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This paper studies the All Ordinaries Index in Australia, and its futures contract known as the Share
Price Index. We use a new form of smooth transition model to account for a variety of nonlinearities
caused by transaction costs and other market/data imperfections, and given the recent interest in the
effects of market automation on price discovery, we focus on how the nonlinear properties of the
basis and returns have changed, now that floor trading in the futures contract has been replaced by
electronic trading.

I. INTRODUCTION

Researchers have studied the dynamic relationship between the price of stock futures
contracts and the underlying cash market ever since 1982, when the Chicago Mercantile
Exchange first introduced futures contracts based on Standard and Poor’s (S&P) 500 Stock
Index. Compelling empirical evidence that future indices lead stock indices and weaker
evidence of feedback has attracted considerable attention, because standard ‘no arbitrage’
arguments predict that in perfectly functioning markets there should only be contempora-
neous correlations between the two return series, and zero cross-correlations at non-zero lags
and leads. Several reasons for the observed ‘lead-lag’ relationship between stock market and
future indices have been put forward, and these include infrequent trading in components of
the stock index, the use of transactions data rather than bid-ask quote data in index
calculations, time delays in the computation and reporting of the stock index, and transaction
costs associated with buying portfolios of stocks and futures contracts. Stoll and Whaley
(1990) provide a useful discussion on possible causes of the ‘lead-lag’ relationship, and
Abhyankar (1998) surveys the empirical evidence on this issue.

The factors that give rise to the ‘lead-lag’ relationship between stock indices and futures
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also imply nonlinearities in the behaviour of index returns. The most obvious of these is the
nonlinear effect of transaction costs on portfolio adjustment, but infrequent trading in stocks
can also introduce nonlinearities, as can the delays and other problems associated with the
reporting of the stock index. The literature that studies nonlinearities in index returns is
currently small, and it mostly focuses on thresholds caused by transaction costs. Authors
such as Yadav et al. (1994), Dwyer et al. (1996) and Martens et al. (1998) have studied the
effects of transaction costs on arbitrage, by estimating threshold models of the basis and/or
returns in the United States. These models assume identical transaction costs for all
investors, and behavioural regimes that depend on whether arbitrage generates net profits
after transaction costs. Statistically significant evidence of thresholds supports these models,
but reconciliation of the estimated thresholds with independent estimates of transaction costs
has been difficult.

One problem with threshold vs transaction cost comparisons is that both vary over
different investors and different types of stocks. Individual investor and market specific
thresholds then become blurred in an aggregate setting, and it becomes hard to relate any
estimate of an ‘aggregate threshold’ back to a simple measure of transaction costs. Anderson
(1997) studies this problem in a paper on arbitrage between bills of different maturity within
the U.S. Treasury Bill Market. She models the yield adjustment process using a smooth
transition error correction model in which transaction costs vary across market participants.
The smooth transition allows for a continuum of regimes, which in the context of modelling
stock returns can account for the nonlinear effects of infrequent trading and data reporting
problems as well as heterogenous transaction costs. Taylor et al. (2000) use smooth transition
error correction models to study the heterogeneity in transaction costs associated with
trading FTSE100 stocks and futures.

This paper studies the All Ordinaries Index in Australia, and its futures contract known as
the Share Price Index. Several papers have analysed the lead-lag relationship in the
Australian context (see, for example, West (1997), Lin and Stevenson (1999) and Frino et al.
(2000)), but little direct work has been done on examining the nonlinearities in Australian
markets. We introduce a new type of smooth transition model to account for nonlinearities
caused by transaction costs and other market/data imperfections, and given the recent
interest in the effects of market automation on price discovery, our study focuses on how the
nonlinear properties of the basis and the returns have changed, now that floor-trading in the
futures contract has been replaced by electronic trading.

The effects of screen trading have been studied by Griinbichler et al. (1994) who studied
the German DAX index, and more recently, by Taylor et al. (2000) who studied the U.K.
FTSE100 index. The Australian case differs from these other cases in that the recent
automation involved the futures market, and created a situation in which both the spot and
futures markets were then automated. In the German case, only the futures market was
automated and stocks continued to be floor-traded, while in the UK case the stock market
was automated while futures continued to be floor-traded. While one might expect screen
trading to reduce the nonlinear effects of transaction costs in all three of these cases, one
would also expect that the automation in the Australian case would remove asymmetries in
dynamic behaviour that had been present because of the operational differences between
trading in the spot market and trading in the futures market.

We find strong evidence of nonlinearity before the futures trading went on-line, and
weaker evidence of nonlinearity after on-line trading. Our analysis suggests that the
automation of the futures market has removed the nonlinear properties of the basis, and
made the nonlinear properties of the two returns series more similar. A particularly
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interesting finding is that prior to the automation of the futures market, the nonlinearities that
characterise each market are different, whereas after the introduction of on-line futures
trading, the returns in each market have a common nonlinear factor. Futures returns lead
stock returns (with feedback) both before and after the introduction of screen-trading, and
the futures lead increases only slightly after automation. The speed of mean-reversion in the
basis is slow, and appears to be unchanged.

The remainder of this paper is organised as follows. Section II of this paper discusses the
theoretical basis for our work, together with various econometric specifications that account
for lead-lag relationships and nonlinearities. This section introduces our new smooth
transition error correction model, which accounts for the possible effects of transaction
costs, infrequent trading and asymmetries between trading in spots vs futures contracts.
Section III discusses the institutional detail that underlies the Australian markets for equities
and futures, and then provides details on the samples that are studied in this paper. Section
IV contains our empirical results, which compare the properties of the data before and after
the cessation of floor trading in the futures market. Section V concludes.

II. THEORETICAL BASIS

The relationship between the futures price of shares underlying a futures contract and the
spot price on the cash market for the same shares is often described by the cost-of-carry
model, which postulates that

F = Ste(r*)’)(T*t)’ )

where F; is the futures price of the index at time #, S, is the spot price of the index at time ¢,
r is the interest rate foregone while carrying the underlying stocks, y is the dividend yield on
the stocks and 7 — ¢ is the remaining life of the futures contract. Equation (1) is justified by
a ‘no-arbitrage’ assumption, since F, > S,e"~7=9 would enable investors to profit by
selling futures and buying stocks, while S,e" =7~ > F, would allow profits by buying
futures and short selling stocks. The assumptions that underlie these arguments are that
markets are perfectly efficient, and that transaction costs are zero. This simple version of the
model also assumes that the interest rate and dividend yield are constant over the life of the
futures contract, although in practice they will vary, as will » — y, the net cost of carry of the
underlying stocks.

