders and Siklos (2001), van Dijk and Franses (2000) and
McMillan (2004).
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x1t = β0 + β1 x2t + εt (3)

where the variables of interest x1t and x2t are both integrated of order one, the coeffi-
cients β0 and β1 are the estimated cointegrating parameters and εt is the disturbance
term. This disturbance term is then used to in the following regression to determine
the existence of cointegration:

�εt = αεt−1 + ut (4)

where ut is a white noise error term and the null hypothesis of non-cointegration is
rejected if α is statistically significant and lies in the region −2 < α < 0. Should this
case arise then the residuals in Eq. (3) are zero-mean stationary, implying that Eq. (3)
is a long-run attractor, with deviations revert according to α, and hence adjustment is
symmetric.

Enders and Granger (1998) and Enders and Siklos (2001) proposed two asymmetric
versions of Eq. (4) in order to capture sign asymmetry. First, the threshold (TAR)
model:

�εt = ρ1 εt−1 It + ρ2 εt−1 (1 − It ) + ut (5)

where It is a Heaviside indicator function such that it is equal to one when εt−1
is greater than zero (or some other, estimated, threshold value), and zero otherwise.
Alternatively, they also proposed a second adjustment mechanism the momentum TAR
(MTAR) model:

�εt = ρ1 εt−1 Mt + ρ2 εt−1 (1 − Mt ) + ut (6)

where Mt is a Heaviside indicator function such that it is equal to one when �εt−1
is greater than zero (or some other, estimated, threshold value), and zero otherwise.
Following the arguments in the two cited papers and the discussion above, where the
long rate is indicative of inflationary expectations, we would expect to see quicker
reversion to equilibrium following deviations that arise from increases in the long
rate. Indeed this is the result reported by Enders and Siklos (2001) and, in the UK
context, by McMillan (2004) using a smooth-transition variant.

In different market settings a further adjustment process has been identified, rather
than adjustment occurring due to the sign of the disequilibrium, non-linear adjustment
may arise according to the size of the disequilibrium. For example, in the context of
the cost-of-carry model between equity index spot and futures Dwyer et al. (1996)
and Brooks and Garrett (2002) have proposed that due to the presence of transaction
costs deviations from the equilibrium relationship will only be arbitraged away once
such deviations have become sufficiently large so the benefits from engaging in trade
out way the costs. Further, Tse (2001) argues that given different constraints faced
by different arbitrageurs a smooth-transition back to equilibrium is more appropriate
when aggregating over the market than the Heaviside switching of the above models.
Therefore, the exponential smooth-transition (ESTR) model has become a popular
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tool when examining such dynamic behaviour:

�εt = δ εt−1

(
1 − exp

(
−γ ε2

t−1

))
+ νt ; γ > 0 (7)

where the parameter γ measures the speed of transition between the outer and inner
regimes that switch symmetrically around the attractor point of zero with εt−1.5 Thus,
this model implies the dynamics of the middle ground differ from the dynamics of lar-
ger deviations. More specifically, the transition function, Ft = (1 − exp(−γ x2

t−1)),
varies from zero to one, such that when Ft = 0 the process is governed by an integra-
ted process at εt−1, while when Ft = 1 the process exhibits reversion to its long-run
attractor. Finally, if δ = 0 then the process is integrated.

As noted in the Introduction, the adjustment of short and long rates back to a long-
run attractor point may contain both of these dynamic influences, that is, both sign
asymmetry and size non-linearity. Therefore, we extend the ESTR model in Eq. (7)
by including the asymmetric sign related terms from Eqs. (5) and (6) to allow for
both types of adjustment to occur, hence we have two asymmetric ESTR (AESTR)
models, one which permits threshold behaviour in the transition function (AESTR-
TAR) and one which permits momentum threshold behaviour in the transition function
(AESTR-MTAR):

