

人工智慧文本分析

(Al for Text Analytics) 問答系統與對話系統 (Question Answering and Dialogue Systems)

1091AITA12 MBA, IMTKU (M2455) (8418) (Fall 2020) Thu 3, 4 (10:10-12:00) (B206)

Min-Yuh Day

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday 2020-12-31

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

12020/09/17人工智慧文本分析課程介紹

(Course Orientation on Artificial Intelligence for Text Analytics)

2 2020/09/24 文本分析的基礎:自然語言處理

(Foundations of Text Analytics: Natural Language Processing; NLP)

3 2020/10/01 中秋節 (Mid-Autumn Festival) 放假一天 (Day off)

4 2020/10/08 Python自然語言處理

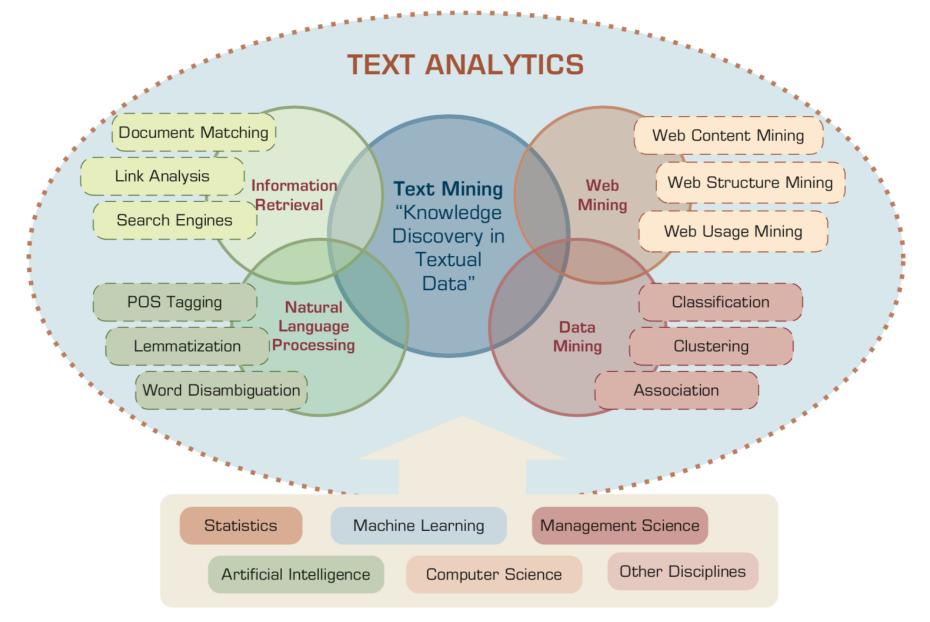
(Python for Natural Language Processing)

5 2020/10/15 處理和理解文本

(Processing and Understanding Text)

6 2020/10/22 文本表達特徵工程

(Feature Engineering for Text Representation)


課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics) 72020/10/29人工智慧文本分析個案研究| (Case Study on Artificial Intelligence for Text Analytics I) 8 2020/11/05 文本分類 (Text Classification) 92020/11/12 文本摘要和主題模型 (Text Summarization and Topic Models) 10 2020/11/19 期中報告 (Midterm Project Report) 11 2020/11/26 文本相似度和分群 (Text Similarity and Clustering) 12 2020/12/03 語意分析和命名實體識別 (Semantic Analysis and Named Entity Recognition; NER)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics) 13 2020/12/10 情感分析 (Sentiment Analysis) 14 2020/12/17 人工智慧文本分析個案研究 || (Case Study on Artificial Intelligence for Text Analytics II) 15 2020/12/24 深度學習和通用句子嵌入模型 (Deep Learning and Universal Sentence-Embedding Models) 16 2020/12/31 問答系統與對話系統 (Question Answering and Dialogue Systems) 17 2021/01/07 期末報告 I (Final Project Presentation I) 18 2021/01/14 期末報告 II (Final Project Presentation II)

AI for Text Analytics

Question Answering and Dialogue Systems

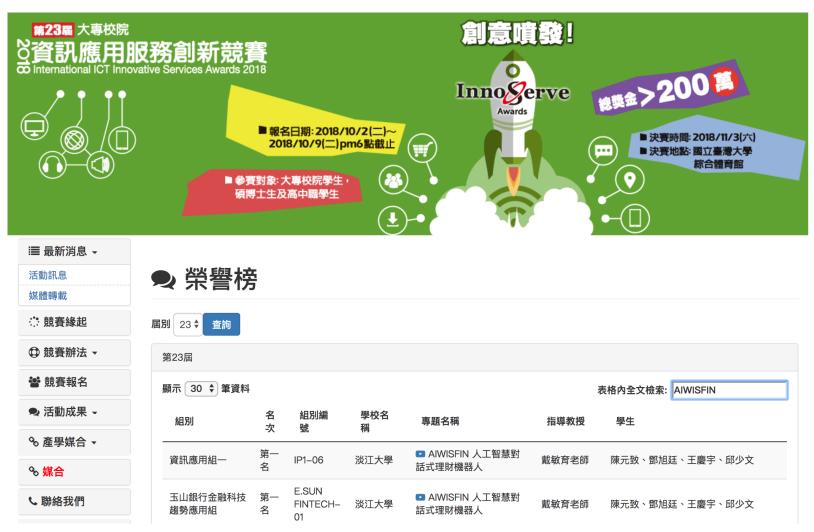
Outline

Question Answering

Dialogue Systems

Task Oriented Dialogue System

AIWISFIN AI Conversational Robo-Advisor (人工智慧對話式理財機器人) First Place, InnoServe Awards 2018



https://www.youtube.com/watch?v=sEhmyoTXmGk

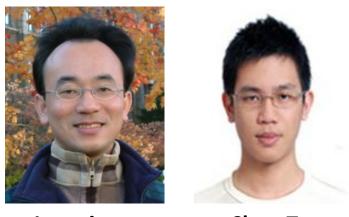
2018 The 23th International ICT Innovative Services Awards (InnoServe Awards 2018) InnoServe

- Annual ICT application competition held for university and college students
- The largest and the most significant contest in Taiwan.
- More than ten thousand teachers and students from over one hundred universities and colleges have participated in the Contest.

2018 International ICT Innovative Services Awards (InnoServe Awards 2018) (2018第23屆大專校院資訊應用服務創新競賽)

https://innoserve.tca.org.tw/award.aspx

IMTKU **Emotional Dialogue System** for **Short Text Conversation** at NTCIR-14 STC-3 (CECG) Task

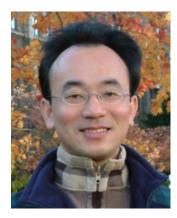


IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day Chun Tu myday@mail.tku.edu.tw

NTCIR-9 Workshop, December 6-9, 2011, Tokyo, Japan



IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE-2

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day

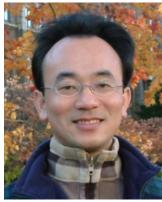
Chun Tu

Hou-Cheng Vong

myday@mail.tku.edu.tw

Shih-Wei Wu

Shih-Jhen Huang


IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

Tamkang University

2014

Min-Yuh Day

Ya-Jung Wang

Che-Wei Hsu

En-Chun Tu

Huai-Wen Hsu

Yu-An Lin

Shang-Yu Wu

Yu-Hsuan Tai

Cheng-Chia Tsai

NTCIR-11 Conference, December 8-12, 2014, Tokyo, Japan

2016 **IMTKU Question Answering System for** World History Exams at NTCIR-12 QA Lab2

Department of Information Management Tamkang University, Taiwan

Sagacity Technolog

Min-Yuh Day Cheng-Chia Tsai Wei-Chun Chung Hsiu-Yuan Chang

Yue-Da Lin

Wei-Ming Chen

NTCIR

Yu-Ming Guo

Tzu-Jui Sun

Yuan-Jie Tsai

Yi-Jing Lin Yi-Heng Chiang Ching-Yuan Chien

myday@mail.tku.edu.tw

Cheng-Jhih Han

Yun-Da Tsai

2017

IMTKU Question Answering System for World History Exams at NTCIR-13 QALab-3

Department of Information Management

Tamkang University, Taiwan

Min-Yuh Day

Chao-Yu Chen

Wanchu Huang

Shi-Ya Zheng

I-Hsuan Huang

Tz-Rung Chen

Min-Chun Kuo

Yi-Jing Lin

myday@mail.tku.edu.tw

NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan

IMTKU Emotional Dialogue System for Short Text Conversation at NTCIR-14 STC-3 (CECG) Task

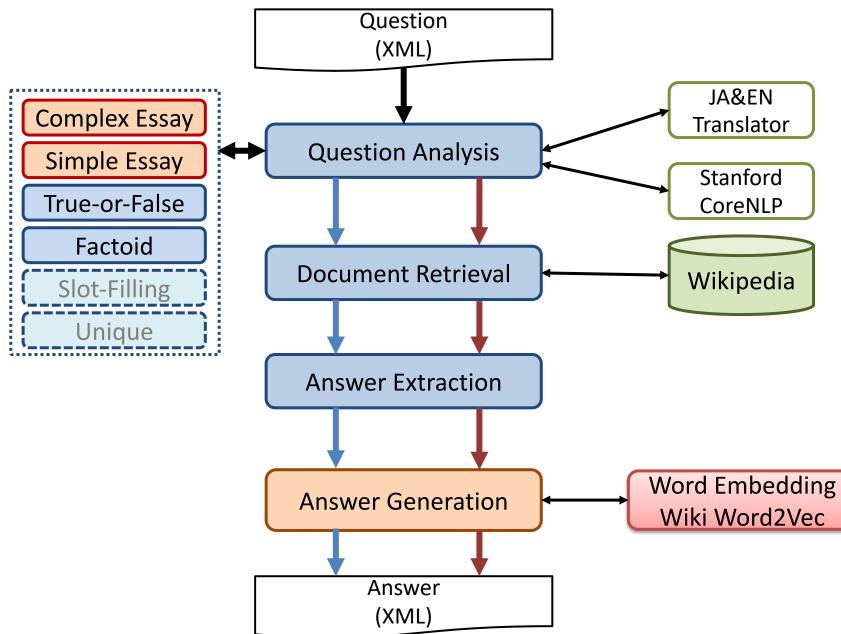
Department of Information Management Tamkang University, Taiwan

