Artificial Intelligence in Finance and Quantitative Analysis

Al in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications

1121AIFQA02 MBA, IM, NTPU (M5276) (Fall 2023) Tue 2, 3, 4 (9:10-12:00) (B3F17)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-09-19

https://meet.google.com/ paj-zhhj-mya

Week Date Subject/Topics

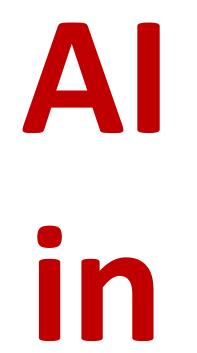
- 1 2023/09/12 Introduction to Artificial Intelligence in Finance and Quantitative Analysis
- 2 2023/09/19 AI in FinTech: Metaverse, Web3, DeFi, NFT, Financial Services Innovation and Applications
- 3 2023/09/26 Investing Psychology and Behavioral Finance
- 4 2023/10/03 Event Studies in Finance
- 5 2023/10/10 National Day (Day off)
- 6 2023/10/17 Case Study on AI in Finance and Quantitative Analysis I

Week Date Subject/Topics

- 7 2023/10/24 Finance Theory and Data-Driven Finance
- 8 2023/10/31 Midterm Project Report
- 9 2023/11/07 Financial Econometrics
- 10 2023/11/14 AI-First Finance
- 11 2023/11/21 Industry Practices of AI in Finance and Quantitative Analysis
- 12 2023/11/28 Case Study on AI in Finance and Quantitative Analysis II

- Week Date Subject/Topics
- 13 2023/12/05 Deep Learning in Finance; Reinforcement Learning in Finance
- 14 2023/12/12 Algorithmic Trading; Risk Management; Trading Bot and Event-Based Backtesting
- 15 2023/12/19 Final Project Report I
- 16 2023/12/26 Final Project Report II

Al in FinTech: Metaverse, Web3, DeFi, NFT, **Financial Services Innovation and Applications**



FinTech

FinTech ABCD

Block Chain

Cloud Computing

Big Data

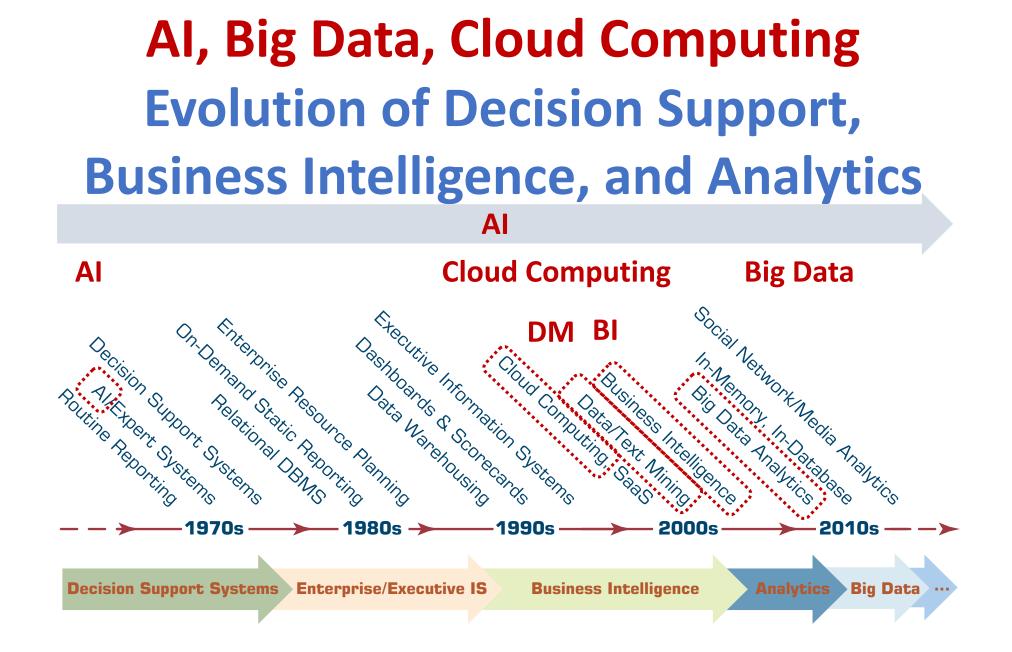
Decentralized Finance (DeFi) Block Chain Financial Technology

Block Chain & Bitcoin (BTC)

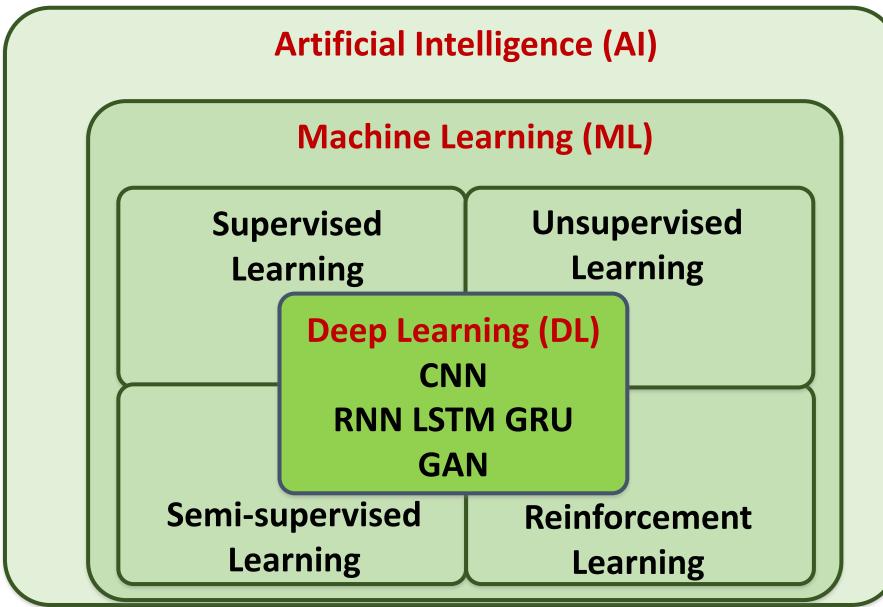
Smart Contract & Ethereum (ETH)

Decentralized Application (DApp)

(AI)



AI, ML, DL



Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

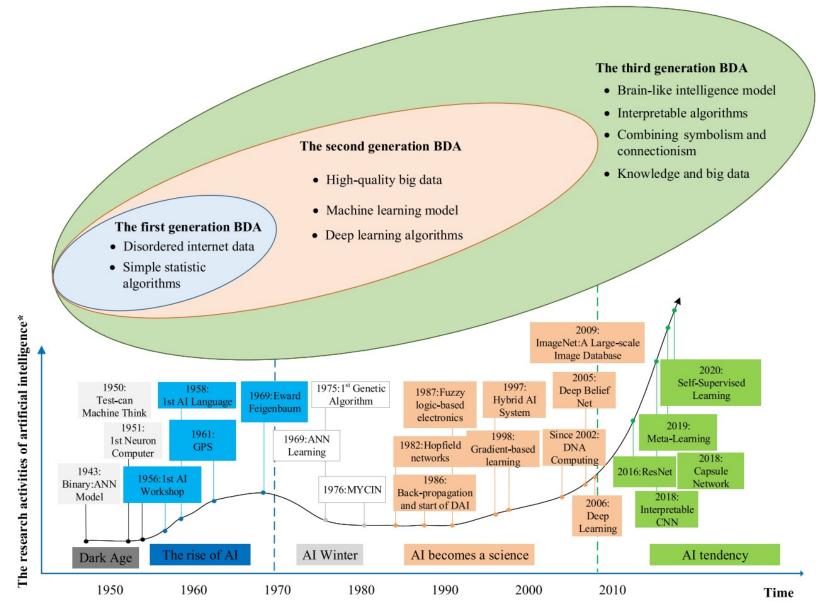
AI, ML, NN, DL

	ARTIFICIAL INTELLIGENCE (AI)	
	MACHINE LEARNING (ML)	
	Input Human feature extraction Automated processing Output	
	ARTIFICIAL NEURAL NETWORK (NN)	
Supervised Learn Unsupervised Lear Reinforcement Lea		NATURAL LANGUAGE
	DEEP LEARNING (DL)	PROCESSING (NLP)
	Input Automated feature extraction Output	
	and processing	COMPUTER VISION (CV)

Source: Schoormann, T., Strobel, G., Möller, F., Petrik, D., & Zschech, P. (2023).

Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature. Communications of the Association for Information Systems, 52(1), 8.

Al and Big Data Analytics (BDA)



Source: Wang, Junliang, Chuqiao Xu, Jie Zhang, and Ray Zhong (2022). "Big data analytics for intelligent manufacturing systems: A review." Journal of Manufacturing Systems 62 (2022): 738-752.

Definition of **Artificial Intelligence** (A.I.)

"... the Science and engineering of making intelligent machines" (John McCarthy, 1955)

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

"... technology that thinks and acts like humans"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

"... intelligence exhibited by machines or software"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

4 Approaches of Al

4 Approaches of Al

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
 - Deep Learning (DL)
- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

FinTech

Financial Technology FinTech

"providing financial services by making use of software and modern technology"

Financial

Technology

Financial

Services

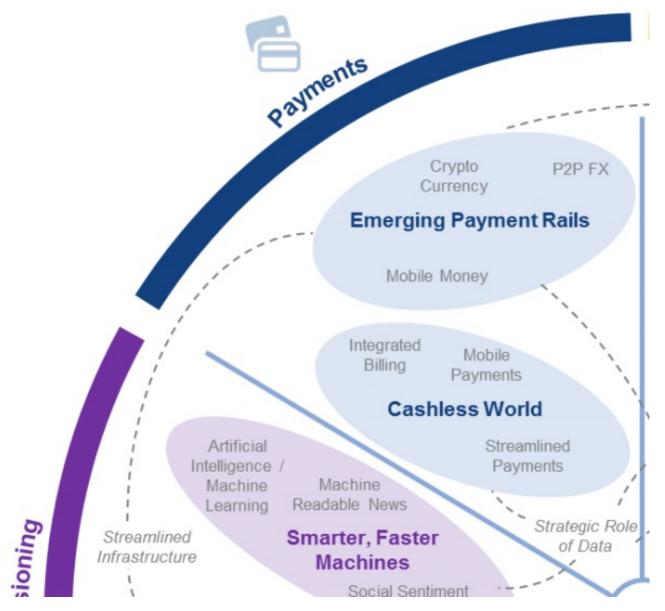
FinTech: Financial Services Innovation

FinTech:

Financial Services Innovation

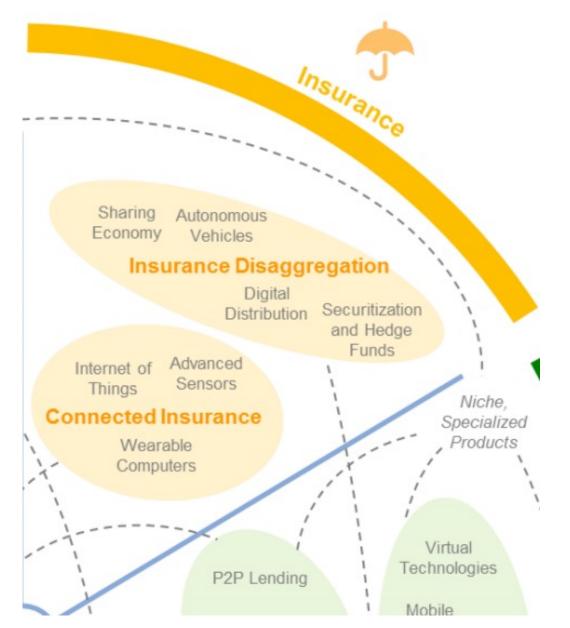
1. Payments 2. Insurance 3. Deposits & Lending 4. Capital Raising **5. Investment Management** 6. Market Provisioning

FinTech: Payment

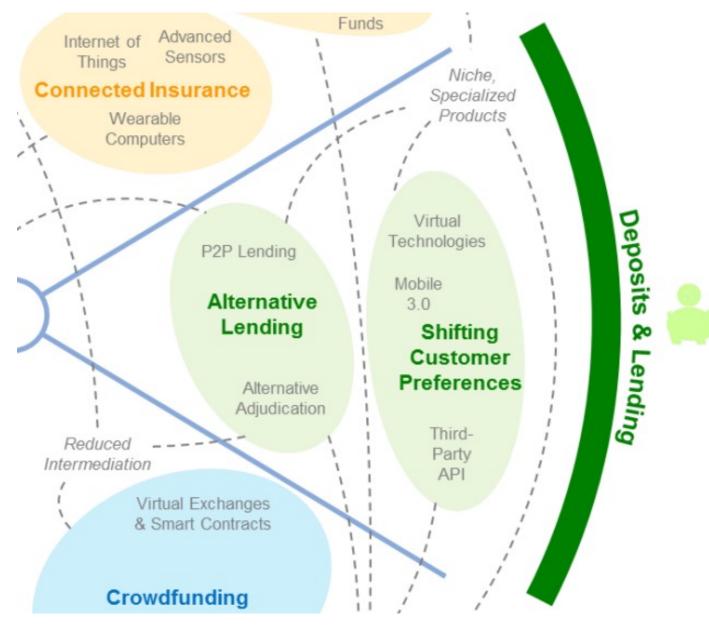


2

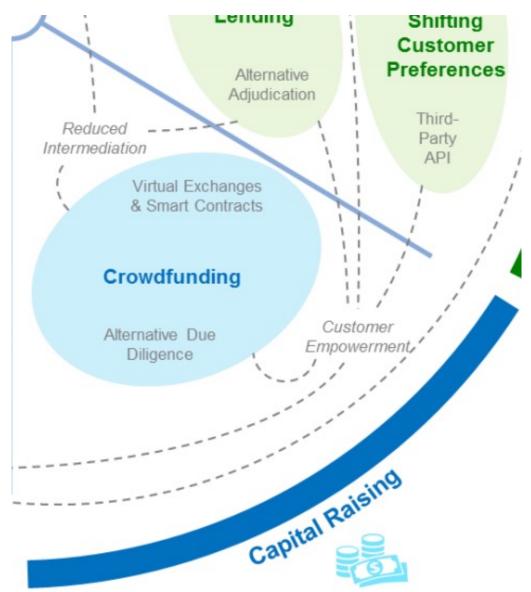
FinTech: Insurance



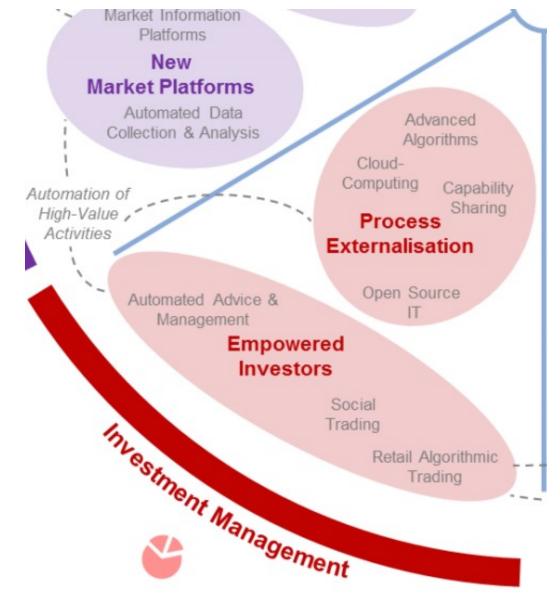
FinTech: Deposits & Lending



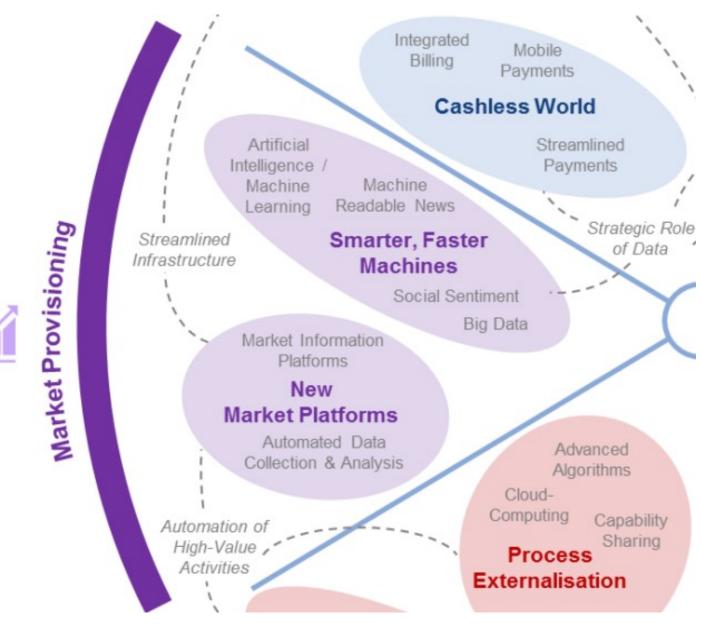
FinTech: Capital Raising



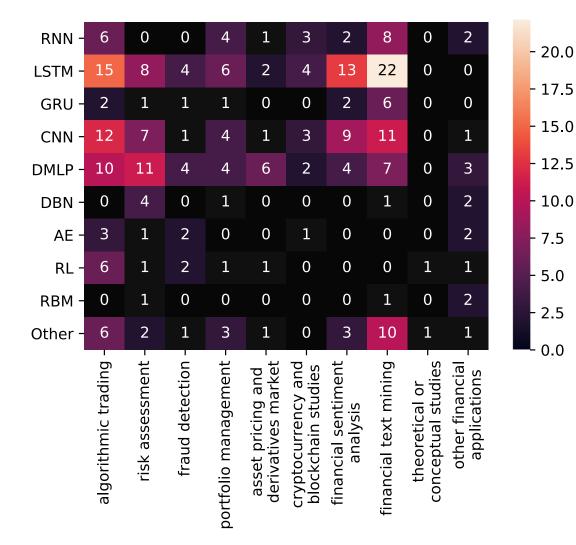
G FinTech: Investment Management



FinTech: Market Provisioning



Deep learning for financial applications: Topic-Model Heatmap



RBN

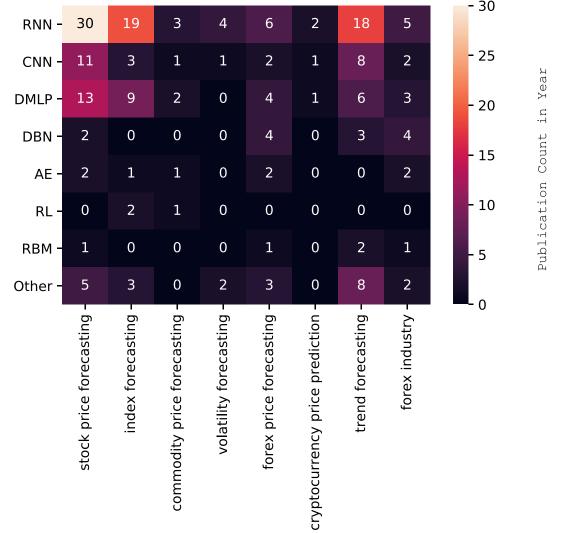
Deep learning for financial applications: Topic-Feature Heatmap

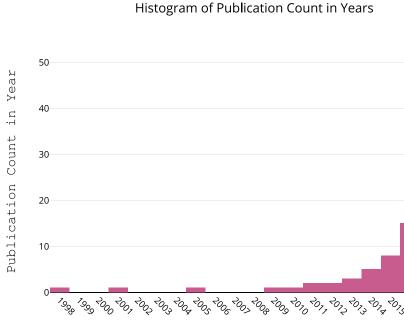
price data -	35	3	0	16	10	7	10	22	- 35
technical indicator -	15	0	0	7	1	4	3	7	
index data -	5	1	0	0	0	0	1	1	- 30
market characteristics -	6	2	2	0	9	0	0	0	
fundamental -	2	0	0	2	3	0	0	0	- 25
market microstructure data -	8	4	3	0	0	1	0	1	
sentiment -	1	1	0	0	0	1	7	5	- 20
text -	2	7	2	1	1	0	21	36	
news -	0	1	0	0	0	0	4	22	- 15
company/personal financial data -	0	21	5	2	1	0	2	3	10
macroeconomic data -	1	2	2	0	0	1	0	0	- 10
risk measuring features -	0	3	2	0	0	0	0	0	- 5
blockchain/cryptocurrency specific features -	0	0	0	0	0	6	0	0	- 5
human inputs -	0	0	0	0	0	0	0	2	- 0
	algorithmic trading –	risk assessment -	fraud detection -	portfolio management -	asset pricing and derivatives market	cryptocurrency and _ blockchain studies [_]	financial sentiment _ analysis	financial text mining -	- 0