�εt = δεt−1

(
1 − exp

(
−γ1ε

2
t−1 It − γ2ε

2
t−11 − It

))
+ νt ; γ1, γ2 > 0 (8)

�εt = δεt−1

(
1 − exp

(
−γ1ε

2
t−1 Mt − γ2ε

2
t−11 − Mt

))
+ νt ; γ1, γ2 > 0 (9)

where the two indicator functions, It and Mt are defined as above.
For stationarity of the εt term (i.e. cointegration between the short and long rates)

in the TAR and MTAR models we require the ρ1 and ρ2 coefficients to be negative and
jointly significantly different from zero. Whilst for there to be asymmetric adjustment
we require that ρ1 �= ρ2. Similarly, with regard to the ESTR models, for stationarity we
require the parameter δ to be significantly negative, while for asymmetric adjustment
to be present we require the speed of adjustment parameters to be statistically different,
i.e. γ1 �= γ2. As is well known, in the context of thresholds that are not identified under
the null hypothesis (of non-stationarity) the usual critical values for rejecting the null
are no longer valid (see, for example, Andrews and Ploberger 1994; Hansen 1996).
For the TAR and MTAR models Enders and Siklos (2001) provide critical values via
Monte Carlo experiments. Therefore, in order to obtain usable critical values for the
ESTR models we also conducted a Monte Carlo experiment whereby 50,000 pairs of
independent random walk processes of various observation lengths were generated.
In addition, we also compute critical values based upon a bootstrapping procedure,
whereby the original data is resampled (50,000 times), this latter procedure allows the
critical values to be computed in the context of nuisance parameters such as lags of
the dependent variable to account for serial correlation. In both cases the ESTR and
asymmetric-ESTR models of Eqs. (3) and (7), (8) or (9) were then estimated and the

5 As with the TAR models the attractor point can be estimated and take a non-zero value.
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Table 1 Critical values for stationarity in non-linear models

No. of obs Exponential smooth Asymmetric exponential Asymmetric exponential
transition (ESTR) model smooth transition: smooth transition:

threshold (AESTR-TAR) momentum threshold
model (AESTR-MTAR) model

Significance level Significance level Significance level

1% 5% 10% 1% 5% 10% 1% 5% 10%

50 −3.39 −2.84 −2.55 −3.38 −2.82 −2.54 −3.40 −2.83 −2.55

100 −3.20 −2.64 −2.35 −3.15 −2.62 −2.33 −3.20 −2.63 −2.35

250 −2.94 −2.36 −2.07 −2.91 −2.34 −2.04 −2.92 −2.34 −2.05

500 −2.81 −2.16 −1.85 −2.77 −2.15 −1.83 −2.79 −2.15 −1.83

Bootstrap −5.91 −4.91 −4.38 −6.18 −5.18 −4.63 −6.43 −5.44 −4.91

Entries are computed critical values for stationarity for each model that is defined in Sect. 3, Eqs. (7)–(9)

critical values for statistical significance at the 1, 5 and 10% levels are presented in
Table 1.

4 Data and empirical results

Monthly end of period observations for the US Federal Funds rate and yield on the
10-year Treasury bond over the sample period 1954:07–2004:08 were obtained from
the Federal Reserve web-site. The series are chosen as US rates have been widely
analysed in the empirical finance literature, and for asymmetries in particular, such
that the results reported here can be viewed in comparison with those previously
reported (e.g. Balke and Fomby 1997; Enders and Granger 1998; Enders and Siklos
2001). Preliminary unit root test results are not reported, although they do indicate the
presence of a unit root in each series.

Using the linear Engle and Granger (1987) two-step method, we test for coin-
tegration. The estimated cointegrating vector, Eq. (3), is reported below, while the
cointegrating residual unit root test, Eq. (4), is reported in the first column of Table 2:

rst = −1.6586 +1.1146rlt + εt .

