
Features, Scenarios, and Stories

Software Engineering

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1112SE04
MBA, IM, NTPU (M5010) (Spring 2023)

Wed 2, 3, 4 (9:10-12:00) (B8F40)

2023-03-15

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2023/02/22 Introduction to Software Engineering

2 2023/03/01 Software Products and Project Management:
Software product management and prototyping

3 2023/03/08 Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming

4 2023/03/15 Features, Scenarios, and Stories

5 2023/03/22 Case Study on Software Engineering I

6 2023/03/29 Software Architecture: Architectural design,
System decomposition, and Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2023/04/05 Tomb-Sweeping Day (Holiday, No Classes)

8 2023/04/12 Midterm Project Report

9 2023/04/19 Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service

10 2023/04/26 Cloud Computing and Cloud Software Architecture

11 2023/05/03 Microservices Architecture, RESTful services,
Service deployment

12 2023/05/10 Security and Privacy; Reliable Programming;
Testing: Test-driven development, and Code reviews;
DevOps and Code Management: DevOps automation

3

Syllabus
Week Date Subject/Topics

13 2023/05/17 Industry Practices of Software Engineering

[Agile Principles Patterns and Practices using AI and ChatGPT,
Invited Speaker: Shihyu (Alex) Chu, Division Director,
Software Industry Research Center, Market Intelligence & Consulting Institute (MIC)]

14 2023/05/24 Case Study on Software Engineering II

15 2023/05/31 Final Project Report I

16 2023/06/07 Final Project Report II

17 2023/06/14 Self-learning

18 2023/06/21 Self-learning
4

5

Features,
Scenarios,

and
Stories

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Features,
Scenarios,

and
Stories

35

From personas to features

36

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Software products
• Three factors that drive the design of software products

• Business and consumer needs that are not met by current
products

• Dissatisfaction with existing business or consumer software
products

• Changes in technology that make completely new types of product
possible

• In the early stage of product development, you are trying to
understand, what product features would be useful to users, and
what they like and dislike about the products that they use.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software features
• A feature is a fragment of functionality such as a ‘print’

feature, a ‘change background feature’, a ‘new document’
feature and so on.
• Before you start programming a product, you should aim to

create a list of features to be included in your product.
• The feature list should be your starting point for product

design and development.

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User understanding
• It makes sense in any product development to spend time trying to

understand the potential users and customers of your product.

• A range of techniques have been developed for understanding the
ways that people work and use software.
• These include user interviews, surveys, ethnography and task analysis.

• Some of these techniques are expensive and unrealistic for small
companies.

• Informal user analysis and discussions, which simply involve asking users about
their work, the software that they use, and its strengths and weaknesses are
inexpensive and very valuable.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature description

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Input

The input from the
user and other

A description of
how the input data

is process

The output to the
user and the system

How the feature is
activated by the

user

Action

Output

Activation
Feature name

The ‘New Group’ feature description

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Input
The name of the

group chosen by the
user

A new container is
created with the
specified name

An empty document
container and an updated

list of documents that
includes the newly created

group

Using the ‘New
Group’ menu option
or keyboard shortcut

Action

Output

Activation
New Group

Personas
• You need to have an understanding of your potential users to design

features that they are likely to find useful and to design a user interface
that is suited to them.

• Personas are ‘imagined users’ where you create a character portrait of a
type of user that you think might use your product.

• For example, if your product is aimed at managing appointments for
dentists, you might create a dentist persona, a receptionist persona and
a patient persona.

• Personas of different types of user help you imagine what these users may
want to do with your software and how it might be used. They help you
envisage difficulties that they might have in understanding and using
product features.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Persona descriptions
• A persona should ‘paint a picture’ of a type of product user.

They should be relatively short and easy-to-read.

• Describe their background and why they might want to use
your product.

• Say something about their educational background and
technical skills.
• These help you assess whether or not a software feature is

likely to be useful, understandable and usable by typical
product users.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Persona descriptions

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Personalization Job-related

EducationRelevance

Persona

Include personal
information about

the individual

Include details of
the individual’s job

Include details of
their education and

experience

Include details of
their interest in the

product

Persona benefits
• Personas help you and other development team members

empathize with potential users of the software.

• Personas help because they are a tool that allows developers to
‘step into the user’s shoes’.

• Instead of thinking about what you would do in a particular
situation, you can imagine how a persona would behave and react.

• Personas can help you check your ideas to make sure that you are not
including product features that aren’t really needed.

• They help you to avoid making unwarranted assumptions, based on
your own knowledge, and designing an over-complicated or irrelevant
product.

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Deriving personas
• Personas should be based on an understanding of the potential product

users, their jobs, their background and their aspirations.

• You should study and survey potential users to understand what they want
and how they might use the product.

• From this data, you can then abstract the essential information about the
different types of product user and use this as a basis for creating personas.

• Personas that are developed on the basis of limited user information are
called proto-personas.

• Proto-personas may be created as a collective team exercise using whatever
information is available about potential product users. They can never be as
accurate as personas developed from detailed user studies, but they are
better than nothing.

