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Syllabus
Week    Date    Subject/Topics

1   2023/02/22   Introduction to Software Engineering

2   2023/03/01   Software Products and Project Management: 
Software product management and prototyping

3   2023/03/08   Agile Software Engineering: 
Agile methods, Scrum, and Extreme Programming

4   2023/03/15   Features, Scenarios, and Stories

5   2023/03/22   Case Study on Software Engineering I

6   2023/03/29   Software Architecture: Architectural design, 
System decomposition, and Distribution architecture
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Syllabus
Week    Date    Subject/Topics

7   2023/04/05   Tomb-Sweeping Day (Holiday, No Classes)

8   2023/04/12   Midterm Project Report

9   2023/04/19   Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service

10   2023/04/26   Cloud Computing and Cloud Software Architecture

11   2023/05/03   Microservices Architecture, RESTful services, 
Service deployment

12   2023/05/10   Security and Privacy; Reliable Programming; 
Testing: Test-driven development, and Code reviews; 
DevOps and Code Management: DevOps automation
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Syllabus
Week    Date    Subject/Topics

13   2023/05/17   Industry Practices of Software Engineering

[Agile Principles Patterns and Practices using AI and ChatGPT, 
Invited Speaker: Shihyu (Alex) Chu, Division Director, 
Software Industry Research Center, Market Intelligence & Consulting Institute (MIC)]

14   2023/05/24   Case Study on Software Engineering II

15   2023/05/31   Final Project Report I

16   2023/06/07   Final Project Report II

17   2023/06/14   Self-learning

18   2023/06/21   Self-learning
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Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 
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Fundamental MIS Concepts
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Project-based software engineering
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Product software engineering
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Software execution models

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Product management concerns
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Technical interactions of 
product managers
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles
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Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle
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A Life Cycle of 
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles
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From personas to features
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Multi-tier client-server architecture
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Service-oriented Architecture
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VM
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Everything as a service
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Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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From personas to features
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Software products
• Three factors that drive the design of software products

• Business and consumer needs that are not met by current 
products

• Dissatisfaction with existing business or consumer software 
products

• Changes in technology that make completely new types of product 
possible

• In the early stage of product development, you are trying to 
understand, what product features would be useful to users, and 
what they like and dislike about the products that they use.

37Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software features
• A feature is a fragment of functionality such as a ‘print’ 

feature, a ‘change background feature’, a ‘new document’ 
feature and so on. 
• Before you start programming a product, you should aim to 

create a list of features to be included in your product. 
• The feature list should be your starting point for product 

design and development.

38Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User understanding
• It makes sense in any product development to spend time trying to 

understand the potential users and customers of your product. 

• A range of techniques have been developed for understanding the 
ways that people work and use software.
• These include user interviews, surveys, ethnography and task analysis. 

• Some of these techniques are expensive and unrealistic for small 
companies. 

• Informal user analysis and discussions, which simply involve asking users about 
their work, the software that they use, and its strengths and weaknesses are 
inexpensive and very valuable.

39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature description
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The ‘New Group’ feature description 

41Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Personas
• You need to have an understanding of your potential users to design 

features that they are likely to find useful and to design a user interface 
that is suited to them.

• Personas are ‘imagined users’ where you create a character portrait of a 
type of user that you think might use your product. 

• For example, if your product is aimed at managing appointments for 
dentists, you might create a dentist persona, a receptionist persona and 
a patient persona. 

• Personas of different types of user help you imagine what these users may 
want to do with your software and how it might be used. They help you 
envisage difficulties that they might have in understanding and using 
product features.

42Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Persona descriptions
• A persona should ‘paint a picture’ of a type of product user. 

They should be relatively short and easy-to-read.

• Describe their background and why they might want to use 
your product. 

• Say something about their educational background and 
technical skills. 
• These help you assess whether or not a software feature is 

likely to be useful, understandable and usable by typical 
product users. 

43Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Persona descriptions
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Persona benefits
• Personas help you and other development team members 

empathize with potential users of the software. 

• Personas help because they are a tool that allows developers to 
‘step into the user’s shoes’. 

• Instead of thinking about what you would do in a particular 
situation, you can imagine how a persona would behave and react. 

• Personas can help you check your ideas to make sure that you are not 
including product features that aren’t really needed. 

• They help you to avoid making unwarranted assumptions, based on 
your own knowledge, and designing an over-complicated or irrelevant 
product.

45Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Deriving personas
• Personas should be based on an understanding of the potential product 

users, their jobs, their background and their aspirations. 

• You should study and survey potential users to understand what they want 
and how they might use the product. 

• From this data, you can then abstract the essential information about the 
different types of product user and use this as a basis for creating personas. 

• Personas that are developed on the basis of limited user information are 
called proto-personas. 

• Proto-personas may be created as a collective team exercise using whatever 
information is available about potential product users. They can never be as 
accurate as personas developed from detailed user studies, but they are 
better than nothing. 

46Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scenarios
• A scenario is a narrative that describes how a user, or a 

group of users, might use your system. 

• There is no need to include everything in a scenario –
the scenario isn’t a system specification. 

• It is simply a description of a situation where a user is using 
your product’s features to do something that they want to 
do.

• Scenario descriptions may vary in length from 
two to three paragraphs up to a page of text.

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Elements of a scenario description

48Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Scenario
description

Scenario
name

Overall 
objective

What’s involved in 
reaching the objective

Possible way that the 
problem could be 

tackled

Personas of actors 
involved in the 

scenarios

Problem that can’t be 
addressed by existing 

system



Writing scenarios
• Scenarios should always be written from the user’s perspective and 

based on identified personas or real users.
• Your starting point for scenario writing should be the personas that 

you have created. You should normally try to imagine several 
scenarios from each persona.
• Ideally, scenarios should be general and should not include 

implementation information. 
• However, describing an implementation is often the easiest way to 

explain how a task is done.
• It is important to ensure that you have coverage of all of the 

potential user roles when describing a system.

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User involvement
• It is easy for anyone to read and understand scenarios, so it is 

possible to get users involved in their development. 

• The best approach is to develop an imaginary scenario based on our 
understanding of how the system might be used then ask users to 
explain what you have got wrong. 

• They might ask about things they did not understand and suggest 
how the scenario could be extended and made more realistic.

• Our experience was that users are not good at writing scenarios.

• The scenarios that they created were based on how they worked at 
the moment. They were far too detailed and the users couldn’t 
easily generalize their experience.

50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories
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WHO As a <role> 

WHAT I <want | need> to <do something> 

WHY so that <reason> 

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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User stories
• As a <role>, 

I <want | need> to <do something>
• As a teacher, 

I want to tell all members of my group when new information is 
available

• As a <role> 
I <want | need> to <do something> 
so that <reason>
• As a teacher, 

I need to be able to report who is attending a class trip 
so that the school maintains the required health and safety records.

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories
• Scenarios are high-level stories of system use. 

They should describe a sequence of interactions with the 
system but should not include details of these interactions.
• User stories are finer-grain narratives that set out in a more 

detailed and structured way a single thing 
that a user wants from a software system. 
• As an author, 

I need a way to organize the book 
that I’m writing into chapters and sections. 

53Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories
• This story reflects what has become the standard format of a user 

story:

• As a <role>, I <want | need> to <do something>

• As a teacher, I want to tell all members of my group when new 
information is available

• A variant of this standard format adds a justification for the action:

• As a <role> I <want | need> to <do something> so that <reason>

• As a teacher, 
I need to be able to report who is attending a class trip
so that the school maintains the required health and safety 

records.
54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories in planning
•An important use of user stories is in planning.
•Many users of the Scrum method represent 

the product backlog as a set of user stories. 
•User stories should focus on 

a clearly defined system feature or 
aspect of a feature 
that can be implemented 
within a single sprint. 

55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories in planning
• If the story is about a more complex feature that might take 

several sprints to implement, then it is called an epic.

• As a system manager, I need a way to backup the system 
and restore either individual applications, files, 
directories or the whole system.
• There is a lot of functionality associated with this user 

story. For implementation, it should be broken down into 
simpler stories with each story focusing on a single aspect 
of the backup system.

56Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories from Emma’s scenario

57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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that I use for class 
management and 

administration.

As a teacher and parent, 
I want to be able to select the appropriate iLearn account 

so that I don’t have to have separate credentials for each account.



Feature description 
using user stories

• Stories can be used to describe features in your product that 
should be implemented.

• Each feature can have a set of associated stories that describe 
how that feature is used.

58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories describing the 
Groups feature

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

User stories
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teachers to be added to a group.



Stories and scenarios
• As you can express all of the functionality described in a scenario as 

user stories, do you really need scenarios?’
• Scenarios are more natural and are helpful for the following reasons:

• Scenarios read more naturally because they describe what a user of a system 
is actually doing with that system. People often find it easier to relate to this 
specific information rather than the statement of wants or needs set out in a 
set of user stories.

• If you are interviewing real users or are checking a scenario with real users, 
they don’t talk in the stylized way that is used in user stories. People relate 
better to the more natural narrative in scenarios.

• Scenarios often provide more context - information about what the user is 
trying to do and their normal ways of working. You can do this in user stories, 
but it means that they are no longer simple statements about the use of a 
system feature.

60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature identification
•Your aim in the initial stage of product design should 

be to create a list of features that define your product. 
•A feature is a way of allowing users to access and use 

your product’s functionality so the feature list defines 
the overall functionality of the system.
• Features should be independent, coherent and 

relevant.