(−9.01) (3.72)
(10)

where rst and rlt represent the values of the short and long rate, respectively, while
the figures in parenthesis are heteroscedasticity-robust t-statistics. The results of the
cointegrating unit root test, with sufficient lags, four, to ensure white noise residuals
in the test equation, support the presence of a single common stochastic trend, and
hence, cointegration between the respective series.

To examine for potential asymmetry in the relationship between the short and long
rate we estimate the TAR and MTAR models of Eqs. (5) and (6). As noted above,
we could utilise the long-run attractor of zero as the threshold point, which is perhaps
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economically valid in the present context. However, there is no reason to unequivocally
believe that the threshold will coincide with the attractor point, therefore following
Chan (1993) we search over the potential thresholds, that is, the middle 70% of the
ordered data (εt in the TAR model and �εt in the MTAR model), to find the value
that minimises the sum of squared residuals in the regressions of (5) and (6). With
the thresholds so determined, the estimated models are presented in the second and
third columns of Table 2, where τ defines the threshold. As noted in Enders and Siklos
(2001) to ensure stationarity of the TAR and MTAR models both coefficient estimates
must be negative and jointly significantly different from zero. As can be seen from
Table 2 both parameters do indeed indicate reversion, while an F-test statistic for the
null hypothesis that ρ2 = ρ1 = 0 is 8.28 and 13.40 for the TAR and MTAR models,
respectively. As noted in Sect. 3 standard critical values cannot be used in the context
of threshold models, however, using the values derived by Enders and Siklos these tests
do indeed indicate reversion, and therefore cointegration. To test whether asymmetric
reversion is supported by the data a second F-test is performed, with the null that
ρ2 = ρ1. The resultant test statistic is reported in Table 2 in the F row and for which
conventional critical values can be used. This test statistic suggests that the TAR model
does not support asymmetric adjustment, as the null hypothesis of symmetry cannot be
rejected. However, the MTAR model does support asymmetric adjustment, although
the coefficient results appear to suggest that reversion to equilibrium is quicker for
positive changes in the error-correction term.

Whilst the TAR and MTAR models capture sign asymmetry, as noted above where
an arbitrage relationship exists we may also expect to observe size non-linearity. The
ESTR model of Eq. (7) is thus reported in Table 2 including a model that imposes a
threshold of zero (column four) and one that estimates the threshold (column 5). In
the ESTR model, stationarity is governed by the significance (and negativity) of the
parameter δ. As can be seen from both versions of the ESTR model this parameter is
indeed both negative and statistically significant (using the critical values presented in
Table 1), supporting non-linear reversion to equilibrium arising when deviations from
equilibrium become sufficiently large.

Given that there is evidence of both disequilibrium size non-linearity and sign asym-
metry, we now consider the AESTR models that are capable of capturing both types of
identified behaviour. The AESTR-TAR and AESTR-MTAR models are presented in
the last four columns of Table 2, again two versions are estimated one which imposes
a threshold of zero and one in which the threshold is estimated. In these models the
main analytical interest arises first from the parameter determining stationarity and
second, whether there is asymmetry in reversion. As with the ESTR model above,
the parameter δ is both negative and statistically significant for both versions of the
AESTR-TAR and AESTR-MTAR models. With regard to the parameters γ1 and γ2
which determine the speeds of adjustment to equilibrium for positive and negative
deviations, an F-test of the null hypothesis of symmetry, i.e. γ1 = γ2, is presented
in Table 2 and for which all versions of the AESTR model reject this null (although
only at the 10% level for the AESTR-MTAR model where the threshold is estimated).
Therefore, this model supports not only non-linear adjustment between small and large
equilibrium deviations, but also asymmetric adjustment between positive and negative
deviations. Furthermore, for both the TAR and MTAR versions of the AESTR model
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Fig. 1 Transition functions for ESTR and AESTR-TAR

reversion is quicker when the long rate (or changes in the long rate) exceeds the short
(or changes in the short rate).

