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This paper studies the All Ordinaries Index in Australia, and its futures contract known as the Share

Price Index. We use a new form of smooth transition model to account for a variety of nonlinearities

caused by transaction costs and other market/data imperfections, and given the recent interest in the

effects of market automation on price discovery, we focus on how the nonlinear properties of the

basis and returns have changed, now that ¯oor trading in the futures contract has been replaced by

electronic trading.

I . Int roduct i on

Researchers have studied the dynamic relationship between the price of stock futures

contracts and the underlying cash market ever since 1982, when the Chicago Mercantile

Exchange ®rst introduced futures contracts based on Standard and Poor's (S&P) 500 Stock

Index. Compelling empirical evidence that future indices lead stock indices and weaker

evidence of feedback has attracted considerable attention, because standard `no arbitrage'

arguments predict that in perfectly functioning markets there should only be contempora-

neous correlations between the two return series, and zero cross-correlations at non-zero lags

and leads. Several reasons for the observed `lead-lag' relationship between stock market and

future indices have been put forward, and these include infrequent trading in components of

the stock index, the use of transactions data rather than bid-ask quote data in index

calculations, time delays in the computation and reporting of the stock index, and transaction

costs associated with buying portfolios of stocks and futures contracts. Stoll and Whaley

(1990) provide a useful discussion on possible causes of the `lead-lag' relationship, and

Abhyankar (1998) surveys the empirical evidence on this issue.

The factors that give rise to the `lead-lag' relationship between stock indices and futures
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also imply nonlinearities in the behaviour of index returns. The most obvious of these is the

nonlinear effect of transaction costs on portfolio adjustment, but infrequent trading in stocks

can also introduce nonlinearities, as can the delays and other problems associated with the

reporting of the stock index. The literature that studies nonlinearities in index returns is

currently small, and it mostly focuses on thresholds caused by transaction costs. Authors

such as Yadav et al. (1994), Dwyer et al. (1996) and Martens et al. (1998) have studied the

effects of transaction costs on arbitrage, by estimating threshold models of the basis and/or

returns in the United States. These models assume identical transaction costs for all

investors, and behavioural regimes that depend on whether arbitrage generates net pro®ts

after transaction costs. Statistically signi®cant evidence of thresholds supports these models,

but reconciliation of the estimated thresholds with independent estimates of transaction costs

has been dif®cult.

One problem with threshold vs transaction cost comparisons is that both vary over

different investors and different types of stocks. Individual investor and market speci®c

thresholds then become blurred in an aggregate setting, and it becomes hard to relate any

estimate of an `aggregate threshold' back to a simple measure of transaction costs. Anderson

(1997) studies this problem in a paper on arbitrage between bills of different maturity within

the U.S. Treasury Bill Market. She models the yield adjustment process using a smooth

transition error correction model in which transaction costs vary across market participants.

The smooth transition allows for a continuum of regimes, which in the context of modelling

stock returns can account for the nonlinear effects of infrequent trading and data reporting

problems as well as heterogenous transaction costs. Taylor et al. (2000) use smooth transition

error correction models to study the heterogeneity in transaction costs associated with

trading FTSE100 stocks and futures.

This paper studies the All Ordinaries Index in Australia, and its futures contract known as

the Share Price Index. Several papers have analysed the lead-lag relationship in the

Australian context (see, for example, West (1997), Lin and Stevenson (1999) and Frino et al.

(2000)), but little direct work has been done on examining the nonlinearities in Australian

markets. We introduce a new type of smooth transition model to account for nonlinearities

caused by transaction costs and other market/data imperfections, and given the recent

interest in the effects of market automation on price discovery, our study focuses on how the

nonlinear properties of the basis and the returns have changed, now that ¯oor-trading in the

futures contract has been replaced by electronic trading.

The effects of screen trading have been studied by GruÈnbichler et al. (1994) who studied

the German DAX index, and more recently, by Taylor et al. (2000) who studied the U.K.

FTSE100 index. The Australian case differs from these other cases in that the recent

automation involved the futures market, and created a situation in which both the spot and

futures markets were then automated. In the German case, only the futures market was

automated and stocks continued to be ¯oor-traded, while in the UK case the stock market

was automated while futures continued to be ¯oor-traded. While one might expect screen

trading to reduce the nonlinear effects of transaction costs in all three of these cases, one

would also expect that the automation in the Australian case would remove asymmetries in

dynamic behaviour that had been present because of the operational differences between

trading in the spot market and trading in the futures market.

We ®nd strong evidence of nonlinearity before the futures trading went on-line, and

weaker evidence of nonlinearity after on-line trading. Our analysis suggests that the

automation of the futures market has removed the nonlinear properties of the basis, and

made the nonlinear properties of the two returns series more similar. A particularly

542 DECEMBERAUSTRALIAN ECONOMIC PAPERS

# Blackwell Publishers Ltd/University of Adelaide and Flinders University of South Australia 2001.



interesting ®nding is that prior to the automation of the futures market, the nonlinearities that

characterise each market are different, whereas after the introduction of on-line futures

trading, the returns in each market have a common nonlinear factor. Futures returns lead

stock returns (with feedback) both before and after the introduction of screen-trading, and

the futures lead increases only slightly after automation. The speed of mean-reversion in the

basis is slow, and appears to be unchanged.

The remainder of this paper is organised as follows. Section II of this paper discusses the

theoretical basis for our work, together with various econometric speci®cations that account

for lead-lag relationships and nonlinearities. This section introduces our new smooth

transition error correction model, which accounts for the possible effects of transaction

costs, infrequent trading and asymmetries between trading in spots vs futures contracts.

Section III discusses the institutional detail that underlies the Australian markets for equities

and futures, and then provides details on the samples that are studied in this paper. Section

IV contains our empirical results, which compare the properties of the data before and after

the cessation of ¯oor trading in the futures market. Section V concludes.

I I . Th e or et ical Ba s i s

The relationship between the futures price of shares underlying a futures contract and the

spot price on the cash market for the same shares is often described by the cost-of-carry

model, which postulates that

Ft � Ste
(rÿ y)(Tÿ t), (1)

where Ft is the futures price of the index at time t, St is the spot price of the index at time t,

r is the interest rate foregone while carrying the underlying stocks, y is the dividend yield on

the stocks and T ÿ t is the remaining life of the futures contract. Equation (1) is justi®ed by

a `no-arbitrage' assumption, since Ft . St e
(rÿ y)(Tÿ t) would enable investors to pro®t by

selling futures and buying stocks, while Ste
(rÿ y)(Tÿ t) . Ft would allow pro®ts by buying

futures and short selling stocks. The assumptions that underlie these arguments are that

markets are perfectly ef®cient, and that transaction costs are zero. This simple version of the

model also assumes that the interest rate and dividend yield are constant over the life of the

futures contract, although in practice they will vary, as will r ÿ y, the net cost of carry of the

underlying stocks.