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenarios
• A scenario is a narrative that describes how a user, or a

group of users, might use your system.

• There is no need to include everything in a scenario –
the scenario isn’t a system specification.

• It is simply a description of a situation where a user is using
your product’s features to do something that they want to
do.

• Scenario descriptions may vary in length from
two to three paragraphs up to a page of text.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Elements of a scenario description

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenario
description

Scenario
name

Overall
objective

What’s involved in
reaching the objective

Possible way that the
problem could be

tackled

Personas of actors
involved in the

scenarios

Problem that can’t be
addressed by existing

system

Writing scenarios
• Scenarios should always be written from the user’s perspective and

based on identified personas or real users.
• Your starting point for scenario writing should be the personas that

you have created. You should normally try to imagine several
scenarios from each persona.
• Ideally, scenarios should be general and should not include

implementation information.
• However, describing an implementation is often the easiest way to

explain how a task is done.
• It is important to ensure that you have coverage of all of the

potential user roles when describing a system.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User involvement
• It is easy for anyone to read and understand scenarios, so it is

possible to get users involved in their development.

• The best approach is to develop an imaginary scenario based on our
understanding of how the system might be used then ask users to
explain what you have got wrong.

• They might ask about things they did not understand and suggest
how the scenario could be extended and made more realistic.

• Our experience was that users are not good at writing scenarios.

• The scenarios that they created were based on how they worked at
the moment. They were far too detailed and the users couldn’t
easily generalize their experience.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

51

WHO As a <role>

WHAT I <want | need> to <do something>

WHY so that <reason>

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

2

3

User stories
• As a <role>,

I <want | need> to <do something>
• As a teacher,

I want to tell all members of my group when new information is
available

• As a <role>
I <want | need> to <do something>
so that <reason>
• As a teacher,

I need to be able to report who is attending a class trip
so that the school maintains the required health and safety records.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories
• Scenarios are high-level stories of system use.

They should describe a sequence of interactions with the
system but should not include details of these interactions.
• User stories are finer-grain narratives that set out in a more

detailed and structured way a single thing
that a user wants from a software system.
• As an author,

I need a way to organize the book
that I’m writing into chapters and sections.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories
• This story reflects what has become the standard format of a user

story:

• As a <role>, I <want | need> to <do something>

• As a teacher, I want to tell all members of my group when new
information is available

• A variant of this standard format adds a justification for the action:

• As a <role> I <want | need> to <do something> so that <reason>

• As a teacher,
I need to be able to report who is attending a class trip
so that the school maintains the required health and safety

records.
54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories in planning
•An important use of user stories is in planning.
•Many users of the Scrum method represent

the product backlog as a set of user stories.
•User stories should focus on

a clearly defined system feature or
aspect of a feature
that can be implemented
within a single sprint.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories in planning
• If the story is about a more complex feature that might take

several sprints to implement, then it is called an epic.

• As a system manager, I need a way to backup the system
and restore either individual applications, files,
directories or the whole system.
• There is a lot of functionality associated with this user

story. For implementation, it should be broken down into
simpler stories with each story focusing on a single aspect
of the backup system.

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories from Emma’s scenario

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

As a teacher,
I want to be able to log in to my iLearn
account from home using my Google

credentials
so that I don’t have to remember

another login id and password.

As a teacher,
I want to access the apps

that I use for class
management and

administration.

As a teacher and parent,
I want to be able to select the appropriate iLearn account

so that I don’t have to have separate credentials for each account.

Feature description
using user stories

• Stories can be used to describe features in your product that
should be implemented.

• Each feature can have a set of associated stories that describe
how that feature is used.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories describing the
Groups feature

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

As a teacher,
I want to be able to send

email to all group
members using a single

email address.

As a teacher,
I want to be able to create a group of

students and teachers
so that I can share information with

that group.

As a teacher,
I want to be able to share

uploaded information with
other group members

As a teacher,
I want to the iLearn system to
automatically set up sharing
mechanisms such as wikis,

blogs and web sites.

As a teacher,
I want the system to make it easy for

me to select the students and
teachers to be added to a group.

Stories and scenarios
• As you can express all of the functionality described in a scenario as

user stories, do you really need scenarios?’
• Scenarios are more natural and are helpful for the following reasons:

• Scenarios read more naturally because they describe what a user of a system
is actually doing with that system. People often find it easier to relate to this
specific information rather than the statement of wants or needs set out in a
set of user stories.

• If you are interviewing real users or are checking a scenario with real users,
they don’t talk in the stylized way that is used in user stories. People relate
better to the more natural narrative in scenarios.

• Scenarios often provide more context - information about what the user is
trying to do and their normal ways of working. You can do this in user stories,
but it means that they are no longer simple statements about the use of a
system feature.

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature identification
•Your aim in the initial stage of product design should

be to create a list of features that define your product.
•A feature is a way of allowing users to access and use

your product’s functionality so the feature list defines
the overall functionality of the system.
• Features should be independent, coherent and

relevant.