Market efficiency implies that InS; is a random walk, and that the returns denoted by
s; = Aln S, are serially uncorrelated. The cost of carry model then implies that In F; will be
the sum of the random walk process in InS; and the series ( — y)(T — f). The dynamic
properties of In F; then depend on the assumptions about (» — y)(T — ¢). When working
with tick by tick data it is reasonable to assume that 7 is sufficiently distant to justify the
treatment of (7 — f) as a constant, and together with the assumptions that » and y are
constant, the basis given by b, = InF, — In S, is simply a constant.! Constant b, are not
observed in practice, but in this over-simplified case, In F; follows the same random walk
process as In S;, and the returns denoted by f; = Aln F; are perfectly correlated with s, and
serially uncorrelated. The two return series f, and s, will have zero cross-correlations at all

! In practice, researchers working with tick by tick data often account for daily changes in
(r — ¥)(T — t) by removing the daily averages of In S, and In F; from the data. See, eg, Dwyer et al.
(1996).
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non-zero leads and lags. Given that b, is not constant, it is common to allow for this by
writing

by=InF,—InS;=u-+v, 2)

in which g is interpreted as the expected cost of carry, and v, = b, — u (with E(v,) = 0) is
known as the mis-pricing error. See Brenner and Kroner (1995) for further discussion on the
stochastic implications of equation (1).

Empirical work has shown that In S; and In F; are not pure random walks, and that both
include significant mean reverting components. There is also considerable evidence that
InS; and In F, are cointegrated (i.e. they share the same random walk component). The
literature has typically dealt with the observed correlations in returns data by attempting to
‘correct’ for them (some examples include Stoll and Whaley (1990), and Shyy et al. (1996)),
or by explicitly modeling these dynamics (see, e.g., Wahab and Lashgari (1993), Brenner
and Kroner (1995)). The latter approach, which also accounts for the cointegration is based
on an error correction formulation given by

fi=crrapL)fr +Br(L)si +yrbiatel 3)

si=cs+a(L)fim1 + Bs(L)si—1 +ysbi—a + 8’;

in which a (L), B7(L), as(L), and B,(L) are polynomials in the lag operator, and s{ and &}
are zero mean, serially uncorrelated errors that can be contemporaneously correlated.
Equation (3) implies that returns will respond to movements in the basis, consistent with
arbitrage activities and corresponding mean reversion in the basis. As noted by Miller et al.
(1994), some of the mean reversion is due to corrections for infrequent trading, as stock
indices ‘catch up’ with futures. The parameter d takes no special meaning in a linear setting
(since one can always reparameterise the lagged polynomials to obtain equivalent models
regardless of d), but it becomes important in the nonlinear models below. The assumption
that the y are not zero corresponds to a ‘no frictions’ assumption, because it implies that
returns respond to all movements in the basis. The presence of the lagged polynomials
allows for short run dynamics, which might arise because of problems associated with the
calculation and reporting of the indices.

The adaptation of equation (3) to account for transaction costs is based on the intuition
that arbitrage will only occur when it generates net profits to investors. Defining ¢ to be
investors’ transaction cost and d to be a delay associated with making the appropriate trades,
the arbitrage condition is given by |b,_; — | > ¢, which implies a no-arbitrage band given
by —c < (b;—q — u) < c. The transaction costs are assumed to be the same for all investors,
and the same regardless of whether one is going short or long in the underlying stocks. The
corresponding error correction model becomes

fi=cptapLf i+ Ba(L)si +vabiatel @)
8¢ = Csi + a(L)fi-1 + Bsi(L)si—1 + Vs bi—a + &
which is a threshold error correction model (see Balke and Fomby (1997)). The basis b, 4
drives the error correction process, and the threshold ¢ defines three behavioural regimes in

which
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i=1 if byg—u<—c(e if vi_qg<-—c) (4a)
i=2 if—c<bg—u<c(@eif —c<svi 4=<c)
i=3 if byg—u>c(ie if vi_q>c)

We expect ¥, and y, to be zero because arbitrage will not generate net profits when
|b—q — u| < ¢, (or equivalently when |v,_4| < ¢). One can generalise this model to allow
for non-symmetric thresholds, and more than three behavioural regimes. The papers by
Yadev (1994), Dywer et al. (1996) and Martens et al. (1998) are all set within this
framework. They find statistically significant evidence in favour of transaction cost thresh-
olds, but have difficulty in relating the estimated thresholds to average transaction costs.
Martens et al. (1998) find evidence of many thresholds in their data, and attribute some of
these thresholds to transaction costs and other thresholds to the effects of infrequent trading.
These thresholds are not symmetrically distributed around g, which suggests differences
between the responses to negative and positive pricing errors.
The smooth transition error correction model modifies equation (4) to obtain

fi=cp+di (D) fir +By(L)si1 + 7y bia ®)
FW (V[ + (L) f o1+ Bo(L)sioy + Y2 beal + &)
si=clral(L)fior +BUL)si +yibia
+W(v Dl + 2L f o1+ BAL)si—1 + Y2 big] + &,

in which W, and W, are exponential (ESTAR) transition functions, defined by

A
T -

The W; take values between zero and one, and they are monotonically increasing with the
absolute size of the pricing error. As the W; vary, the VECM parameters also vary, implying
that the nature of the price adjustment process changes with the size of the pricing error. As
discussed in Anderson (1997), if one views the transition function W as a cumulative density
for the distribution of (non-negative) transaction cost thresholds, then relative to a baseline
case without frictions, the parameters change more, when |v,_,4| is larger and a greater
proportion of investors find the prospect of arbitrage more profitable. Taylor et al. (2000)
interpret their models in this way, setting y} = y! = 0, and then letting the smooth transition
inherent in the W; account for multiple regimes implied by heterogenous transaction costs.
In their model, the response to pricing errors becomes more pronounced, the larger the
absolute size of that error, and error correction is effective only when |v,_,| is sufficiently
large.

One shortcoming of using smooth transition functions defined by the W}, rather than
thresholds is that the symmetry in W; does not allow for asymmetries between the responses
to negative and positive pricing errors. The use of transition functions such as ¥, also
restrict the effective width of the implied ‘no-arbitrage bands”, unless the 1 ;j are very small
and W, is approximately zero over a large range of v,_,. Figure 1 compares the responses to
pricing errors using the asymmetric threshold and a symmetric (ESTAR) smooth-transition
approach. While it is possible to modify the ESTAR model to account for asymmetries

for j=f, s. (5a)
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Threshold Transition Function (7 in eqn (4))
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In this illustration, y; = 3 = 1,and -y = 0. The symmetric thresholds (i.e. -¢
and c in eqn (4a)) have been replaced by asymmetric thresholds (-.09 and .12).