Market ef®ciency implies that ln St is a random walk, and that the returns denoted by

st � Ä ln St are serially uncorrelated. The cost of carry model then implies that ln Ft will be

the sum of the random walk process in ln St and the series (r ÿ y)(T ÿ t). The dynamic

properties of ln Ft then depend on the assumptions about (r ÿ y)(T ÿ t). When working

with tick by tick data it is reasonable to assume that T is suf®ciently distant to justify the

treatment of (T ÿ t) as a constant, and together with the assumptions that r and y are

constant, the basis given by bt � ln Ft ÿ ln St is simply a constant.1 Constant bt are not

observed in practice, but in this over-simpli®ed case, ln Ft follows the same random walk

process as ln St, and the returns denoted by f t � Ä ln Ft are perfectly correlated with st and

serially uncorrelated. The two return series f t and st will have zero cross-correlations at all

1 In practice, researchers working with tick by tick data often account for daily changes in
(r ÿ y)(T ÿ t) by removing the daily averages of ln St and ln Ft from the data. See, eg, Dwyer et al.
(1996).
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non-zero leads and lags. Given that bt is not constant, it is common to allow for this by

writing

bt � ln Ft ÿ ln St � ì� õ t (2)

in which ì is interpreted as the expected cost of carry, and õ t � bt ÿ ì (with E(õ t) � 0) is

known as the mis-pricing error. See Brenner and Kroner (1995) for further discussion on the

stochastic implications of equation (1).

Empirical work has shown that ln St and ln Ft are not pure random walks, and that both

include signi®cant mean reverting components. There is also considerable evidence that

ln St and ln Ft are cointegrated (i.e. they share the same random walk component). The

literature has typically dealt with the observed correlations in returns data by attempting to

`correct' for them (some examples include Stoll and Whaley (1990), and Shyy et al. (1996)),

or by explicitly modeling these dynamics (see, e.g., Wahab and Lashgari (1993), Brenner

and Kroner (1995)). The latter approach, which also accounts for the cointegration is based

on an error correction formulation given by

f t � c f � á f (L) f tÿ1 � â f (L)stÿ1 � ã f btÿd � å f
t (3)

st � cs � ás(L) f tÿ1 � âs(L)stÿ1 � ãs btÿd � ås
t

in which á f (L), â f (L), ás(L), and âs(L) are polynomials in the lag operator, and å f
t and ås

t

are zero mean, serially uncorrelated errors that can be contemporaneously correlated.

Equation (3) implies that returns will respond to movements in the basis, consistent with

arbitrage activities and corresponding mean reversion in the basis. As noted by Miller et al.

(1994), some of the mean reversion is due to corrections for infrequent trading, as stock

indices `catch up' with futures. The parameter d takes no special meaning in a linear setting

(since one can always reparameterise the lagged polynomials to obtain equivalent models

regardless of d), but it becomes important in the nonlinear models below. The assumption

that the ã are not zero corresponds to a `no frictions' assumption, because it implies that

returns respond to all movements in the basis. The presence of the lagged polynomials

allows for short run dynamics, which might arise because of problems associated with the

calculation and reporting of the indices.

The adaptation of equation (3) to account for transaction costs is based on the intuition

that arbitrage will only occur when it generates net pro®ts to investors. De®ning c to be

investors' transaction cost and d to be a delay associated with making the appropriate trades,

the arbitrage condition is given by jbtÿd ÿ ìj . c, which implies a no-arbitrage band given

by ÿc , (btÿd ÿ ì) , c. The transaction costs are assumed to be the same for all investors,

and the same regardless of whether one is going short or long in the underlying stocks. The

corresponding error correction model becomes

f t � c fi � á fi(L) f tÿ1 � â fi(L)stÿ1 � ã fi btÿd � å f
t (4)

st � csi � ási(L) f tÿ1 � âsi(L)stÿ1 � ãsi btÿd � ås
t

which is a threshold error correction model (see Balke and Fomby (1997)). The basis btÿd

drives the error correction process, and the threshold c de®nes three behavioural regimes in

which
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i � 1 if btÿd ÿ ì , ÿc (i:e: if v tÿd , ÿc) (4a)

i � 2 if ÿ c , btÿd ÿ ì , c (i:e: if ÿ c < v tÿd < c)

i � 3 if btÿd ÿ ì . c (i:e: if v tÿd . c)

We expect ã f 2 and ãs2 to be zero because arbitrage will not generate net pro®ts when

jbtÿd ÿ ìj , c, (or equivalently when jv tÿd j , c). One can generalise this model to allow

for non-symmetric thresholds, and more than three behavioural regimes. The papers by

Yadev (1994), Dywer et al. (1996) and Martens et al. (1998) are all set within this

framework. They ®nd statistically signi®cant evidence in favour of transaction cost thresh-

olds, but have dif®culty in relating the estimated thresholds to average transaction costs.

Martens et al. (1998) ®nd evidence of many thresholds in their data, and attribute some of

these thresholds to transaction costs and other thresholds to the effects of infrequent trading.

These thresholds are not symmetrically distributed around ì, which suggests differences

between the responses to negative and positive pricing errors.

The smooth transition error correction model modi®es equation (4) to obtain

f t � c1
f � á1

f (L) f tÿ1 � â1
f (L)stÿ1 � ã1

f btÿd (5)

�Ø f ( v tÿd)[c2
f � á2

f (L) f tÿ1 � â2
f (L)stÿ1 � ã2

f btÿd]� å f
t

st � c1
s � á1

s(L) f tÿ1 � â1
s(L)stÿ1 � ã1

s btÿd

�Øs( v tÿd)[c2
s � á2

s(L) f tÿ1 � â2
s(L)stÿ1 � ã2

s btÿd]� ås
t ,

in which Ø f and Øs are exponential (ESTAR) transition functions, de®ned by

Ø j � 1ÿ exp ÿ ë j

ó 2
v

(v tÿd)2

 !" #
for j � f , s: (5a)

The Ø j take values between zero and one, and they are monotonically increasing with the

absolute size of the pricing error. As the Ø j vary, the VECM parameters also vary, implying

that the nature of the price adjustment process changes with the size of the pricing error. As

discussed in Anderson (1997), if one views the transition function Ø as a cumulative density

for the distribution of (non-negative) transaction cost thresholds, then relative to a baseline

case without frictions, the parameters change more, when jv tÿd j is larger and a greater

proportion of investors ®nd the prospect of arbitrage more pro®table. Taylor et al. (2000)

interpret their models in this way, setting ã1
f � ã1

s � 0, and then letting the smooth transition

inherent in the Ø j account for multiple regimes implied by heterogenous transaction costs.

In their model, the response to pricing errors becomes more pronounced, the larger the

absolute size of that error, and error correction is effective only when jv tÿd j is suf®ciently

large.

One shortcoming of using smooth transition functions de®ned by the Ø j, rather than

thresholds is that the symmetry in Ø j does not allow for asymmetries between the responses

to negative and positive pricing errors. The use of transition functions such as Ø j also

restrict the effective width of the implied `no-arbitrage bands'', unless the ë j are very small

and Ø j is approximately zero over a large range of v tÿd . Figure 1 compares the responses to

pricing errors using the asymmetric threshold and a symmetric (ESTAR) smooth-transition

approach. While it is possible to modify the ESTAR model to account for asymmetries
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Figure 1. Response to pricing errors
Threshold transition function (ã in eqn (4))
ESTAR Transition Function (Ø in eqn (5))
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(see Anderson 1997), this paper speci®es and employs a new smooth transition function that

allows for wide `no-arbitrage' bands as well as asymmetries. This function allows for

different behaviour, depending on whether the pricing error is positive or negative, and it is

de®ned by

ÖPj � 1

1� exp ÿ ëPj

óv
(v tÿd ÿ cP)

� �ÿ 1

1� exp
ëPj

óv
cP

� �264
375 �

1� exp
ëPj

óv
cP

� �
exp

ëPj

óv
cP

� �
26664

37775 (6a)

for v tÿd . 0, and

ÖNj � 1

1� exp
ëNj

óv
(v tÿd � cN )

� �ÿ 1

1� exp
ëNj

óv
cN

� �264
375 �

1� exp
ëNj

óv
cN

� �
exp

ëNj

óv
cN

� �
26664

37775 (6b)

for v tÿd < 0. The subscripts P and N respectively indicate those portions of the transition

function that relate to positive and negative pricing errors. We call Ö a U-STAR transition

function, because its main characteristic is that it is shaped like a drunken U. The constants

in the right hand brackets of these equations scale Ö so that 0 , Ö , 1, and the constants

inside the ®rst brackets ensure that Ö � 0 at v tÿd � 0, and that Ö is continuous at v tÿd � 0.