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature identification
• Features should be independent, coherent and relevant:
• Independence

Features should not depend on how other system features are 
implemented and should not be affected by the order of activation of other 
features.
• Coherence

Features should be linked to a single item of functionality. 
They should not do more than one thing and they should never have side-
effects.
• Relevance

Features should reflect the way that users normally carry out some task. 
They should not provide obscure functionality that is hardly ever required.

62Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature design

63Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Factors in feature set design

64Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Feature trade-offs
• Simplicity and functionality 

• You need to find a balance between providing a simple, easy-to-use system and including 
enough functionality to attract users with a variety of needs.

• Familiarity and novelty
• Users prefer that new software should support the familiar everyday tasks that are part of 

their work or life. 
To encourage them to adopt your system, you need to find a balance between familiar 
features and new features that convince users that your product can do more than its 
competitors. 

• Automation and control
• Some users like automation, where the software does things for them. Others prefer to 

have control. 
You have to think carefully about what can be automated, how it is automated and how 
users can configure the automation so that the system can be tailored to their preferences. 

65Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature creep
• Feature creep occurs when new features are added in response to user 

requests without considering whether or not these features are generally 
useful or whether they can be implemented in some other way.

• Too many features make products hard to use and understand

• There are three reasons why feature creep occurs:

• Product managers are reluctant to say ‘no’ when users ask for specific 
features.

• Developers try to match features in competing products.

• The product includes features to support both inexperienced and 
experienced users.

66Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Avoiding feature creep

67Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Feature 
questions

Does this feature really add 
anything new or is it simply an 

alternative way of doing something 
that is already supported?

Is this feature likely to be important 
to and used by most software 

users?

Can this feature be implemented by 
extending an existing feature rather 
than adding another feature to the 

system?

Does this feature provide general 
functionality or is it a very specific 

feature?



Feature derivation
• Features can be identified directly from the product vision or 

from scenarios.

• You can highlight phrases in narrative description to identify 
features to be included in the software.

• You should think about the features needed to support user 
actions, identified by active verbs, such as use and choose.
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The iLearn system vision
• FOR teachers and educators WHO need a way to help students use 

web-based learning resources and applications, THE iLearn system is 
an open learning environment THAT allows the set of resources used 
by classes and students to be easily configured for these students 
and classes by teachers themselves.

• UNLIKE Virtual Learning Environments, such as Moodle, the focus of 
iLearn is the learning process itself, rather than the administration 
and management of materials, assessments and coursework.
OUR product enables teachers to create subject and age-specific 
environments for their students using any web-based resources, 
such as videos, simulations and written materials that are 
appropriate
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Features from the product vision

•A feature that allows users to access and use existing 
web-based resources;
•A feature that allows the system to exist in multiple 

different instantiations;
•A feature that allows user configuration of the system 

to create a specific instantiation.
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Feature description using user stories
• Description

• As a system manager, I want to create and configure an iLearn environment by adding and 
removing services to/from that environment so that I can create environments for specific 
purposes. 

• As a system manager, I want to set up sub-environments that include a subset of services that 
are included in another environment. 

• As a system manager, I want to assign administrators to created environments. 
• As a system manager, I want to limit the rights of environment administrators so that they 

cannot accidentally or deliberately disrupt the operation of key services. 
• As a teacher, I want to be able to add services that are not integrated with the iLearn

authentication system. 
• Constraints

• The use of some tools may be limited for license reasons so there may be a need to access 
license management tools during configuration.

• Comments
• Based on Elena’s and Jack’s scenarios. 
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Innovation and feature identification
• Scenarios and user stories should always be your starting point for identifying 

product features. 

• Scenarios tell you how users work at the moment. They don’t show how they 
might change their way of working if they had the right software to support them. 

• Stories and scenarios are ‘tools for thinking’ and they help you gain an 
understanding of how your software might be used. You can identify a feature set 
from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent new ways of 
working. 

• You should also think creatively about alternative or additional features that help 
users to work more efficiently or to do things differently. 
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Summary
• A software product feature is a fragment of functionality that 

implements something that a user may need or want when 
using the product.
• The first stage of product development is to identify the list of 

product features in which you identify each feature and give a 
brief description of its functionality.
• Personas are ‘imagined users’ where you create a character 

portrait of a type of user that you think might use your 
product. 
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Summary

•A persona description should ‘paint a picture’ of a 
typical product user. It should describe their 
educational background, technology experience and 
why they might want to use your product. 
•A scenario is a narrative that describes a situation

where a user is accessing product features to do 
something that they want to do. 
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Summary
• Scenarios should always be written from the user’s 

perspective and should be based on identified 
personas or real users. 
•User stories are finer-grain narratives that set out, in 

a structured way, something that a user wants from 
a software system. 
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Summary
• User stories may be used as a way of extending and adding 

detail to a scenario or as part of the description of system 
features.
• The key influences in feature identification and design are 

user research, domain knowledge, product knowledge, and 
technology knowledge.
• You can identify features from scenarios and stories by 

highlighting user actions in these narratives and thinking 
about the features that you need to support these actions.
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