ESTAR Transition Function (¥ in eqn (5))
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In this illustration, 2% =1 in eqn (5a).
Figure 1. Response to pricing errors

Threshold transition function (y in eqn (4))
ESTAR Transition Function (¥ in eqn (5))
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(see Anderson 1997), this paper specifies and employs a new smooth transition function that
allows for wide ‘no-arbitrage’ bands as well as asymmetries. This function allows for
different behaviour, depending on whether the pricing error is positive or negative, and it is
defined by

Apj - Apj ' Apy
1+exp<—o—Pj(vt,d *Cp)) 1+exp<0—Pj0p> exp(O—P]cP>
v v v

forv,_4 > 0, and

A i
1 1 1 +exp (ﬂ c,o)
Dy = i (6a)

Avi
| 1 1 4 exp (ﬂ cN)
Dy = - - - : o (6b)
1 +exp<0—N’(U,,d +cN)> 1 +exp(g—N’cN> exp(o—Ach>
v v

for v,_4 =< 0. The subscripts P and N respectively indicate those portions of the transition
function that relate to positive and negative pricing errors. We call ® a U-STAR transition
function, because its main characteristic is that it is shaped like a drunken U. The constants
in the right hand brackets of these equations scale ® so that 0 < ® < 1, and the constants
inside the first brackets ensure that ® = 0 at v,_,; = 0, and that ® is continuous at v,_; = 0.
See Figure 2 for some illustrations.

The U-STAR model then uses (6a) and (6b) in a specification given by

fi=c 45D fir + YD1+ bia
HI(0a > 0).Dp(Vi-a)lef + af(Df i1 + BE(L)si1 + v bid]
H(0—a < 0).Qy (v} + a) (D) f oy + BY(Dysic +yY bioal + ]
si =+ ad(L)f -1+ BUL)S -1 + V) bi—a
+1(Wa > 0).Pp(v,-)e] + al(L)fir+BL(L)s1 + 78 bid]
(0 a < 0).Pn(v-DeY +al(L)fir +BYD)sia +yY bidl + €, (6)

which 1mp11es a total response to pricing errors of y +1(V-a > 0). ¥; PP ip(vi—a) +
(Vg <0). y @y (v;—q). Since the automation of the futures market should lower transac-
tion costs and make the adjustment of portfolios easier, we expect smaller ‘no arbitrage
bands’ in the latter part of our sample. For 9 ~ 0 this corresponds to a thinner U (|cp|, and
|c | will be smaller), with steeper sides (Ap and Ay will be bigger). Since the stock market
in Australia was automated prior to that in the futures market, the automation of the futures
market should also reduce the differences between trade based on each index, and therefore
reduce the presence of asymmetries. This corresponds to a decrease in the difference
between |cp|, and |cy/|, and a decrease in the difference between Ap and Ay . Similar patterns
in ®; might also be expected even when y # 0, although some response to pricing errors
(iey; 0 is now present at all times.
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0.2 0.1 0.0 0.1 02
Pricing Error
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Pricing Error
Figure 2: U-STAR transition functions
III. INSTITUTIONAL DETAILS AND DATA
Our empirical analysis is based on the All Ordinaries Index (AOI), calculated by the
Australian Stock Exchange (ASX). Based on market capitalisation, the ASX is the 12th
largest share market in the world, and the second largest in the Asia Pacific Region. At the

end of 1999, the AOI was based on 253 actively traded stocks and it accounted for 91% of
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listed Australian equities. The Australian Stock Exchange trades between 10.00 am and
4.00 pm (EST) from Monday to Friday (public holidays excluded). Opening times for
individual stocks are staggered but all stocks are trading by 10.10, and at the end of the day
additional trading at volume weighted prices may continue until 4.20 pm. Stock trading has
been fully automated since 1991, when the Stock Exchange Automated Trading System
(SEATS) was introduced. SEATS continuously matches bids and offers during normal
trading hours, and updates the price indices. It also disseminates this updated information to
data vendors, at frequencies which are usually more than once every minute.

The Sydney Futures Exchange (SFE) has been trading Share Price Index (SPI®) futures
contracts based on the AOI since 1983, when it became the first exchange outside the USA
to list index futures. Almost 20,000 SPI® contracts are traded each day, with most trading
occurring in contracts with the next expiry month. Contracts mature at the end of March,
June, September and December each year. Unlike the ASX, the SFE has not been fully
automated until very recently, with trading in SPI® futures becoming fully automatic on
October 4, 1999. Trading on the floor occurred between 9.50 am to 12.30 pm, and then from
2.00 pm until 4.10 pm (EST) from Monday to Friday (public holidays excluded) until
November 12, 1999. Since then, day-time trading hours have been extended, with trading
starting at 9.30 am and continuing until 4.30 pm.

Standard P/ASX 200 and the S&P/ASX 300, which are respectively based on 200 and 300
stocks. SPI® futures contracts based on the old All Industries Index are still being issued,
but are being phased out as new futures contracts (called SPI200 and based on the S&P/
ASX200) are being phased in. The first SPI200 contracts were listed in May 2000 and
expired in June 2000, while the last SPI® contracts will expire in September 2000. The old
All Ordinaries Index (based on 253 stocks) is still calculated, but will be discontinued after
September 2001.

The data used in this study is tick by tick AOI data obtained from IRESS (Integrated Real
Time Equity System) and matching tick by tick SPI® data obtained from the SFE. The
samples covered the last two weeks of August in 1999, and the first two weeks of November
1999. The AOI is updated on IRESS approximately twice a minute, (to the nearest 0.1 index
point), and this was converted to one observation per minute by using the last observation
for each minute. The SPI data for August listed the time (to the nearest second), volume
(number of contracts) and index value (to the nearest integer) for each transaction, but the
November data recorded trade times in minutes, rather than in seconds. Minute by minute
futures index values were obtained by weighting the index for each trade by its volume. The
last available observation was used when data was missing. Only those contracts for futures
expiring in September 1999 were included in the August data set, and only those contracts
for futures expiring in December 1999 were included in the November data set.

Both markets were open between 10.00 am to 12.30 pm and then from 2.00 pm to 4.00,
which led to 271 matched observations each day. However, the first 15 minutes of each day
were discarded to avoid anomalies related to the staggered opening of the ASX. The daily
samples of the stock and futures indices were each demeaned using the remaining observa-
tions (from 10.16 to 12.30 and 2.00 pm to 4.00 pm); demeaning the futures index accounted
for dividends and interest rates (which were assumed to be constant for each day), while
demeaning the stock index allowed the scaling of the basis to be centered on zero.? The

2 The assumptions that are made when demeaning the daily samples are that » and y are constant
throughout each day, and that the futures contract expiry date 7 is far enough into the future to ensure
that (7' — ¢) is approximately constant throughout each day. The demeaning implies that b, = v, in our
empirical work.
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analysis was then based on samples covering 10.30 am to 12.30 pm and 2.15 pm to 4.00 pm
(226 observations) for each day, which allowed for the inclusion of up to 15 contiguous lags
in our autoregressions. In total, there were thirteen days of data for August 1999 (2938
observations) and ten days of data for November 1999 (2260 observations), making 5198
observations altogether.