See Figure 2 for some illustrations.

The U-STAR model then uses (6a) and (6b) in a speci®cation given by

f t � c0
f � á0

f (L) f tÿ1 � â0
f (L)stÿ1 � ã0

f btÿd

�I(v tÿd . 0):ÖPf ( v tÿd)[cP
f � áP

f (L) f tÿ1 � âP
f (L)stÿ1 � ãP

f btÿd]

�I(v tÿd < 0):ÖNf ( v tÿd)[cN
f � áN

f (L) f tÿ1 � âN
f (L)stÿ1 � ãN

f btÿd]� å f
t

s t � c0
s � á0

s(L) f tÿ1 � â0
s(L)stÿ1 � ã0

s btÿd

�I(v tÿd . 0):ÖPs( v tÿd)[cP
s � áP

s (L) f tÿ1 � âP
s (L)stÿ1 � ãP

s btÿd]

�I(v tÿd < 0):ÖNs( v tÿd)[cN
s � áN

s (L) f tÿ1 � âN
s (L)stÿ1 � ãN

s btÿd]� ås
t , (6)

which implies a total response to pricing errors of ã0
j � I(v tÿd . 0): ãP

j Ö jP(v tÿd) �
I(v tÿd < 0):ãN

j Ö jN (v tÿd). Since the automation of the futures market should lower transac-

tion costs and make the adjustment of portfolios easier, we expect smaller `no arbitrage

bands' in the latter part of our sample. For ã0
j ' 0 this corresponds to a thinner U (jcPj, and

jcN j will be smaller), with steeper sides (ëP and ëN will be bigger). Since the stock market

in Australia was automated prior to that in the futures market, the automation of the futures

market should also reduce the differences between trade based on each index, and therefore

reduce the presence of asymmetries. This corresponds to a decrease in the difference

between jcPj, and jcN j, and a decrease in the difference between ëP and ëN . Similar patterns

in Ö j might also be expected even when ã0
j 6� 0, although some response to pricing errors

(i.e ã0
j) is now present at all times.
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I I I . In st i tu t ional Deta i l s and Data

Our empirical analysis is based on the All Ordinaries Index (AOI), calculated by the

Australian Stock Exchange (ASX). Based on market capitalisation, the ASX is the 12th

largest share market in the world, and the second largest in the Asia Paci®c Region. At the

end of 1999, the AOI was based on 253 actively traded stocks and it accounted for 91% of

Figure 2: U-STAR transition functions
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listed Australian equities. The Australian Stock Exchange trades between 10.00 am and

4.00 pm (EST) from Monday to Friday (public holidays excluded). Opening times for

individual stocks are staggered but all stocks are trading by 10.10, and at the end of the day

additional trading at volume weighted prices may continue until 4.20 pm. Stock trading has

been fully automated since 1991, when the Stock Exchange Automated Trading System

(SEATS) was introduced. SEATS continuously matches bids and offers during normal

trading hours, and updates the price indices. It also disseminates this updated information to

data vendors, at frequencies which are usually more than once every minute.

The Sydney Futures Exchange (SFE) has been trading Share Price Index (SPI1) futures

contracts based on the AOI since 1983, when it became the ®rst exchange outside the USA

to list index futures. Almost 20,000 SPI1 contracts are traded each day, with most trading

occurring in contracts with the next expiry month. Contracts mature at the end of March,

June, September and December each year. Unlike the ASX, the SFE has not been fully

automated until very recently, with trading in SPI1 futures becoming fully automatic on

October 4, 1999. Trading on the ¯oor occurred between 9.50 am to 12.30 pm, and then from

2.00 pm until 4.10 pm (EST) from Monday to Friday (public holidays excluded) until

November 12, 1999. Since then, day-time trading hours have been extended, with trading

starting at 9.30 am and continuing until 4.30 pm.

Standard P/ASX 200 and the S&P/ASX 300, which are respectively based on 200 and 300

stocks. SPI1 futures contracts based on the old All Industries Index are still being issued,

but are being phased out as new futures contracts (called SPI200 and based on the S&P/

ASX200) are being phased in. The ®rst SPI200 contracts were listed in May 2000 and

expired in June 2000, while the last SPI1 contracts will expire in September 2000. The old

All Ordinaries Index (based on 253 stocks) is still calculated, but will be discontinued after

September 2001.

The data used in this study is tick by tick AOI data obtained from IRESS (Integrated Real

Time Equity System) and matching tick by tick SPI1 data obtained from the SFE. The

samples covered the last two weeks of August in 1999, and the ®rst two weeks of November

1999. The AOI is updated on IRESS approximately twice a minute, (to the nearest 0.1 index

point), and this was converted to one observation per minute by using the last observation

for each minute. The SPI data for August listed the time (to the nearest second), volume

(number of contracts) and index value (to the nearest integer) for each transaction, but the

November data recorded trade times in minutes, rather than in seconds. Minute by minute

futures index values were obtained by weighting the index for each trade by its volume. The

last available observation was used when data was missing. Only those contracts for futures

expiring in September 1999 were included in the August data set, and only those contracts

for futures expiring in December 1999 were included in the November data set.

Both markets were open between 10.00 am to 12.30 pm and then from 2.00 pm to 4.00,

which led to 271 matched observations each day. However, the ®rst 15 minutes of each day

were discarded to avoid anomalies related to the staggered opening of the ASX. The daily

samples of the stock and futures indices were each demeaned using the remaining observa-

tions (from 10.16 to 12.30 and 2.00 pm to 4.00 pm); demeaning the futures index accounted

for dividends and interest rates (which were assumed to be constant for each day), while

demeaning the stock index allowed the scaling of the basis to be centered on zero.2 The

2 The assumptions that are made when demeaning the daily samples are that r and y are constant
throughout each day, and that the futures contract expiry date T is far enough into the future to ensure
that (T ÿ t) is approximately constant throughout each day. The demeaning implies that bt � v t in our
empirical work.
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analysis was then based on samples covering 10.30 am to 12.30 pm and 2.15 pm to 4.00 pm

(226 observations) for each day, which allowed for the inclusion of up to 15 contiguous lags

in our autoregressions. In total, there were thirteen days of data for August 1999 (2938

observations) and ten days of data for November 1999 (2260 observations), making 5198

observations altogether.