Deep learning for Financial applications: Topic-Dataset Heatmap

Stock Data -	15	2	0	11	3	0	7	20	2	3	- 35	
Index/ETF Data -	35	0	0	3	3	0	9	14	0	1		
Cryptocurrency -	9	0	0	2	0	15	2	0	0	0	- 30	
Forex Data -	5	0	0	1	0	0	0	0	0	2		
Commodity Data -	6	0	0	1	0	0	0	0	0	2	- 25	
Options Data -	1	0	0	0	4	0	0	0	0	0		
Transaction Data -	2	3	2	0	0	0	0	1	0	0	- 20	
News Text -	4	3	0	0	0	0	13	36	0	0		
Tweet/microblog -	1	0	0	0	0	1	8	10	0	1	- 15	
Credit Data -	0	10	1	0	0	0	0	0	0	0		
Financial Reports -	0	6	2	3	2	0	4	3	0	3	- 10	
Consumer Data -	0	8	6	0	0	0	0	1	0	1	_	
Macroeconomic Data -	0	2	1	0	0	0	0	0	0	1	- 5	
Other -	5	3	1	1	3	0	0	3	1	0	_	
	algorithmic trading -	risk assessment -	fraud detection -	portfolio management -	asset pricing and	cryptocurrency and blockchain studies	financial sentiment analysis	financial text mining -	theoretical or conceptual studies	other financial applications	- 0	

Financial time series forecasting with deep learning: Topic-model heatmap





Year

Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[33]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R-square	Spark
[34]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010–2016	OCHLV, Technical Indicators	WT, Stacked autoencoders, LSTM	MAPE, Correlation coefficient, THEIL-U	_
[35]	Chinese Stocks	2007–2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[36]	50 stocks from NYSE	2007-2016	Price data	SFM	MSE	-
[37]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[38]	300 stocks from SZSE, Commodity	2014-2015	Price data	FDDR, DMLP+RL	Profit, return, SR, profit-loss curves	Keras
[39]	S&P500 Index	1989–2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[40]	Stock of National Bank of Greece (ETE).	2009–2014	FTSE100, DJIA, GDAX, NIKKEI225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[41]	Chinese stock-IF-IH-IC contract	2016-2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[42]	Singapore Stock Market Index	2010-2017	OCHL of last 10 days of Index	DMLP	RMSE, MAPE, Profit, SR	-
[43]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside deviation ratio, total profit	Python, Keras, Tensorflow
[44]	Commodity, FX future, ETF	1991–2014	Price Data	DMLP	SR, capability ratio, return	C++, Python
[45]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O

Algo-trading applications embedded with time series forecasting models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX returns, Euribor interest rates, OCHLV	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[47]	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning, DMLP	Total profit, Correlation	-
[48]	Stocks in the S&P500	1990–2015	Price data	DMLP, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[49]	Fundamental and Technical Data, Economic Data	_	Fundamental , technical and market information	CNN	_	_

Classification (buy-sell signal, or trend detection) based algo-trading models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[51]	Stocks in Dow30	1997-2017	RSI	DMLP with genetic algorithm	Annualized return	Spark MLlib, Java
[52]	SPY ETF, 10 stocks from S&P500	2014-2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[53]	Dow30 stocks	2012-2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIE
[54]	High-frequency record of all orders	2014–2017	Price data, record of all orders, transactions	LSTM	Accuracy	-
[55]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Recall, F1-score, Cohen's k	-
[56]	17 ETFs	2000-2016	Price data, technical indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[57]	Stocks in Dow30 and 9 Top Volume ETFs	1997–2017	Price data, technical indicators	CNN with feature imaging	Recall, precision, F1-score, annualized return	Python, Keras, Tensorflow, Java
[58]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[59]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Recall, F1-score, Cohen's k	Theano, Scikit learn, Python
[60]	Borsa Istanbul 100 Stocks	2011-2015	75 technical indicators and OCHLV	CNN	Accuracy	Keras
[61]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[62]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DMLP, Genetic Algorithm	Learning and genetic algorithm error	-
[63]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed opportunities, false alarms ratio	-
[64]	London Stock Exchange	2007-2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[65]	Cryptocurrencies, Bitcoin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Deep learning for financial applications: Stand-alone and/or other algorithmic models

Art.	Data set	Period	Feature set	Method	Performance criteria	Environment
[66]	DAX, FTSE100, call/put options	1991–1998	Price data	Markov model, RNN	Ewa-measure, iv, daily profits' mean and std	-
[67]	Taiwan Stock Index Futures, Mini Index Futures	2012-2014	Price data to image	Visualization method + CNN	Accumulated profits,accuracy	_
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015-2016	Text and Price data	LSTM, RNN, GRU	Return, SR, precision, recall, accuracy	Python, Tweepy API
[69]	CME FIX message	2016	Limit order book, time-stamp, price data	RNN	Precision, recall, F1-measure	Python, TensorFlow, R
[70]	Taiwan stock index futures (TAIFEX)	2017	Price data	Agent based RL with CNN pre-trained	Accuracy	_
[71]	Stocks from S&P500	2010-2016	OCHLV	DCNL	PCC, DTW, VWL	Pytorch
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[73]	489 stocks from S&P500 and NASDAQ-100	2014-2015	Limit Order Book	Spatial neural network	Cross entropy error	NVIDIA's cuDNN
[74]	Experimental dataset	-	Price data	DRL with CNN, LSTM, GRU, DMLP	Mean profit	Python

Deep learning for financial applications: Credit scoring or classification studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[77]	The XR 14 CDS contracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	_
[79]	Credit data from Kaggle	-	Personal financial variables	DMLP	Accuracy, TP, TN, G-mean	_
[80]	Australian, German credit data	_	Personal financial variables	GP + AE as Boosted DMLP	FP	Python, Scikit-learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, DMLP	Accuracy, False/Missed alarm	_
[82]	Consumer credit data from Chinese finance company	_	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accuracy	Keras
[83]	Credit approval dataset by UCI Machine Learning repo	-	UCI credit approval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

Financial distress, bankruptcy, bank risk, mortgage risk, crisis forecasting studies.

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[84]	966 french firms	-	Financial ratios	RBM+SVM	Precision, Recall	-
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, RF	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[86]	The event data set for large European banks, news articles from Reuters	2007–2014	Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	_
[87]	Event dataset on European banks, news from Reuters	2007–2014	Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	News from Reuters, fundamental data	2007-2014	Financial ratios and news text	doc2vec + NN	Relative usefulness	Doc2vec
[89]	Macro/Micro economic variables, Bank charac- teristics/performance variables from BHC	1976–2017	Macro economic variables and bank performances	CGAN, MVN, MV-t, LSTM, VAR, FE-QAR	RMSE, Log likelihood, Loan loss rate	-
[90]	Financial statements of French companies	2002-2006	Financial ratios	DBN	Recall, Precision, F1-score, FP, FN	-
[91]	Stock returns of American publicly-traded companies from CRSP	2001–2011	Price data	DBN	Accuracy	Python, Theano
[92]	Financial statements of several companies from Japanese stock market	2002–2016	Financial ratios	CNN	F1-score, AUROC	-
[93]	Mortgage dataset with local and national economic factors	1995–2014	Mortgage related features	DMLP	Negative average log-likelihood	AWS
[94]	Mortgage data from Norwegian financial service group, DNB	2012–2016	Personal financial variables	CNN	Accuracy, Sensitivity, Specificity, AUROC	-
[95]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	CNN, LSTM	F1-Score	Keras, Tensorflow
[96]	Several datasets combined to create a new one	1996-2017	Index data, 10-year Bond yield, exchange rates,	Logit, CART, RF, SVM, NN, XGBoost, DMLP	AUROC, KS, G-mean, likelihood ratio, DP, BA, WBA	R

Deep learning for financial applications: Fraud detection studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[114]	Debit card transactions by a local Indonesia bank	2016–2017	Financial transaction amount on several time periods	CNN, Stacked-LSTM, CNN-LSTM	AUROC	-
[115]	Credit card transactions from retail banking	2017	Transaction variables and several derived features	LSTM, GRU	Accuracy	Keras
[116]	Card purchases' transactions	2014-2015	Probability of fraud per currency/origin country, other fraud related features	DMLP	AUROC	-
[117]	Transactions made with credit cards by European cardholders	2013	Personal financial variables to PCA	DMLP, RF	Recall, Precision, Accuracy	-
[118]	Credit-card transactions	2015	Transaction and bank features	LSTM	AUROC	Keras, Scikit-learn
[119]	Databases of foreign trade of the Secretariat of Federal Revenue of Brazil	2014	8 Features: Foreign Trade, Tax, Transactions, Employees, Invoices, etc	AE	MSE	H2O, R
[120]	Chamber of Deputies open data, Companies data from Secretariat of Federal Revenue of Brazil	2009–2017	21 features: Brazilian State expense, party name, Type of expense, etc.	Deep Autoencoders	MSE, RMSE	H2O, R
[121]	Real-world data for automobile insurance company labeled as fradulent	-	Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[122]	Transactions from a giant online payment platform	2006	Personal financial variables	GBDT+DMLP	AUROC	-
[123]	Financial transactions	-	Transaction data	LSTM	t-SNE	_
[124]	Empirical data from Greek firms	-	-	DQL	Revenue	Torch

Deep learning for financial applications: Portfolio management studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[65]	Cryptocurrencies, Bitcoin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965-2009	Price data	Autoencoder + RBM	Accuracy, confusion matrix	-
[128]	20 stocks from S&P500	2012-2015	Technical indicators	DMLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012-2013	Technical, fundamental data	Logistic Regression, RF, DMLP	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow Python, Scikit learn
[130]	Top 5 companies in S&P500	-	Price data and Financial ratios	LSTM, Auto-encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology index, stocks	2012–2016	Price data	Auto-encoding, Calibrating, Validating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	-
[133]	FOREX (EUR/USD, etc.), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	LSTM+DMLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[135]	S&P500	1985-2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997-2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCal
[138]	Stocks from Chinese/American stock market	2015-2018	OCHLV, Fundamental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly return data	1996–2015	Return, SR, STD, Skewness, Kurtosis, Omega ratio, Fund alpha	DMLP	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	-

Deep learning for financial applications: Asset pricing and derivatives market studies

Art.	Der. type	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Asset pricing	Analyst reports on the TSE and Osaka Exchange	2016–2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[142]	Options	Simulated a range of call option prices	_	Price data, option strike/maturity, dividend/risk free rates, volatility	DMLP	RMSE, the average percentage pricing error	Tensorflow
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamental analysis, option price	DMLP, DMLP with Black scholes	RMSE, MAE, MAPE	_
[144]	Equity returns	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	Fama–French n-factor model DL	R ² ,RMSE	Tensorflow

Deep learning for financial applications: Cryptocurrency and blockchain studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[46]	Bitcoin, Dash, Ripple, Monero, Litecoin, Dogecoin, Nxt, Namecoin	2014–2017	MA, BOLL, the CRIX daily returns, Euribor interest rates, OCHLV of EURO/UK, EURO/USD, US/JPY	LSTM, RNN, DMLP	Accuracy, F1-measure	Python, Tensorflow
[65]	Cryptocurrencies, Bitcoin	2014–2017	Price data	CNN	Accumulative portfolio value, MDD, SR	-
[140]	12 most-volumed cryptocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	
[145]	Bitcoin data	2010–2017	Hash value, bitcoin address, public/private key, digital signature, etc.	Takagi–Sugeno Fuzzy cognitive maps	Analytical hierarchy process	-
[146]	Bitcoin data	2012, 2013, 2016	TransactionId, input/output Addresses, timestamp	Graph embedding using heuristic, laplacian eigen-map, deep AE	F1-score	-
[147]	Bitcoin, Litecoin, StockTwits	2015-2018	OCHLV, technical indicators, sentiment analysis	CNN, LSTM, State Frequency Model	MSE	Keras, Tensorflow
[148]	Bitcoin	2013-2016	Price data	Bayesian optimized RNN, LSTM	Sensitivity, specificity, precision, accuracy, RMSE	Keras, Python, Hyperas

Financial sentiment studies coupled with text mining for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, MeCab
[150]	Sina Weibo, Stock market records	2012-2015	Technical indicators, sentences	DRSE	F1-score, precision, recall, accuracy, AUROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks	2006–2015	Financial news, price data	DeepClue	Accuracy	Dynet software
[152]	News from Reuters and Bloomberg, Historical stock security data	2006–2013	News, price data	DMLP	Accuracy	-
[153]	SCI prices	2008-2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013-2016	Text data and Price data	LSTM	Accuracy, F1-Measure	Python, Keras
[155]	Stocks of Google, Microsoft and Apple	2016-2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, DJI, news from Reuters	2002–2016	Price data and features from news articles	LSTM, NN, CNN and word2vec	Accuracy	VADER
[157]	Stocks of CSI300 index, OCHLV of CSI300 index	2009-2014	Sentiment Posts, Price data	Naive Bayes + LSTM	Precision, Recall, F1-score, Accuracy	Python, Keras
[158]	S&P500, NYSE Composite, DJIA, NASDAQ Composite	2009–2011	Twitter moods, index data	DNN, CNN	Error rate	Keras, Theano

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[68]	Energy-Sector/ Company-Centric Tweets in S&P500	2015-2016	Text and Price data	RNN, KNN, SVR, LinR	Return, SR, precision, recall, accuracy	Python, Tweepy API
[165]	News from Reuters, Bloomberg	2006–2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012-2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data	2010-2013	Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006-2013	Price data, news, technical indicators	TGRU, stock2vec	Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006–2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	_
[170]	S&P500 index news from Reuters	2006–2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy Index, News	2013-2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled matrix and tensor	Accuracy, MCC	Jieba
[174]	HS300	2015–2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn

Text mining studies without sentiment analysis for forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[175]	News and Chinese stock data	2014-2017	Selected words in a news	HAN	Accuracy, Annual return	-
[176]			Price data and TF-IDF from news	ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab
[177]	TWSE in		Technical indicators, Price data, News	indicators, Price		Keras, Python, TALIB
[178]	Stock of Tsugami 2013 Corporation		Price data LSTM		RMSE	Keras, Tensorflow
[179]	News, Nikkei Stock 1999–2008 Average and 10-Nikkei companies		news, MACD	news, MACD RNN, RBM+DBN		-
[180]	ISMIS 2017 Data Mining Competition dataset	-	Expert identifier, classes	LSTM + GRU + FFNN	Accuracy	-
[181]	Reuters, Bloomberg News, S&P500 price	2006-2013	News and sentences	LSTM	Accuracy	-
[182]	APPL from S&P500 and 2011–2017 news from Reuters		Input news, OCHLV, Technical indicators	CNN + LSTM, CNN+SVM	Accuracy, F1-score	Tensorflow
[183]	Nikkei225, S&P500, news 2001–2013 from Reuters and Bloomberg		Stock price data and news	DGM	Accuracy, MCC, %profit	_
[184]	Stocks from S&P500	2006–2013	Text (news) and Price data	LAR+News, RF+News	MAPE, RMSE	-

Financial sentiment studies coupled with text mining without forecasting

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[85]	883 BHC from EDGAR	2006–2017	Tokens, weighted sentiment polarity, leverage and ROA	CNN, LSTM, SVM, Random Forest	Accuracy, Precision, Recall, F1-score	Keras, Python, Scikit-learn
[185]	SemEval-2017 dataset, financial text, news, stock market data	financial text, news,		Sentiments inEnsemble SVR,Tweets, NewsCNN, LSTM, GRUheadlines		Python, Keras, Scikit Learn
[186]	Financial news from Reuters	2006–2015Word vector, Lexical and Contextual inputTargeted dependency tree LSTMCumulative abnormal return		-		
[187]	Stock sentiment analysis from StockTwits	messages CNN precision, recal		Accuracy, precision, recall, f-measure, AUC	-	
[188]	Sina Weibo, Stock 2012–2015 market records		Technical DRSE indicators, sentences		F1-score, precision, recall, accuracy, AUROC	Python
[189]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	AppleDaily, LTN,		Text, Sentiment LSTM, CNN		Python, Tensorflow
[190]	StockTwits	2008–2016	Sentences, StockTwits messages	CNN, LSTM, GRU	MCC, WSURT	Keras, Tensorflow
[191]	Financial statements of Japan companies	-	Sentences, text	DMLP	Precision, recall, f-score	-
[192]	Twitter posts, news – headlines		Sentences, text Deep-FASP		Accuracy, MSE, R ²	-
[193]	Forums data	2004-2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[194]	News from Financial Times related US stocks	-	Sentiment of news headlines	SVR, Bidirectional LSTM	Cosine similarity	Python, Scikit Learn, Keras, Tensorflow

Other text mining studies

Art.	Data set	Period	Feature set	Method	Performance criteria	Env.
[72]	News from NowNews, AppleDaily, LTN, MoneyDJ for 18 stocks	2013-2014	Text, Sentiment	DMLP	Return	Python, Tensorflow
[86]	The event data set for 2007–2014 Word, so large European banks, news articles from Reuters		Word, sentence	DMLP +NLP preprocess	Relative usefulness, F1-score	_
[87]	Event dataset on 2007–2014 European banks, news from Reuters		Text, sentence	Sentence vector + DFFN	Usefulness, F1-score, AUROC	-
[88]	······································		Financial ratios doc2vec + NN and news text		Relative usefulness	Doc2vec
[121]	Real-world data for – automobile insurance company labeled as fradulent		Car, insurance and accident related features	DMLP + LDA	TP, FP, Accuracy, Precision, F1-score	-
[123]	Financial transactions	_	Transaction data	LSTM	t-SNE	_
[195]	Taiwan's National Pension Insurance	2008-2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[196]	StockTwits	2015-2016	Sentences, StockTwits messages	Doc2vec, CNN	Accuracy, precision, recall, f-measure, AUC	Python, Tensorflow

Deep learning for financial applications: Other theoretical or conceptual studies

Art.	SubTopic	IsTimeSeries?	Data set	Period	Feature set	Method
[197]	Analysis of AE, SVD	Yes	Selected stocks from the IBB index and stock of Amgen Inc.	2012-2014	Price data	AE, SVD
[198]	Fraud Detection in Banking	No	Risk Management / Fraud Detection	-	_	DRL

Deep learning for financial applications: Other financial applications

	• •						
Art.	Subtopic	Data set	Period	Feature set	Method	Performance criteria	Env.
[47]	Improving trading decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987–2017	200-days stock price	Deep Q-Learning and DMLP	Total profit, Correlation	_
[193]	Identifying Top Sellers In Underground Economy	Forums data	2004–2013	Sentences and keywords	Recursive neural tensor networks	Precision, recall, f-measure	-
[195]	Predicting Social Ins. Payment Behavior	Taiwan's National Pension Insurance	2008-2014	Insured's id, area-code, gender, etc.	RNN	Accuracy, total error	Python
[199]	Speedup	45 CME listed commodity and FX futures	1991–2014	Price data	DNN	-	-
[200]	Forecasting Fundamentals	Stocks in NYSE, NASDAQ or AMEX exchanges	1970–2017	16 fundamental features from balance sheet	DMLP, LFM	MSE, Compound annual return, SR	-
[201]	Predicting Bank Telemarketing	Phone calls of bank marketing data	2008-2010	16 finance-related attributes	CNN	Accuracy	_
[202]	Corporate Performance Prediction	22 pharmaceutical companies data in US stock market	2000–2015	11 financial and 4 patent indicator	RBM, DBN	RMSE, profit	-