4.1 Model evaluation and forecasting

In order to select a preferred model, we also present in Table 2 some standard spe-
cification tests, namely, the adjusted R2, and the AIC, BIC model selection metrics.
On all three of these measures the AESTR-TAR model is selected. To better illustrate
these results, we present in Figs. 1, 2 and 3 the estimated transition functions. To
aid comparison of the three transition functions they are plotted from the estimated
models where zero was imposed as the threshold value. Further, the functions are
plotted against each other, that is, in Fig. 1 both the ESTR and AESTR-TAR functions
are presented, in Fig. 2 the ESTR and AESTR-MTAR functions are plotted, while in
Fig. 3 the AESTR functions are plotted. From these figures we can observe that when
the deviation from equilibrium are negative (i.e. long rates exceed short rates) then
the ESTR model understates the speed of reversion compared to the AESTR models,
whilst when the equilibrium deviation is positive then the ESTR model overstates
the speed of reversion. Comparing the asymmetric ESTR models it can be observed
that when deviations and changes in equilibrium deviations are negative the speed
of reversion in the two models is similar, whilst similarly when deviations are posi-
tive and the change in deviations are positive the two models have similar speeds of
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Fig. 4 Impulse response functions

reversion. As a final illustration of the dynamics of these models we present in Fig. 4
some impulse response functions for the linear and ESTR models. The top panel show
the response of the ESTR model to shocks of different sizes, the pertinent observation
that can be made here is that the larger the shock the quicker is the initial speed of
adjustment. That is, the response to small shocks is quite muted, while the effect of
large shocks dissipates comparatively quickly. This highlights one of the dynamics
characteristics of the ESTR model in that larger shocks engender quicker reversion
compared to small shocks. This latter point is further illustrated in the second panel,
where the ESTR model is compared to the linear model for two different shocks. Here
we can see that the response in the linear setting is the same regardless of the size of
the shock. Finally, the lower panel presents the effects of a positive shock on the ESTR
model and the AESTR-TAR model according to whether the initial disequilibrium is
positive or negative. Here we can note the response to a shock is much slower if the
process is initially in the positive regime.

To further analyse the usefulness of our models to market agents or policy makers,
we conduct a forecasting exercise for our competing models to determine whether
the in-sample specification results are repeated for the out-of-sample data. In order

123



Non-linear cointegration and adjustment 603

Table 3 Forecast results

Linear TAR MTAR ESTR AEST-TAR AESTR-MTAR LSTR MLSTR

RMSE 0.5784 0.5764 0.5755 0.5784 0.5637 0.5769 0.5835 0.5780

SR 0.56 0.60 0.58 0.56 0.61 0.58 0.60 0.56

Trade 0.07 0.11 0.09 0.07 0.12 0.09 0.09 0.08

Entries are for the root mean squared error (RMSE) statistic, the success ratio (SR) statistic and returns
from a trading strategy based upon the estimated models

to conduct this exercise we re-estimated the models over the time period from the
beginning of the sample until 1969:12, with the remainder of the sample used in
the forecasting exercise. We initially conduct a recursive exercise where one-step
ahead forecasts are constructed. That is, we estimated each model over the period
1954:7–1969:12 and forecast the value of �εt for 1970:1, we then roll the end of
the sample forward and estimated each model over the period 1954:7–1970:1 and
obtained the forecast value for 1970:2, and continue this process until the end of the
sample is reached. Thus, at each point in time we are using the data available to market
participants and that the parameters are updated. To evaluate these forecasts we used
three metrics, first, the standard root mean square error, second, the success ratio, that
is, how many times the forecast value is of the same sign as the actual value, and third a
“de facto” trading rule for yield changes, where at each point in time, if the forecasted
value of �εt is positive then traders expect the short rate to increase relative to the
long rate, whilst if the forecast value of �εt is negative then traders expect the long
rate to increase relative to the short rate. We then allow traders to earn this change in
the yield differential, by, for example in the latter scenario, borrowing at the short rate
and lending at the long rate at the beginning of the one month period, with the position
then held constant or “locked-in” over the period, before being reversed. These latter
two metrics are often argued to be preferable in the context of financial assets as
sign information is viewed as more important than overall (size) forecastability. The
results are presented in Table 3, where we also consider two additional non-linear
models that have been examined in the literature, namely the logistic STR (LSTR)
model favoured by van Dijk and Franses (2000) and McMillan (2004) and the modified
LSTR (MLSTR) model considered in the context of exchange rates (Sollis et al. 2002),
but not previously interest rates.6