Chi-Sheng Hung

Yu-Ling Kuo

Jian-Ting Lin

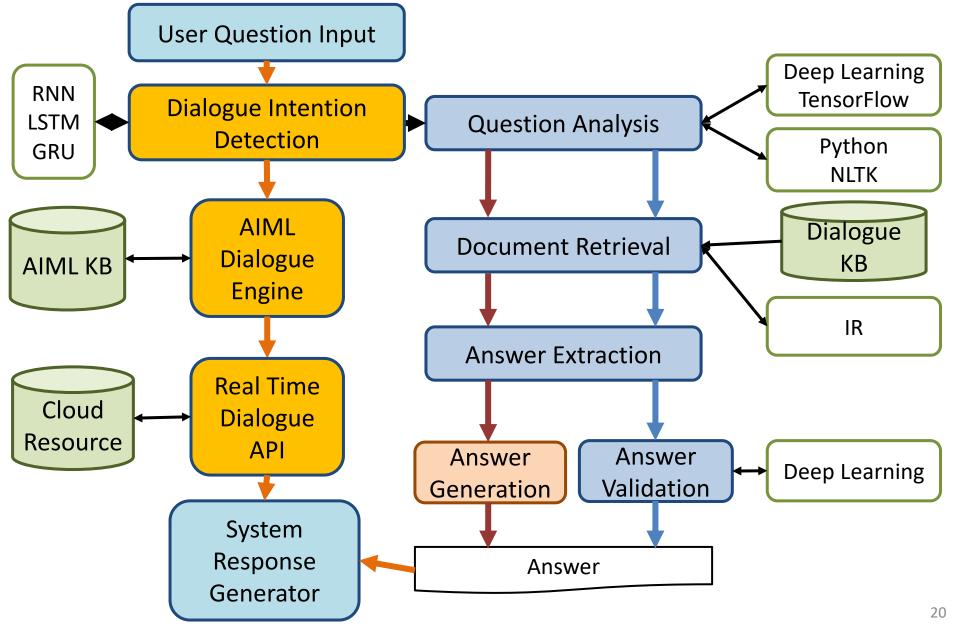
myday@mail.tku.edu.tw NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan

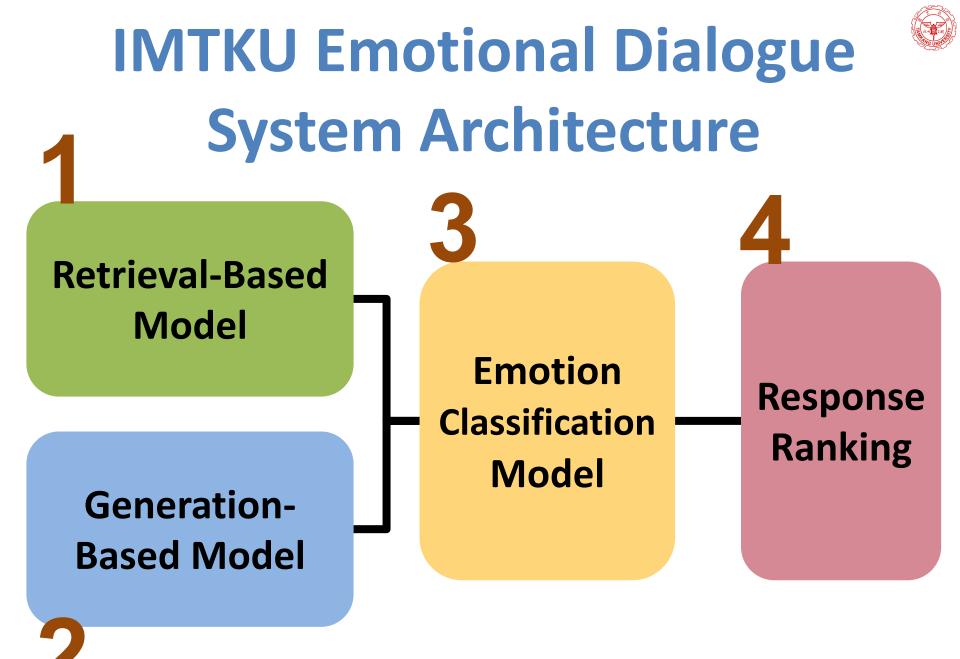

2020 NTCIR-15 Dialogue Evaluation (DialEval-1) Task Dialogue Quality (DQ) and Nugget Detection (ND) Chinese Dialogue Quality (S-score) Results (Zeng et al., 2020)

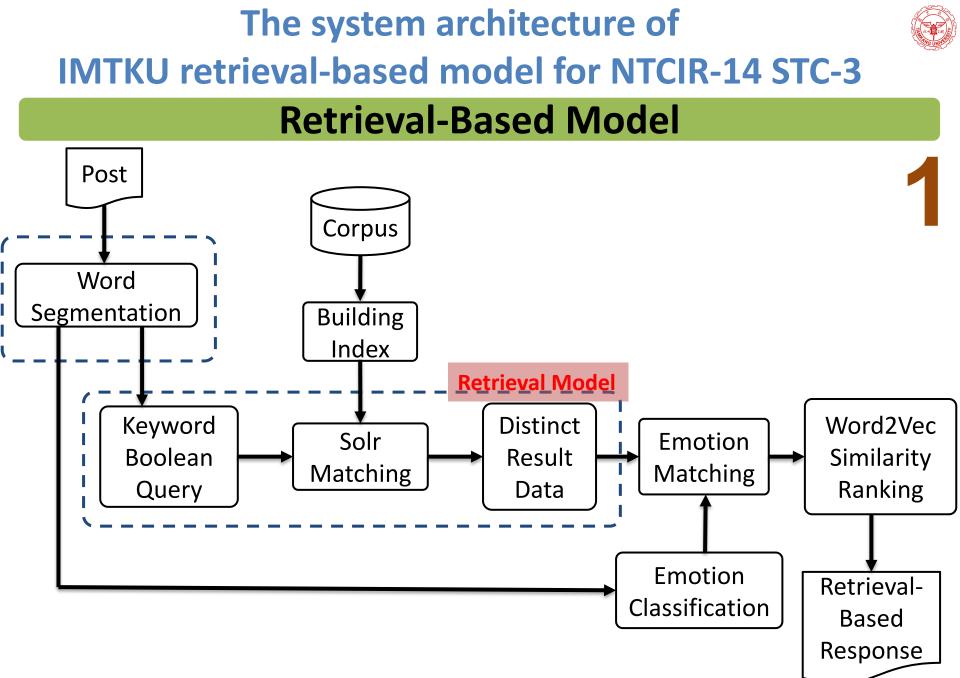
Run	Mean RSNOD	Run	Mean NMD
IMTKU-run2	0.1918	IMTKU-run2	0.1254
IMTKU-run1	0.1964	IMTKU-run0	0.1284
IMTKU-run0	0.1977	IMTKU-run1	0.1290
TUA1-run2	0.2024	TUA1-run2	0.1310
TUA1-run0	0.2053	TUA1-run0	0.1322
NKUST-run1	0.2057	NKUST-run1	0.1363
BL-lstm	0.2088	TUA1-run1	0.1397
WUST-run0	0.2131	BL-popularity	0.1442
RSLNV-run0	0.2141	BL-lstm	0.1455
BL-popularity	0.2288	RSLNV-run0	0.1483
TUA1-run1	0.2302	WUST-run0	0.1540
NKUST-run0	0.2653	NKUST-run0	0.2289
BL-uniform	0.2811	BL-uniform	0.2497

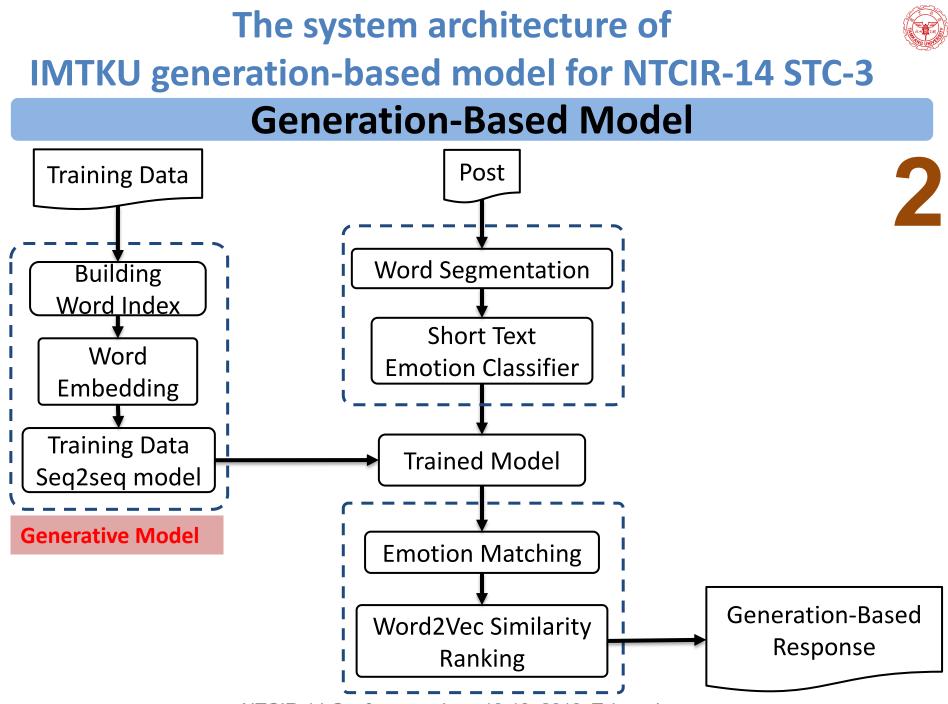
Source: Zeng, Zhaohao, Sosuke Kato, Tetsuya Sakai, and Inho Kang (2020), "Overview of the NTCIR-15 Dialogue Evaluation (DialEval-1) Task", Proceedings of NTCIR-15, 2020