All-years count

Ц Т

Stock price forecasting using only raw time series data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[80]	38 stocks in KOSPI	2010-2014	Lagged stock returns	50 min	5 min	DNN	NMSE, RMSE, MAE, MI	-
[81]	China stock market, 3049 Stocks	1990–2015	OCHLV	30 d	3 d	LSTM	Accuracy	Theano, Keras
[82]	Daily returns of 'BRD' stock in Romanian Market	2001–2016	OCHLV	-	1 d	LSTM	RMSE, MAE	Python, Theano
[83]	297 listed companies of CSE	2012-2013	OCHLV	2 d	1 d	LSTM, SRNN, GRU	MAD, MAPE	Keras
[84]	5 stock in NSE	1997–2016	OCHLV, Price data, turnover and number of trades.	200 d	110 d	LSTM, RNN, CNN, MLP	MAPE	-
[85]	Stocks of Infosys, TCS and CIPLA from NSE	2014	Price data	-	_	RNN, LSTM and CNN	Accuracy	-
[86]	10 stocks in S&P500	1997-2016	OCHLV, Price data	36 m	1 m	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[87]	Stocks data from S&P500	2011-2016	OCHLV	1 d	1 d	DBN	MSE, norm-RMSE, MAE	-
[88]	High-frequency transaction data of the CSI300 futures	2017	Price data	-	1 min	DNN, ELM, RBF	RMSE, MAPE, Accuracy	Matlab
[89]	Stocks in the S&P500	1990–2015	Price data	240 d	1 d	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[90]	ACI Worldwide, Staples, and Seagate in NASDAQ	2006–2010	Daily closing prices	17 d	1 d	RNN, ANN	RMSE	-
[91]	Chinese Stocks	2007–2017	OCHLV	30 d	15 d	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[92]	20 stocks in S&P500	2010-2015	Price data	-	-	AE + LSTM	Weekly Returns	-
[93]	S&P500	1985-2006	Monthly and daily log-returns	*	1 d	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[94]	12 stocks from SSE Composite Index	2000-2017	OCHLV	60 d	17 d	DWNN	MSE	Tensorflow
[95]	50 stocks from NYSE	2007-2016	Price data	-	1d, 3 d, 5 d	SFM	MSE	-

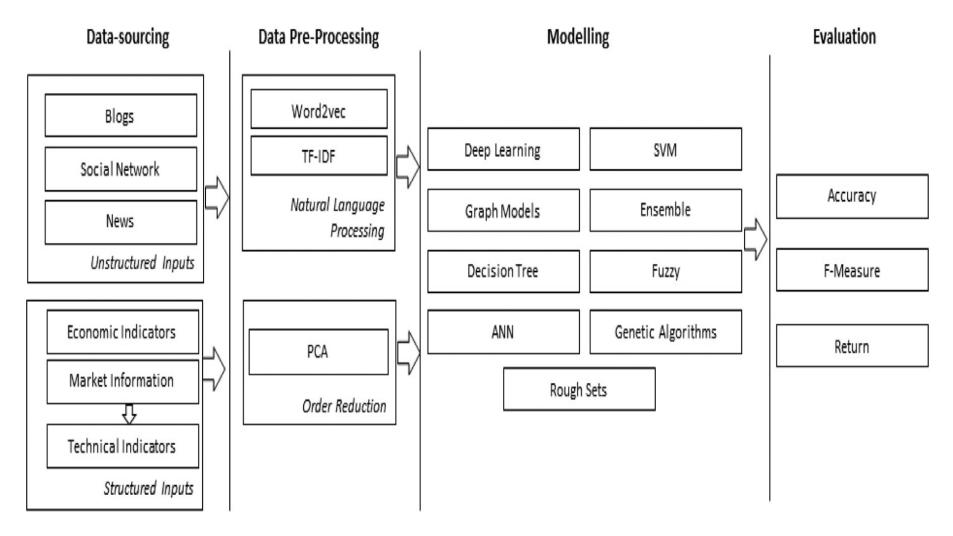
Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock price forecasting using various data

Art.	Data set	Period	Feature set	Lag	Horizon	Method	Performance criteria	Env.
[96]	Japan Index constituents from WorldScope	1990–2016	25 Fundamental Features	10 d	1 d	DNN	Correlation, Accuracy, MSE	Tensorflow
[97]	Return of S&P500	1926–2016	Fundamental Features:	-	1 s	DNN	MSPE	Tensorflow
[98]	U.S. low-level disaggregated macroeconomic time series	1959–2008	GDP, Unemployment rate, Inventories, etc.	-	-	DNN	R ²	-
[99]	CDAX stock market data	2010–2013	Financial news, stock market data	20 d	1 d	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow, Theano, Pythoi Scikit-Learn
[100]	Stock of Tsugami Corporation	2013	Price data	-	-	LSTM	RMSE	Keras, Tensorflow
[101]	Stocks in China's A-share	2006-2007	11 technical indicators	-	1 d	LSTM	AR, IR, IC	-
[102]	SCI prices	2008-2015	OCHL of change rate, price	7 d	-	EmotionalAnalysis + LSTM	MSE	-
[103]	10 stocks in Nikkei 225 and news	2001–2008	Textual information and Stock prices	10 d	-	Paragraph Vector + LSTM	Profit	-
[104]	TKC stock in NYSE and QQQQ ETF	1999–2006	Technical indicators, Price	50 d	1 d	RNN (Jordan–Elman)	Profit, MSE	Java
[105]	10 Stocks in NYSE	-	Price data, Technical indicators	20 min	1 min	LSTM, MLP	RMSE	-
[106]	42 stocks in China's SSE	2016	OCHLV, Technical Indicators	242 min	1 min	GAN (LSTM, CNN)	RMSRE, DPA, GAN-F, GAN-D	-
[107]	Google's daily stock data	2004-2015	OCHLV, Technical indicators	20 d	1 d	$(2D)^2$ PCA + DNN	SMAPE, PCD, MAPE, RMSE, HR, TR, R ²	R, Matlab
[108]	GarantiBank in BIST, Turkey	2016	OCHLV, Volatility, etc.	-	-	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, R ²	Spark
[109]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993–2017	Price, 15 firm characteristics	80 d	1 d	LSTM+MLP	Monthly return, SR	Python,Keras, Tensorflow in AWS
[110]	Private brokerage company's real data of risky transactions	-	250 features: order details, etc.	-	-	CNN, LSTM	F1-Score	Keras, Tensorflow
[111]	Fundamental and Technical Data, Economic Data	-	Fundamental , technical and market information	-	-	CNN	-	-
[112]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	-	*	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[113]	Returns in NYSE, AMEX, NASDAQ	1975–2017	57 firm characteristics	*	-	Fama–French n-factor model DL	R ² , RMSE	Tensorflow

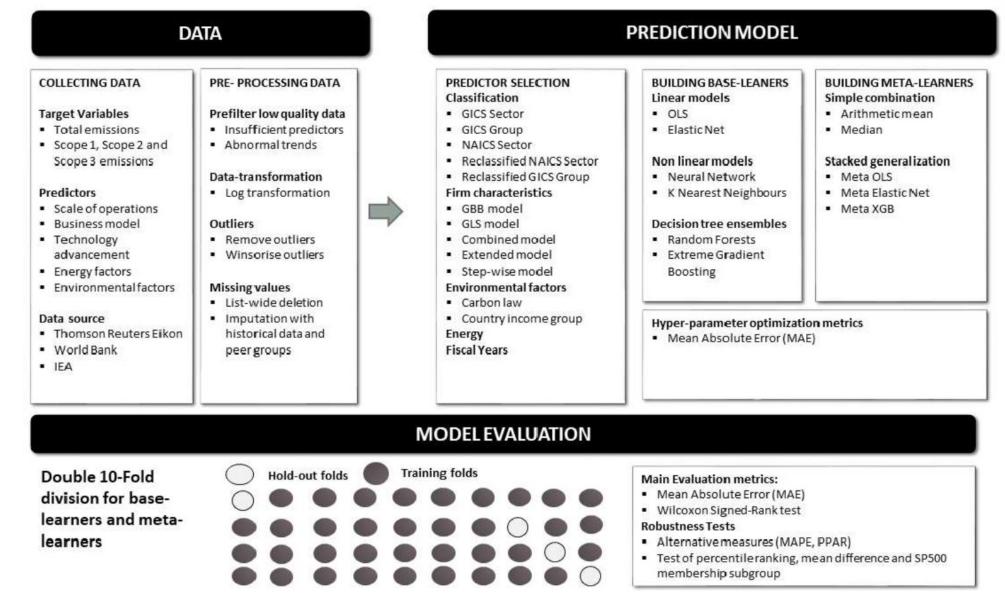
Source: Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.

Stock Market Movement Forecast: Phases of the stock market modeling



Source: O. Bustos and A. Pomares-Quimbaya (2020), "Stock Market Movement Forecast: A Systematic Review." Expert Systems with Applications (2020): 113464.

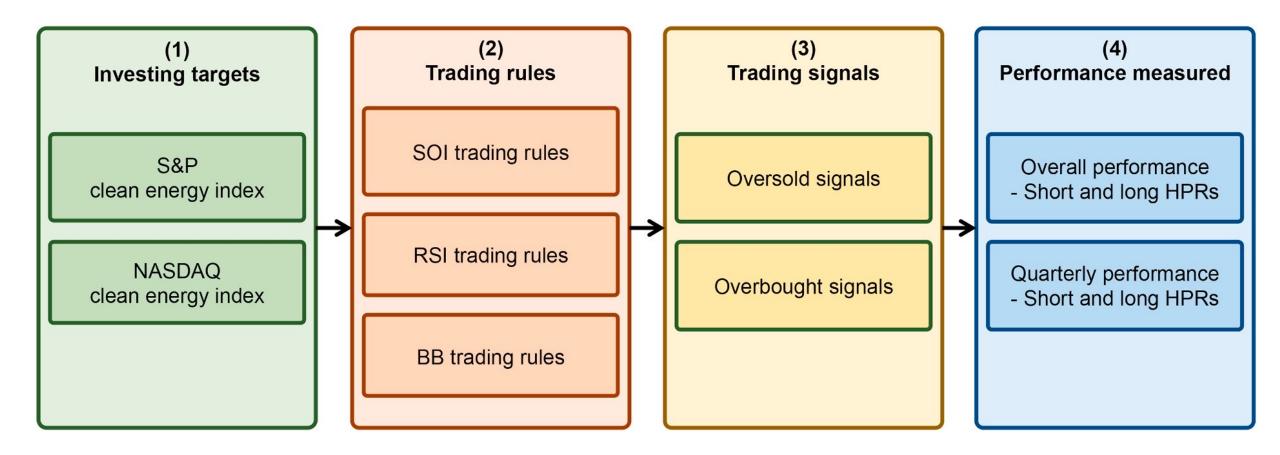
Modelling Strategy to Forecast Carbon Emissions with Al



Source: Brière, M., Keip, M., & Le Berthe, T. (2022). Artificial Intelligence for Sustainable Finance: Why it May Help. Available at SSRN 4252329.

The Research Framework

Do clean energy indices outperform using contrarian strategies



Artificial Intelligence for Sustainable Finance

• Why AI may help sustainable finance?

• Brière, M., Keip, M., & Le Berthe, T. (2022). Artificial Intelligence for Sustainable Finance: Why it May Help. Available at SSRN 4252329.

• How does artificial intelligence boost sustainable development?

• Schoormann, T., Strobel, G., Möller, F., Petrik, D., & Zschech, P. (2023). Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature. Communications of the Association for Information Systems, 52(1), 8.

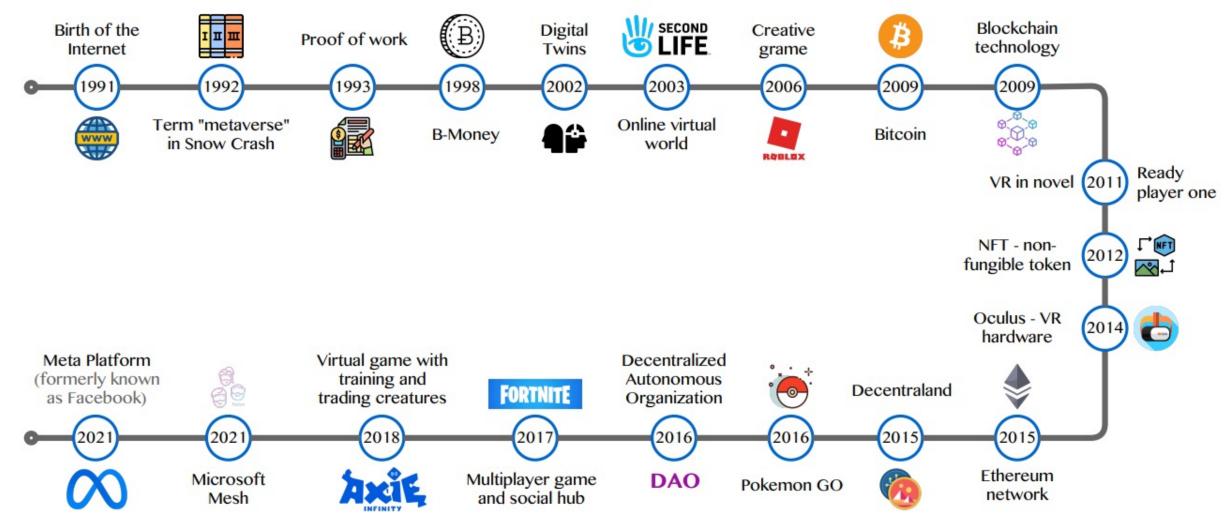
• Does sustainability generate better financial performance?

 Atz, U., Van Holt, T., Liu, Z. Z., & Bruno, C. C. (2023). Does sustainability generate better financial performance? review, meta-analysis, and propositions. Journal of Sustainable Finance & Investment, 13(1), 802-825.

• What are the major research topics in AI for Sustainable finance?

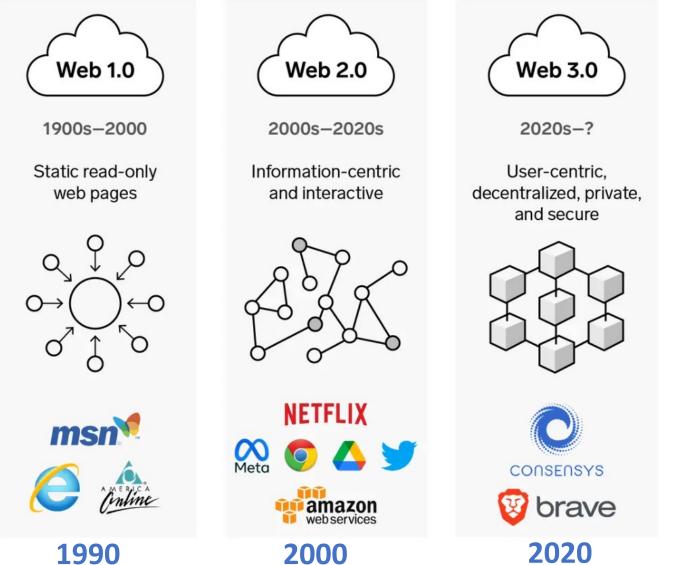
 Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: Insights from big data analytics through machine learning of scholarly research. Annals of Operations Research, 1-44. Metaverse Web3 DeFi NFT

Metaverse Development from 1991 to 2021



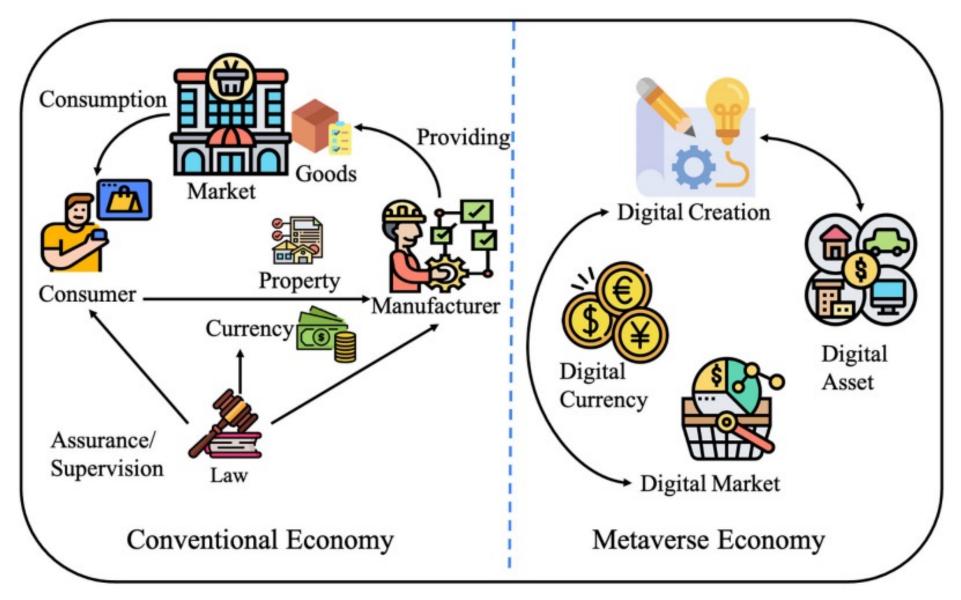
Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

Web3: Decentralized Web Internet Evolution



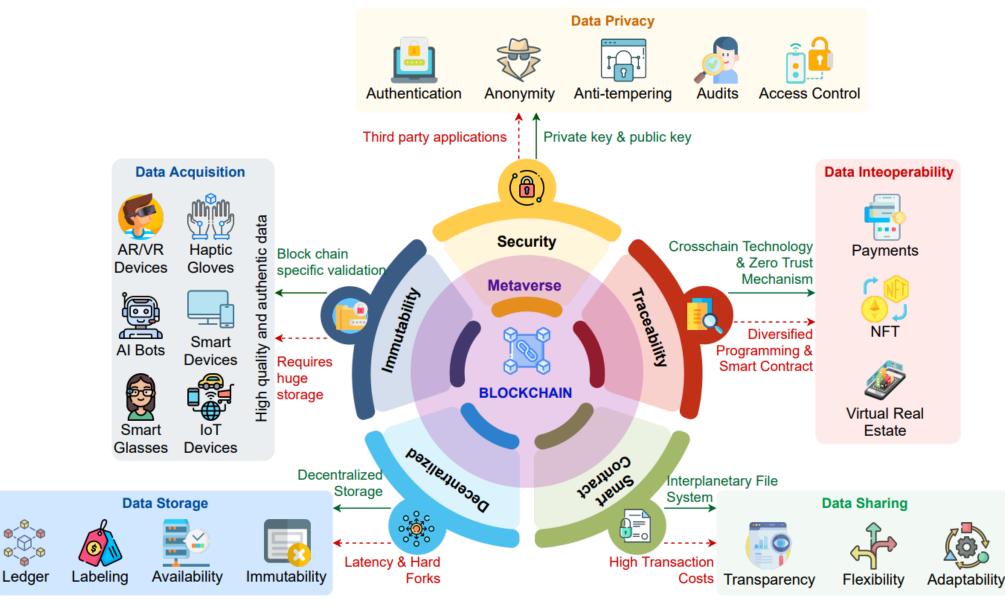
Source: https://www.businessinsider.com/personal-finance/what-is-web3

Metaverse Economy



Source: Yang, Qinglin, Yetong Zhao, Huawei Huang, Zehui Xiong, Jiawen Kang, and Zibin Zheng (2022). "Fusing blockchain and AI with metaverse: A survey." IEEE Open Journal of the Computer Society 3 : 122-136.