IV. EMPIRICAL ANALYSIS

It is useful to examine the properties of the returns and the basis prior to modelling their
dynamics, and some summary statistics relating to the demeaned data are provided in Table
I. Returns for futures were more volatile than those for stocks, and the variability of futures
increased slightly after the automation of that market. The basis was slightly skewed, and
although its variability increased after the automation of the futures market, its range
decreased. All reported first order autocorrelation coefficients (excepting the futures return
for November) were statistically significant, and formal tests indicated stronger first order

Table IA Summary statistic relating to the indices and returns

August November Full Sample

Futures Stocks Futures Stocks Futures Stocks
Max Price Index 3113.8 3083.4 3018.7 3009.0 3113.8 3083.4
Min Price Index 2905.5 2934.1 2880.2 2887.2 2880.2 2887.2
ADEF for In(Price) —1.349 —1.327 —1.629 —1.855 —1.471 —1.557
Max Return 0.1360 0.1169 0.1296 0.1171 0.1360 0.1171
Min Return —0.1240 0.1238  —0.1602 —0.1023 —0.1602 —0.1238
St Dev Return 0.0299 0.0209 0.0319 0.0197 0.0308 0.0204
p1 for Return 0.1590 0.2294 0.0049 0.0837 0.0874 0.1705
ADF for Return —4.330 —4.262 —4.229 —4.670 —4.389 —4.158
No of Observations 2938 2938 2260 2260 5198 5198

Table IB Summary statistics relating to the basis

August November Full Sample

Mean 0.0000 0.0000 0.0000
Median —0.0007 —0.0026 —0.0013
Max 0.3896 0.2377 0.3896
Min —0.3113 -0.2122 —0.3113
St Dev 0.0688 0.0785 0.0732
Skewness 0.1511 0.1263 0.1388
Kurtosis 5.1954 2.6947 3.8450
pifor Ab, —0.1336 -0.1727 —0.1528
ADF —2.1157 —2.1333 —2.1233
No of Observations 2938 2260 5198

Notes: p; is the first order autocorrelation coefficient. The reported ADF statistics are arithmetic
averages of the ADF test statistics for the daily samples. The ADF regressions for the In(price)
contained a constant and 12 lags, while the ADF regressions for the returns and the basis contained 12
lags.
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autocorrelation in returns prior to the cessation of floor-trading in futures, and stronger
negative first order autocorrelation in basis changes after the shift to electronic trading. The
reported statistics for unit root analysis are the averages of Dickey Fuller unit root test
statistics for each of the daily samples. Tests relating to the full samples would have been
misleading given the removal of overnight returns and the use of different demeaning
transformations for different days. The averages of the Dickey Fuller are indicative only, but
compared to the usual critical values (—2.88 for /n(price) and —1.95 for the returns and the
basis) they suggest that the log prices have a unit root, and that returns and the basis are
stationary. All 46 of the underlying tests on daily data supported a unit root in /n(prices), all
but four® of the tests rejected a unit root in returns, and all but six> rejected a unit root in the
basis.

Table II reports some summary statistics relating to three linear VECM(12) specifications
that provide the point of departure for our nonlinear modelling exercise. These models are
based on the full sample, the August sample and the November sample, and full details are

Table Il Linear error correction models of returns for futures and stocks

FULL SAMPLE
Model of Futures Returns:
Last statistically significant (at 5% level) lag of stock returns: s, 4
Error correction coefficient (v,_;) with het. c.z-stat: —0.0287 (—3.9731)
Summary statistics: R> = 0.049,  s.e. = 0.030

Model for Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: f,_jo
Error correction coefficient (v,_;) with het. c.z-stat: 0.0254 (5.369)
Summary statistics: R> = 0.161,  s.e. = 0.019

AUGUST SAMPLE
Model of Futures Returns:
Last statistically significant (at 5% level) lag of stock returns: s,_s
Error correction coefficient (v,—;) with het. c.z-stat: —0.0276 (—2.5394)
Summary statistics: R> = 0.069, s.e. = 0.029

Model for Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: f,_g
Error correction coefficient (v,_) with het. c.z-stat: 0.0280 (3.9015)
Summary statistics: R> = 0.212,  s.e. = 0.019

NOVEMBER SAMPLE
Model of Futures Returns:
Last statistically significant (at 5% level) lag of stock returns: s,_,
Error correction coefficient (v,_;) with het. c.z-stat: —0.0301 (—3.1313)
Summary statistics: R> = 0.044,  s.e. = 0.031

Model for Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: f,_o
Error correction coefficient (v,_;) with het. c.z-stat: 0.0215 (3.5346)
Summary statistics: R> = 0.121, s.e. = 0.019

3 Two of these exceptions relate to Melbourne Cup Day, when Australians are much more interested in
a horse race than they are in the stock market.

© Blackwell Publishers Ltd/University of Adelaide and Flinders University of South Australia 2001.



552 AUSTRALIAN ECONOMIC PAPERS DECEMBER

provided in Appendix 1. The above ADF tests justified our error correction representation,
and while AIC suggested that five lags would be sufficient to model the /inear dynamics of
returns, we worked with a longer lag structure to allow for the possibility that AIC might not
choose the optimal lag structure for our ronlinear models. The longer lag structure also
provides a broader picture of the ‘lead-lag’ relationship.

For the full sample, the error correction term is negative in the futures equation and
positive in the stocks equation (as expected), with both results being statistically significant.
Each of the first ten lags of futures returns are statistically significant in the stock returns
equation, in line with previous findings that returns for futures lead returns for stocks. The
effect of lagged stock returns on futures is statistically significant for two lags, but changes
sign at lag three and becomes insignificant after lag four.

The VECM(12)s for the August and November subsamples are similar to the full sample
model, in that the error correction coefficients are statistically significant and negative in the
future returns equations and statistically significant and positive in the stock returns
equations. Comparing the August and November equations, the future returns equation
changes very little, although more lags of stocks have predictive power for futures in August
(5 lags), than in November (2 lags). A heteroscedasticity corrected test of no change has a p-
value of 0.1013. The changes in the equation for stock returns are more pronounced, with
the futures lead increasing from about eight minutes in August to ten minutes in November.
For this equation, a heteroscedasticity corrected test of no change strongly rejects the null,
with a p-value of 0.0001. For each return, the overall level of significance (as measured by
the p-value for the overall F-test) is lower in November than August, suggesting that returns
have become less predictable since the automation in the futures market.