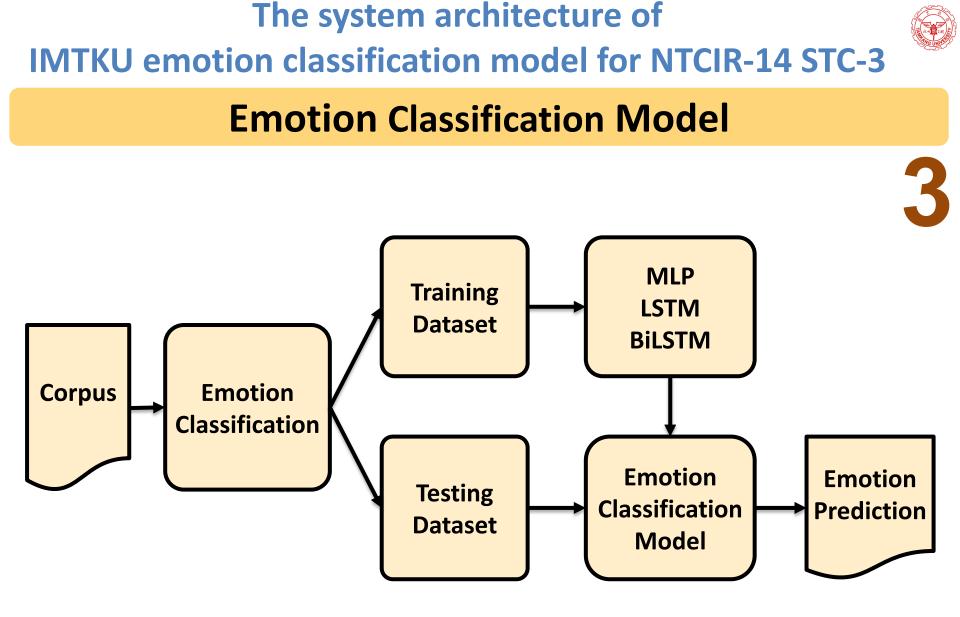
IMTKU System Architecture for NTCIR-13 QALab-3

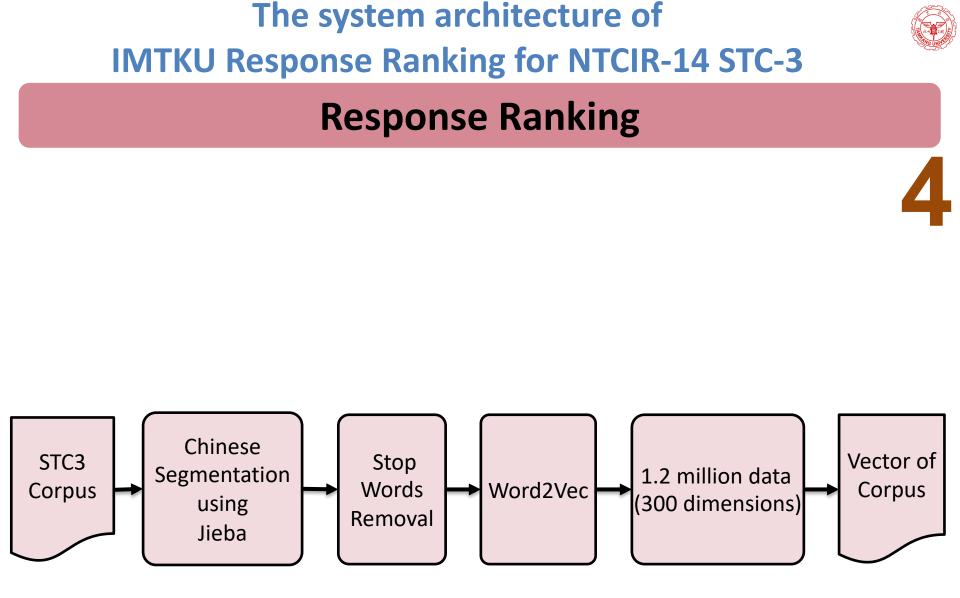




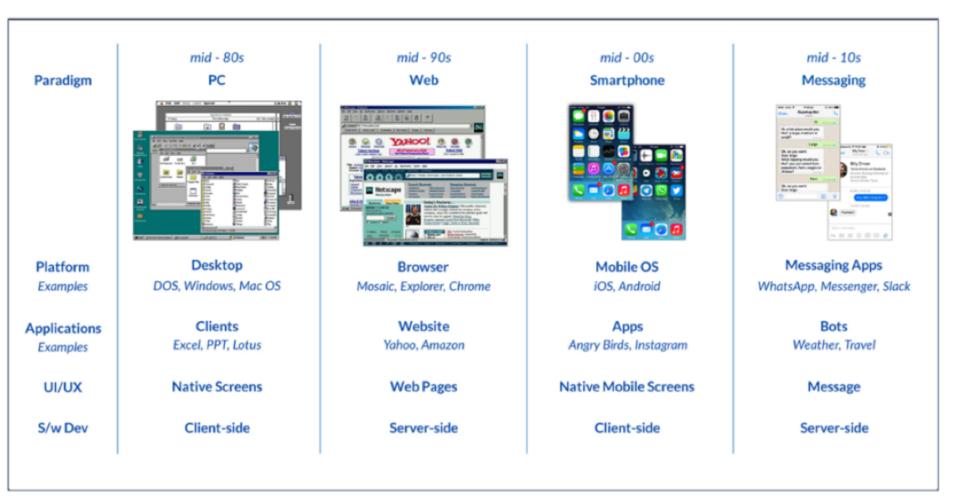

NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan


System Architecture of


Intelligent Dialogue and Question Answering System

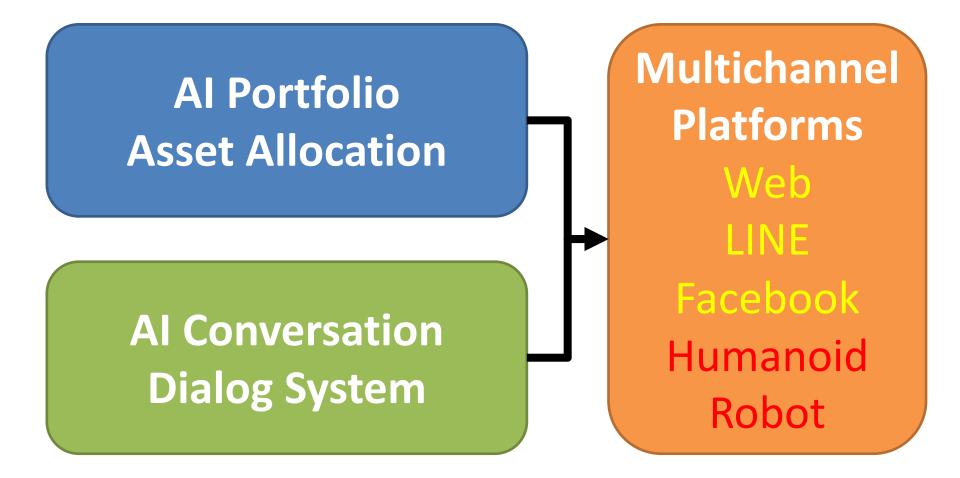


Short Text Conversation Task (STC-3) Chinese Emotional Conversation Generation (CECG) Subtask

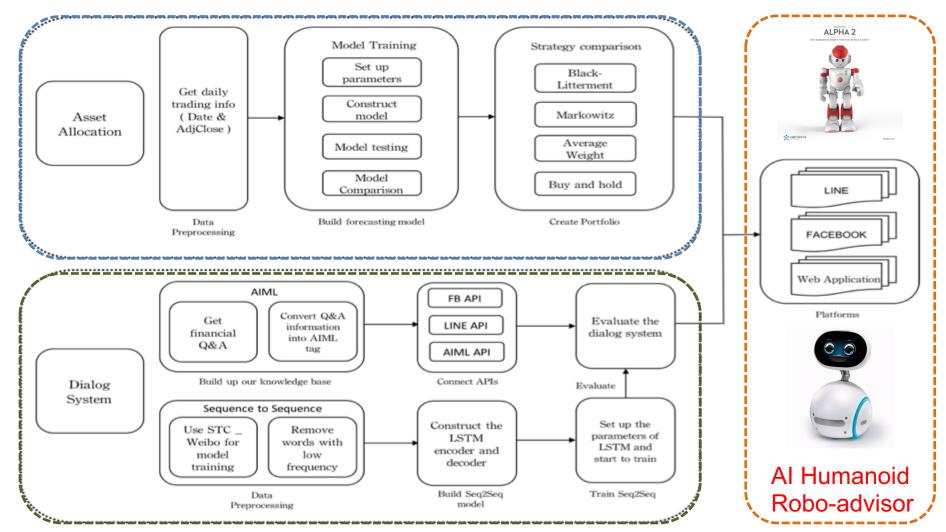

Source: http://coai.cs.tsinghua.edu.cn/hml/challenge.html

NTCIR Short Text Conversation STC-1, STC-2, STC-3

		Japanese	Chinese	English		
	CIR-12 STC-1 22 active participants	Twitter, Retrieval	Weibo, Retrieval			Single-turn,
	CIR-13 STC-2 27 active participants	Yahoo! News, Retrieval+ Generation	Weibo, Retrieval+ Generation			Non task-oriented
	CIR-14 STC-3 inese Emotion Generation (C	al Conversation	Weibo, Generation for given			
			emotion categories		J	Multi-turn, task-oriented
Dia	logue Quality (Detection (N	DQ) and Nugget D) subtasks	Weibo+English distribution es subjective a	stimation for		(helpdesk)