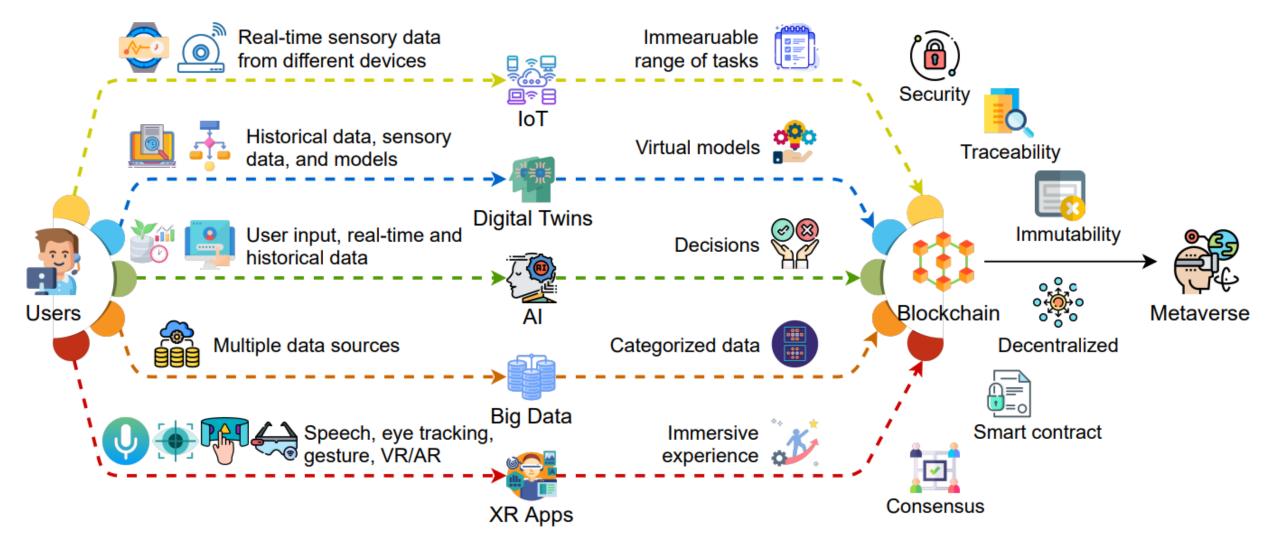
Blockchain in the Metaverse



Source: Gadekallu, Thippa Reddy, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022). "Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738..

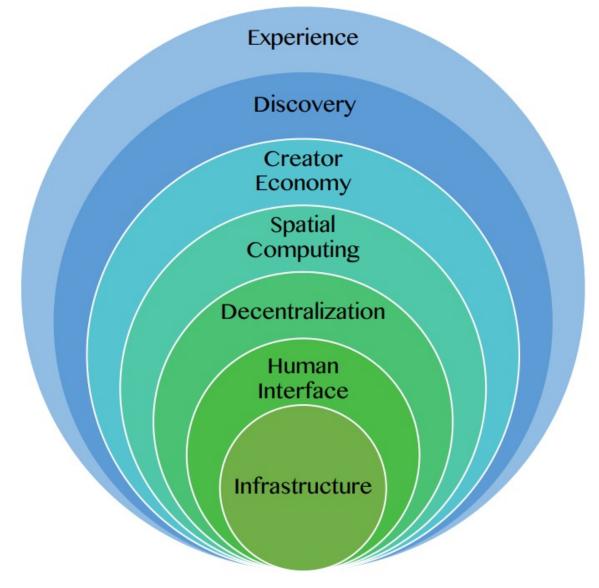
Blockchain

for Key Enabling Technologies of the Metaverse



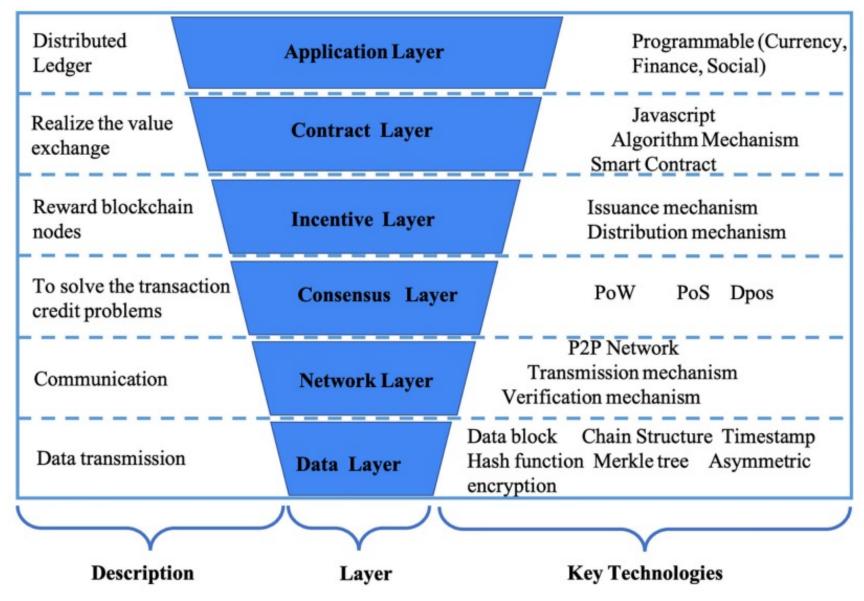
Source: Gadekallu, Thippa Reddy, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022). "Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738..

Seven Layers of a Metaverse Platform



Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

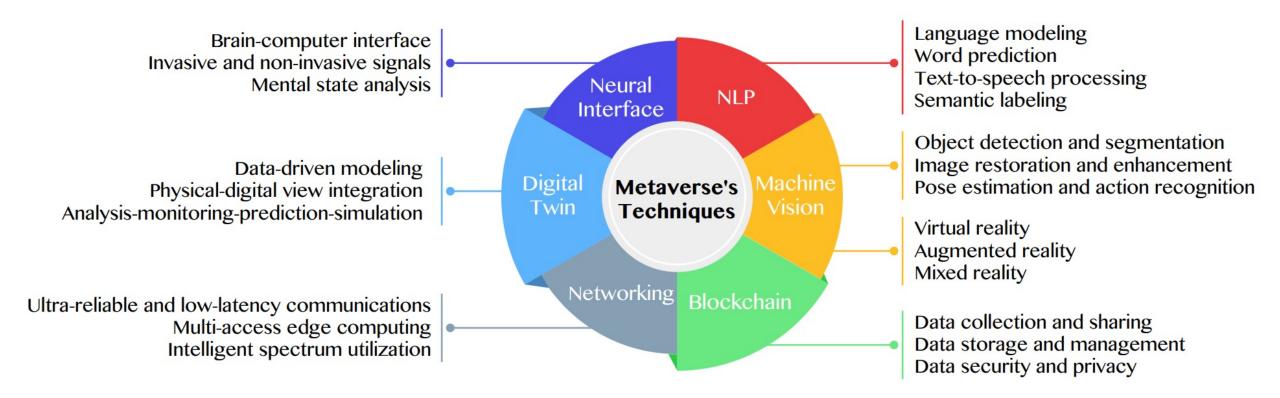
Layered Architecture of Blockchain



Source: Yang, Qinglin, Yetong Zhao, Huawei Huang, Zehui Xiong, Jiawen Kang, and Zibin Zheng (2022). "Fusing blockchain and AI with metaverse: A survey." IEEE Open Journal of the Computer Society 3 : 122-136.

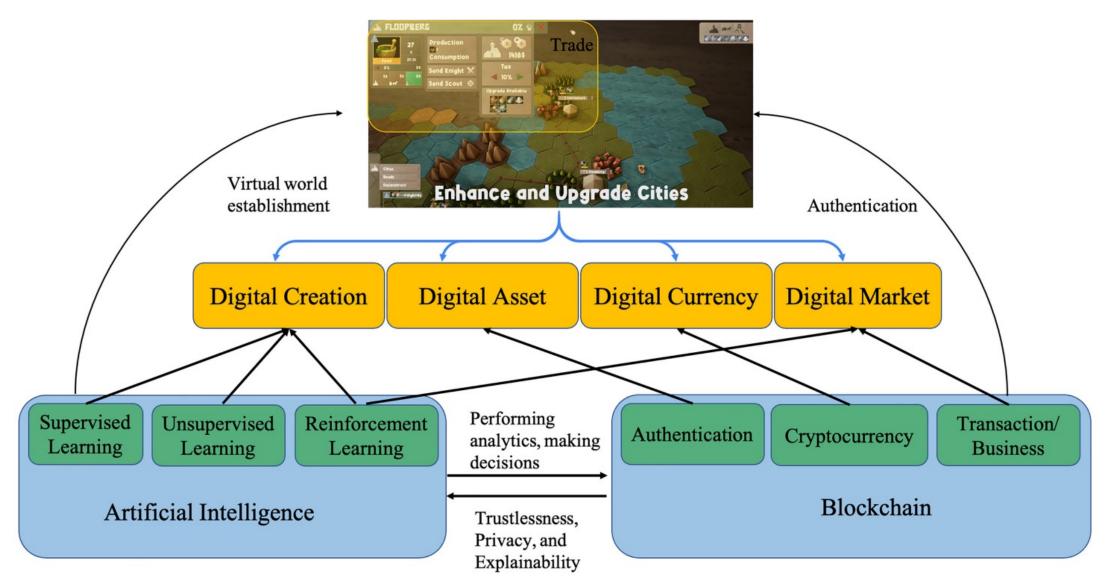
Primary Technical Aspects in the Metaverse

Al with ML algorithms and DL architectures is advancing the user experience in the virtual world



Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

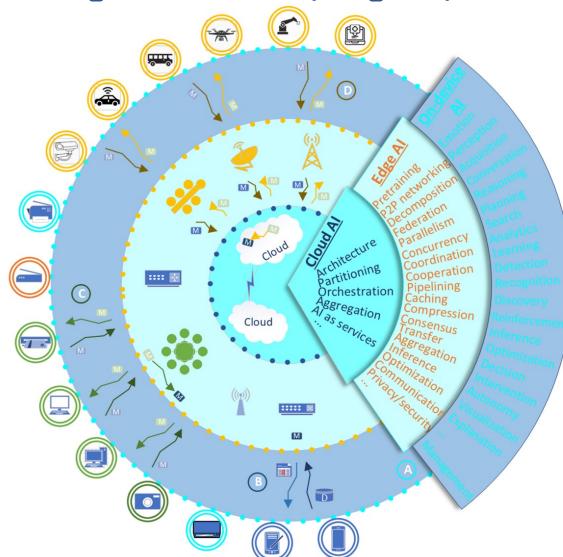
Fusion of AI and Blockchain in Metaverse



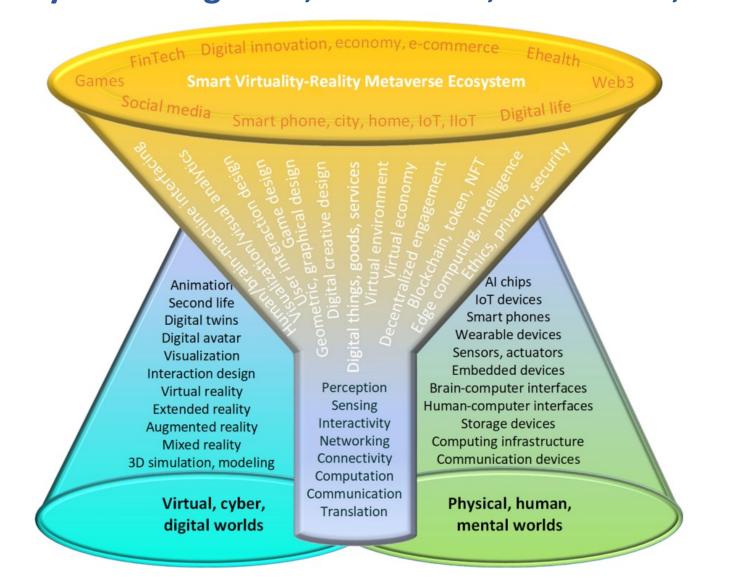
Source: Yang, Qinglin, Yetong Zhao, Huawei Huang, Zehui Xiong, Jiawen Kang, and Zibin Zheng (2022). "Fusing blockchain and AI with metaverse: A survey." IEEE Open Journal of the Computer Society 3 : 122-136.

DeAl:

Synthesizing On-device AI, Edge AI, and Cloud AI



Smart Virtuality-Reality Metaverse Ecosystem: Metasynthesizing DeAl, Metaverse, Blockchain, Web3

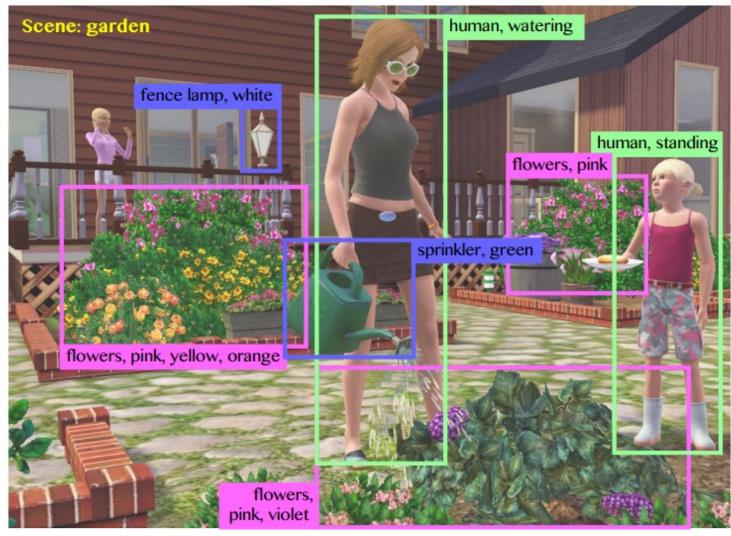


The difference between AR, MR, and VR under the umbrella of XR XR VR MR AR **Extended Reality** Virtual Reality Entire experience **Mixed Reality** spectrum from fully User is completely Augmented Reality virtual to fully real immersed into a virtual Environment aware world Non-environment aware 2D/3D content is overlaid 2D/3D content is overlaid onto the physical space onto the physical space **⊳** P User

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

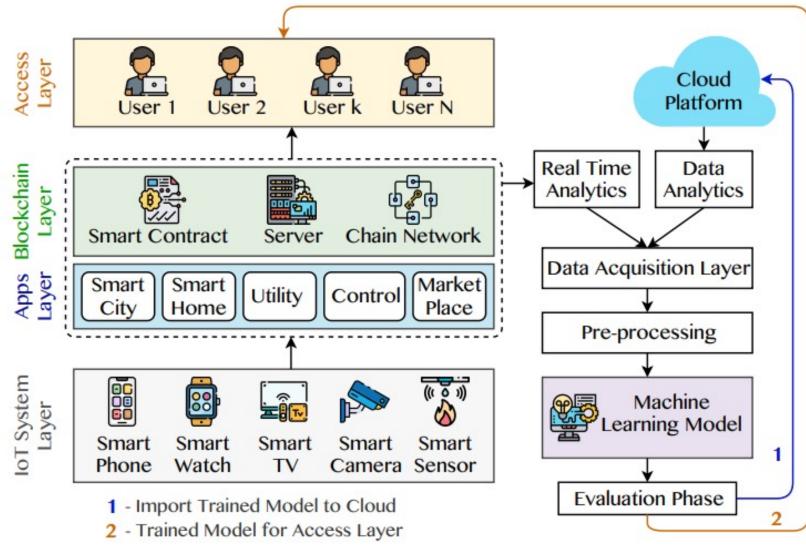
Computer vision in the metaverse

with scene understanding, object detection, and human action/activity recognition



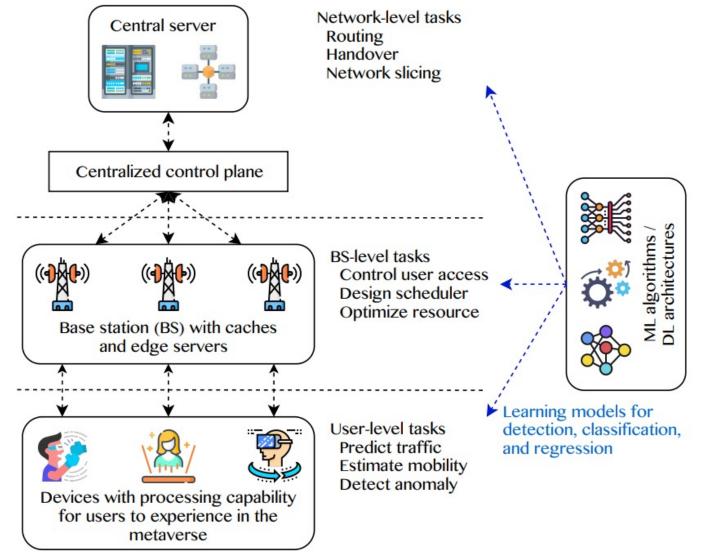
A Blockchain-based IoT Framework

with ML to enhance security and privacy



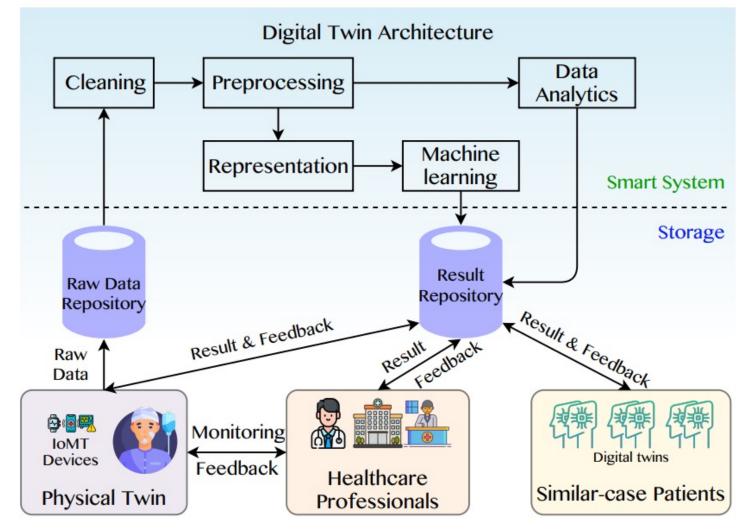
5G and beyond for Metaverse Services

AI with ML algorithms and DL models contribute in multi-level tasks



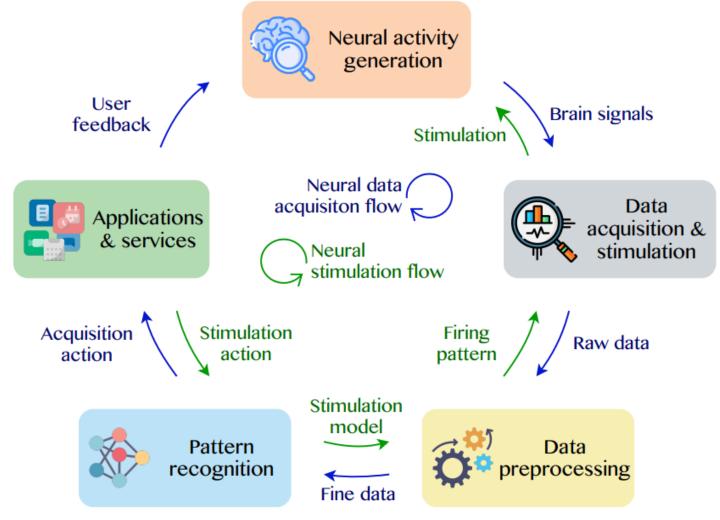
A Data-Driven Digital Twin Architecture

for intelligent healthcare systems using ML to process raw data of IoMedicalThings devices



Brain-Machine Interfaces (BMIs)

for processing neural signals and responding neural stimulations

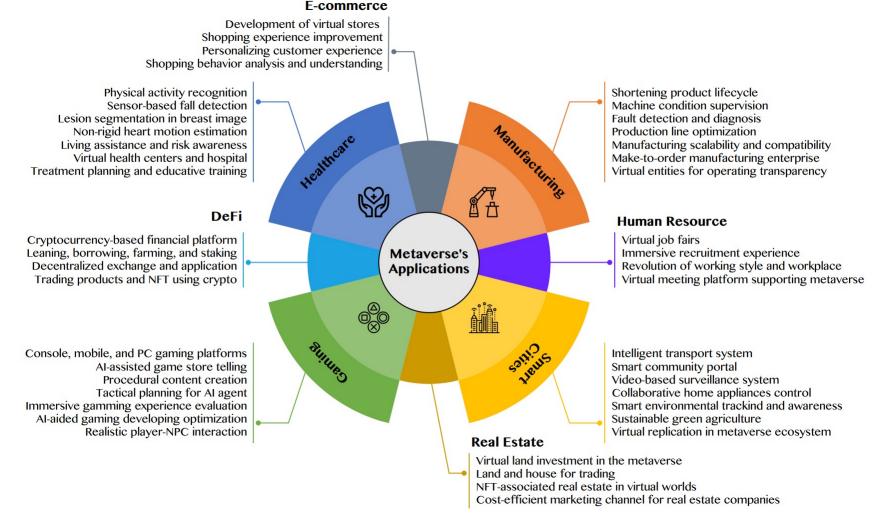


Al for the Metaverse

Technical Aspect	Ref	Task	AI Technique	
NLP	[20]	Word and linguistic prediction for language modeling.	RNNs and LSTM networks with the attention mechanisms.	
	[21]		Advanced memory network with residual connection.	
	[24]		Deep networks with gated connection and bi-directional structure.	
	[25]	Analyzing and understand the representation of	General deep networks with CNN and LSTM architectures.	
		words from characters		
	[27]	Identifying prefixes and suffixes and detecting mis-	DL framework with CNN, Bi-LSTM, and conditional random field.	
		spelled words		
	[29]	Sentiment prediction and question type classifica-	Various CNNs and LSTM networks with simple structures and	
		tion.	advanced-designed architectures.	
	[31]	Generate short text in image captioning and long	DL framework with single RNN/LSTM and mixture LSTM-CNN	
		text in virtual question answer.	models.	
	[32]	Semantic labeling, context retrieval, and language	Unsupervised and reinforcement learning with common RNN/LSTM	
		interpretation.	and CNN models.	