Table III reports the results of heteroscedasticity corrected tests of the linear VECM(12)
against various ESTAR alternatives. Each of these alternatives uses the lagged basis as a
transition variable, but the transition lag is allowed to vary from one up to twelve. The tests
are performed on a model of the basis as well as on the returns equations, because ESTAR
behaviour in the basis will imply ESTAR behaviour in the returns; this model of the basis

Table III  P-Values of heteroscedasticity consistent tests of Hy : No Nonlinearity vs H; : ESTAR type
nonlinearity

August November

Transition

Lag Stocks Futures Basis Stocks Futures Basis
1 0.0004 0.0000 0.0041 0.0466 0.3900 0.8914
2 0.0009 0.0000 0.0016 0.2432 0.0029 0.4106
3 0.0000 0.0011 0.0026 0.0258 0.1892 0.5832
4 0.0004 0.0001 0.0009 0.1360 0.6489 0.7423
5 0.0001 0.0000 0.0000 0.0789 0.0789 0.1068
6 0.0000 0.0000 0.0000 0.0211 0.0202 0.1611
7 0.0000 0.0001 0.0000 0.0057 0.0797 0.3576
8 0.0014 0.0032 0.0313 0.1149 0.5574 0.7632
9 0.0615 0.0142 0.0586 0.0100 0.4731 0.8928

10 0.0034 0.0067 0.0200 0.0380 0.0750 0.3305

11 0.0373 0.0330 0.0407 0.0436 0.1842 0.8670

12 0.0004 0.0184 0.0231 0.0001 0.2348 0.9009

Note: The minimum p-value found for each set of linearity tests is indicated in bold type.
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had the same explanators as the VECM(12). Given the similarities between the ESTAR and
USTAR specifications, one would expect the ESTAR tests to have power against USTAR
alternatives. The tests are based on second order approximations to the nonlinear alternative,
and they assess whether the explanatory power of the linear equations increase, when one
adds additional regressors that interact v>_; with all of the VECM explanators.

Given the differences between the August and the November models noted above, and the
fact that we wanted to assess the effect of closing futures floor trading, the nonlinearity tests
were performed on each subsample separately. For August, nearly all of the tests found
strong evidence of nonlinearity associated with movements in the basis. The p-values of the
tests on returns and the basis were all minimised when d = 6, which suggests a lag of six
minutes between pricing errors and nonlinear adjustment in returns. For November, the
results were less significant and not as clear, but they supported a specification using d = 6
for each of the returns equation. The basis did not show evidence of nonlinearity for any
value of d, which together with the contrasting August results suggests that the process for
pricing errors has changed since automation. Linearity in the basis also casts doubt about the
presence of a ‘no-arbitrage band’. The fact that d = 6 is not a suitable transition variable for
the basis despite its suitability for each return is interesting for another reason, because this
is consistent with a common nonlinear factor in returns. See Anderson and Vahid (1998) for
details on common nonlinear factors.

We next set d = 6 and then estimated the implied USTAR models. Given the long lag
structure and the complicated nature of the nonlinearity, we used a two stage estimation
process, that involved a grid search for the transition parameters during the first stage. For
the August sample we chose to work with estimates of the transition function for the basis,
since the nonlinearity in the returns was associated with the nonlinear movement in the basis.
The estimated transition parameters for the basis were then incorporated as fixed transition
parameters in the second stage of estimation, which involved estimating the other parameters
for the equations for stock returns and futures returns. For November we adopted a different
approach, since the basis was linear. Here, we first used a grid search to estimate the
transition function for the stock returns (which we chose in preference to the futures equation
because stock returns are more predictable than futures returns), and we then estimated the
other parameters for the stock return equation. We then used this, together with an estimated
linear equation for the basis, to deduce the futures equation. This latter technique imposed
the common factor restriction implied by the nonlinearity tests.

Summary statistics relating to each nonlinear VECM(12) are presented in Table IV, and
the estimated transition functions are illustrated in Figure 3. Full details are provided in
Appendix 2. The lag structure in these nonlinear models was richer than than that in the
linear VECMS. In the nonlinear model, the futures lead over stocks was 10 minutes in
August and increased to 11 minutes in November, while stocks could predict futures for up
to 12 minutes ahead in August, but for only 8 minutes in November. An important property
of these models is that the predictability of each type of return decreased after automation
(the R? dropped quite substantially), consistent with a decline in the strength of the lead-lag
relationship. The error correction terms were statistically significant in most regimes for the
August equations (including the middle regimes), which provides evidence against restrict-
ing yr1 = 0 and y, = 0 (as in Taylor ef al. (2000)). Thus, although the strength of error
correction changes with the pricing error, the usual transactions cost interpretation of ‘no-
arbitrage’ bands does not provide the whole story in this case. There are other factors
affecting the mean reversion process, which include infrequent trading and complications
associated with trading portfolios of stocks. For November, the error correction terms were
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Table IVA  Nonlinear error correction model of returns for futures and stocks

AUGUST SAMPLE
Model of Futures Returns:
Last statistically significant (at 5% level) lag of stock returns: s,_1,
Coefficients and heteroscedasticity corrected #-stats for error correction terms:

N 00375 (0.692)
P00 —0.0442 (—2.528)
yPr 01321 (—1.256)

Summary statistics: R> = 0.102,  s.e. = 0.028

Model of Stock Returns:
Last statistically significant (at 5% level) lag of futures returns: 1,19
Coefficients and heteroscedasticity corrected -stats for error correction terms:

¥V —0.1076 (—2.648)
¥ 0.0518 (4.788)
yP: 0.1664 (2.492)

Summary statistics: R> = 0.248, s.e.=0.018
Correlation between errors for the two equations is 0.365
Implied s.e. of basis = 0.028.

Transition Function:

3.42
- 1 272 %013
) — 1 1 texp (0.0688 )
T — —_ .
3.42 3.42 3.42
1 _ 2 e —0.1 1 X 0.1 X 0.1
I + exP( 0.0688 U6 O 3)> texp <0.0688 0 3) exp (0.0688 0 3)
forv,_¢ >0
10
- 1 % 0.09
1 1 + exp (0_0688 )
P = 10 - 10 ' 10
—_— . —— X 0. — X 0.
l+exp<0.0688(ut,(,+009)> l+eXp<0.0688 009) eXp<0.0688 009)
forv,_¢ <0

The transition variable v,_g is < —0.09 for 216 observations, between —0.09 and 0.13 for 2616
observations, and > 0.13 for 106 observations.
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Table IVB  Nonlinear error correction model of returns for futures and stocks

NOVEMBER SAMPLE
Model of Futures Returns:
Last statistically significant (at 5% level) lag of stock returns: s,_g
Coefficients and heteroscedasticity corrected #-stats for error correction terms:

yNi —0.0929  (—1.294)
Y0 —0.0091 (—0.282)
yPr —0.0171  (—0.395)

Summary statistics: R> = 0.043, s.e. = 0.031

Model for Stock Returns:
Last statistically significant (at 5% level) lag of future returns: f/_;
Coefficients and heteroscedasticity corrected #-stats for error correction terms:

y¥o 00560  (1.379)
¥ 00208  (1.180)
yP: 00146 (0.567)

Summary statistics: R> = 0.163,  s.e. = 0.018
Correlation between errors for the two equations is 0.274.
Implied s.e. of basis = 0.031.