IV. Emp i r ical Analy s i s

It is useful to examine the properties of the returns and the basis prior to modelling their

dynamics, and some summary statistics relating to the demeaned data are provided in Table

I. Returns for futures were more volatile than those for stocks, and the variability of futures

increased slightly after the automation of that market. The basis was slightly skewed, and

although its variability increased after the automation of the futures market, its range

decreased. All reported ®rst order autocorrelation coef®cients (excepting the futures return

for November) were statistically signi®cant, and formal tests indicated stronger ®rst order

Table IA Summary statistic relating to the indices and returns

August November Full Sample

Futures Stocks Futures Stocks Futures Stocks

Max Price Index 3113.8 3083.4 3018.7 3009.0 3113.8 3083.4
Min Price Index 2905.5 2934.1 2880.2 2887.2 2880.2 2887.2
ADF for ln(Price) ÿ1.349 ÿ1.327 ÿ1.629 ÿ1.855 ÿ1.471 ÿ1.557
Max Return 0.1360 0.1169 0.1296 0.1171 0.1360 0.1171
Min Return ÿ0.1240 0.1238 ÿ0.1602 ÿ0.1023 ÿ0.1602 ÿ0.1238
St Dev Return 0.0299 0.0209 0.0319 0.0197 0.0308 0.0204
r1 for Return 0.1590 0.2294 0.0049 0.0837 0.0874 0.1705
ADF for Return ÿ4.330 ÿ4.262 ÿ4.229 ÿ4.670 ÿ4.389 ÿ4.158
No of Observations 2938 2938 2260 2260 5198 5198

Table IB Summary statistics relating to the basis

August November Full Sample

Mean 0.0000 0.0000 0.0000
Median ÿ0.0007 ÿ0.0026 ÿ0.0013
Max 0.3896 0.2377 0.3896
Min ÿ0.3113 ÿ0.2122 ÿ0.3113
St Dev 0.0688 0.0785 0.0732
Skewness 0.1511 0.1263 0.1388
Kurtosis 5.1954 2.6947 3.8450
r1for Äbt ÿ0.1336 ÿ0.1727 ÿ0.1528
ADF ÿ2.1157 ÿ2.1333 ÿ2.1233
No of Observations 2938 2260 5198

Notes: r1 is the ®rst order autocorrelation coef®cient. The reported ADF statistics are arithmetic
averages of the ADF test statistics for the daily samples. The ADF regressions for the ln(price)
contained a constant and 12 lags, while the ADF regressions for the returns and the basis contained 12
lags.
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autocorrelation in returns prior to the cessation of ¯oor-trading in futures, and stronger

negative ®rst order autocorrelation in basis changes after the shift to electronic trading. The

reported statistics for unit root analysis are the averages of Dickey Fuller unit root test

statistics for each of the daily samples. Tests relating to the full samples would have been

misleading given the removal of overnight returns and the use of different demeaning

transformations for different days. The averages of the Dickey Fuller are indicative only, but

compared to the usual critical values (ÿ2.88 for ln(price) and ÿ1.95 for the returns and the

basis) they suggest that the log prices have a unit root, and that returns and the basis are

stationary. All 46 of the underlying tests on daily data supported a unit root in ln(prices), all

but four3 of the tests rejected a unit root in returns, and all but six3 rejected a unit root in the

basis.

Table II reports some summary statistics relating to three linear VECM(12) speci®cations

that provide the point of departure for our nonlinear modelling exercise. These models are

based on the full sample, the August sample and the November sample, and full details are

Table II Linear error correction models of returns for futures and stocks

FULL SAMPLE
Model of Futures Returns:
Last statistically signi®cant (at 5% level) lag of stock returns: stÿ4

Error correction coef®cient (v tÿ1) with het. c.t-stat: ÿ0.0287 (ÿ3.9731)
Summary statistics: R2 � 0:049, s:e: � 0:030

Model for Stock Returns:
Last statistically signi®cant (at 5% level) lag of futures returns: f tÿ10

Error correction coef®cient (v tÿ1) with het. c.t-stat: 0.0254 (5.369)
Summary statistics: R2 � 0:161, s:e: � 0:019

AUGUST SAMPLE
Model of Futures Returns:
Last statistically signi®cant (at 5% level) lag of stock returns: stÿ5

Error correction coef®cient (v tÿ1) with het. c.t-stat: ÿ0.0276 (ÿ2.5394)
Summary statistics: R2 � 0:069, s:e: � 0:029

Model for Stock Returns:
Last statistically signi®cant (at 5% level) lag of futures returns: f tÿ8

Error correction coef®cient (v tÿ1) with het. c.t-stat: 0.0280 (3.9015)
Summary statistics: R2 � 0:212, s:e: � 0:019

NOVEMBER SAMPLE
Model of Futures Returns:
Last statistically signi®cant (at 5% level) lag of stock returns: stÿ2

Error correction coef®cient (v tÿ1) with het. c.t-stat: ÿ0.0301 (ÿ3.1313)
Summary statistics: R2 � 0:044, s:e: � 0:031

Model for Stock Returns:
Last statistically signi®cant (at 5% level) lag of futures returns: f tÿ10

Error correction coef®cient (v tÿ1) with het. c.t-stat: 0.0215 (3.5346)
Summary statistics: R2 � 0:121, s:e: � 0:019

3 Two of these exceptions relate to Melbourne Cup Day, when Australians are much more interested in
a horse race than they are in the stock market.
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provided in Appendix 1. The above ADF tests justi®ed our error correction representation,

and while AIC suggested that ®ve lags would be suf®cient to model the linear dynamics of

returns, we worked with a longer lag structure to allow for the possibility that AIC might not

choose the optimal lag structure for our nonlinear models. The longer lag structure also

provides a broader picture of the `lead-lag' relationship.

For the full sample, the error correction term is negative in the futures equation and

positive in the stocks equation (as expected), with both results being statistically signi®cant.

Each of the ®rst ten lags of futures returns are statistically signi®cant in the stock returns

equation, in line with previous ®ndings that returns for futures lead returns for stocks. The

effect of lagged stock returns on futures is statistically signi®cant for two lags, but changes

sign at lag three and becomes insigni®cant after lag four.

The VECM(12)s for the August and November subsamples are similar to the full sample

model, in that the error correction coef®cients are statistically signi®cant and negative in the

future returns equations and statistically signi®cant and positive in the stock returns

equations. Comparing the August and November equations, the future returns equation

changes very little, although more lags of stocks have predictive power for futures in August

(5 lags), than in November (2 lags). A heteroscedasticity corrected test of no change has a p-

value of 0.1013. The changes in the equation for stock returns are more pronounced, with

the futures lead increasing from about eight minutes in August to ten minutes in November.

For this equation, a heteroscedasticity corrected test of no change strongly rejects the null,

with a p-value of 0.0001. For each return, the overall level of signi®cance (as measured by

the p-value for the overall F-test) is lower in November than August, suggesting that returns

have become less predictable since the automation in the futures market.

Table III reports the results of heteroscedasticity corrected tests of the linear VECM(12)

against various ESTAR alternatives. Each of these alternatives uses the lagged basis as a

transition variable, but the transition lag is allowed to vary from one up to twelve. The tests

are performed on a model of the basis as well as on the returns equations, because ESTAR

behaviour in the basis will imply ESTAR behaviour in the returns; this model of the basis

Table III P-Values of heteroscedasticity consistent tests of H0 : No Nonlinearity vs H1 : ESTAR type
nonlinearity

August November
Transition

Lag Stocks Futures Basis Stocks Futures Basis

1 0.0004 0.0000 0.0041 0.0466 0.3900 0.8914
2 0.0009 0.0000 0.0016 0.2432 0.0029 0.4106
3 0.0000 0.0011 0.0026 0.0258 0.1892 0.5832
4 0.0004 0.0001 0.0009 0.1360 0.6489 0.7423
5 0.0001 0.0000 0.0000 0.0789 0.0789 0.1068
6 0.0000 0.0000 0.0000 0.0211 0.0202 0.1611
7 0.0000 0.0001 0.0000 0.0057 0.0797 0.3576
8 0.0014 0.0032 0.0313 0.1149 0.5574 0.7632
9 0.0615 0.0142 0.0586 0.0100 0.4731 0.8928

10 0.0034 0.0067 0.0200 0.0380 0.0750 0.3305
11 0.0373 0.0330 0.0407 0.0436 0.1842 0.8670
12 0.0004 0.0184 0.0231 0.0001 0.2348 0.9009

Note: The minimum p-value found for each set of linearity tests is indicated in bold type.
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had the same explanators as the VECM(12). Given the similarities between the ESTAR and

USTAR speci®cations, one would expect the ESTAR tests to have power against USTAR

alternatives. The tests are based on second order approximations to the nonlinear alternative,

and they assess whether the explanatory power of the linear equations increase, when one

adds additional regressors that interact v2
tÿd with all of the VECM explanators.