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature identification
• Features should be independent, coherent and relevant:
• Independence

Features should not depend on how other system features are
implemented and should not be affected by the order of activation of other
features.
• Coherence

Features should be linked to a single item of functionality.
They should not do more than one thing and they should never have side-
effects.
• Relevance

Features should reflect the way that users normally carry out some task.
They should not provide obscure functionality that is hardly ever required.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature design

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature
design

User
knowledge

Product
knowledge

Domain
knowledge

Technology
knowledge

Factors in feature set design

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Simplicity Functionality

Familiarity Novelty

Automation Control

Feature set
design
factors

Feature trade-offs
• Simplicity and functionality

• You need to find a balance between providing a simple, easy-to-use system and including
enough functionality to attract users with a variety of needs.

• Familiarity and novelty
• Users prefer that new software should support the familiar everyday tasks that are part of

their work or life.
To encourage them to adopt your system, you need to find a balance between familiar
features and new features that convince users that your product can do more than its
competitors.

• Automation and control
• Some users like automation, where the software does things for them. Others prefer to

have control.
You have to think carefully about what can be automated, how it is automated and how
users can configure the automation so that the system can be tailored to their preferences.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature creep
• Feature creep occurs when new features are added in response to user

requests without considering whether or not these features are generally
useful or whether they can be implemented in some other way.

• Too many features make products hard to use and understand

• There are three reasons why feature creep occurs:

• Product managers are reluctant to say ‘no’ when users ask for specific
features.

• Developers try to match features in competing products.

• The product includes features to support both inexperienced and
experienced users.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoiding feature creep

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature
questions

Does this feature really add
anything new or is it simply an

alternative way of doing something
that is already supported?

Is this feature likely to be important
to and used by most software

users?

Can this feature be implemented by
extending an existing feature rather
than adding another feature to the

system?

Does this feature provide general
functionality or is it a very specific

feature?

Feature derivation
• Features can be identified directly from the product vision or

from scenarios.

• You can highlight phrases in narrative description to identify
features to be included in the software.

• You should think about the features needed to support user
actions, identified by active verbs, such as use and choose.

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The iLearn system vision
• FOR teachers and educators WHO need a way to help students use

web-based learning resources and applications, THE iLearn system is
an open learning environment THAT allows the set of resources used
by classes and students to be easily configured for these students
and classes by teachers themselves.

• UNLIKE Virtual Learning Environments, such as Moodle, the focus of
iLearn is the learning process itself, rather than the administration
and management of materials, assessments and coursework.
OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources,
such as videos, simulations and written materials that are
appropriate

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Features from the product vision

•A feature that allows users to access and use existing
web-based resources;
•A feature that allows the system to exist in multiple

different instantiations;
•A feature that allows user configuration of the system

to create a specific instantiation.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature description using user stories
• Description

• As a system manager, I want to create and configure an iLearn environment by adding and
removing services to/from that environment so that I can create environments for specific
purposes.

• As a system manager, I want to set up sub-environments that include a subset of services that
are included in another environment.

• As a system manager, I want to assign administrators to created environments.
• As a system manager, I want to limit the rights of environment administrators so that they

cannot accidentally or deliberately disrupt the operation of key services.
• As a teacher, I want to be able to add services that are not integrated with the iLearn

authentication system.
• Constraints

• The use of some tools may be limited for license reasons so there may be a need to access
license management tools during configuration.

• Comments
• Based on Elena’s and Jack’s scenarios.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Innovation and feature identification
• Scenarios and user stories should always be your starting point for identifying

product features.

• Scenarios tell you how users work at the moment. They don’t show how they
might change their way of working if they had the right software to support them.

• Stories and scenarios are ‘tools for thinking’ and they help you gain an
understanding of how your software might be used. You can identify a feature set
from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent new ways of
working.

• You should also think creatively about alternative or additional features that help
users to work more efficiently or to do things differently.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• A software product feature is a fragment of functionality that

implements something that a user may need or want when
using the product.
• The first stage of product development is to identify the list of

product features in which you identify each feature and give a
brief description of its functionality.
• Personas are ‘imagined users’ where you create a character

portrait of a type of user that you think might use your
product.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

•A persona description should ‘paint a picture’ of a
typical product user. It should describe their
educational background, technology experience and
why they might want to use your product.
•A scenario is a narrative that describes a situation

where a user is accessing product features to do
something that they want to do.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Scenarios should always be written from the user’s

perspective and should be based on identified
personas or real users.
•User stories are finer-grain narratives that set out, in

a structured way, something that a user wants from
a software system.

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• User stories may be used as a way of extending and adding

detail to a scenario or as part of the description of system
features.
• The key influences in feature identification and design are

user research, domain knowledge, product knowledge, and
technology knowledge.
• You can identify features from scenarios and stories by

highlighting user actions in these narratives and thinking
about the features that you need to support these actions.

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project
Management, PMI.

• Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

• Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

77