Source: https://waseda.app.box.com/v/STC3atNTCIR-14

Chatbots: Evolution of UI/UX



Al Humanoid Robo-Advisor

Al Humanoid Robo-Advisor for Multi-channel Conversational Commerce

System Architecture of Al Humanoid Robo-Advisor

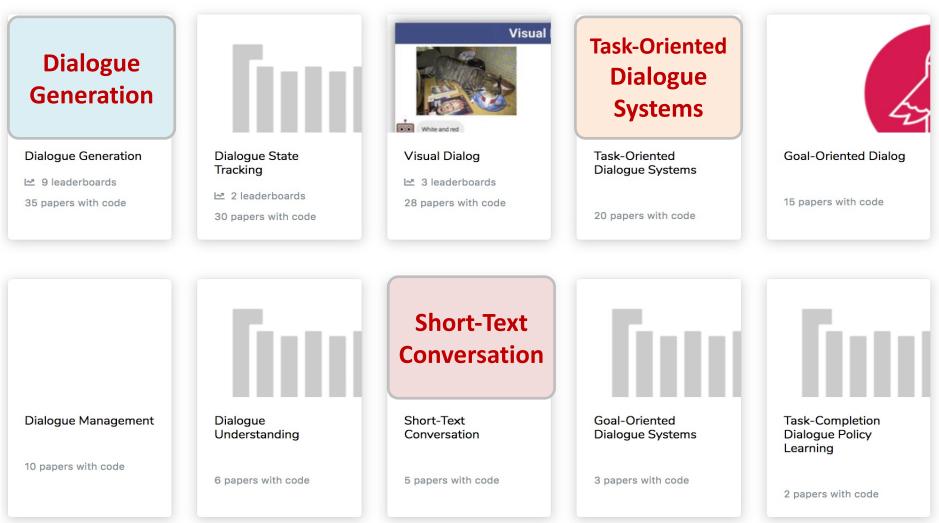
Conversational Model (LINE, FB Messenger)

878 ÷	10:57 AM	23% C	Aiwisfin	■ C & 3
Hi ther	I want som	e info about		hi
	stock			how's going
		t personal	Hi ti	here!
	ou said was too	mendations		n doing very well. How you ?
compli		2330 TSMC		i need your help
市價:2: 買價:2: 賣價:2: 成交量 前日收	33.0 33.5 :30,664 盤價:229.5	m		p is assistance I can e you.
開盤:2: 最高:2: 買低:2:	34.0		喻入訊息	
+ 🖻 6	An	© Q		

Conversational Robo-Advisor Multichannel UI/UX Robots

ALPHA 2

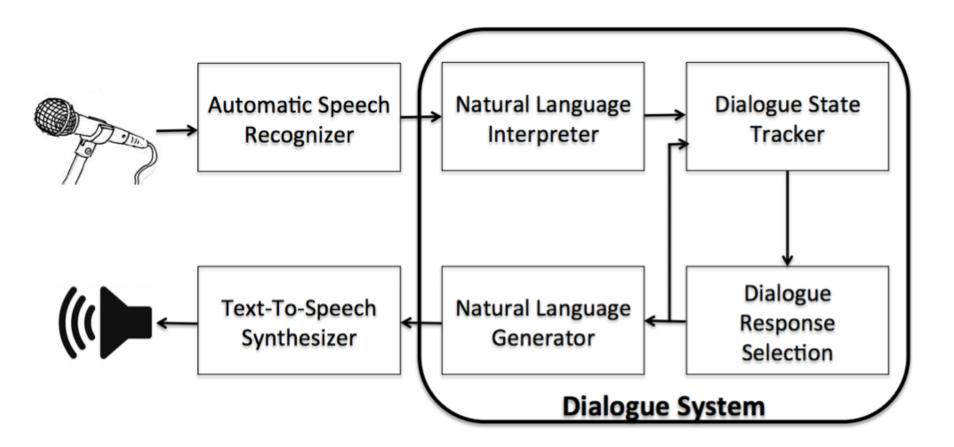
strainer or


Al Dialogue

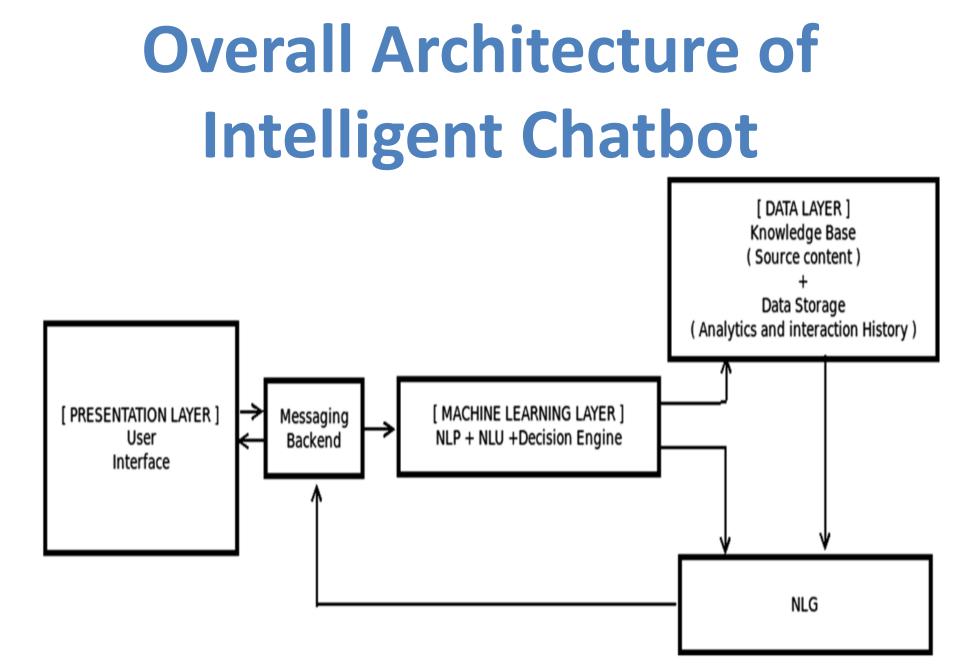
Dialogue Subtasks

Browse > Natural Language Processing > Dialogue

Dialogue subtasks



Chatbot **Dialogue System** Intelligent Agent


Chatbot

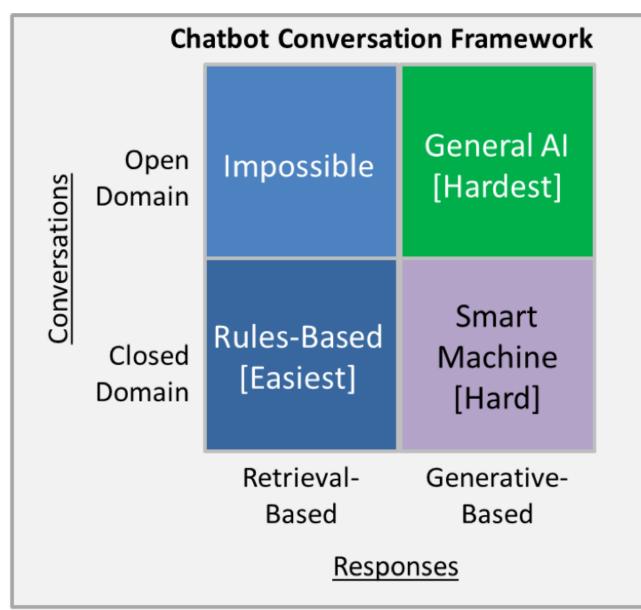
Dialogue System

Source: Serban, I. V., Lowe, R., Charlin, L., & Pineau, J. (2015). A survey of available corpora for building data-driven dialogue systems. *arXiv* preprint arXiv:1512.05742.

Source: Borah, Bhriguraj, Dhrubajyoti Pathak, Priyankoo Sarmah, Bidisha Som, and Sukumar Nandi. "Survey of Textbased Chatbot in Perspective of Recent Technologies." In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 84-96. Springer, Singapore, 2018.

machines

think?

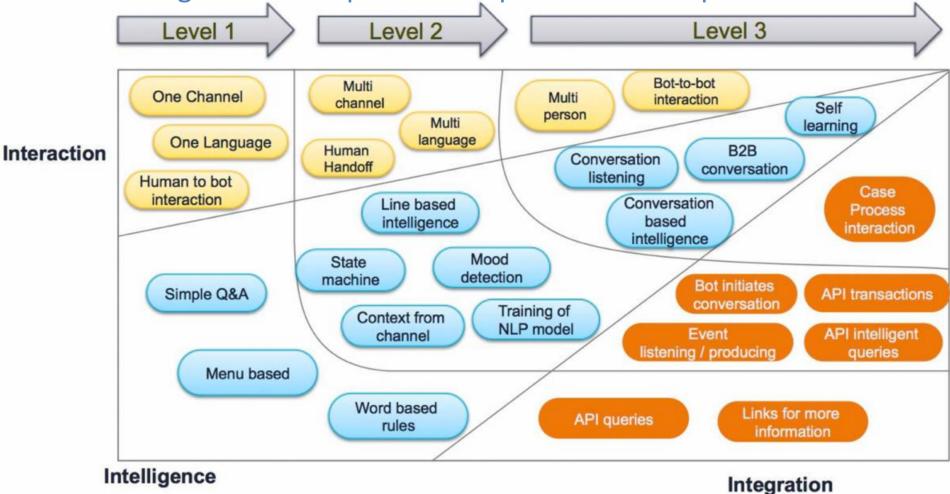

(Alan Turing ,1950)

Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." PhD diss., University of Pennsylvania, 2017.