Given the differences between the August and the November models noted above, and the

fact that we wanted to assess the effect of closing futures ¯oor trading, the nonlinearity tests

were performed on each subsample separately. For August, nearly all of the tests found

strong evidence of nonlinearity associated with movements in the basis. The p-values of the

tests on returns and the basis were all minimised when d � 6, which suggests a lag of six

minutes between pricing errors and nonlinear adjustment in returns. For November, the

results were less signi®cant and not as clear, but they supported a speci®cation using d � 6

for each of the returns equation. The basis did not show evidence of nonlinearity for any

value of d, which together with the contrasting August results suggests that the process for

pricing errors has changed since automation. Linearity in the basis also casts doubt about the

presence of a `no-arbitrage band'. The fact that d � 6 is not a suitable transition variable for

the basis despite its suitability for each return is interesting for another reason, because this

is consistent with a common nonlinear factor in returns. See Anderson and Vahid (1998) for

details on common nonlinear factors.

We next set d � 6 and then estimated the implied USTAR models. Given the long lag

structure and the complicated nature of the nonlinearity, we used a two stage estimation

process, that involved a grid search for the transition parameters during the ®rst stage. For

the August sample we chose to work with estimates of the transition function for the basis,

since the nonlinearity in the returns was associated with the nonlinear movement in the basis.

The estimated transition parameters for the basis were then incorporated as ®xed transition

parameters in the second stage of estimation, which involved estimating the other parameters

for the equations for stock returns and futures returns. For November we adopted a different

approach, since the basis was linear. Here, we ®rst used a grid search to estimate the

transition function for the stock returns (which we chose in preference to the futures equation

because stock returns are more predictable than futures returns), and we then estimated the

other parameters for the stock return equation. We then used this, together with an estimated

linear equation for the basis, to deduce the futures equation. This latter technique imposed

the common factor restriction implied by the nonlinearity tests.

Summary statistics relating to each nonlinear VECM(12) are presented in Table IV, and

the estimated transition functions are illustrated in Figure 3. Full details are provided in

Appendix 2. The lag structure in these nonlinear models was richer than than that in the

linear VECMS. In the nonlinear model, the futures lead over stocks was 10 minutes in

August and increased to 11 minutes in November, while stocks could predict futures for up

to 12 minutes ahead in August, but for only 8 minutes in November. An important property

of these models is that the predictability of each type of return decreased after automation

(the R2 dropped quite substantially), consistent with a decline in the strength of the lead-lag

relationship. The error correction terms were statistically signi®cant in most regimes for the

August equations (including the middle regimes), which provides evidence against restrict-

ing ã f 1 � 0 and ãs1 � 0 (as in Taylor et al. (2000)). Thus, although the strength of error

correction changes with the pricing error, the usual transactions cost interpretation of `no-

arbitrage' bands does not provide the whole story in this case. There are other factors

affecting the mean reversion process, which include infrequent trading and complications

associated with trading portfolios of stocks. For November, the error correction terms were
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Table IVA Nonlinear error correction model of returns for futures and stocks

AUGUST SAMPLE
Model of Futures Returns:
Last statistically signi®cant (at 5% level) lag of stock returns: stÿ12

Coef®cients and heteroscedasticity corrected t-stats for error correction terms:

ãN : 0.0375 (0.692)
ã0: ÿ0.0442 (ÿ2.528)
ãP: ÿ0.1321 (ÿ1.256)

Summary statistics: R2 � 0:102, s:e: � 0:028

Model of Stock Returns:
Last statistically signi®cant (at 5% level) lag of futures returns: f tÿ10

Coef®cients and heteroscedasticity corrected t-stats for error correction terms:

ãN : ÿ0.1076 (ÿ2.648)
ã0: 0.0518 (4.788)
ãP: 0.1664 (2.492)

Summary statistics: R2 � 0:248, s:e: � 0:018
Correlation between errors for the two equations is 0.365
Implied s.e. of basis � 0.028.
Transition Function:

ÖPt � 1

1� exp ÿ 3:42
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The transition variable v tÿ6 is , ÿ0:09 for 216 observations, between ÿ0.09 and 0.13 for 2616
observations, and . 0:13 for 106 observations.

5
5

4
D

E
C

E
M

B
E

R
A

U
S

T
R

A
L

IA
N

E
C

O
N

O
M

IC
PA

P
E

R
S

#
B

lack
w

ell
P

u
b

lish
ers

L
td

/U
n
iv

ersity
o
f

A
d
elaid

e
an

d
F

lin
d
ers

U
n

iv
ersity

o
f

S
o

u
th

A
u

stralia
2

0
0

1
.



Table IVB Nonlinear error correction model of returns for futures and stocks

NOVEMBER SAMPLE
Model of Futures Returns:
Last statistically signi®cant (at 5% level) lag of stock returns: stÿ8

Coef®cients and heteroscedasticity corrected t-stats for error correction terms:

ãN : ÿ0.0929 (ÿ1.294)
ã0: ÿ0.0091 (ÿ0.282)
ãP: ÿ0.0171 (ÿ0.395)

Summary statistics: R2 � 0:043, s:e: � 0:031

Model for Stock Returns:
Last statistically signi®cant (at 5% level) lag of future returns: f tÿ11

Coef®cients and heteroscedasticity corrected t-stats for error correction terms:

ãN : 0.0560 (1.379)
ã0: 0.0208 (1.180)
ãP: 0.0146 (0.567)

Summary statistics: R2 � 0:163, s:e: � 0:018
Correlation between errors for the two equations is 0.274.
Implied s.e. of basis � 0:031.
Transition Function:
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The transition variable v tÿ6 is , ÿ0:09 for 216 observations, between ÿ0.09 and 0.04 for 2009
observations, and . 0:04 for 713 observations.
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Figure 3: Estimated transition functions
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not statistically signi®cant, although the lagged basis still played a crucial role in that it

generated the transition between different behavioural regimes.4

Figure 3 shows that the boundaries of the behavioural regimes for August and November

are different, with the inner band for pricing errors being more symmetric for November

than for August, and thinner. The increased symmetry suggests that the automation of the

futures market has reduced some of the practical differences between responding to positive

and negative pricing errors, and the thinner band implies that smaller pricing errors will now

induce regime shifts.