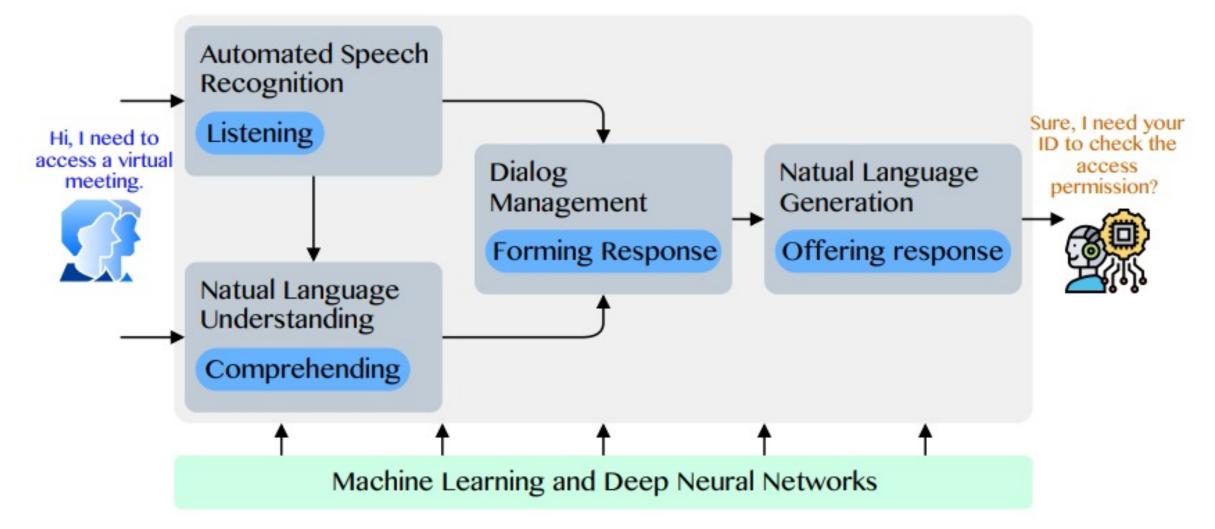
Al for the Metaverse in the Application Aspects

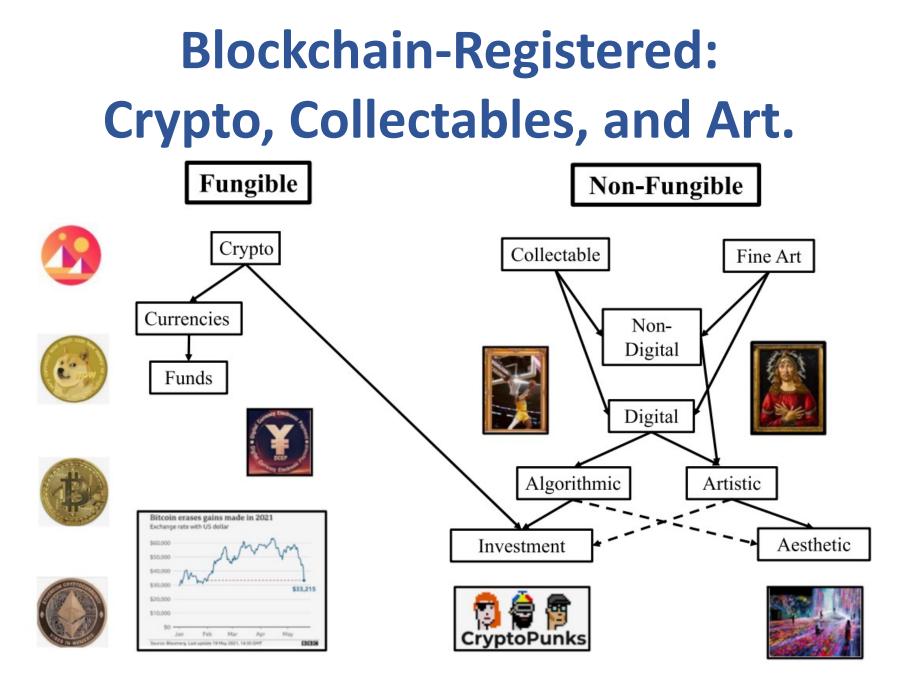
healthcare, manufacturing, smart cities, gaming E-commerce, human resources, real estate, and DeFi



Conversational AI

to deliver contextual and personal experience to users

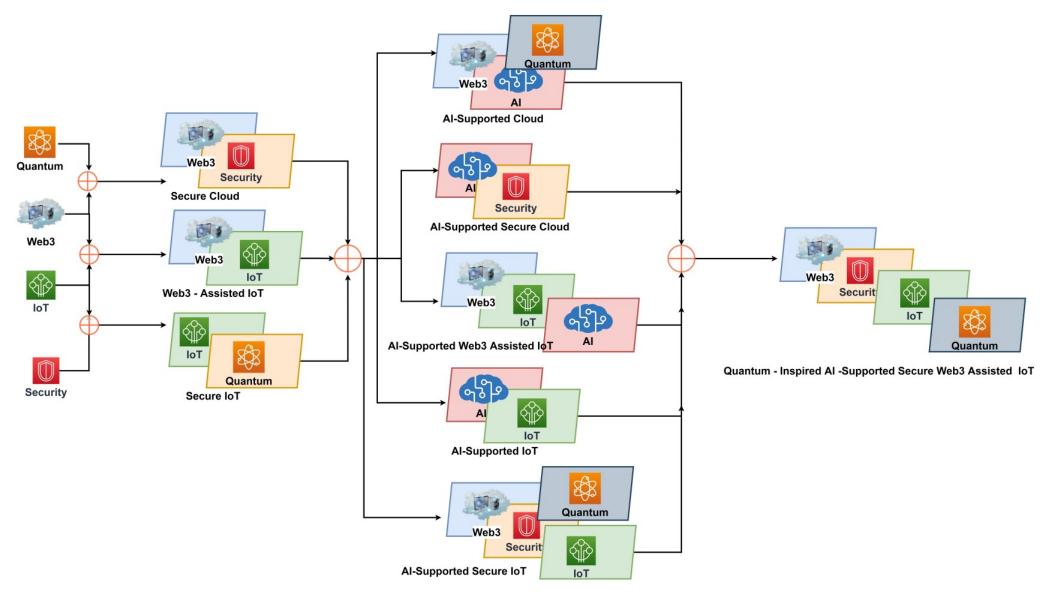




Source: Belk, Russell, Mariam Humayun, and Myriam Brouard. (2022)

"Money, possessions, and ownership in the Metaverse: NFTs, cryptocurrencies, Web3 and Wild Markets." Journal of Business Research 153: 198-205.

Combination of Web3 with other Technologies



Source: Sheridan, Dan, James Harris, Frank Wear, Jerry Cowell Jr, Easton Wong, and Abbas Yazdinejad. (2022) "Web3 Challenges and Opportunities for the Market." arXiv preprint arXiv:2209.02446.

Decentralized Finance (DeFi) **Block Chain FinTech**

Decentralized Finance (DeFi)

- A global, open alternative to the current financial system.
- Products that let you borrow, save, invest, trade, and more.
- Based on open-source technology that anyone can program with.

Traditional Finance Centralized Finance (CeFi)

- Some people aren't granted access to set up a bank account or use financial services.
- Lack of access to financial services can prevent people from being employable.
- Financial services can block you from getting paid.
- A hidden charge of financial services is your personal data.
- Governments and centralized institutions can close down markets at will.
- Trading hours often limited to business hours of specific time zone.
- Money transfers can take days due to internal human processes.
- There's a premium to financial services because intermediary institutions need their cut.

DeFi vs. CeFi

Decentralized Finance (DeFi)

You hold your money.

You control where your money goes and how it's spent.

Transfers of funds happen in minutes.

Transaction activity is pseudonymous.

DeFi is open to anyone.

The markets are always open.

It's built on transparency – anyone can look at a product's data and inspect how the system works.

Traditional Finance (Centralized Finance; CeFi)

Your money is held by companies.

You have to trust companies not to mismanage your money, like lend to risky borrowers.

Payments can take days due to manual processes.

Financial activity is tightly coupled with your identity.

You must apply to use financial services.

Markets close because employees need breaks.

Financial institutions are closed books: you can't ask to see their loan history, a record of their managed assets, and so on.

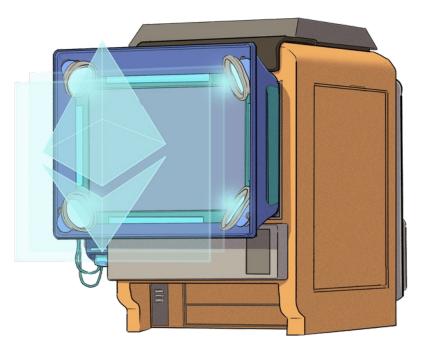
(DeFi)

Decentralized Applications (Dapps)

- Ethereum-powered tools and services
- Dapps are a growing movement of applications that use Ethereum to disrupt business models or invent new ones

The Internet of Assets

- Ethereum isn't just for digital money.
- Anything you can own can be represented, traded and put to use as non-fungible tokens (NFTs).



Source: Matt Fortnow and QuHarrison Terry (2021), The NFT Handbook - How to Create, Sell and Buy Non-Fungible Tokens, Wiley

Financial Stability Challenges

Crypto Ecosystem	 Operational, cyber, and governance risks Integrity (market and AML/CFT) (Anti–Money Laundering / Combating the Financing of Terrorism) Data availability / reliability Challenges from cross-boarder activites
Stablecoins	 How stable are stablecoins? Domestic and global regulatory and supervisory approaches
Macro- Financial	 Cryptoization, capital flows, and restrictions Monetary policy transmission Bank disintermediation

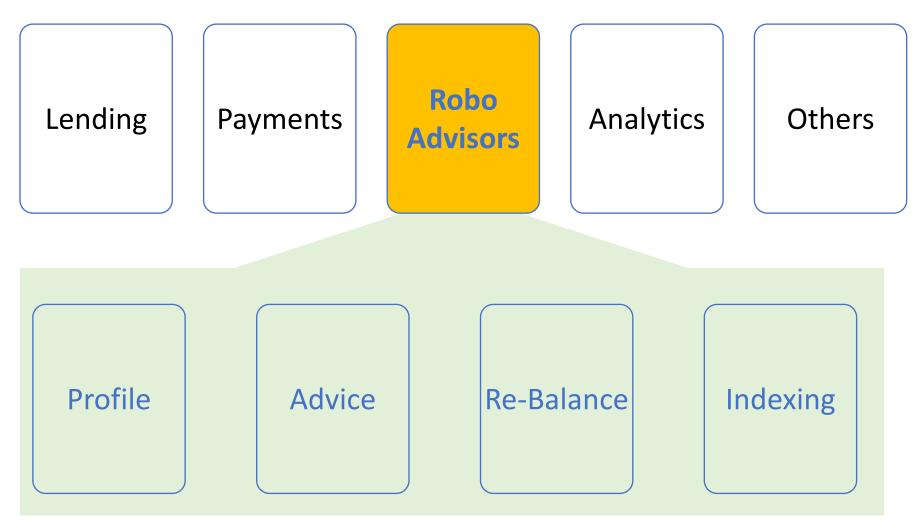
Source: Parma Bains, Mohamed Diaby, Dimitris Drakopoulos, Julia Faltermeier, Federico Grinberg, Evan Papageorgiou, Dmitri Petrov, Patrick Schneider, and Nobu Sugimoto (2021), The Crypto Ecosystem and Financial Stability Challenges, International Monetary Fund, October 2021

Financial

Services

Technology Innovation

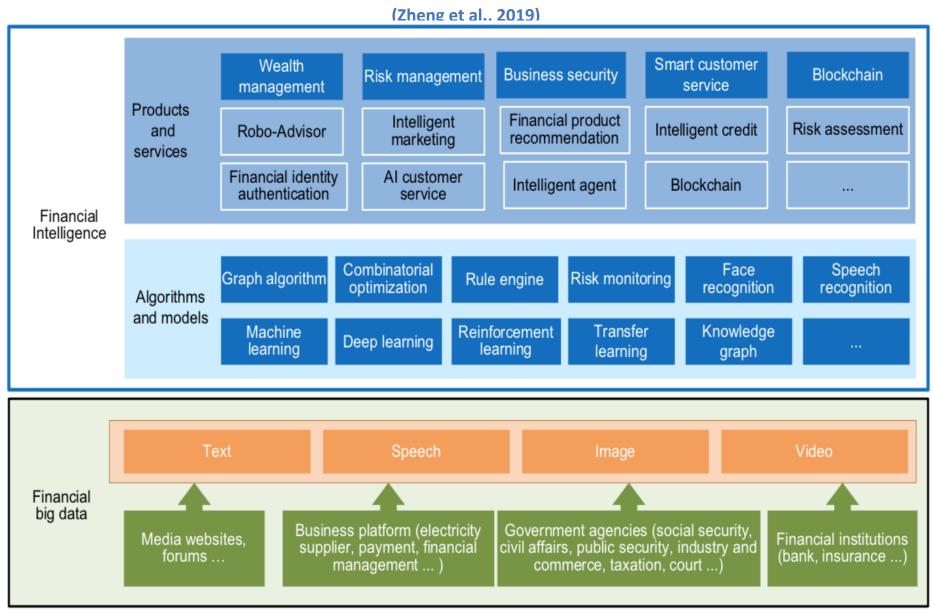
FinTech Innovation FinTech high-level classification



Source: Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley.

Technology-driven Financial Industry Development

FinBrain: when Finance meets AI 2.0



Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

a new generation of Al based on the novel information environment of major changes and the development of new goals.

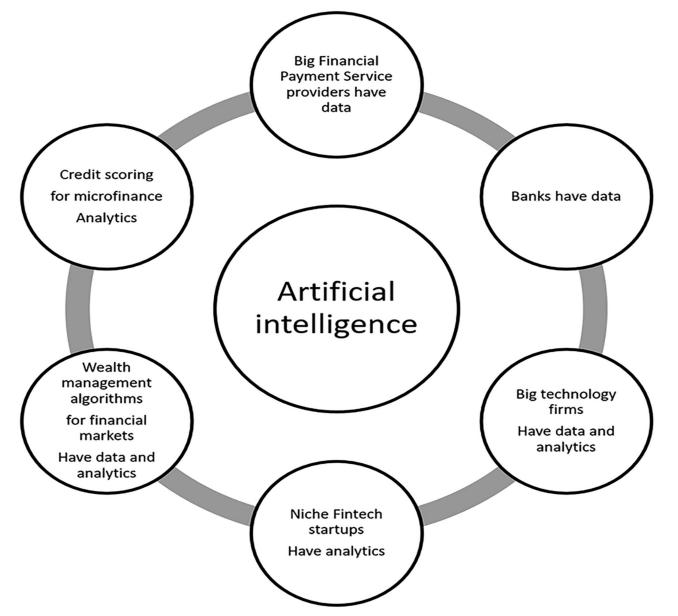
Yunhe Pan (2016), "Heading toward artificial intelligence 2.0." Engineering 2, no. 4, 409-413.

Technology-driven Financial Industry Development

Development stage	Driving technology	Main landscape	Inclusive finance	Relationship between technology and finance
Fintech 1.0 (financial IT)	Computer	Credit card, ATM, and CRMS	Low	Technology as a tool
Fintech 2.0 (Internet finance)	Mobile Internet	Marketplace lending, third-party payment, crowdfunding, and Internet insurance	Medium	Technology- driven change
Fintech 3.0 (financial intelligence)	Al, Big Data, Cloud Computing, Blockchain	Intelligent finance	High	Deep fusion

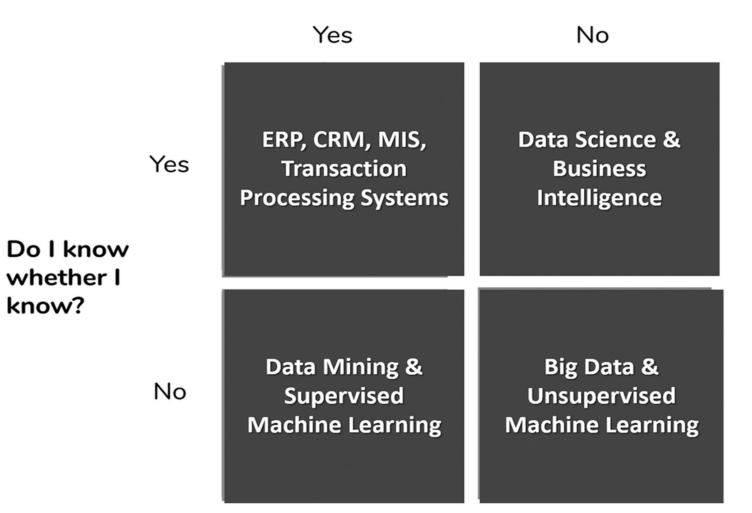
Source: Xiao-lin Zheng, Meng-ying Zhu, Qi-bing Li, Chao-chao Chen, and Yan-chao Tan (2019), "Finbrain: When finance meets AI 2.0." Frontiers of Information Technology & Electronic Engineering 20, no. 7, pp. 914-924

Artificial Intelligence in the Financial Markets



Al in Managerial Blind Spots: Unknown Knowns and Unknown Unknowns

Do I know?



Green Finance and

Sustainable Finance

Evolution of Sustainable Finance Research

Source: Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: Insights from big data analytics through machine learning of scholarly research. Annals of Operations Research, 1-44.

Al for **Environmental**, Social, and Governance (AI4ESG)

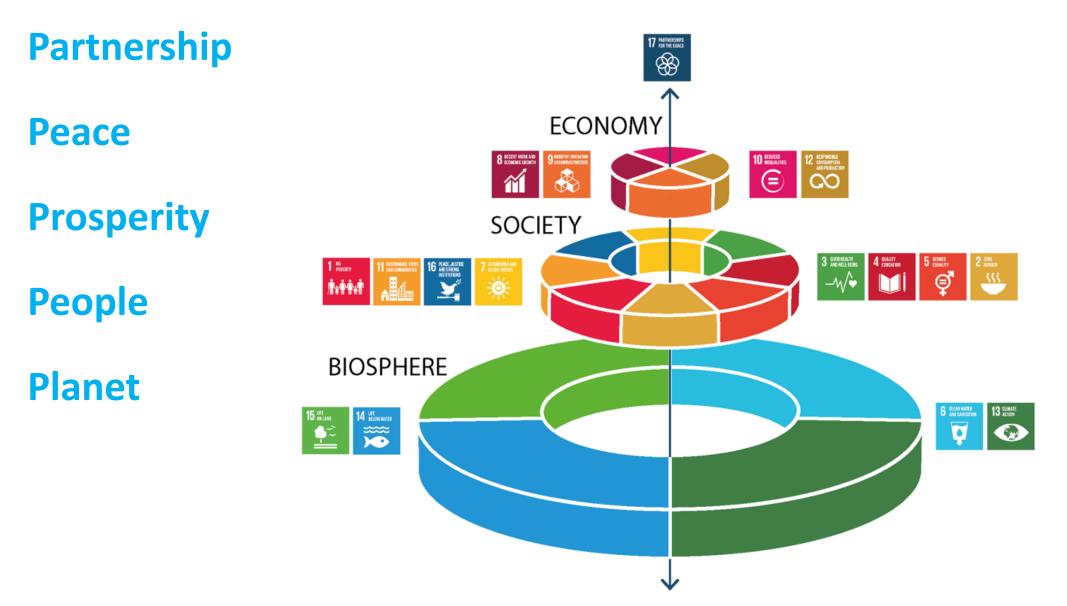
Source: Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Picciariello, Bec Connelly, Danielle Belgrave et al. (2020) "AI for social good: unlocking the opportunity for positive impact." Nature Communications 11, no. 1: 1-6.