Chatbot **"online human-computer** dialog system with natural language."

Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." PhD diss., University of Pennsylvania, 2017.

Chatbot Conversation Framework


42

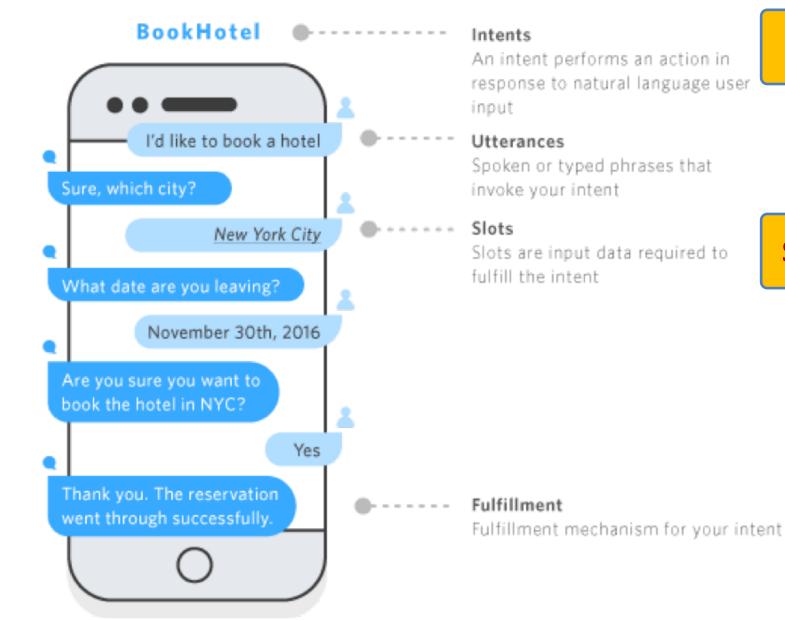
Chatbots

Bot Maturity Model

Customers want to have simpler means to interact with businesses and

get faster response to a question or complaint.

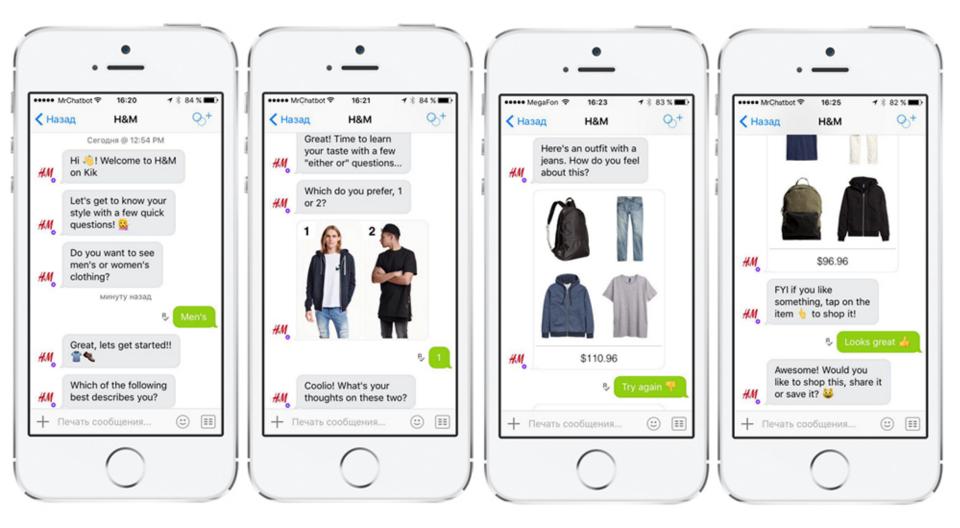
Source: https://www.capgemini.com/2017/04/how-can-chatbots-meet-expectations-introducing-the-bot-maturity/

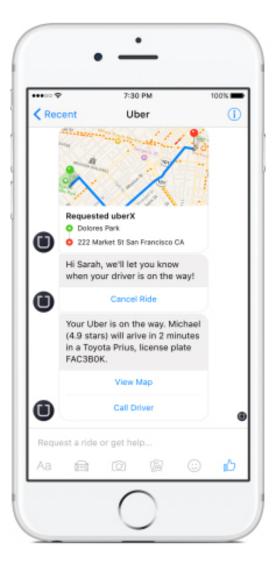

From **E-Commerce** to **Conversational Commerce:** Chatbots and **Virtual Assistants**

Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/

Conversational Commerce: eBay AI Chatbots

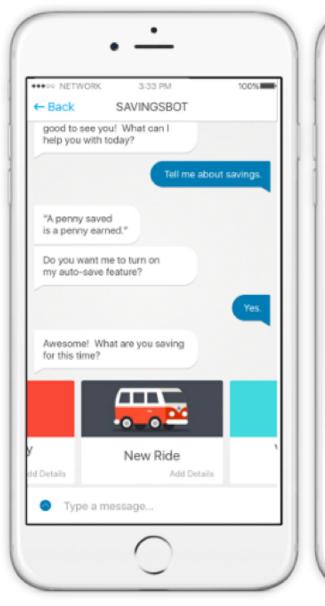
••••• A	at 🗢 1:31 PM 💿 🕇 🖉 76% 🔳
< Hor	e eBay ShopBot > Manage
	I'm looking for adidas stan smith in white
ebay	Which gender are you looking for?
	Women
ebay	Sure, I've got a few options for those.
	Best Value
	View item
Ð) 🖾 Q 🗛 🙂 🖨

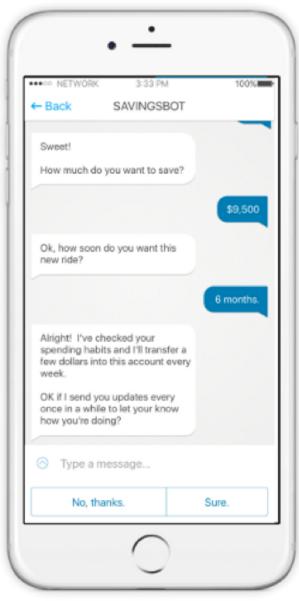

Hotel Chatbot


Intent Detection

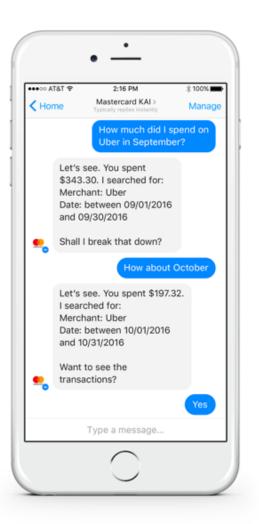
Slot Filling

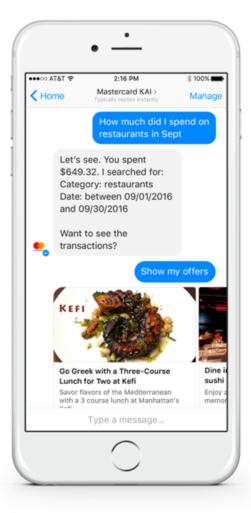
H&M's Chatbot on Kik

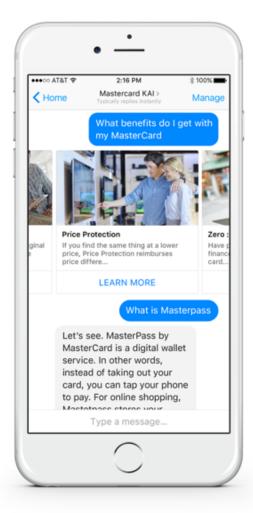

Uber's Chatbot on Facebook's Messenger

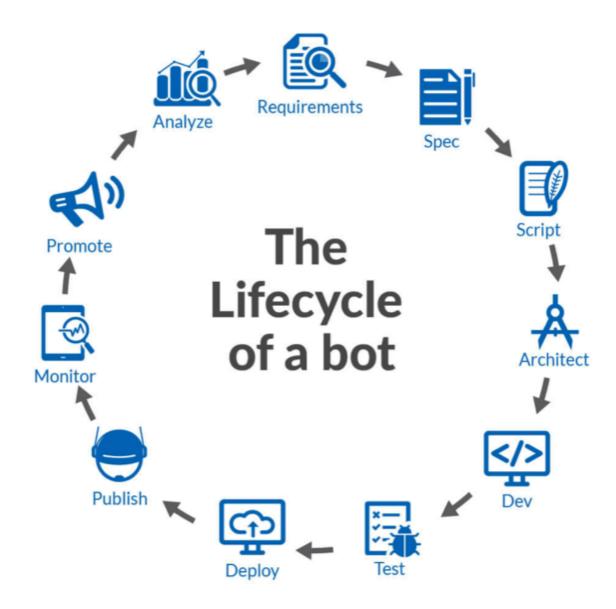

Uber's chatbot on Facebook's messenger - one main benefit: it loads much faster than the Uber app

Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/


Savings Bot

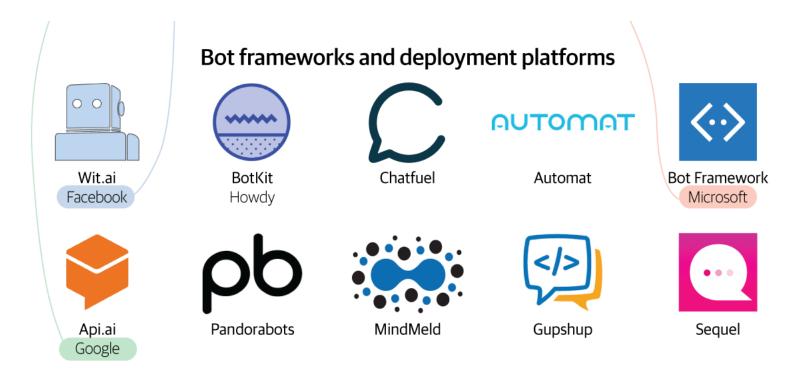

••••• NETWORK	3:33 PM SAVINGSBOT	100%					
Tor this terror? A new rick \$9,500 How much do you want to save?							
1	2	3					
4	5	6					
7	8	9					
	0	$\langle \mathbf{x} \rangle$					
Type a message							
VIEW CREDIT	OPTIONS ASK	BUDGETBOT					
		BUDGETBOT					


Mastercard Makes Commerce More Conversational



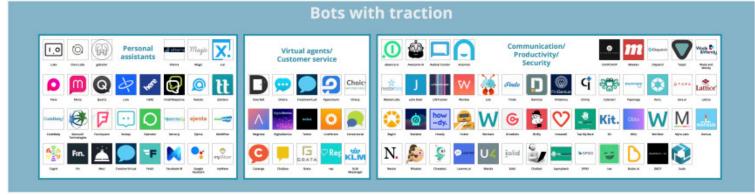
Bot Life Cycle and Platform Ecosystem

The Bot Lifecycle



The bot platform ecosystem and the emerging giants

Nearly every large software company has announced some sort of bot strategy in the last year. Here's a look at a handful of leading platforms that developers might use to send messages, interpret natural language, and deploy bots, with the emerging bot-ecosystem giants highlighted.


Source: https://www.oreilly.com/ideas/infographic-the-bot-platform-ecosystem

DESIGNED BY JON CIFUENTES

Bots Landscape

Connectors/ Shared Services

Bot Discovery

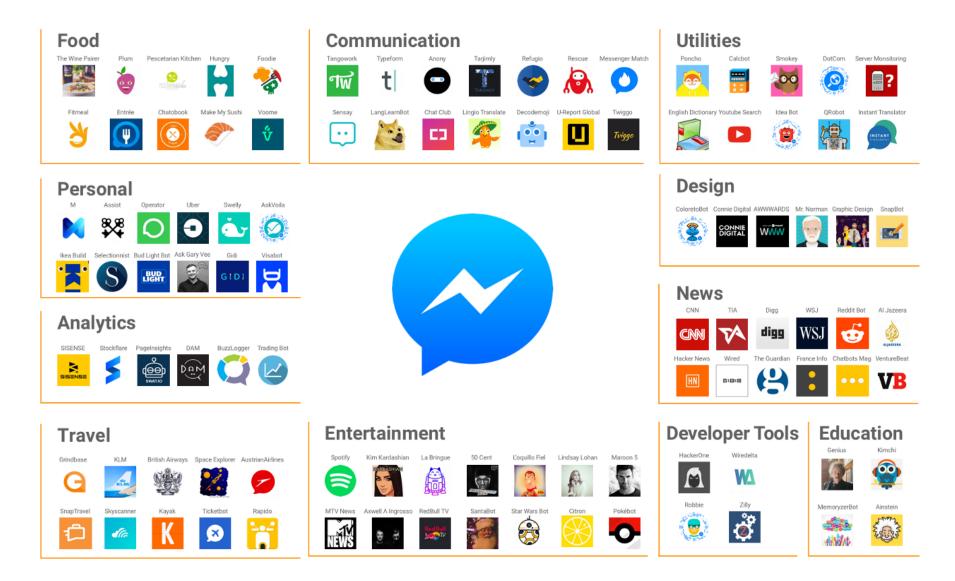
Analytics

Analytics

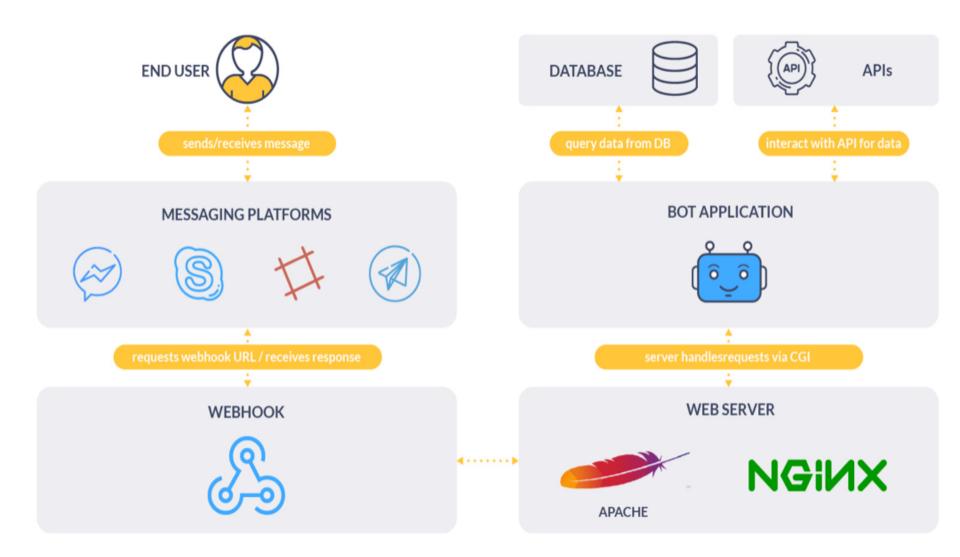
-

ġ

AI Tools: Natural Language Processing, Machine Learning, Speech & Voice Recognition



🕁 RECAST.AL Messenger Bot Landscape


May 2017

56

Source: https://medium.com/@RecastAl/2017-messenger-bot-landscape-a-public-spreadsheet-gathering-1000-messenger-bots-f017fdb1448a /

How to Build Chatbots

Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/

Chatbot Frameworks and AI Services

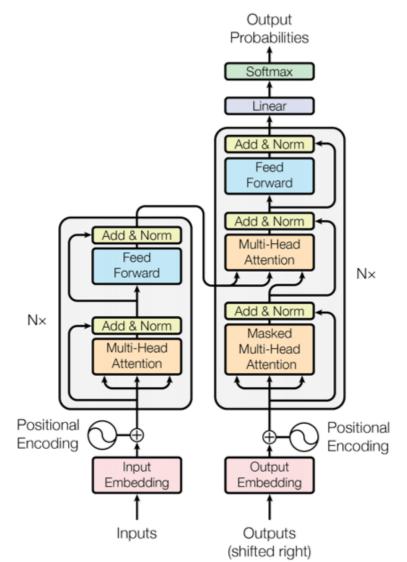
- Bot Frameworks
 - Botkit
 - Microsoft Bot Framework
 - Rasa NLU
- Al Services
 - –Wit.ai
 - -api.ai
 - –LUIS.ai
 - -IBM Watson

Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/

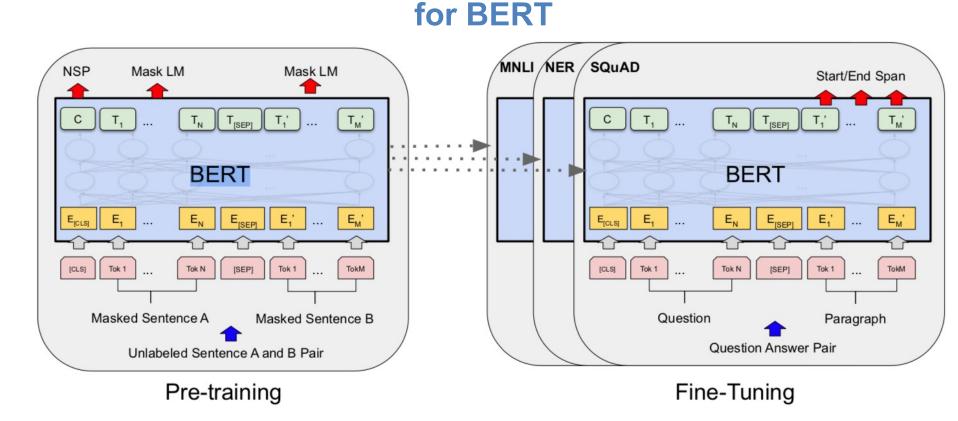
Chatbot Frameworks

Comparison Table of Most Prominent Bot Frameworks

	Botkit	Microsoft Bot Framework	
Built-in integration with messaging platforms	\odot	\odot	\otimes
NLP support	(X) but possible to integrate with middlewares	(X) but have close bonds with LUIS.ai	\bigotimes
Out-of-box bots ready to be deployed	\odot	\otimes	\otimes
Programming Language	JavaScript (Node)	JavaScript (Node), C#	Python
			Created by ActiveWizards