It is hard to interpret autoregressive parameters in time series models, and nonlinearity

further complicates interpretation. We therefore study the dynamic properties of our models

by analysing their generalised impulse response functions.5 We trace the impacts of shocks

to futures and stocks on movements in the basis, assuming that the basis is initially zero and

the market is in equilibrium. The size of the shocks that we consider are approximately one

standard deviation of the basis (about 0.07) and two standard deviations, and given that it is

often believed that shocks to the stock index are ®rm speci®c and different from shocks to

the futures index which re¯ect macroeconomic shocks (see Frino et al., 2001), we consider

two extreme cases. In the ®rst case a positive (negative) shock to the basis is caused purely

by a positive (negative) shock in the futures market, and we call this sort of shock a

`macroeconomic' shock. In the second case a positive (negative) shock to the basis is caused

purely by a negative (positive) shock to the stock index, and we call this sort of shock a `®rm

speci®c'shock.

The generalised impulse response functions are illustrated in Figures 4 and 5. There are

minor differences between the effects of the two types of shocks, and minor asymmetries

between the effects of positive and negative shocks. There are no signi®cant differences

between the response functions for August and November. The half lives of all shocks are

short, but in each case it takes more than an hour for equilibrium to be restored.

V. Conclu s i on

This paper examines the impact of screen trading in futures on the nonlinear properties of

the basis and returns. We use a new form of smooth transition model to account for

nonlinearities caused by transaction costs and other market/data imperfections, and we study

the properties of these models by inspecting their implied responses to various shocks. We

®nd strong evidence of nonlinearity before the futures trading went on-line, and weaker

evidence of nonlinearity after on-line trading. Our analysis suggests that the automation of

the futures market has made the nonlinear properties of the stock market and the futures

market more similar, and that after the introduction of on-line futures trading, the returns in

each market have a common nonlinear factor. Futures returns lead stock returns (with

feedback) both before and after the introduction of screen-trading, and the futures lead

increases only slightly after automation. The speed of mean-reversion in the basis is slow,

and appears to be unchanged. We ®nd that even though the models are statistically different,

their implications as shown by their impulse response functions are virtually the same.

4 Further exploration based on unit root tests for the basis found weak evidence of `no-arbitrage bands'
given by ÿ0:009 , btÿ6 , 0:009 for August and ÿ0:003 , btÿ6 , 0:003 for November, but we do not
pursue this issue further here.
5 Unlike linear models, the expected response to shocks cannot be derived analytically, and are
therefore derived by averaging over many simulated response paths (See Koop et al., 1996).
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Figure 4: Mean reversion in the basis
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Figure 5: Mean reversion in the basis
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Appendi x 1A: L i n ea r Error Corr ect ion Model f or th e Full
Sam ple

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const ÿ0.0002 ÿ0.4523 ÿ0.0000 ÿ0.1316
v tÿ1 ÿ0.0287 ÿ3.9731 0.0254 5.3686
f tÿ1 0.0400 2.0193 0.1771 15.6057
f tÿ2 ÿ0.0340 ÿ1.8107 0.1117 10.3028
f tÿ3 ÿ0.0296 ÿ1.5672 0.0933 8.2279
f tÿ4 ÿ0.0006 ÿ0.0320 0.0545 4.9544
f tÿ5 ÿ0.0095 ÿ0.5568 0.0565 5.0410
f tÿ6 ÿ0.0034 ÿ0.1933 0.0246 2.2409
f tÿ7 0.0103 0.6051 0.0264 2.4878
f tÿ8 ÿ0.0027 ÿ0.1648 0.0233 2.0659
f tÿ9 0.0015 0.0853 0.0213 1.9916
f tÿ10 ÿ0.0149 ÿ0.8755 0.0206 1.9126
f tÿ11 ÿ0.0104 ÿ0.6304 0.0190 1.777
f tÿ12 0.0059 0.3594 0.0087 0.8354
stÿ1 0.2903 10.92224 ÿ0.0084 ÿ0.4713
stÿ2 0.0627 2.3194 ÿ0.0413 ÿ2.2830
stÿ3 ÿ0.0186 ÿ0.7046 ÿ0.0548 ÿ3.1965
stÿ4 ÿ0.06422 ÿ2.4054 ÿ0.0349 ÿ2.0721
stÿ5 ÿ0.0276 ÿ1.0767 ÿ0.0338 ÿ1.9466
stÿ6 ÿ0.0059 ÿ0.2295 ÿ0.0191 ÿ1.1448
stÿ7 ÿ0.0444 ÿ1.8100 ÿ0.0437 ÿ2.6382
stÿ8 ÿ0.0149 ÿ0.6180 ÿ0.0169 ÿ1.0355
stÿ9 0.0337 1.4646 0.0032 0.2001
stÿ10 0.0147 0.6366 ÿ0.0242 ÿ1.6130
stÿ11 0.0233 1.1217 ÿ0.0140 ÿ0.9581
stÿ12 ÿ0.0033 ÿ0.1593 ÿ0.0265 ÿ1.7854

R2 0.0488 0.1612
s:e 0.0301 0.0187

Note: The pricing error v tÿ1 � btÿ1 ÿ ì is used as the error correction term.

Appendi x 1B: L i n ea r Error Corr ect i on Model f or th e August
Sam ple

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const ÿ0.0003 ÿ0.5047 0.0000 0.0220
v tÿ1 ÿ0.0276 ÿ2.5394 0.0280 3.9015
f tÿ1 0.1030 4.1596 0.2168 13.3864
f tÿ2 ÿ0.0370 ÿ1.5210 0.1243 8.2632
f tÿ3 ÿ0.0035 ÿ0.1317 0.0985 6.1992
f tÿ4 ÿ0.0173 ÿ0.7257 0.0466 2.8822
f tÿ5 0.0067 0.2765 0.0567 3.4756
f tÿ6 0.0064 0.2541 0.0332 2.1668
f tÿ7 0.04487 1.8601 0.0242 1.6036
f tÿ8 0.0140 0.5904 0.0321 2.0885
f tÿ9 ÿ0.0069 ÿ0.2797 0.0154 0.9983
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Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

f tÿ10 ÿ0.0266 ÿ1.1316 0.0093 0.6117
f tÿ11 ÿ0.0030 ÿ0.1288 0.0214 1.4354
f tÿ12 0.0138 0.5723 0.0015 0.1025
stÿ1 0.2831 7.9086 0.0000 0.0040
stÿ2 0.0205 0.5771 ÿ0.0336 ÿ1.4428
stÿ3 ÿ0.0291 ÿ0.8341 ÿ0.0643 ÿ2.7648
stÿ4 ÿ0.0673 ÿ1.8982 ÿ0.0516 ÿ2.2869
stÿ5 ÿ0.0773 ÿ2.2647 ÿ0.0536 ÿ2.3922
stÿ6 ÿ0.0188 ÿ0.5383 ÿ0.0211 ÿ0.9796
stÿ7 ÿ0.0553 ÿ1.6394 ÿ0.0533 ÿ2.4407
stÿ8 ÿ0.0056 ÿ0.1738 ÿ0.0483 ÿ2.2176
stÿ9 0.0325 1.0124 ÿ0.0031 ÿ0.1376
stÿ10 0.0184 0.6242 ÿ0.0036 ÿ0.1712
stÿ11 0.0384 1.3737 ÿ0.0090 ÿ0.4696
stÿ12 0.0054 0.1945 ÿ0.0362 ÿ1.7486

R2 0.0694 0.2121
s:e 0.0290 0.0187

Note: The pricing error v tÿ1 � btÿ1 ÿ ì is used as the error correction term.