The results from this exercise again support the AESTR-TAR model as it achieves
the lowest RMSE and both the highest success ratio and yield differential trading rule
(for interest, the average monthly change in the yield differential is 0.01). Aside from
the AESTR-TAR model, both the TAR and MTAR model appear to perform well,
whilst in common with van Dijk and Franses (2000) and McMillan (2004) the LSTR
model performs reasonably well. This analysis raises two further considerations, first,
rather than the change in the spread being the variable of interest, we also want to
see whether these models can forecast the spread itself, and second, although the
AESTR-TAR model is preferred on the basis of our forecast metrics the gain appears
marginal.

6 More details on these models, including estimation results, are available upon request.
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Therefore, in the first instance we use the monthly recursive one-step ahead forecasts
to examine the forecastability of the spread itself. For clarity we also focus our attention
here on a subset of the models, namely the linear, TAR, MTAR and AESTR-TAR
models that are the supported models in the previous analysis. The RMSE for these
four models are 0.6084, 0.6233, 0.6265 and 0.6042, respectively, again supporting,
albeit marginally, the AESTR-TAR model. For the success ratio and trading rule (which
is now defined where traders can earn the yield differential rather than the change in
the yield differential, that is, traders are able to swap between yields) results are less
unequivocal. Specifically, the value of these two metrics, respectively, are the same
at 0.93 and 1.61 for the non-linear models and only slightly lower at 0.92 and 1.59
for the linear model, respectively, (of interest, the average yield differential is 0.99).
Again, this suggests only a marginal forecast improvement by the non-linear models.

Finally, these results are perhaps not surprising given that, at each step, we are
only forecasting one period ahead. Greater disparity between the models may occur
as we forecast further into the future. Therefore, we reconduct the recursive exercise
for the spread but only re-estimate the models every five years, that is, instead of only
forecasting the next period we are forecasting five years ahead. However, as is well-
know, the multi-step forecasting of non-linear processes depends upon assumptions
made about the error term. More specifically, where the one-step ahead forecast is given
by (for simplicity in an AR(1) framework): x f

t+1 = E(xt+1|It ) = G(xt ;β) where G(.)

is the non-linear function and E is the expected value, conditional on the information
set at time t, It . The second-step ahead forecast is given by: x f

t+2 = E(xt+2|It ) =
E(G(xt+1;β|It ). Given that linear and non-linear conditional expectations cannot be
interchanged, that is E(G(.)) �= G(E(.)), the relationship between the one-step ahead
and two-step ahead forecasts is given by: x f

t+2 = E(G(G(xt ;β) + νt+1;β)|It ) =
E(G(x f

t+1 + νt+1;β)|It ).