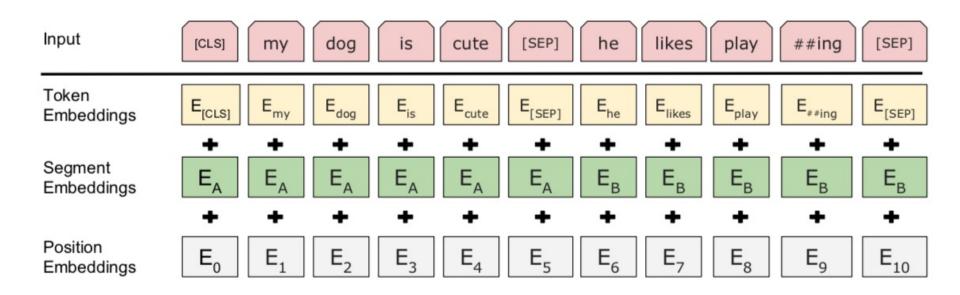

Comparison of Most Prominent Al Services

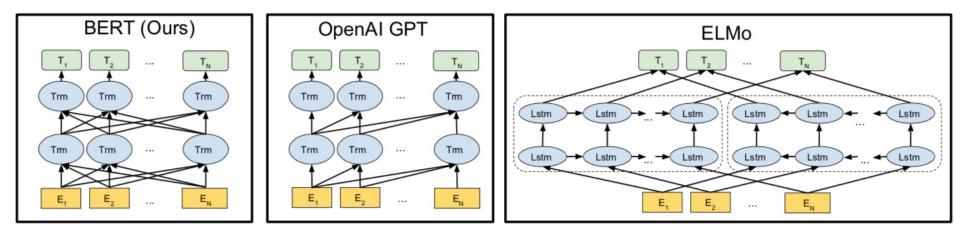
	wit.ai	api.ai	LUIS.ai	IBM Watson			
Free of charge	\bigcirc	but has paid enterprise version	it is in beta and has transaction limits	30 days trial then priced for enterprise use			
Text and Speech processing	\bigcirc	\bigcirc	⊘ with use of Cortana	\odot			
Machine Learning Modeling	\odot	${ \oslash }$	${ \bigcirc }$	\odot			
Support for Intents, Entities, Actions	Solutions Intents used as trait entities, actions are combined operations	Solution Intents is the main prediction mechanism. Domains of entities, intents and actions	\bigotimes	\bigotimes			
Pre-build entities for easy parsing of numbers, temperature, date, etc.	\odot	\odot	\odot	\odot			
Integration to messaging platforms	() web service API	⊘ also has facility for deploying to heroku. Paid environment	⊘ integrated to Azure	⊘ possible via API			
Support of SDKs	includes SDKs for Python, Node.js, Rust, C, Ruby, iOS, Android, Windows Phone	⊘ C#, Xamarin, Python, Node.js, iOS, Android, Windows Phone	⊘ enables building with Web Service API, Microsoft Bot Framework integration	Proprietary language "AlchemyLanguage"			
Created by ActiveWizards							


Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/

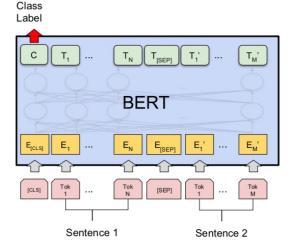
Transformer (Attention is All You Need)

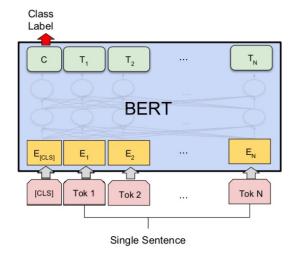
(Vaswani et al., 2017)


Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures


BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)


BERT input representation


BERT, OpenAl GPT, ELMo

Fine-tuning BERT on Different Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

0

TN

EN

Tok N

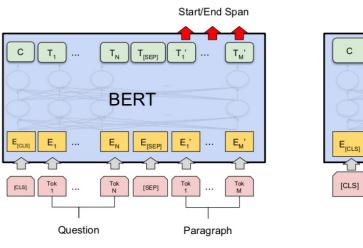
B-PER

Τ.,

Ε,

Tok 2

BERT

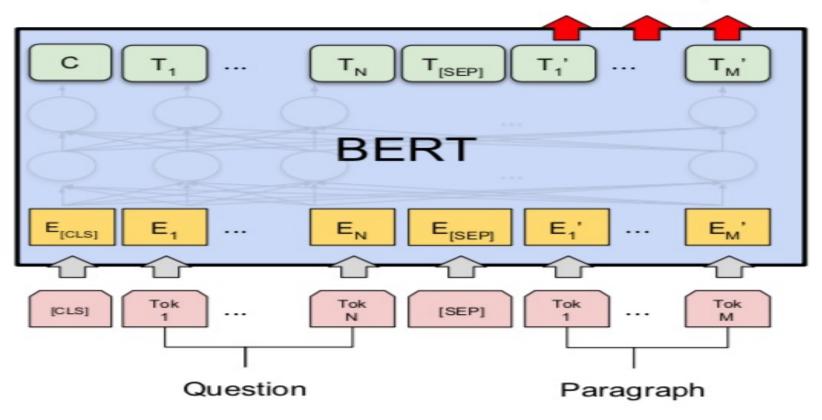

0

Τ,

Ε,

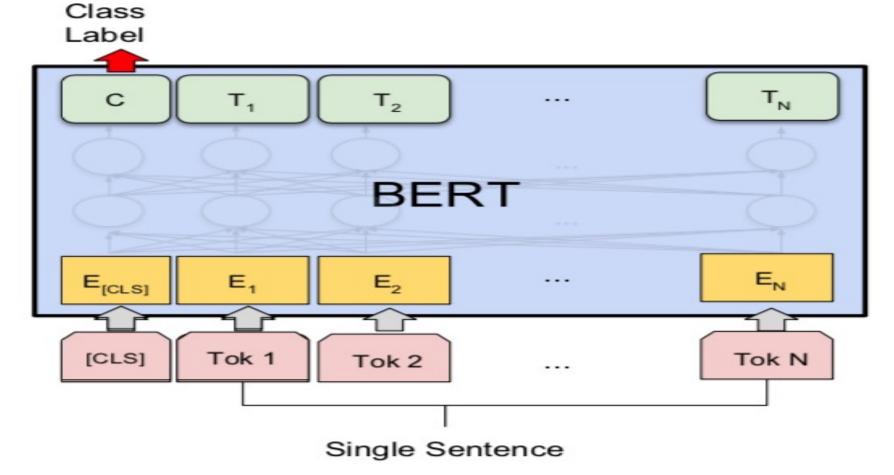
Tok 1

С

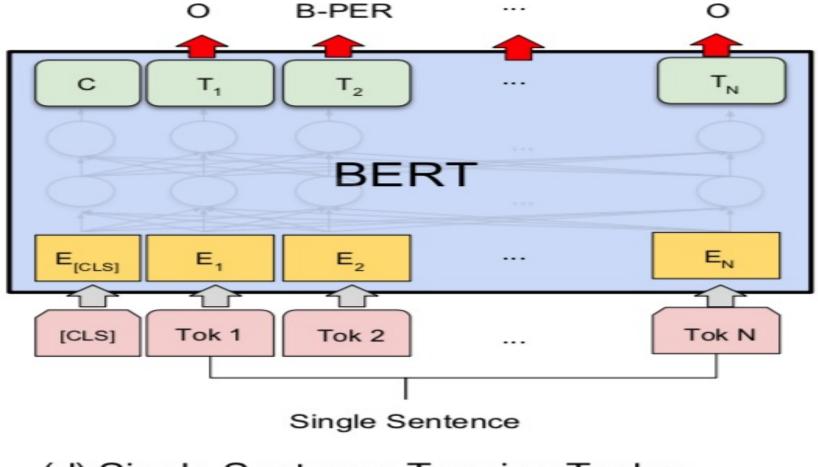

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

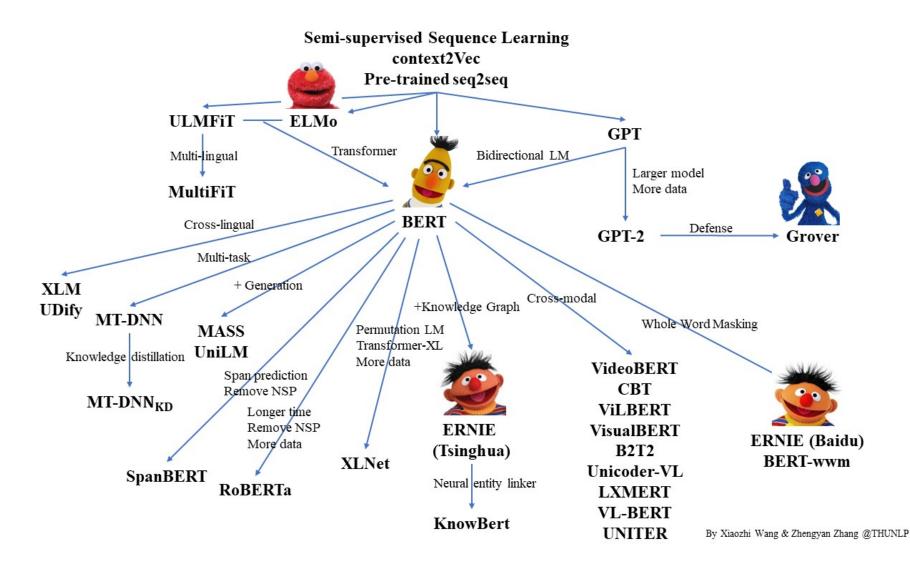
Single Sentence


Fine-tuning BERT on Question Answering (QA)

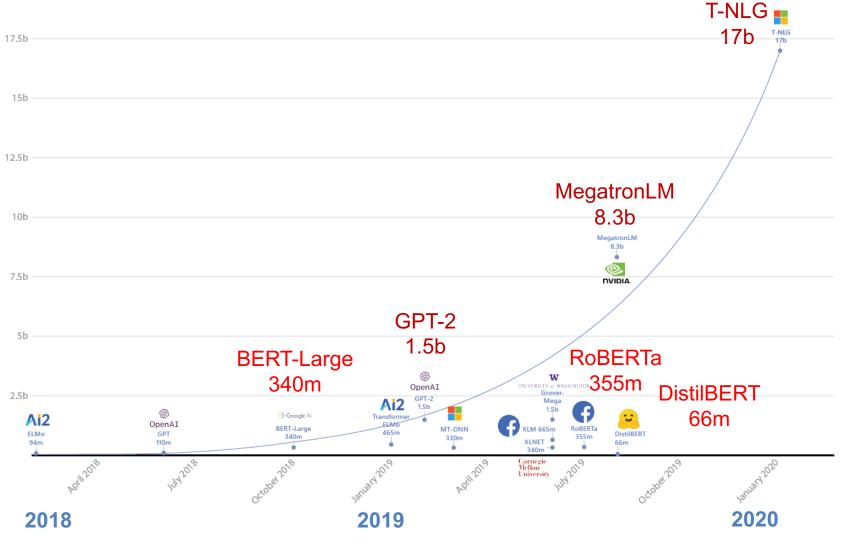
Start/End Span


(c) Question Answering Tasks: SQuAD v1.1

Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)


(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT on Dialogue Slot Filling (SF)


(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Pre-trained Language Model (PLM)

Source: https://github.com/thunlp/PLMpapers

Turing Natural Language Generation (T-NLG)

Source: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Transformers Transformers

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

- Transformers
 - pytorch-transformers
 - pytorch-pretrained-bert
- provides state-of-the-art general-purpose architectures
 - (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
 - for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Transfer Learning in Natural Language Processing

Source: Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf (2019), "Transfer learning in natural language processing." In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, pp. 15-18.