Appendi x 1C: L i n ea r Error Corr ect i on Model f or th e Nov emb e r
Sam ple

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const 0.0000 0.0116 ÿ0.0001 ÿ0.2701
v tÿ1 ÿ0.0301 ÿ3.1313 0.0215 3.5346
f tÿ1 ÿ0.0294 ÿ0.9750 0.1334 8.5887
f tÿ2 ÿ0.0402 ÿ1.4318 0.0930 6.0773
f tÿ3 ÿ0.0554 ÿ2.1399 0.0861 5.4026
f tÿ4 0.0063 0.2420 0.0640 4.289
f tÿ5 ÿ0.0243 ÿ1.0098 0.0617 4.0238
f tÿ6 ÿ0.0186 ÿ0.7495 0.0194 1.2551
f tÿ7 ÿ0.0278 ÿ1.1550 0.0311 2.0984
f tÿ8 ÿ0.0307 ÿ1.3406 0.0141 0.8690
f tÿ9 0.0033 0.1357 0.0268 1.8369
f tÿ10 ÿ0.0080 ÿ0.3314 0.0318 2.1267
f tÿ11 ÿ0.0177 ÿ0.7459 0.0171 1.1424
f tÿ12 ÿ0.0085 ÿ0.3784 0.0145 1.0294
stÿ1 0.2850 7.2584 ÿ0.0483 ÿ1.8785
stÿ2 0.1211 3.0051 ÿ0.0645 ÿ2.2729
stÿ3 0.0202 0.5010 ÿ0.0433 ÿ1.6646
stÿ4 ÿ0.0392 ÿ0.9514 ÿ0.0099 ÿ0.3764
stÿ5 0.0431 1.0931 ÿ0.0015 ÿ0.0567
stÿ6 0.0178 ÿ0.4589 ÿ0.0009 ÿ0.0365
stÿ7 ÿ0.0269 ÿ0.7348 ÿ0.0161 ÿ0.6480
stÿ8 ÿ0.0213 ÿ0.5792 0.0328 1.3321
stÿ9 0.0347 1.0309 0.0175 0.7482

continued overleaf
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Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

stÿ10 0.0026 0.0711 ÿ0.0482 ÿ2.2835
stÿ11 ÿ0.0118 ÿ0.3730 ÿ0.0273 ÿ1.2324
stÿ12 ÿ0.0306 ÿ0.9448 ÿ0.0293 ÿ1.3929
R2 0.0436 0.1205
s:e 0.0313 0.0186

Note: The pricing error v tÿ1 � btÿ1 ÿ ì is used as the error correction term.

Appendi x 2A: Nonl i n ea r Error Corr ect i on Model of Futur e s
(August Sample)

Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const ÿ0.001 ÿ1.525 0.035 1.987 0.0003 0.0325
v tÿ6 ÿ0.044 ÿ2.528 ÿ0.132 ÿ1.256 0.037 0.692
f tÿ1 0.093 3.151 0.299 2.320 0.052 0.510
f tÿ2 ÿ0.027 ÿ0.941 0.034 0.250 0.065 0.642
f tÿ3 ÿ0.026 ÿ0.839 0.463 2.773 0.210 1.812
f tÿ4 ÿ0.015 ÿ0.536 0.154 1.208 0.003 0.024
f tÿ5 ÿ0.021 ÿ0.736 0.530 3.158 0.044 0.400
f tÿ6 0.005 0.174 ÿ0.084 ÿ0.650 0.005 0.054
f tÿ7 0.042 1.579 0.163 1.363 ÿ0.082 ÿ0.846
f tÿ8 0.044 1.661 ÿ0.318 ÿ2.727 ÿ0.197 ÿ2.261
f tÿ9 0.025 0.926 ÿ0.230 ÿ2.230 ÿ0.168 ÿ1.549
f tÿ10 ÿ0.012 ÿ0.449 0.179 1.276 ÿ0.282 ÿ3.322
f tÿ11 ÿ0.006 ÿ0.224 0.238 1.423 ÿ0.141 ÿ1.420
f tÿ12 0.020 0.746 ÿ0.009 ÿ0.068 ÿ0.052 ÿ0.567
stÿ1 0.266 6.564 ÿ0.165 ÿ0.769 0.031 0.219
stÿ2 0.014 0.341 ÿ0.277 ÿ1.255 0.007 0.053
stÿ3 ÿ0.022 ÿ0.546 ÿ0.249 ÿ1.324 ÿ0.094 ÿ0.630
stÿ4 ÿ0.042 ÿ1.016 ÿ0.430 ÿ1.751 ÿ0.136 ÿ0.847
stÿ5 ÿ0.089 ÿ2.221 ÿ0.229 ÿ1.121 0.129 0.850
stÿ6 ÿ0.027 ÿ0.710 0.073 0.373 0.174 1.312
stÿ7 ÿ0.088 ÿ2.361 0.270 1.278 0.240 2.034
stÿ8 ÿ0.022 ÿ0.635 ÿ0.161 ÿ0.888 0.243 1.986
stÿ9 0.006 0.180 0.170 0.946 0.221 2.010
stÿ10 0.011 0.331 ÿ0.238 ÿ1.472 0.155 1.327
stÿ11 0.016 0.514 0.007 0.044 0.220 1.916
stÿ12 0.030 0.967 0.032 0.221 ÿ0.213 ÿ2.097

Transition ë not applicable 3.42 10
Transition c not applicable 0.13 ÿ0.09

Note: See equations (6), (6a) and 6(b) for the model speci®cation. All t statistics are corrected for
heteroscedasticity. The R2 is 0.102 and the s:e. is 0.028.
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Appendi x 2B: Nonl i n ea r Error Corr ect i on Model of Stock s
(August Sample)

Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const 0.0001 0.277 ÿ0.030 ÿ2.700 ÿ0.009 ÿ1.552
v tÿ6 0.052 4.788 0.166 2.492 ÿ0.108 ÿ2.648
f tÿ1 0.185 9.761 ÿ0.019 ÿ0.231 0.116 1.544
f tÿ2 0.094 5.437 ÿ0.103 ÿ1.175 0.188 2.660
f tÿ3 0.068 3.852 ÿ0.090 ÿ0.964 0.180 2.090
f tÿ4 0.015 0.830 ÿ0.266 ÿ2.612 0.250 2.989
f tÿ5 0.021 1.040 ÿ0.147 ÿ1.755 0.191 2.286
f tÿ6 0.017 0.991 ÿ0.168 ÿ2.309 0.186 3.466
f tÿ7 0.017 1.029 0.037 0.440 0.073 1.224
f tÿ8 0.042 2.443 ÿ0.096 ÿ1.472 ÿ0.059 ÿ1.059
f tÿ9 0.007 0.384 ÿ0.074 ÿ0.920 0.119 1.735
f tÿ10 0.001 0.052 ÿ0.050 ÿ0.572 0.019 0.356
f tÿ11 0.011 0.697 ÿ0.048 ÿ0.553 0.057 0.740
f tÿ12 0.009 0.558 ÿ0.242 ÿ2.578 ÿ0.012 ÿ0.202
stÿ1 0.014 0.521 0.097 0.692 ÿ0.041 ÿ0.362
stÿ2 0.023 0.906 0.027 0.203 ÿ0.336 ÿ3.266
stÿ3 ÿ0.022 ÿ0.899 0.434 3.408 ÿ0.412 ÿ4.426
stÿ4 ÿ0.020 ÿ0.819 0.224 1.722 ÿ0.236 ÿ2.368
stÿ5 ÿ0.011 ÿ0.432 0.030 0.268 ÿ0.244 ÿ2.449
stÿ6 ÿ0.018 ÿ0.779 0.048 0.345 ÿ0.091 ÿ1.115
stÿ7 ÿ0.024 ÿ0.986 ÿ0.196 ÿ1.839 ÿ0.176 ÿ2.446
stÿ8 ÿ0.067 ÿ2.868 0.063 0.461 0.140 1.856
stÿ9 ÿ0.006 ÿ0.253 0.118 0.989 ÿ0.018 ÿ0.206
stÿ10 0.010 0.417 0.070 0.601 ÿ0.151 ÿ2.049
stÿ11 ÿ0.026 ÿ1.280 0.176 1.481 0.124 1.751
stÿ12 ÿ0.038 ÿ1.778 0.266 2.799 ÿ0.115 ÿ1.654

Transition ë not applicable 3.42 10
Transition c not applicable 0.13 ÿ0.09

Note: See equations (6), (6a) and 6(b) for the model speci®cation. All t statistics are corrected for
heteroscedasticity. The R2 is 0.248 and the s:e. is 0.018.