Al for Social Good (AI4SG)

Source: Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Picciariello, Bec Connelly, Danielle Belgrave et al. (2020) "AI for social good: unlocking the opportunity for positive impact." Nature Communications 11, no. 1: 1-6.

Sustainable Development Goals (SDGs)

Sustainable Development Goals (SDGs) and 5P



Green Finance Generic term implying use or diversion of financial resources to deploy and support projects with long term positive impact on the environment

Sustainable Finance Finances

deployed in support of projects that ensure just, sustainable and inclusive growth or attainment of one or more sustainable development goals

Carbon Finance Financial instruments based on economic value of carbon emissions which an organization cannot avoid but which it offsets by funding other compensatory projects that contribute to carbon emissions reduction

Climate Finance

Finances deployed in support of low carbon and climate resilient projects that help in climate change mitigation and adaptation efforts, particularly in the energy and infrastructure sectors

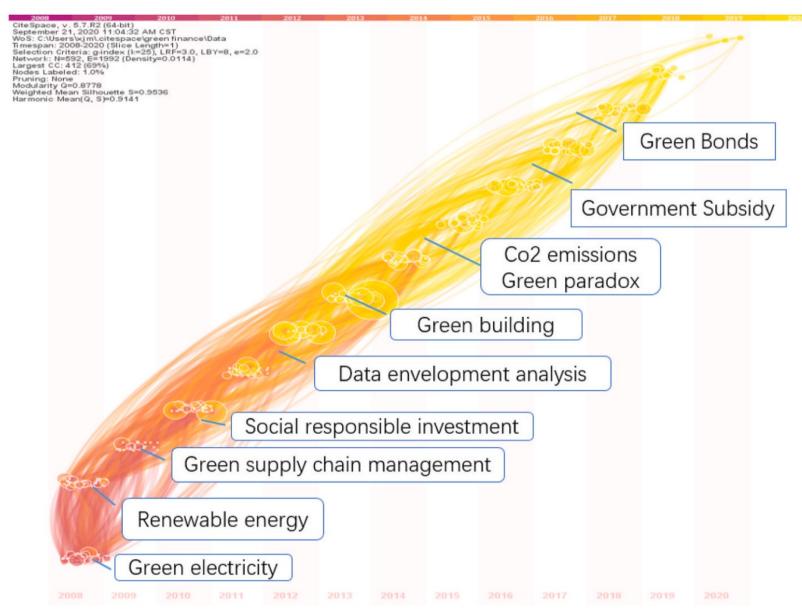
ESG Investing

Investments considering the broad range of environmental (e.g. climate change, pollution biodiversity loss), social (e.g. working conditions, human rights, salary or compensation structures) and governance (e.g. board composition, diversity and inclusion, taxes) characteristics of the projects or companies being invested in; ethical and business sustainability considerations are integral part of financing

Impact Investing

Investing in projects that solve a social or environmental problem; the focus is on the positive impact rather than the means used to produce that impact

Dynamic Trends of Green Finance and Energy Policy



Environmental

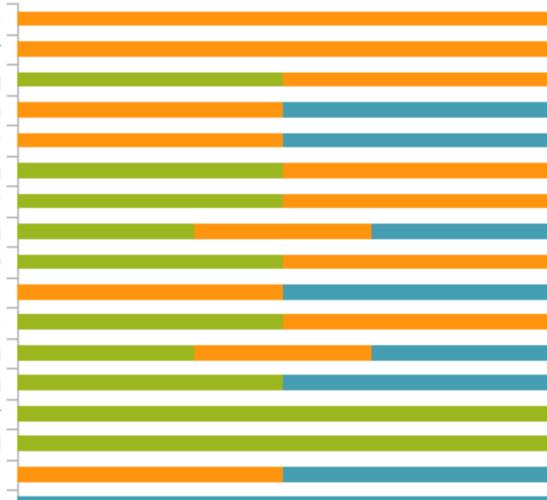
CSR: Corporate Social Responsibility

ESG to 17 SDGs

ESG to 17 SDGs

Environment Social Governance

1: End Poverty 2: Zero Hunger 3: Good Health and Well-Being 4: Quality Education 5: Gender Equality 6: Clean Water and Sanitation 7: Affordable and Clean Energy 8: Decent Work and Economic Growth Industry, Innovation, and Infrastructure 10: Reduced Inequalities 11: Sustainable Cities and Communities 12: Responsible Consumption and Production 13: Climate Action 14: Life Below Water 15: Life on Land 16: Peace, Justice, and Strong Institutions 17: Partnerships for the Goals



Source: https://sustainometric.com/esg-to-sdgs-connected-paths-to-a-sustainable-future/

Generative Al

for

ESG Applications

AI and Sustainability Development Goals (SDGs)

SDGs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	No poverty	Zero hunger	Good health and well- being	Quality education	Gender equality	Clean water and sanitation	Affordable and clean energy	Decent work and economic growth	Industry, innovation and infrastructure	Reduces inequalities	Sustainable cities and communities	Responsible consumption and production	Climate action	Life below water	Life on land	Peace, justice and strong institutions	Partnerships for the goals
Economic								•	•	•	0						•
Ecological		0					0				0	ο	•	•	•		
Social	•	•	•	•	•	•	•				•	•				•	
Positive impact of Al*	100%	76%	69%	10%0	56%	100%	100%	92%	100%	90%	100%	82%	80%	90%	100%	58%	26%
	Note: ● adopted from Vinuesa et al. (2020), ○ added based on our analysis. *The assessment of Al's possible positive impact is based on a consensus-based expert elicitation process (Vinuesa et al., 2020).																

Source: Schoormann, T., Strobel, G., Möller, F., Petrik, D., & Zschech, P. (2023).

Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature. Communications of the Association for Information Systems, 52(1), 8. 1

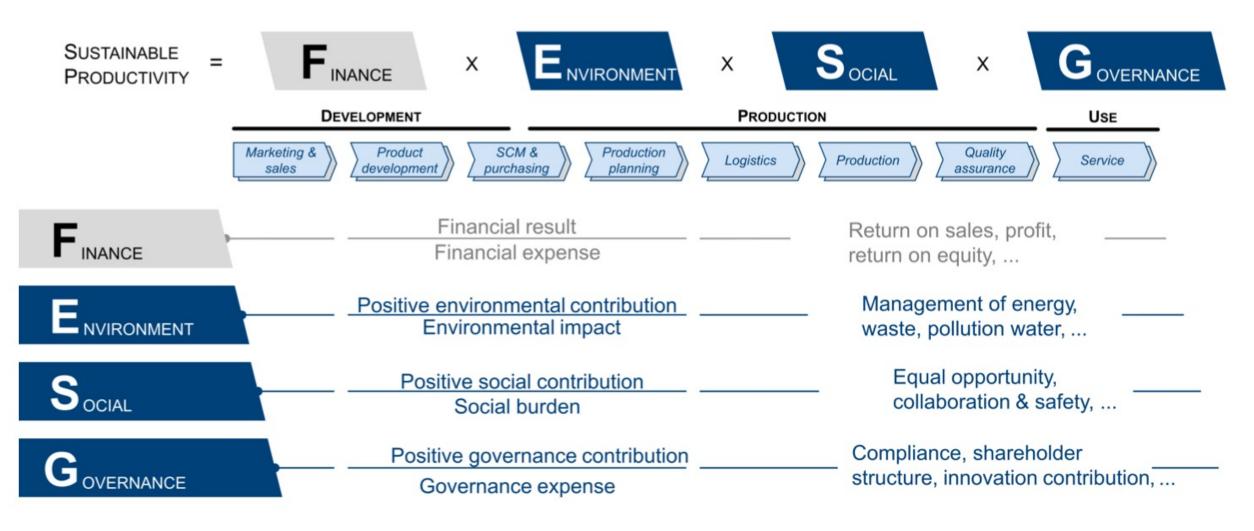
Al for Sustainability

Dimension	Code character	istics									
Primary objective ¹	Develop new (AI)Compare (A)methods (11/95)methods (39)		• •				Develop new system <i>(20/95)</i>			Other objective (4/95)	
Sustainability dimension	Economic (23/95)				Ecological (17/95)			Social (72/95)			
Sustainable Development	SDG 1 <i>(0/95)</i>				SDG 3 SDG 55/95) (6/98					SDG 6 <i>(0/</i> 95)	
Goals (SDGs)	SDG 7 (9/95)		G 8 ⁄95)		SDG 9 SDG 10 (8/95) (1/95)		SDG 11 <i>(9/95)</i>		SDG 12 (8/95)		
	SDG 13 <i>(2/95)</i>		SDG 14 (0/95)					SDG 16 (11/95)		SDG 17 (0/95)	
Data source	Reviews <i>(12/</i> 95)	ocial me Inline foru (31/95)	ums	Health records (21/95)		\ \	Environment/ Weather <i>(10/95)</i>		Energy <i>(5/95)</i>		
Data source plurality	Single source (50/95)			Multiple sources (44/95)			<i>)5)</i>	N/A <i>(1/95)</i>			
Data sensitivity	Publicly avail data (64/9	al data <i>(16/95)</i> Other			er <i>(11/</i> §	er <i>(11/</i> 95)			N/A (9/95)		
Manual labeling		Yes (32/95)					No (63	/95)		
Technology	ML (91/95	5)	N	NLP (42/95) CV (12/95) Other ()ther (2	21/95)		
Type of learning for ML approach	Super	rvised le	arning (8	35/95)		Unsupervised learning (23/95)					
Neural vs. non-neural	Non-neur		Neural <i>(50/95)</i>			Deep learning (38/95)					
Evaluation	Technical evaluation (83/95)					Domain evaluation (25/95)					
Paradigm	[DSR/AD	R (30/95)			Non-DSR/ADR (64/95)				
					0.	-9 1	0-29	30-54	5	5-69	70-95

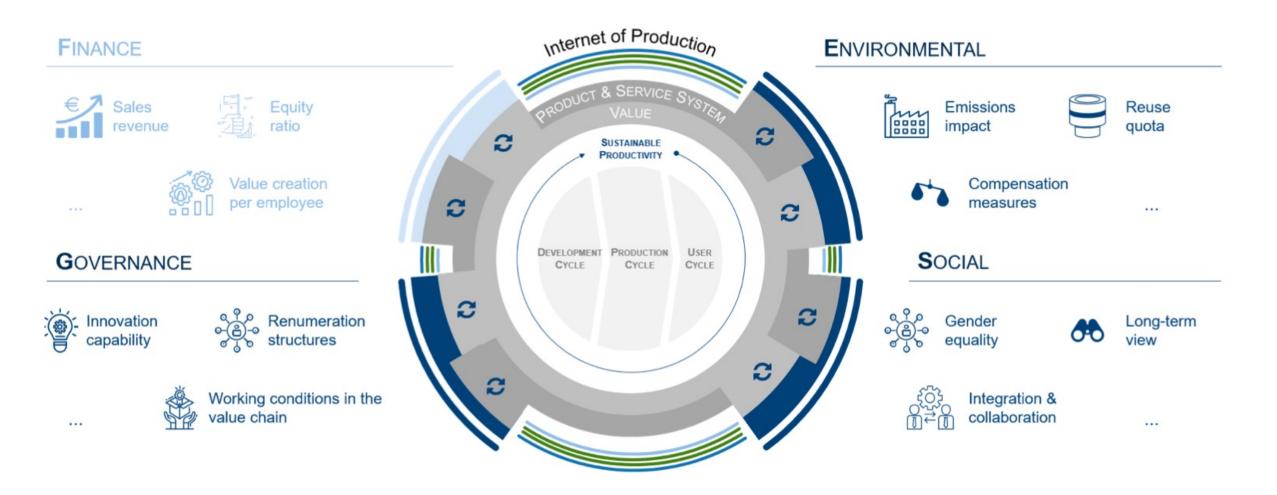
Source: Schoormann, T., Strobel, G., Möller, F., Petrik, D., & Zschech, P. (2023).

Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature. Communications of the Association for Information Systems, 52(1), 8.

Sustainable Productivity: Finance ESG



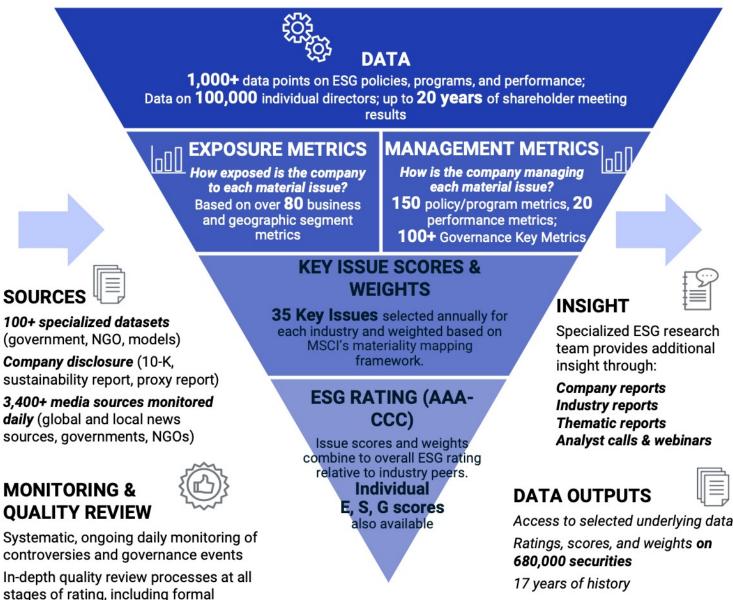
Sustainable Resilient Manufacturing ESG



ESG Indexes

- •MSCI ESG Index
- Dow Jones Sustainability Indices (DJSI)
- FTSE ESG Index

MSCI ESG Rating Framework



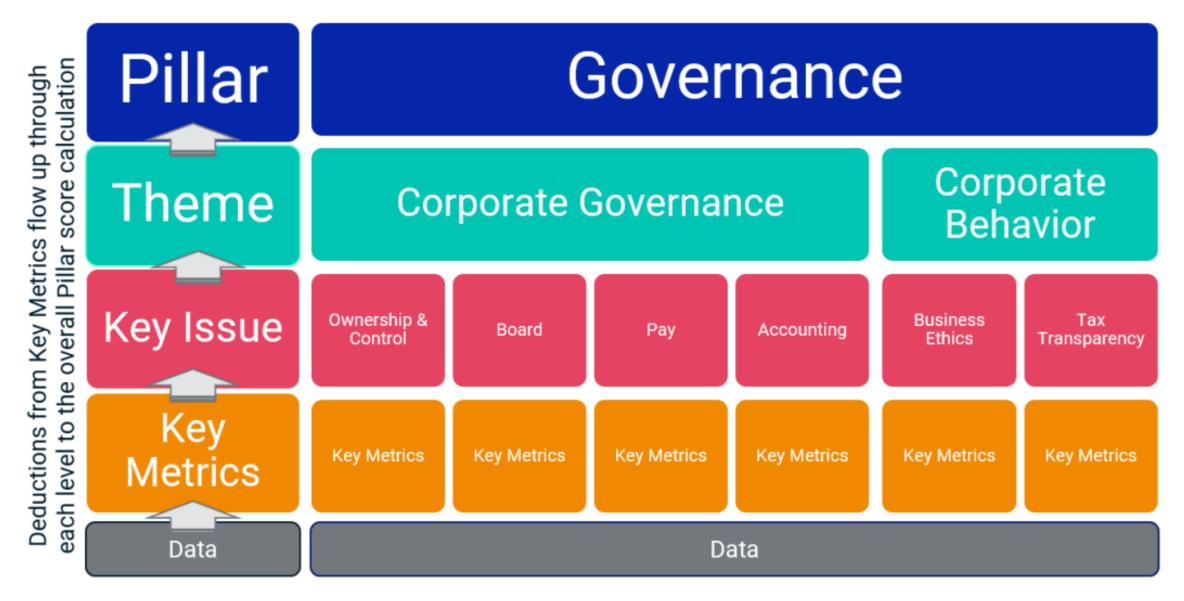
committee review

MSCI ESG Key Issue Hierarchy

3 Pillars	10 Themes	35 ESG Key Issues	
Environment	Climate Change	Carbon Emissions	Financing Environmental Impact
		Product Carbon Footprint	Climate Change Vulnerability
	Natural Capital	Water Stress	Raw Material Sourcing
		Biodiversity & Land Use	
	Pollution &	Toxic Emissions & Waste	Electronic Waste
	Waste	Packaging Material & Waste	
	Environmental	Opportunities in Clean Tech	Opportunities in Renewable
	Opportunities	Opportunities in Green Building	Energy
Social	Human Capital	Labor Management	Human Capital Development
		Health & Safety	Supply Chain Labor Standards
	Product Liability	Product Safety & Quality	Privacy & Data Security
		Chemical Safety	Responsible Investment
		Consumer Financial Protection	Health & Demographic Risk
	Stakeholder	Controversial Sourcing	
	Opposition	Community Relations	
	Social	Access to Communications	Access to Health Care
	Opportunities	Access to Finance	Opportunities in Nutrition & Health
Governance	Corporate	Ownership & Control	Рау
	Governance	Board	Accounting
	Corporate	Business Ethics	
	Behavior	Tax Transparency	

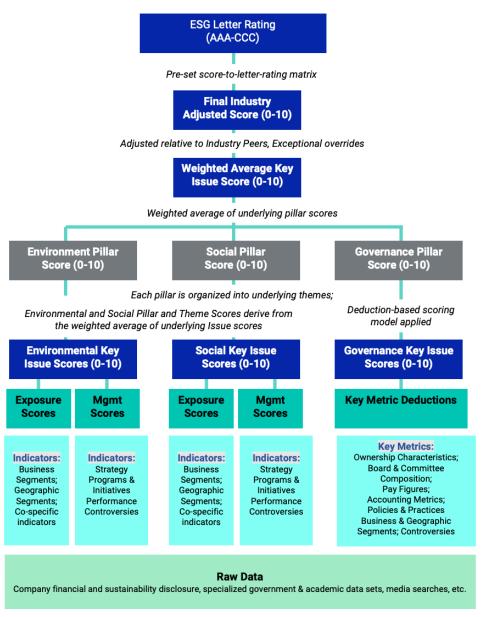
Source: https://www.msci.com/documents/1296102/21901542/ESG-Ratings-Methodology-Exec-Summary.pdf