Therefore, in order to obtain multi-step forecasts we approximate the conditio-
nal expectation in x f

t+2 = E(G(G(xt ;β) + νt+1;β)|It ) = E(G(x f
t+1 + νt+1;β)|It )

through the use of Monte Carlo simulation. That is, the two-step ahead Monte Carlo
forecast is given by: x f

t+2 = 1/k
k
i=1G(x f

t+1 + νi ;β)|It ), where k is the number of
repetitions. Previous research presented by Lin and Granger (1994) and Clements and
Smith (1997) has suggested that the Monte Carlo approach in obtaining multi-step
ahead forecasts in a non-linear setting is favourable compared to alternate approaches
that attempt to derive the conditional expectation directly (see also, Brown and Mariano
1989). The results from using k = 1000 each period for the TAR, MTAR and AESTR-
TAR models are presented in Table 4. These results show the superior forecasting per-
formance of the nonlinear models over the linear model, with the AESTR-TAR model
again providing the principle forecasting performance.7 In addition to the forecast
results we also present in Table 4 some interval estimates to determine how accurately
the forecast models can describe the distribution of the actual series. For the non-linear

7 Of interest, the multi-step forecasting performance for the change in the yield is, for the linear model,
0.6109, 0.54 and 0.03 for the RMSE, success ratio and switching rule, for the TAR model, 0.5030, 0.59,
0.08, respectively, for the MTAR model, 0.5038, 0.58, 0.08, respectively, and for the AESTR-TAR model
0.4871, 0.63, 0.10, respectively.
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Table 4 Multi-Step Forecast Results

RMSE SR Trade Quantiles

0.1 0.25 0.5 0.75 0.9

Linear 1.9489 0.39 −0.69 −0.09 0.06 0.34 1.02 1.56

TAR 0.2472 0.95 1.63 −0.71 −0.20 −0.002 0.06 0.40

MTAR 0.2460 0.96 1.64 −0.62 −0.20 −0.02 0.07 0.44

AESTR-TAR 0.2390 0.98 1.68 −1.79 −1.08 −0.35 1.20 2.48

Actual values − − − −2.13 −1.63 −0.46 0.73 1.95

Entries are for the root mean squared error (RMSE) statistic, the success ratio (SR) statistic and returns
from a trading strategy based upon the estimated models. Quantiles are the values of each quantile of the
actual and forecast series

models these quantile value are determined by the appropriate simulated realisation
from the ordered set of 1,000 simulations. These results again support the view that
the non-linear models provide a better description of the data than the linear model.
In particular, the distribution implied by the linear model is too narrow, as well as
having a mean of the wrong sign. Furthermore, of the non-linear models considered,
the distribution implied by AESTR-TAR model clearly is the closest match to the
actual distribution. Thus, the use of these non-linear models and the AESTR-TAR
model in particular, are well suited to capture medium term variations in the interest
rate spread.

5 Summary and conclusion

There has been an increased interest in the dynamics behaviour of interest rate series,
in particular, whether they exhibit reversion to some long-run equilibrium and whether
that reversion is asymmetric. Extant empirical evidence has suggested that short and
long rates respond asymmetrically according to the sign of the disequilibrium, or the
sign of change in disequilibrium. The standard rationale for which concerns the actions
of monetary policy authorities that respond asymmetrically to the expected course of
future inflation. Nevertheless, the interaction between short and long rates also gives
rise to possible arbitrage trading, such that should rates deviate from their long-run
paths by a sufficient amount then market agents will act to restore rates back to their
long-run value. As has been reported in other arbitrage markets (e.g. between spot
and futures prices), non-linearity arises as deviations from equilibrium must become
sufficiently large for arbitrage traders to profit before they enter the market, as such
a random walk inner band and a reverting outer band occurs for price deviations.
Further, due to different constraints that arbitrageurs may face the process of reversion
is smooth.

This paper has, in turn, examined US short and long rates for sign asymmetry,
size non-linearity, and presented a new adaptation of the smooth-transition model
that allows both for these effects simultaneously. The results presented here support a
long-run relationship between short and long rates where small deviations are charac-
terised by random walk behaviour, while larger deviation exhibit reversion. Further,
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large negative deviations (when the long rate exceeds the short rate) are restored qui-
cker than positive deviations. Finally, a series of forecasting exercises supports this
model over an alternative linear and non-linear models, especially when forecasting
over the medium term, which may be of particular interest to market participants and
policy authorities.
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