Appendi x 2C : Nonl i n ea r Error Corr ect i on Model of Futur e s
(Nov em b e r Sample)

Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const 0.0004 0.372 ÿ0.001 ÿ0.294 ÿ0.008 ÿ0.875
v tÿ6 ÿ0.009 ÿ0.282 ÿ0.017 ÿ0.395 ÿ0.093 ÿ1.294
f tÿ1 ÿ0.137 ÿ2.367 0.194 2.421 0.316 3.018
f tÿ2 ÿ0.061 ÿ1.197 ÿ0.005 ÿ0.070 0.098 1.012
f tÿ3 ÿ0.099 ÿ1.961 0.092 1.327 0.069 0.653
f tÿ4 0.020 0.380 ÿ0.065 ÿ0.873 0.007 0.070

continued overleaf
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Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

f tÿ5 ÿ0.003 0.056 ÿ0.090 ÿ1.335 0.028 0.258
f tÿ6 0.022 0.551 ÿ0.077 ÿ1.269 ÿ0.067 ÿ0.802
f tÿ7 ÿ0.062 ÿ1.706 0.121 2.143 ÿ0.016 ÿ1.192
f tÿ8 ÿ0.042 ÿ1.275 0.034 0.624 0.060 0.750
f tÿ9 ÿ0.007 ÿ0.224 0.019 0.309 0.032 0.359
f tÿ10 ÿ0.023 ÿ0.650 0.046 0.800 ÿ0.049 ÿ0.601
f tÿ11 ÿ0.003 ÿ0.082 ÿ0.040 ÿ0.706 ÿ0.024 ÿ0.285
f tÿ12 0.006 0.197 ÿ0.019 ÿ0.363 ÿ0.043 ÿ0.518
stÿ1 0.355 5.128 ÿ0.104 ÿ1.073 ÿ0.203 ÿ1.443
stÿ2 0.171 2.454 ÿ0.027 ÿ0.262 ÿ0.249 ÿ1.884
stÿ3 0.056 0.764 ÿ0.086 ÿ0.848 0.007 0.049
stÿ4 ÿ0.053 ÿ0.728 0.034 0.317 ÿ0.010 ÿ0.075
stÿ5 0.055 0.720 ÿ0.029 ÿ0.280 0.095 0.727
stÿ6 ÿ0.084 ÿ1.307 0.197 2.144 0.144 1.183
stÿ7 0.066 ÿ1.076 ÿ0.167 ÿ1.903 ÿ0.256 ÿ2.205
stÿ8 ÿ0.066 ÿ1.141 0.058 0.657 0.229 1.917
stÿ9 0.034 0.670 ÿ0.001 ÿ0.008 ÿ0.106 ÿ0.838
stÿ10 0.063 1.049 ÿ0.099 ÿ1.186 ÿ0.095 ÿ0.769
stÿ11 ÿ0.010 ÿ0.217 ÿ0.098 ÿ1.313 0.172 1.667
stÿ12 ÿ0.069 ÿ1.348 0.083 1.130 0.067 0.650

Transition ë not applicable 10 10
Transition c not applicable 0.04 ÿ0.09

Note: See equations (6), (6a) and 6(b) for the model speci®cation. All t statistics are corrected for
heteroscedasticity. The R2 is 0.043 and the s:e. is 0.031.

Appendi x 2D: Nonl i n ea r Error Corr ect i on Model of Stock s
(Nov em b e r Sample)

Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const ÿ0.001 ÿ1.322 0.0002 0.097 0.011 1.990
v tÿ6 0.021 1.180 0.015 0.567 0.056 1.379
f tÿ1 0.105 3.657 0.049 1.191 0.028 0.436
f tÿ2 0.082 3.108 ÿ0.011 ÿ0.255 0.045 0.807
f tÿ3 0.096 3.505 ÿ0.018 ÿ0.412 ÿ0.127 ÿ2.458
f tÿ4 0.075 2.683 ÿ0.037 ÿ0.874 ÿ0.089 ÿ1.585
f tÿ5 0.076 2.974 ÿ0.027 ÿ0.595 ÿ0.065 ÿ1.097
f tÿ6 0.020 0.987 ÿ0.008 ÿ0.211 0.036 0.729
f tÿ7 0.038 1.881 ÿ0.002 ÿ0.042 ÿ0.012 ÿ0.255
f tÿ8 0.034 1.595 ÿ0.053 ÿ1.357 ÿ0.025 ÿ0.469
f tÿ9 0.018 0.934 0.006 0.152 0.069 1.240
f tÿ10 0.018 0.902 0.044 1.225 ÿ0.023 ÿ0.430
f tÿ11 0.005 0.296 0.029 0.813 0.005 0.092
f tÿ12 0.010 0.535 0.003 0.093 0.029 0.521
stÿ1 ÿ0.030 ÿ0.786 ÿ0.069 ÿ1.074 0.085 0.946
stÿ2 ÿ0.089 ÿ2.377 0.072 1.095 0.050 0.572
stÿ3 ÿ0.075 ÿ1.791 0.060 0.927 0.127 1.380
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Superscript 0
Regime

Superscript P
Regime

Superscript N
Regime

Variable Coef t-stat Coef t-stat Coef t-stat

stÿ4 ÿ0.034 ÿ0.833 0.029 0.436 0.201 2.216
stÿ5 ÿ0.064 ÿ1.637 0.144 2.189 0.106 1.308
stÿ6 ÿ0.035 ÿ1.030 0.068 1.100 0.020 0.229
stÿ7 0.028 0.786 ÿ0.095 ÿ1.587 ÿ0.136 ÿ1.752
stÿ8 0.055 1.786 ÿ0.063 ÿ1.147 ÿ0.008 ÿ0.092
stÿ9 0.035 1.126 ÿ0.039 ÿ0.712 ÿ0.036 ÿ0.393
stÿ10 0.011 0.399 ÿ0.123 ÿ2.587 ÿ0.115 ÿ1.473
stÿ11 0.022 0.831 ÿ0.093 ÿ1.936 ÿ0.080 ÿ0.825
stÿ12 ÿ0.010 ÿ0.330 0.005 0.103 ÿ0.103 ÿ1.234

Transition ë not applicable 10 10
Transition c not applicable 0.04 ÿ0.09

Note: See equations (6), (6a) and 6(b) for the model speci®cation. All t statistics are corrected for
heteroscedasticity. The R2 is 0.163 and the s:e. is 0.018.
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