MSCI Governance Model Structure

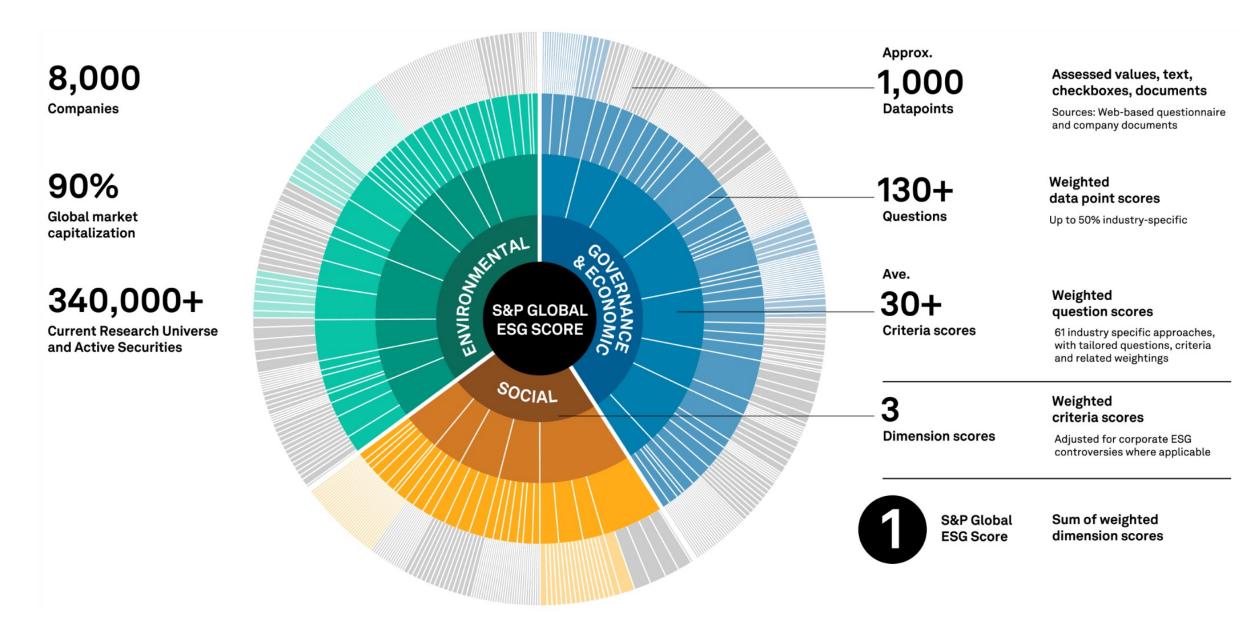


Source: https://www.msci.com/documents/1296102/21901542/ESG-Ratings-Methodology-Exec-Summary.pdf

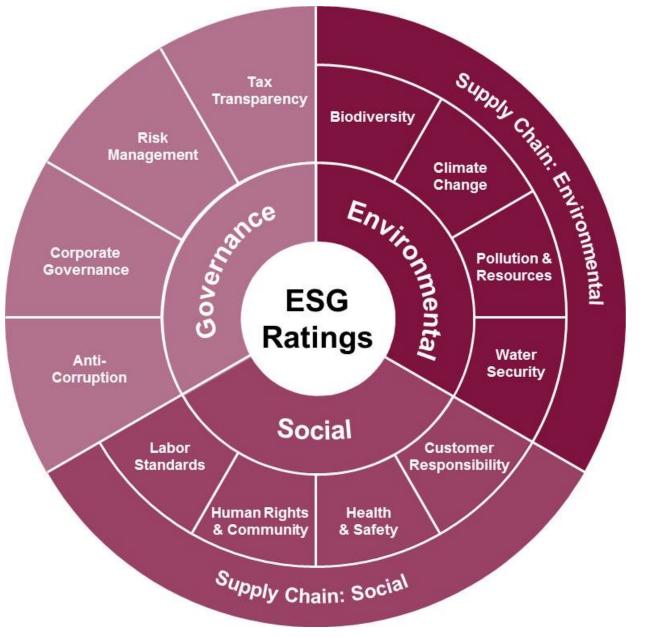
MSCI Hierarchy of ESG Scores



DJSI S&P Global ESG Score



FTSE Russell ESG Ratings



Analyst-based approach

a Morningstar company

ESG Risk Ratings

Sustainalytics

Sustainalytics' ESG Risk Ratings measure a company's exposure to industry-specific material ESG risks and how well a company is managing those risks.

Negligible	Low	Medium	High	Severe
0 - 10	10 - 20	20 - 30	30 - 40	40+

TruValue Labs

Truvalue ESG Ranks

Machine-based approach

- Truvalue Labs applies AI to analyze over 100,000 sources and uncover ESG risks and opportunities hidden in unstructured text.
- The ESG Ranks data service produces an overall company rank based on industry percentile leveraging the 26 ESG categories defined by the Sustainability Accounting Standards Board (SASB).
- The data feed covers 20,000+ companies with more than 13 years of history.

Laggard	Below Average	Average	Above Average	Leader
<				\rightarrow

Analyst-driven vs. Al-driven ESG

Analyst-driven ESG research

Derives ratings in a structured data model

Analyst role at the end of the process allows subjectivity to color results

Al-driven ESG research

Derives signals from unstructured data

Sustainalytics

Analyst expertise at the beginning of the process produces consistent results

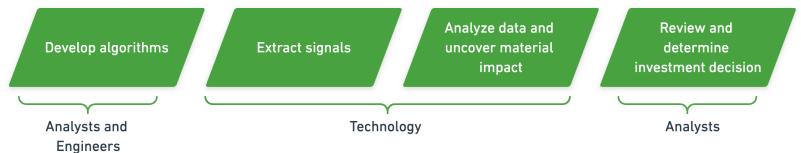
Source: Mark Tulay (2020), Man vs. machine: A tale of two sustainability ratings systems, GreenBiz, https://www.greenbiz.com/article/man-vs-machine-tale-two-sustainability-ratings-systems

Analyst based ESG Research

AI based ESG Research

Analyst Based ESG Research

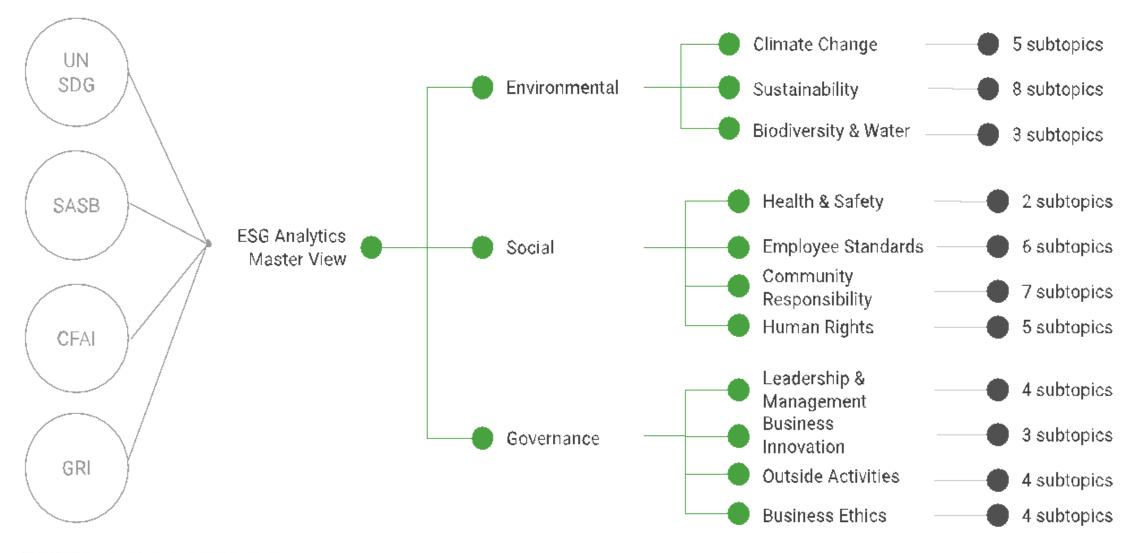
Applying AI to ESG Research



It would take an analyst over 5 years to do what our AI can in 1 week

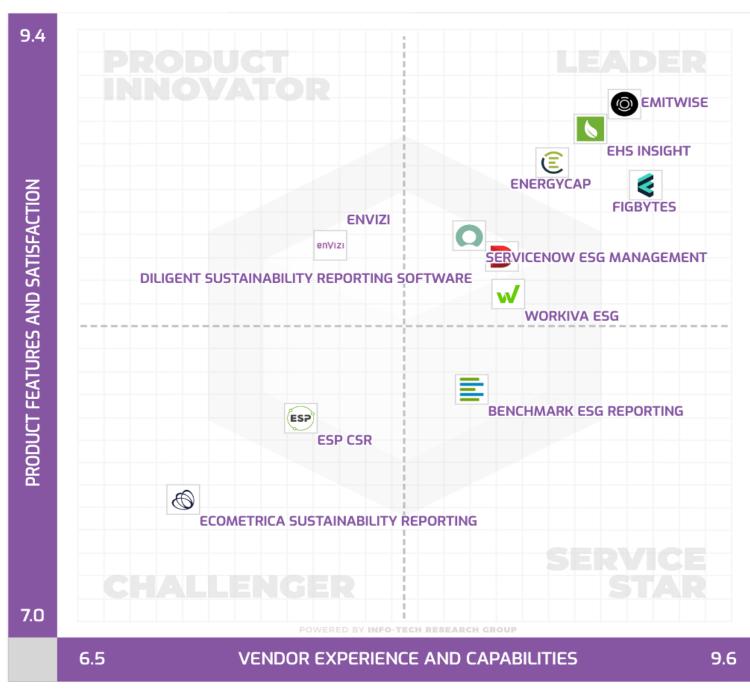
Combining analysts with AI creates gives you the full picture

ESG Analytics: NLP Taxonomy



Top ESG Reporting Software

Environmental, Social and Governance (ESG) Reporting software or Sustainability software helps organizations manage their operational data, evaluate their impact on the environment and provide reporting to perform audits.



Source: https://www.softwarereviews.com/categories/environmental-social-and-governance-reporting

ESG Reporting Software: Emitwise

- Emitwise is the carbon management platform for companies with complex manufacturing supply chains to confidently understand, track and reduce their complete carbon footprint.
- Combining 100 years of carbon accounting experience and machine learning technology, we accelerate climate action by increasing the accuracy of scope 3 emissions.
- The platform empowers manufacturers and their supply chains to make carbon-led business decisions that lower risk, increase profitability and deliver ambitious climate action.

ESG Reporting Software: Workiva ESG

- Workiva is a cloud native platform that simplifies the complexities of reporting and compliance.
- Workiva ESG is the end-to-end platform that allows you to integrate financial data, nonfinancial data, and XBRL.
- Workiva, the platform that streamlines your entire ESG process.
- Automate data collection, utilize frameworks, and directly connect to all your ESG reports. in meaningful glossy reports, accurate survey responses, and regulatory filings with integrated XBRL tagging.

Source: https://www.softwarereviews.com/categories/environmental-social-and-governance-reporting

Al for Social Good (AI4SG)

Source: Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela Picciariello, Bec Connelly, Danielle Belgrave et al. (2020) "AI for social good: unlocking the opportunity for positive impact." Nature Communications 11, no. 1: 1-6. Al for Social Good (AI4SG) Al for Sustainable Development AI4SG 10 Guidelines

- AI Technology (G1, G2, G3)
- Applications (G4, G5, G6, G7, G8)
- Data Handling (G9, G10)

AI4SG 10 Guidelines AI Technology (G1, G2, G3)

- G1: Expectations of what is possible with AI need to be wellgrounded.
- G2: There is value in simple solutions.
- G3: Applications of AI need to be inclusive and accessible, and reviewed at every stage for ethics and human rights compliance.

AI4SG 10 Guidelines Applications (G4, G5, G6, G7, G8)

- G4: Goals and use cases should be clear and well-defined.
- G5: Deep, long-term partnerships are required to solve large problems successfully.
- G6: Planning needs to align incentives, and factor in the limitations of both communities.
- G7: Establishing and maintaining trust is key to overcoming organisational barriers.
- G8: Options for reducing the development cost of AI solutions should be explored.

AI4SG 10 Guidelines Data Handling (G9, G10)

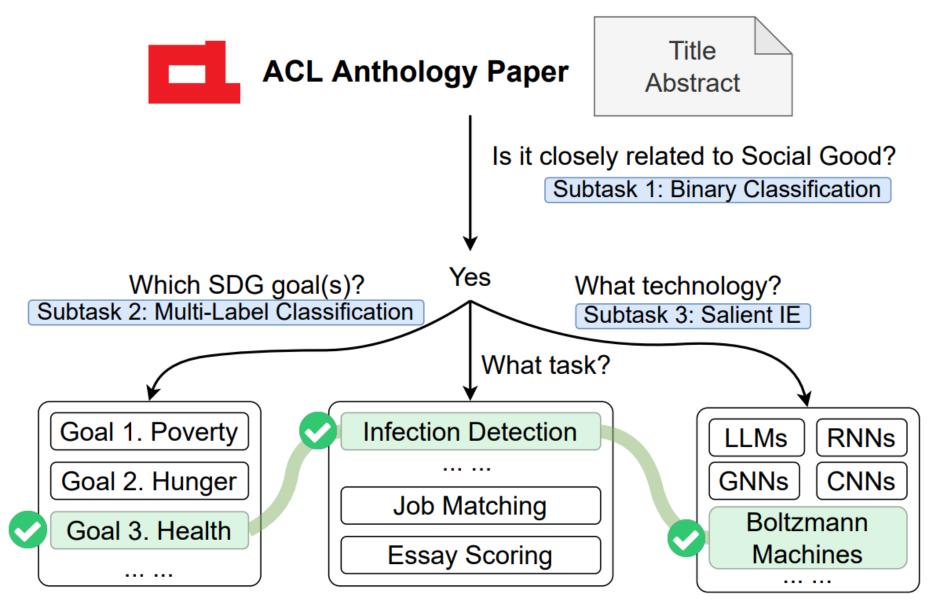
- G9: Improving data readiness is key.
- G10: Data must be processed securely, with utmost respect for human rights and privacy.

Al for Social Good (Al4SG) Domains and Techniques

	Cognitive modeling	0	0	0	0	0	1	0	0	1	
	Constraint satisfaction and optimization	2	5	31	48	20	26	9	59	173	
	Cognitive systems	1	2	2	7	2	3	1	5	20	150
	Computer vision	3	8	12	20	6	12	7	19	79	
Game playing and interactive entertainment		0	1	0	1	0	0	0	0	2	
	Game theory and economic paradigms	3	5	30	6	11	31	1	16	78	120
	Human-AI collaboration	1	8	11	23	9	6	6	17	69	
Technique	Human computation and crowd sourcing	1	5	6	20	45	12	11	15	98	
hni	Heuristic search and optimization	1	3	11	14	8	8	6	26	69	90
[ec]	Knowledge representation and reasoning	0	0	0	5	3	2	0	1	11	
	Multiagent systems	2	7	47	19	16	22	8	31	122	
	Machine learning	12	27	65	174	53	65	36	92	460	-60
	Natural language processing	4	12	6	18	10	10	5	3	58	
	Planning, routing, and scheduling	9	4	48	43	14	28	31	84	210	20
	Robotics	3	4	12	10	4	5	4	10	47	-30
	Reasoning under uncertainty	4	3	30	23	8	6	6	13	78	
	Total	40	78	225	344	155	177	90	253	1176	. ₀
Agriculture Agriculture Education Education manipulation manipulation Healthcare public safety public safety public safety Transportation Transportation Total O Domain											
					-	Junun					

Source: Zheyuan Shi, Ryan, Claire Wang, and Fei Fang (2020). "Artificial intelligence for social good: A survey." arXiv preprint arXiv:2001.01818.

NLP for Social Good (NLP4SG)



Source: Fernando Gonzalez, Zhijing Jin, Jad Beydoun, Bernhard Schölkopf, Tom Hope, Rada Mihalcea, and Mrinmaya Sachan (2022). "How Is NLP Addressing the 17 UN Sustainability Goals? A Challenge Set of Social Good Paper Classification and Information Extraction."

NLP for Social Good (NLP4SG) Visualization

annotati... attention – automatic speech recognition models

bert

- classifiers -
- conditional random field -
- convolutional neural network
 - deep neural network
 - domain adaption
 - ensemble methods -
 - fact checking models
 - hybrid approach -
 - language models -
 - language technology -
 - Istm
- machine learning methods
 - ner models -
 - nlp models -
 - part of speech models
- recurrent neural networks
 - roberta -
 - topic models -
 - transfer learning
 - transformers
 - word embeddings -

Other methods

- classification coreference resolution covid 19 event extraction fact checking
 - fake news detection
 - hate speech
 - hope speech detection
 - inference
 - information retrieval
 - machine translation

named entity recognition

- natural language generation
- nlp applications
- parsing
- part of speech
- question answering
- relation extraction
- rumor detection
- sentiment analysis
- stance detection
- text summarization
- toxic spans detection

- Good Health and Well-Being
- Quality Education

...

•••

- Gender Equality
- **Clean Water and Sanitation**
- Affordable and Clean Energy
- Decent Work and Economic Growth
- Industry, Innovation and Infrastrucure

Reduced Inequalities

Sustainable Cities and Communities Responsible Consumption and Production

- ...
- Life on Land
- Peace, Justice and Strong Institutions
- Partnership for the Goals

Source: Fernando Gonzalez, Zhijing Jin, Jad Beydoun, Bernhard Schölkopf, Tom Hope, Rada Mihalcea, and Mrinmaya Sachan (2022). "How Is NLP Addressing the 17 UN Sustainability Goals? A Challenge Set of Social Good Paper Classification and Information Extraction."

Innovation

Innovation: a new idea, method, or device

Innovation:

something

new

Source: https://www.merriam-webster.com/dictionary/innovation

Novelty: something new or unusual

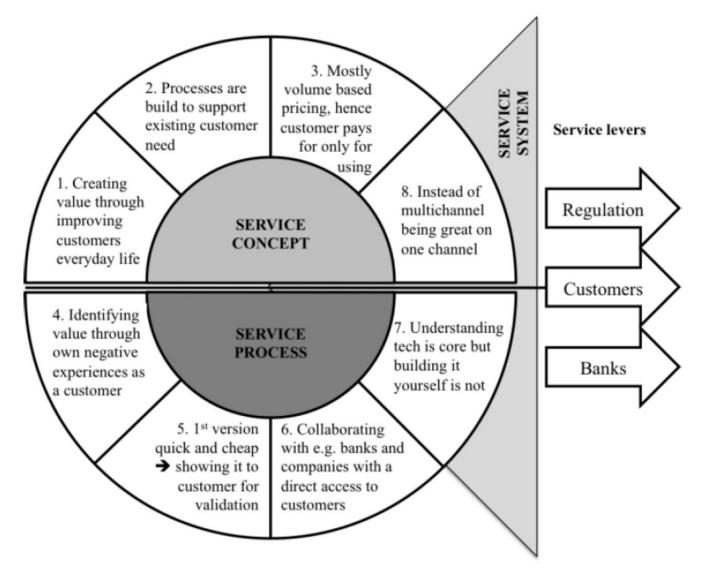
the novelty of a self-driving car

Creativity is not a <u>new Idea</u>.

Creativity is an old belief

you leave behind

FinTechs as Service Innovators: Analysing Components of Innovation

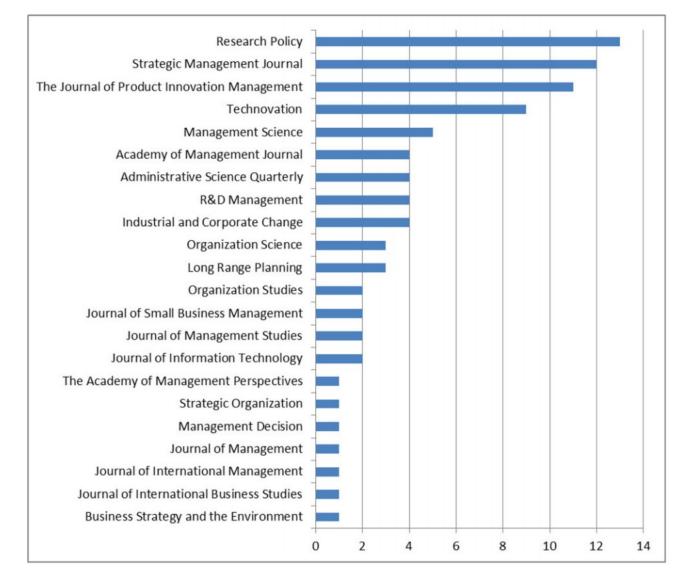


Source: Riikkinen, Mikko, Kaisa Still, Saila Saraniemi, and Katri Kallio. "FinTechs as service innovators: analysing components of innovation." In *ISPIM Innovation Symposium*, The International Society for Professional Innovation Management (ISPIM), 2016.

nnovation "a process of searching and recombining existing knowledge elements"

Source: Savino, Tommaso, Antonio Messeni Petruzzelli, and Vito Albino. "Search and recombination process to innovate: A review of the empirical evidence and a research agenda." International Journal of Management Reviews (2017).