Transition Function:

- 1 0.04
— ! 1 T exP\0.0785 )
P 10 - 10 ' 10
1 T (06— 004)) 1 X 0.04 0.04
I + eXp( 0.0785 U )> texp (0.0785 ) cxp <0.0785 )
forv,_¢ >0
10
- 1 % 0.09
1 1 Fexp (0.0785 )
P = 10 - 10 ' 10
—— (v . X 0. X 0.
_1 + exp (0.0785 (V6 +0 09)) 1 + exp <0.0785 0 09) exp (0.0785 0 09)
forv, ¢ <0

The transition variable v,_g is < —0.09 for 216 observations, between —0.09 and 0.04 for 2009
observations, and > 0.04 for 713 observations.
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Figure 3: Estimated transition functions
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not statistically significant, although the lagged basis still played a crucial role in that it
generated the transition between different behavioural regimes.*

Figure 3 shows that the boundaries of the behavioural regimes for August and November
are different, with the inner band for pricing errors being more symmetric for November
than for August, and thinner. The increased symmetry suggests that the automation of the
futures market has reduced some of the practical differences between responding to positive
and negative pricing errors, and the thinner band implies that smaller pricing errors will now
induce regime shifts.

It is hard to interpret autoregressive parameters in time series models, and nonlinearity
further complicates interpretation. We therefore study the dynamic properties of our models
by analysing their generalised impulse response functions.”> We trace the impacts of shocks
to futures and stocks on movements in the basis, assuming that the basis is initially zero and
the market is in equilibrium. The size of the shocks that we consider are approximately one
standard deviation of the basis (about 0.07) and two standard deviations, and given that it is
often believed that shocks to the stock index are firm specific and different from shocks to
the futures index which reflect macroeconomic shocks (see Frino et al., 2001), we consider
two extreme cases. In the first case a positive (negative) shock to the basis is caused purely
by a positive (negative) shock in the futures market, and we call this sort of shock a
‘macroeconomic’ shock. In the second case a positive (negative) shock to the basis is caused
purely by a negative (positive) shock to the stock index, and we call this sort of shock a ‘firm
specific’ shock.

The generalised impulse response functions are illustrated in Figures 4 and 5. There are
minor differences between the effects of the two types of shocks, and minor asymmetries
between the effects of positive and negative shocks. There are no significant differences
between the response functions for August and November. The half lives of all shocks are
short, but in each case it takes more than an hour for equilibrium to be restored.

V. CONCLUSION

This paper examines the impact of screen trading in futures on the nonlinear properties of
the basis and returns. We use a new form of smooth transition model to account for
nonlinearities caused by transaction costs and other market/data imperfections, and we study
the properties of these models by inspecting their implied responses to various shocks. We
find strong evidence of nonlinearity before the futures trading went on-line, and weaker
evidence of nonlinearity after on-line trading. Our analysis suggests that the automation of
the futures market has made the nonlinear properties of the stock market and the futures
market more similar, and that after the introduction of on-line futures trading, the returns in
each market have a common nonlinear factor. Futures returns lead stock returns (with
feedback) both before and after the introduction of screen-trading, and the futures lead
increases only slightly after automation. The speed of mean-reversion in the basis is slow,
and appears to be unchanged. We find that even though the models are statistically different,
their implications as shown by their impulse response functions are virtually the same.

4 Further exploration based on unit root tests for the basis found weak evidence of ‘no-arbitrage bands’
given by —0.009 < b,_¢ < 0.009 for August and —0.003 < b,_¢ < 0.003 for November, but we do not
pursue this issue further here.

> Unlike linear models, the expected response to shocks cannot be derived analytically, and are
therefore derived by averaging over many simulated response paths (See Koop et al., 1996).
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Response to large macroeconomic shocks
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APPENDIX IA: LINEAR ERRORCORRECTION MODEL FORTHE FUuLL
SAMPLE

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat
const —0.0002 —0.4523 —0.0000 —0.1316
U, —0.0287 -3.9731 0.0254 5.3686
S 0.0400 2.0193 0.1771 15.6057
= —0.0340 —1.8107 0.1117 10.3028
fi3 —0.0296 —1.5672 0.0933 8.2279
fr-a —0.0006 —0.0320 0.0545 4.9544
fi-s —0.0095 —0.5568 0.0565 5.0410
Sfi-6 —0.0034 —0.1933 0.0246 2.2409
= 0.0103 0.6051 0.0264 2.4878
fi-s —0.0027 —0.1648 0.0233 2.0659
fio 0.0015 0.0853 0.0213 1.9916
Si-10 —0.0149 —0.8755 0.0206 1.9126
S —0.0104 —0.6304 0.0190 1.777
Si-12 0.0059 0.3594 0.0087 0.8354
S 0.2903 10.92224 —0.0084 —-0.4713
Si_2 0.0627 2.3194 —0.0413 —2.2830
Si-3 —0.0186 —0.7046 —0.0548 —3.1965
Si_4 —0.06422 —2.4054 —0.0349 —-2.0721
S5 —0.0276 -1.0767 —0.0338 —1.9466
Si—6 —0.0059 —0.2295 —0.0191 —1.1448
Si_7 —0.0444 —1.8100 —0.0437 —2.6382
Si_g —0.0149 —0.6180 —0.0169 —1.0355
Si—9 0.0337 1.4646 0.0032 0.2001
Si-10 0.0147 0.6366 —0.0242 —1.6130
Si—11 0.0233 1.1217 —0.0140 —0.9581
Si—12 —0.0033 —0.1593 —0.0265 —1.7854
R? 0.0488 0.1612
s.e 0.0301 0.0187

Note: The pricing error v, = b,_; — u is used as the error correction term.

APPENDIX IB: LINEAR ERRORCORRECTION MODEL FORTHE AUGUST

SAMPLE
Returns for Futures Returns for Stocks
Variable Coef het.c t-stat Coef het.c. t-stat
const —0.0003 —0.5047 0.0000 0.0220
U —0.0276 —2.5394 0.0280 3.9015
fi-1 0.1030 4.1596 0.2168 13.3864
fi2 —0.0370 —1.5210 0.1243 8.2632
fi-3 —0.0035 —0.1317 0.0985 6.1992
fia —-0.0173 —0.7257 0.0466 2.8822
fi-s 0.0067 0.2765 0.0567 3.4756
fi-6 0.0064 0.2541 0.0332 2.1668
= 0.04487 1.8601 0.0242 1.6036
fi-s 0.0140 0.5904 0.0321 2.0885
fi-o —0.0069 -0.2797 0.0154 0.9983
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Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat
fi-10 —0.0266 —1.1316 0.0093 0.6117
fi-n —0.0030 —0.1288 0.0214 1.4354
fi12 0.0138 0.5723 0.0015 0.1025
Sl 0.2831 7.9086 0.0000 0.0040
Sio 0.0205 0.5771 —0.0336 —1.4428
Si3 —0.0291 —0.8341 —0.0643 —2.7648
Si_a —0.0673 —1.8982 —0.0516 —2.2869
S5 —-0.0773 —2.2647 —0.0536 —2.3922
Si—6 —0.0188 —0.5383 —0.0211 —0.9796
St —0.0553 —1.6394 —0.0533 —2.4407
S8 —0.0056 —0.1738 —0.0483 —-2.2176
Si_9 0.0325 1.0124 —0.0031 —0.1376
St-10 0.0184 0.6242 —0.0036 —0.1712
S 11 0.0384 1.3737 —0.0090 —0.4696
Si_12 0.0054 0.1945 —0.0362 —1.7486
R? 0.0694 0.2121

s.e 0.0290 0.0187

Note: The pricing error v, = b,_; — u is used as the error correction term.

APPENDIX IC: LINEAR ERROR CORRECTION MODEL FORTHE NOVEMBER

SAMPLE
Returns for Futures Returns for Stocks
Variable Coef het.c t-stat Coef het.c. t-stat
const 0.0000 0.0116 —0.0001 —0.2701
2 —0.0301 -3.1313 0.0215 3.5346
fio1 —0.0294 —-0.9750 0.1334 8.5887
fi2 —0.0402 —1.4318 0.0930 6.0773
fi-3 —0.0554 —2.1399 0.0861 5.4026
fia 0.0063 0.2420 0.0640 4.289
fis —0.0243 —1.0098 0.0617 4.0238
fie —0.0186 —0.7495 0.0194 1.2551
= —0.0278 —1.1550 0.0311 2.0984
fi-s —0.0307 —1.3406 0.0141 0.8690
fi-o 0.0033 0.1357 0.0268 1.8369
fi-10 —0.0080 —0.3314 0.0318 2.1267
fr-1 -0.0177 —0.7459 0.0171 1.1424
fr-12 —0.0085 —0.3784 0.0145 1.0294
Sio1 0.2850 7.2584 —0.0483 —1.8785
Sio 0.1211 3.0051 —0.0645 —2.2729
Si3 0.0202 0.5010 —0.0433 —1.6646
Si 4 —0.0392 —0.9514 —0.0099 —0.3764
Si_s 0.0431 1.0931 —0.0015 —0.0567
Si—6 0.0178 —0.4589 —0.0009 —0.0365
Siq —0.0269 —0.7348 —0.0161 —0.6480
Si-8 —0.0213 —0.5792 0.0328 1.3321
Si—9 0.0347 1.0309 0.0175 0.7482

continued overleaf
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Returns for Futures Returns for Stocks
Variable Coef het.c t-stat Coef het.c. t-stat
Si-10 0.0026 0.0711 —0.0482 —2.2835
Si—11 —0.0118 —0.3730 —0.0273 —1.2324
Si—12 —0.0306 —0.9448 —0.0293 —1.3929
R? 0.0436 0.1205
s.e 0.0313 0.0186
Note: The pricing error v,_; = b,_; — u is used as the error correction term.

APPENDIX 2A: NONLINEAR ERROR CORRECTION MODEL OF FUTURES
(AUGUST SAMPLE)

Superscript 0 Superscript P Superscript N
Regime Regime Regime

Variable Coef t-stat Coef t-stat Coef t-stat
const —0.001 —1.525 0.035 1.987 0.0003 0.0325
Vg —0.044 —2.528 —0.132 —1.256 0.037 0.692
fi-1 0.093 3.151 0.299 2.320 0.052 0.510
fi2 —0.027 —0.941 0.034 0.250 0.065 0.642
fi-3 —0.026 —0.839 0.463 2.773 0.210 1.812
fi-a —-0.015 —0.536 0.154 1.208 0.003 0.024
fi-s —0.021 —0.736 0.530 3.158 0.044 0.400
fi-6 0.005 0.174 —0.084 —0.650 0.005 0.054
= 0.042 1.579 0.163 1.363 —0.082 —0.846
Si-s 0.044 1.661 —0.318 —2.727 —0.197 —2.261
fi—o 0.025 0.926 —0.230 —2.230 —0.168 —1.549
Si-10 —-0.012 —0.449 0.179 1.276 —0.282 —-3.322
S —0.006 —-0.224 0.238 1.423 —0.141 —1.420
Sr-12 0.020 0.746 —0.009 —0.068 —0.052 —0.567
Si-1 0.266 6.564 —0.165 —0.769 0.031 0.219
S—2 0.014 0.341 —0.277 —1.255 0.007 0.053
S1-3 —0.022 —0.546 —0.249 —1.324 —0.094 —0.630
Si_4 —0.042 —1.016 —0.430 —1.751 —0.136 —0.847
S5 —0.089 —2.221 —0.229 —1.121 0.129 0.850
Si—6 -0.027 —0.710 0.073 0.373 0.174 1.312
Si—7 —0.088 —2.361 0.270 1.278 0.240 2.034
S8 —0.022 —0.635 —0.161 —0.888 0.243 1.986
Si_9 0.006 0.180 0.170 0.946 0.221 2.010
S-10 0.011 0.331 —0.238 —1.472 0.155 1.327
Si-11 0.016 0.514 0.007 0.044 0.220 1.916
Si—12 0.030 0.967 0.032 0.221 —-0.213 -2.097
Transition A not applicable 10
Transition ¢ not applicable —0.09

Note: See equations (6), (6a) and 6(b) for the model specification. All ¢ statistics are corrected

heteroscedasticity. The R? is 0.102 and the s.e. is 0.028.
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APPENDIX 2B: NONLINEAR ERROR CORRECTION MODEL OF STOCKS
(AUGUST SAMPLE)