Search and recombination process to innovate: A review of the empirical evidence and a research agenda



Source: Savino, Tommaso, Antonio Messeni Petruzzelli, and Vito Albino. "Search and recombination process to innovate: A review of the empirical evidence and a research agenda." International Journal of Management Reviews (2017).

Innovation Research in Economics, Sociology and **Technology Management**

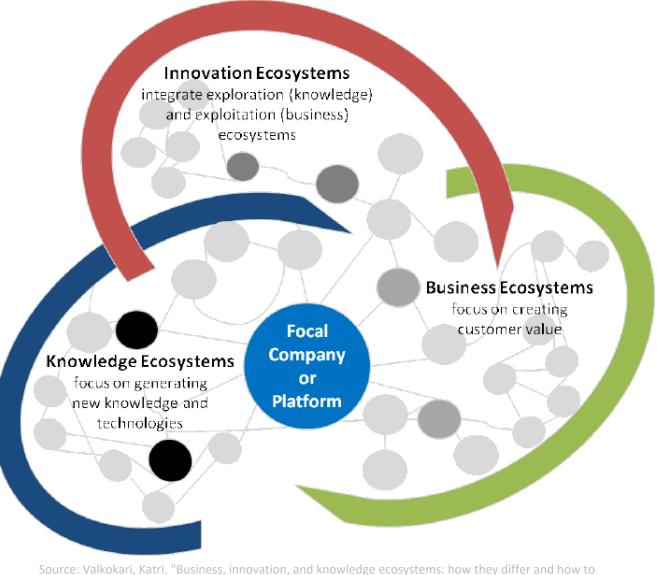
Source: Gopalakrishnan, Shanti, and Fariborz Damanpour. "A review of innovation research in economics, sociology and technology management." *Omega* 25, no. 1 (1997): 15-28.

Innovation Research in Economics, Sociology and Technology Management

	Stage of process	Level of study	Type of innovation		
Economists	Generation Idea generation Project definition	Industry	Product and process Only technical Only radical		
Technologists					
Contextual technologists	Generation Commercialization and marketing Diffusion	Innovation (in the industry context)	Product and process Only technical Radical and incremental		
Organizational technologists	Generation Idea generation Problem solving adoption Adoption Initiation	Organizational Sub-system	Product and process Only technical Radical and incremental		
Sociologists					
Variance sociologists	Adoption Initiation Implementation	Organization	Product and process Technical and administrative Radical and incremental		
Process sociologists	Adoption Initiation Implementation	Innovation (at the organizational level)	Product and process Technical and administrative Radical and incremental		

Source: Valkokari, Katri. "Business, innovation, and knowledge ecosystems: how they differ and how to survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

Business, Innovation, and Knowledge Ecosystems



Source: Valkokari, Katri. "Business, innovation, and knowledge ecosystems: how they differ and how to survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

Innovation Ecosystems Characteristics

	Business Ecosystems	Innovation Ecosystems	Knowledge Ecosystems
Baseline of Ecosystem	Resource exploitation for customer value	Co-creation of innovation	Knowledge exploration
Relationships and Connectivity	Global business relationships both competitive and co- operative	Geographically clustered actors, different levels of collaboration and openness	Decentralized and disturbed knowledge nodes, synergies through knowledge exchange
Actors and Roles	Rolescompanies as a core, other actors more loosely involvedinnovation brokers, a funding organizationA main actor that operates as a platform sharing resources, assets, and benefits orGeographically proximate a interacting around hub		Research institutes, innovators, and technology entrepreneurs serve as knowledge nodes
Logic of Action			A large number of actors that are grouped around knowledge exchange or a central non- proprietary resource for the benefit of all actors

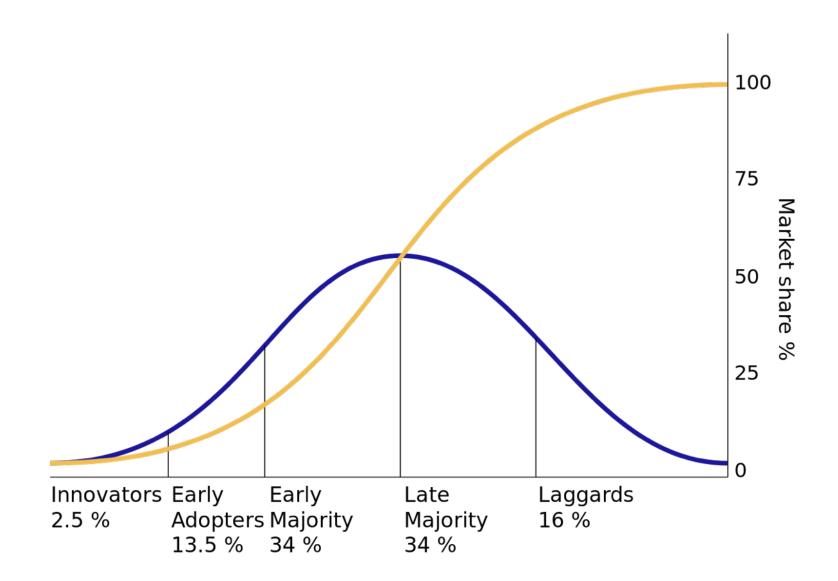
Source: Valkokari, Katri. "Business, innovation, and knowledge ecosystems: how they differ and how to survive and thrive within them." *Technology Innovation Management Review* 5, no. 8 (2015).

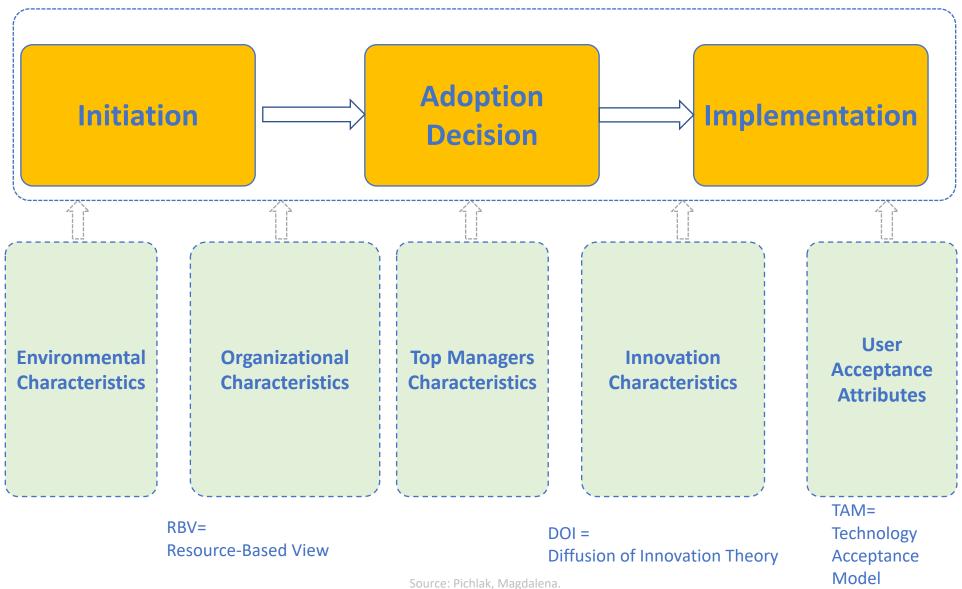
Diffusion of Innovation Theory (DOI)

Innovation (Diffusion of Innovation)

- 1. Relative advantage
- 2. Compatibility
- 3. Complexity
- 4. Trialability
- 5. Observability

Diffusion of Innovation





"The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 (2016): 476.



"The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 (2016): 476.

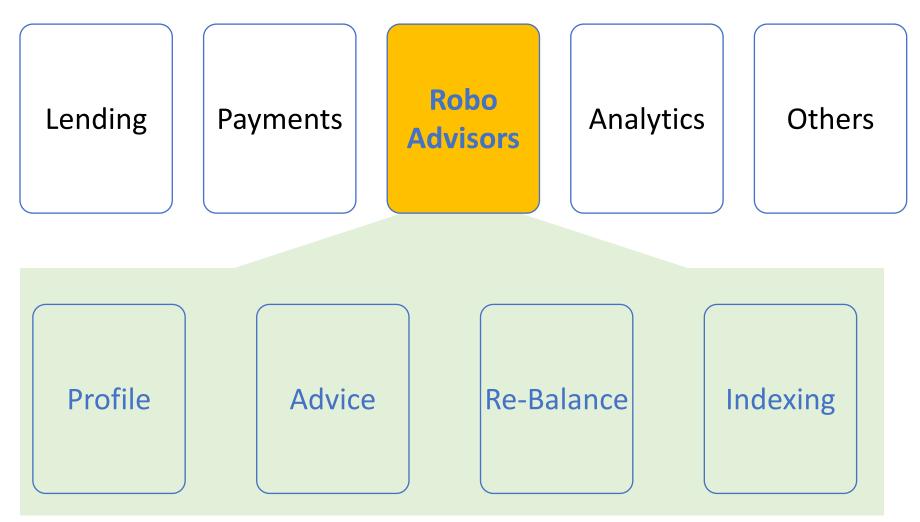
		Initiation				Adoption decision				Implementation						
Factors		Mean	Me	Q3	Q1	QD	Mean	Me	Q3	Q1	QD	Mean	Me	Q3	Q1	QD
Environmental characteristics	Dynamism	3.4	3	4	2.75	0.625	3.6	4	4	3	0.5	4	4	5	4	0.5
	Hostility	3.3	3	4.25	3	0.625	3.9	4	4.25	3.75	0.25	3.7	4	4.5	3.5	0.5
	Complexity	4.5	5	5	4	0.5	3.2	3	4	2.75	0.625	3.3	3	4.25	3	0.625
Organizational characteristics	Specialization	3.8	4	4.25	3.75	0.25	2.9	3	4	2	1	2	2	3.25	2	0.625
-	Horizontal differentiation	2.8	3	3.75	2.75	0.5	2.7	3	3.5	2	0.75	2	2	3.5	2	0.75
	Vertical differentiation	2.1	2	3.25	2	0.625	3.3	3	4	2.5	0.75	3.1	3	4	2.75	0.625
	Centralization	2	2	3.25	2	0.625	3.8	4	4.25	3.75	0.25	3.9	4	4.25	3.75	0.25
	Formalization	2.1	2	3	1.75	0.625	3	3	4.25	3	0.625	3.3	3	4	3	0.5
	Human resources	4.9	5	5	4.5	0.25	4	4	5	4	0.5	4.1	4	5	4	0.5
	Financial resources	3.2	3	4	2.5	0.75	4.1	4	4.25	3.75	0.25	4.8	5	5	4	0.5
Top managers characteristics	Top managers attitude towards innovation	4.1	4	4.5	4	0.25	3.9	4	4.25	3.75	0.25	4	4	4.5	3.5	0.5
	Top managers demographic characteristics	2.3	2	3.25	1.75	0.75	2	2.5	3	1	1	2.2	2	3	1.5	0.75
Innovation characteristics	Relative advantage	3	3	4	2.75	0.625	4.4	4.5	5	4	0.5	3.1	3	4	2.75	0.625
	Compatibility	2.8	3	3.5	2	0.75	3.9	4	4.25	3.75	0.25	3.9	4	4.25	3.75	0.25
	Complexity	3.6	4	4.25	3.75	0.25	3.8	4	4		0.125	3.9	4	4.25	3.75	0.25
	Trialability	3.2	3	4	2.75	0.625	3.1	3	4	2.5	0.75	4.1	4	5	4	0.5
	Observability	3.4	3.5	4.25	3	0.625	3.1	3.5	4	2	1	3.3	3	4.25	3	0.625
User acceptance attributes	Usefulness				-				-	_	-	3.2	3	4	2	1
	Ease of use											4	4	5	4	0.5

Note.

Me = median; Q = quartile; QD = quartile deviation.

Initiation			Adoption a	decision		Implementation				
Factors	Round 1	Round 2	Factors	Round 1	Round 2	Factors	Round 1	Round 2		
Complexity in the environment	4.5	4.2	Dynamism in the environment	3.6	3.4	Dynamism in the environment	4.0	3.8		
Specialization	3.8	3.4	Hostility in the environment	3.9	4.0	Hostility in the environment	3.7	3.4		
Horizontal differentiation	2.8	3.1	Centralization	3.8	3.8	Centralization	3.9	3.8		
Human resources	4.9	5.0	Human resources	4.0	4.2	Formalization	3.3	3.2		
Top managers attitude towards innovation	4.1	4.3	Financial resources	4.1	4.4	Human resources	4.1	4.4		
Innovation complexity	3.6	3.3	Top managers attitude towards innovation	3.9	4.0	Financial resources	4.8	5.0		
			Relative advantage	4.4	4.1	Top managers attitude towards innovation	4.0	4.4		
			Innovation compatibility	3.9	3.6	Innovation compatibility	3.9	3.8		
			Innovation complexity	3.8	3.8	Innovation complexity	3.9	3.9		
						Innovation trialability	4.1	3.9		
						Ease of use	4.0	4.2		

FinTech Innovation FinTech high-level classification



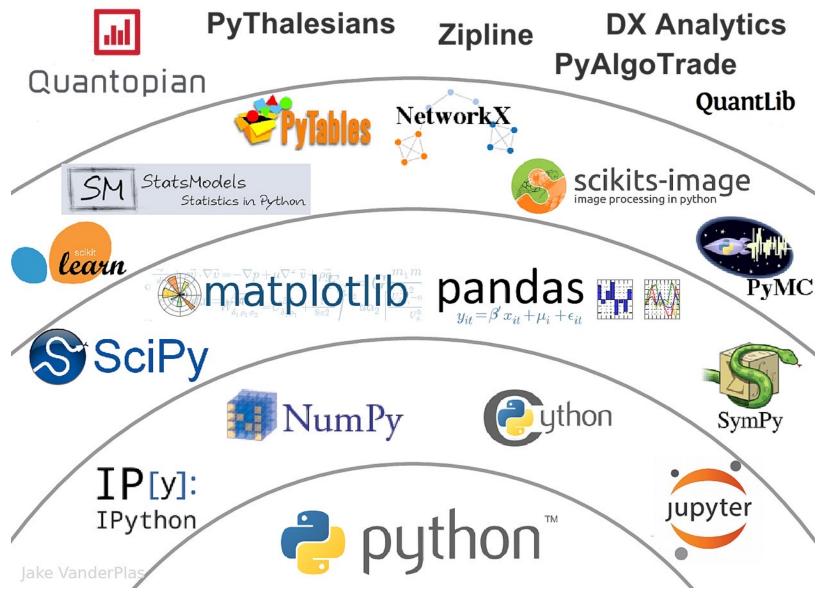
Source: Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley.

Financial Technology (Fintech) Categories

- 1. Banking Infrastructure
- 2. Business Lending
- 3. Consumer and Commercial Banking
- 4. Consumer Lending
- 5. Consumer Payments
- 6. Crowdfunding
- 7. Equity Financing
- 8. Financial Research and Data

- 9. Financial Transaction Security
- **10. Institutional Investing**
- **11. International Money Transfer**
- **12.** Payments Backend and Infrastructure
- **13. Personal Finance**
- **14. Point of Sale Payments**
- **15. Retail Investing**
- **16. Small and Medium Business Tools**

The Quant Finance PyData Stack



Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Python in Google Colab (Python101)

C	> 	Tools Help <u>All changes saved</u>	🗐 Comment 🛛 🚓 Share 🏟 🛕
≣	Table of contents $\qquad imes$	+ Code + Text	✓ RAM → Fediting ∧
Q	Algorithmic Trading Vectorized Backtesting	 Backtesting Cryptocurrency Bitcoin 	
<>	Backtesting an SMA- Based Strategy	 Financial Functions (ffn): <u>https://pmorissette.github.io/ffn/</u> backtesting.py: <u>https://kernc.github.io/backtesting.py/</u> 	
{ <i>x</i> }	Backtesting a Daily DNN- Based Strategy		
	Backtesting an Intraday DNN-Based Strategy	1 !pip install ffn 2 import ffn 3 import plotly.express as px	
	Risk Management	4 %pylab inline	
	Trading Bot	<pre>5 #BTC-USD Bitcoin USD 6 df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')</pre>	
	Vectorized Backtesting	7 print('df')	
	Event-Based Backtesting	<pre>8 print(df.head()) 9 print(df.tail())</pre>	
	Assessing Risk	<pre>10 print(df.describe()) 11 l5 lait(finite())</pre>	
	Backtesting Risk Measures	<pre>11 df.plot(figsize=(14,10)) 12 13 returns = df.to_returns().dropna()</pre>	
	Stop Loss	14 print('returns')	
	Trailing Stop Loss	<pre>15 print(returns.head()) 16 print(returns.tail())</pre>	
	Take Profit	<pre>17 print(returns.describe()) 18 #ax = df.plot(figsize=(12,9))</pre>	
	Combinations	$18 \ \text{#ax} = \text{dr.piot}(\text{igsize}=(12,9))$ 19	
=	Backtesting Cryptocurrency Bitcoin	<pre>20 perf = df.calc_stats() 21 perf.plot(figsize=(14, 10))</pre>	

References

- Thorsten Schoormann, Gero Strobel, Frederik Möller, Dimitri Petrik, and Patrick Zschech (2023). "Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature." Communications of the Association for Information Systems 52, no. 1 (2023): 8.
- Longbing Cao (2022). "Decentralized ai: Edge intelligence and smart blockchain, metaverse, web3, and desci." IEEE Intelligent Systems 37, no. 3: 6-19.
- Qinglin Yang, Yetong Zhao, Huawei Huang, Zehui Xiong, Jiawen Kang, and Zibin Zheng (2022). "Fusing blockchain and AI with metaverse: A survey." IEEE Open Journal of the Computer Society 3 : 122-136.
- Russell Belk, Mariam Humayun, and Myriam Brouard (2022). "Money, possessions, and ownership in the Metaverse: NFTs, cryptocurrencies, Web3 and Wild Markets." Journal of Business Research 153: 198-205.
- Thien Huynh-The, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.
- Min-Yuh Day and Yensen Ni (2023), "Do clean energy indices outperform using contrarian strategies based on contrarian trading rules?", Energy, Volume 272, 1 June 2023, 127113.
- Thippa Reddy Gadekallu, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022). "Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738.
- Dan Sheridan, James Harris, Frank Wear, Jerry Cowell Jr, Easton Wong, and Abbas Yazdinejad (2022). "Web3 Challenges and Opportunities for the Market." arXiv preprint arXiv:2209.02446.
- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Paolo Sironi (2016), FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification, Wiley.
- Campbell R. Harvey, Ashwin Ramachandran, Joey Santoro, Fred Ehrsam (2021), DeFi and the Future of Finance, Wiley
- Matt Fortnow and QuHarrison Terry (2021), The NFT Handbook How to Create, Sell and Buy Non-Fungible Tokens, Wiley
- Parma Bains, Mohamed Diaby, Dimitris Drakopoulos, Julia Faltermeier, Federico Grinberg, Evan Papageorgiou, Dmitri Petrov, Patrick Schneider, and Nobu Sugimoto (2021), The Crypto Ecosystem and Financial Stability Challenges, International Monetary Fund, October 2021
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), "Business Intelligence, Analytics, and Data Science: A Managerial Perspective", 4th Edition, Pearson
- Frederic S. Mishkin (2015), "The Economics of Money, Banking and Financial Markets", 11th Edition, Pearson
- Susanne Chishti and Janos Barberis (2016), "The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries", Wiley.
- Paolo Sironi (2016), "FinTech Innovation: From Robo-Advisors to Goal Based Investing and Gamification", Wiley.
- Brett King (2014), "Breaking Banks: The Innovators, Rogues, and Strategists Rebooting Banking", Wiley.
- Brett King (2012), "Bank 3.0: Why banking is no longer somewhere you go, but something you do", John Wiley & Sons
- Gopalakrishnan, Shanti, and Fariborz Damanpour (1997). "A review of innovation research in economics, sociology and technology management." Omega 25, no. 1: 15-28.
- Pichlak, Magdalena (2016). "The innovation adoption process: A multidimensional approach." Journal of Management and Organization 22, no. 4 : 476.
- Everett M. Rogers (2003), "Diffusion of Innovations", Free Press, 5th Edition