Superscript 0 Superscript P Superscript N
Regime Regime Regime

Variable Coef t-stat Coef t-stat Coef t-stat
const 0.0001 0.277 —0.030 —2.700 —0.009 —1.552
Ui 0.052 4.788 0.166 2.492 —0.108 —2.648
fi-1 0.185 9.761 -0.019 -0.231 0.116 1.544
fi2 0.094 5.437 —0.103 —1.175 0.188 2.660
= 0.068 3.852 —0.090 —0.964 0.180 2.090
fi-a 0.015 0.830 —0.266 —-2.612 0.250 2.989
fis 0.021 1.040 —0.147 —1.755 0.191 2.286
fi-6 0.017 0.991 —0.168 —2.309 0.186 3.466
= 0.017 1.029 0.037 0.440 0.073 1.224
Sfi-s 0.042 2.443 —0.096 —1.472 —0.059 —1.059
fio 0.007 0.384 —-0.074 —-0.920 0.119 1.735
fi-10 0.001 0.052 —0.050 —0.572 0.019 0.356
fi-11 0.011 0.697 —0.048 —0.553 0.057 0.740
fi12 0.009 0.558 —0.242 —2.578 —0.012 —0.202
Si-1 0.014 0.521 0.097 0.692 —0.041 —0.362
Si2 0.023 0.906 0.027 0.203 —0.336 —3.266
Si3 —0.022 —0.899 0.434 3.408 —0.412 —4.426
Si_4 —0.020 —0.819 0.224 1.722 —0.236 —2.368
Si_s —0.011 —0.432 0.030 0.268 —0.244 —2.449
Si6 -0.018 —0.779 0.048 0.345 —0.091 —1.115
Si_7 —0.024 —0.986 —0.196 —1.839 —0.176 —2.446
S8 —0.067 —2.868 0.063 0.461 0.140 1.856
Si9 —0.006 —0.253 0.118 0.989 -0.018 —0.206
Si-10 0.010 0.417 0.070 0.601 —0.151 —2.049
Si11 —0.026 —1.280 0.176 1.481 0.124 1.751
Si_12 —0.038 —1.778 0.266 2.799 —0.115 —1.654
Transition A not applicable 3.42 10
Transition ¢ not applicable 0.13 —0.09

Note: See equations (6), (6a) and 6(b) for the model specification. All ¢ statistics are corrected for
heteroscedasticity. The R? is 0.248 and the s.e. is 0.018.

APPENDIX 2C: NONLINEAR ERRORCORRECTION MODEL OF FUTURES
(NOVEMBER SAMPLE)

Superscript 0 Superscript P Superscript N
Regime Regime Regime
Variable Coef t-stat Coef t-stat Coef t-stat
const 0.0004 0.372 —0.001 —0.294 —0.008 —0.875
V6 —0.009 —0.282 —0.017 —0.395 —0.093 —1.294
fi —0.137 —2.367 0.194 2.421 0.316 3.018
fi2 —0.061 —1.197 —0.005 —0.070 0.098 1.012
= —0.099 —1.961 0.092 1.327 0.069 0.653
fia 0.020 0.380 —0.065 —0.873 0.007 0.070

continued overleaf
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Superscript 0 Superscript P Superscript N
Regime Regime Regime
Variable Coef t-stat Coef t-stat Coef t-stat
fi-s —0.003 0.056 —0.090 —1.335 0.028 0.258
fi-s 0.022 0.551 —0.077 —1.269 —0.067 —0.802
= —0.062 —1.706 0.121 2.143 —0.016 —1.192
fi-s —0.042 —1.275 0.034 0.624 0.060 0.750
fi-o —0.007 —0.224 0.019 0.309 0.032 0.359
Si-10 —0.023 —0.650 0.046 0.800 —0.049 —0.601
Si-n —0.003 —0.082 —0.040 —0.706 —0.024 —0.285
Si-12 0.006 0.197 —0.019 —0.363 —0.043 —0.518
Si1 0.355 5.128 —0.104 —1.073 —0.203 —1.443
Si—2 0.171 2.454 —0.027 —0.262 —0.249 —1.884
Si-3 0.056 0.764 —0.086 —0.848 0.007 0.049
Si—4 —0.053 —0.728 0.034 0.317 —0.010 —0.075
Sis 0.055 0.720 —0.029 —0.280 0.095 0.727
Si—6 —0.084 —1.307 0.197 2.144 0.144 1.183
87 0.066 —1.076 —0.167 —1.903 —0.256 —2.205
Si-8 —0.066 —1.141 0.058 0.657 0.229 1.917
Si—9 0.034 0.670 —0.001 —0.008 —0.106 —0.838
Si—10 0.063 1.049 —0.099 —1.186 —0.095 —0.769
Si-11 —0.010 —0.217 —0.098 —1.313 0.172 1.667
Si—12 —0.069 —1.348 0.083 1.130 0.067 0.650
Transition 4 not applicable
Transition ¢ not applicable —0.09

Note: See equations (6), (6a) and 6(b) for the model specification. All ¢ statistics are corrected
heteroscedasticity. The R? is 0.043 and the s.e. is 0.031.

APPENDIX 2D: NONLINEAR ERROR CORRECTION MODEL OF STOCKS
(NOVEMBER SAMPLE)

for

Superscript 0 Superscript P Superscript N
Regime Regime Regime

Variable Coef t-stat Coef t-stat Coef t-stat
const —0.001 —1.322 0.0002 0.097 0.011 1.990
V6 0.021 1.180 0.015 0.567 0.056 1.379
fio1 0.105 3.657 0.049 1.191 0.028 0.436
fi2 0.082 3.108 —0.011 —0.255 0.045 0.807
fi3 0.096 3.505 —0.018 —0.412 —0.127 —2.458
fi-a 0.075 2.683 —0.037 —0.874 —0.089 —1.585
fi-s 0.076 2.974 —0.027 —0.595 —0.065 —1.097
fi-6 0.020 0.987 —0.008 —0.211 0.036 0.729
= 0.038 1.881 —0.002 —0.042 —0.012 —0.255
Si-s 0.034 1.595 —0.053 —1.357 —0.025 —0.469
fi-o 0.018 0.934 0.006 0.152 0.069 1.240
Si-10 0.018 0.902 0.044 1.225 —0.023 —0.430
11 0.005 0.296 0.029 0.813 0.005 0.092
Si-12 0.010 0.535 0.003 0.093 0.029 0.521
Si—1 —0.030 —0.786 —0.069 —1.074 0.085 0.946
Si—2 —0.089 —2.377 0.072 1.095 0.050 0.572
543 —0.075 —-1.791 0.060 0.927 0.127 1.380
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Superscript 0 Superscript P Superscript N
Regime Regime Regime
Variable Coef t-stat Coef t-stat Coef t-stat
Si—4 —0.034 —0.833 0.029 0.436 0.201 2.216
Si-s —0.064 —1.637 0.144 2.189 0.106 1.308
Si—6 —0.035 —1.030 0.068 1.100 0.020 0.229
Si—7 0.028 0.786 —0.095 —1.587 —0.136 —1.752
Si-8 0.055 1.786 —0.063 —1.147 —0.008 —0.092
K 0.035 1.126 —0.039 —0.712 —0.036 —0.393
S4-10 0.011 0.399 —0.123 —2.587 —0.115 —1.473
Si-11 0.022 0.831 —0.093 —1.936 —0.080 —0.825
Si—12 —0.010 —0.330 0.005 0.103 —0.103 —1.234
Transition A not applicable 10 10
Transition ¢ not applicable 0.04 —0.09

Note: See equations (6), (6a) and 6(b) for the model specification. All ¢ statistics are corrected for
heteroscedasticity. The R? is 0.163 and the s.e. is 0.018.
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