NLP Benchmark Datasets

Task	Dataset	Link
Machine Translation	WMT 2014 EN-DE	http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
	WMT 2014 EN-FR	
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Text Summarization	Newsroom	https://summari.es/
Text Summarization	DUC	https://www-nlpir.nist.gov/projects/duc/data.html
	Gigaword	https://catalog.ldc.upenn.edu/LDC2012T21
	ARC	http://data.allenai.org/arc/
	CliCR	http://aclweb.org/anthology/N18-1140
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Reading Comprehension Question Answering Question Generation	NewsQA	https://datasets.maluuba.com/NewsQA
	RACE	http://www.qizhexie.com/data/RACE_leaderboard
	SQuAD	https://rajpurkar.github.io/SQuAD-explorer/
	Story Cloze Test	http://aclweb.org/anthology/W17-0906.pdf
	NarativeQA	https://github.com/deepmind/narrativeqa
	Quasar	https://github.com/bdhingra/quasar
	SearchQA	https://github.com/nyu-dl/SearchQA
	AMR parsing	https://amr.isi.edu/index.html
Semantic Parsing	ATIS (SQL Parsing)	https://github.com/jkkummerfeld/text2sql-data/tree/master/data
	WikiSQL (SQL Parsing)	https://github.com/salesforce/WikiSQL
	IMDB Reviews	http://ai.stanford.edu/~amaas/data/sentiment/
Sentiment Analysis	SST	https://nlp.stanford.edu/sentiment/index.html
Sentiment 7 marysis	Yelp Reviews	https://www.yelp.com/dataset/challenge
	Subjectivity Dataset	http://www.cs.cornell.edu/people/pabo/movie-review-data/
	AG News	http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
Text Classification	DBpedia	https://wiki.dbpedia.org/Datasets
Text Classification	TREC	https://trec.nist.gov/data.html
	20 NewsGroup	http://qwone.com/~jason/20Newsgroups/
	SNLI Corpus	https://nlp.stanford.edu/projects/snli/
Natural Language Inference	MultiNLI	https://www.nyu.edu/projects/bowman/multinli/
	SciTail	http://data.allenai.org/scitail/
Semantic Role Labeling	Proposition Bank	http://propbank.github.io/
	OneNotes	https://catalog.ldc.upenn.edu/LDC2013T19

Source: Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A. Fox (2020). "Natural Language Processing Advancements By Deep Learning: A Survey." arXiv preprint arXiv:2003.01200.

Question Answering (QA) SQuAD **Stanford Question Answering Dataset**

SQuAD

SQUAD2.0 The Stanford Question Answering Dataset

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or *span*, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

RankModelEMF1Human Performance Stanford University (Rajpurkar & Jia et al. '18)86.83189.4521SA-Net on Albert (ensemble)90.72493.011Arr 04, 2020OIANXIN91.72493.011	Human Performance86.83189.452Stanford University (Rajpurkar & Jia et al. '18)				
Stanford University (Rajpurkar & Jia et al. '18)90.72493.011	Stanford University (Rajpurkar & Jia et al. '18)90.72493.0111SA-Net on Albert (ensemble) QIANXIN90.67992.9482SA-Net-V2 (ensemble) QUANXIN90.67992.948	Rank	Model	EM	F1
1 SA-Net on Albert (ensemble) 90.724 93.011	1 SA-Net on Albert (ensemble) 90.724 93.011 Apr 06, 2020 QIANXIN 90.679 92.948		Stanford University	86.831	89.452
	2 SA-Net-V2 (ensemble) 90.679 92.948		SA-Net on Albert (ensemble)	90.724	93.011

https://rajpurkar.github.io/SQuAD-explorer/

SQuAD

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang

{pranavsr,zjian,klopyrev,pliang}@cs.stanford.edu

Computer Science Department Stanford University

Abstract

We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-ga.com.

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Figure 1: Question-answer pairs for a sample passage in the

Source: Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. "Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).

SQuAD (Question Answering) Q: What causes precipitation to fall? Precipitation

From Wikipedia, the free encyclopedia

For other uses, see Precipitation (disambiguation).

In meteorology, **precipitation** is any product of the condensation of atmospheric water vapor that falls under gravity from clouds.^[2] The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity), so that the water condenses and "precipitates". Thus, fog and mist are not precipitation but suspensions, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers."^[3]

https://en.wikipedia.org/wiki/Precipitation

Paragraph

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

A: gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?A: graupel

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: Where do water droplets collide with ice crystals to form precipitation?

A: within a cloud

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

A: gravity

Q: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?

A: graupel

Q: Where do water droplets collide with ice crystals to form precipitation?

A: within a cloud

Super Bowl 50

From Wikipedia, the free encyclopedia

"2016 Super Bowl" redirects here. For the Super Bowl that was played at the completion of the 2016 season, see Super Bowl LI. "SB 50" redirects here. For the California transit-density bill, see California Senate Bill 50.

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers, 24–10. The game was played on February 7, 2016, at Levi's Stadium in Santa Clara, California, in the San Francisco Bay Area. As this was the 50th Super Bowl game, the league emphasized the "golden anniversary" with various gold-themed initiatives during the 2015 season, as well as suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so the logo could prominently feature the Arabic numerals 5 and 0.^{[5][6]}

The Panthers finished the regular season with a 15–1 record, racking up the league's top offense, and quarterback Cam Newton was named the NFL Most Valuable Player (MVP). They defeated the Arizona Cardinals 49–15 in the NFC Championship Game and advanced to their second Super Bowl appearance since the franchise began playing in 1995. The Broncos finished the regular season with a 12–4 record, bolstered by having the league's top defense. The Broncos defeated the defending Super Bowl champion New England Patriots 20–18 in the AFC Championship Game joining the Patriots, Dallas Cowboys, and Pittsburgh Steelers as one of four teams that have made eight appearances in the Super Bowl. This record would later be broken the next season, in 2017, when the Patriots advanced to their ninth Super Bowl appearance in Super Bowl LI.

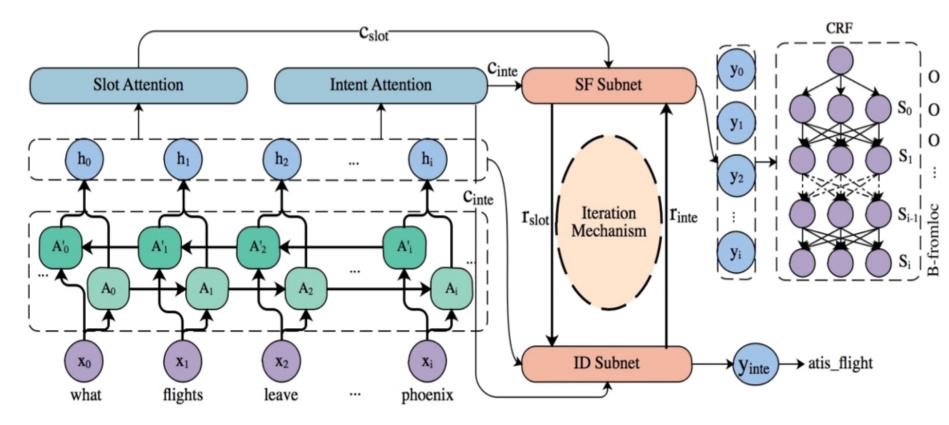
https://en.wikipedia.org/wiki/Super_Bowl_50

Super Bowl 50

Dialogue on **Airline Travel Information System** (ATIS)

The ATIS (Airline Travel Information System) Dataset

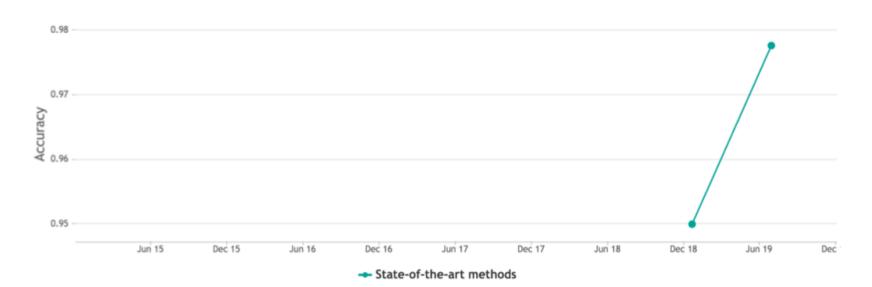
https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk


Sentence	what	flights	leave	from	phoenix	
Slots	0	O O O B-fromloc				
Intent	atis_flight					

Training samples: 4978 Testing samples: 893 Vocab size: 943 Slot count: 129 Intent count: 26

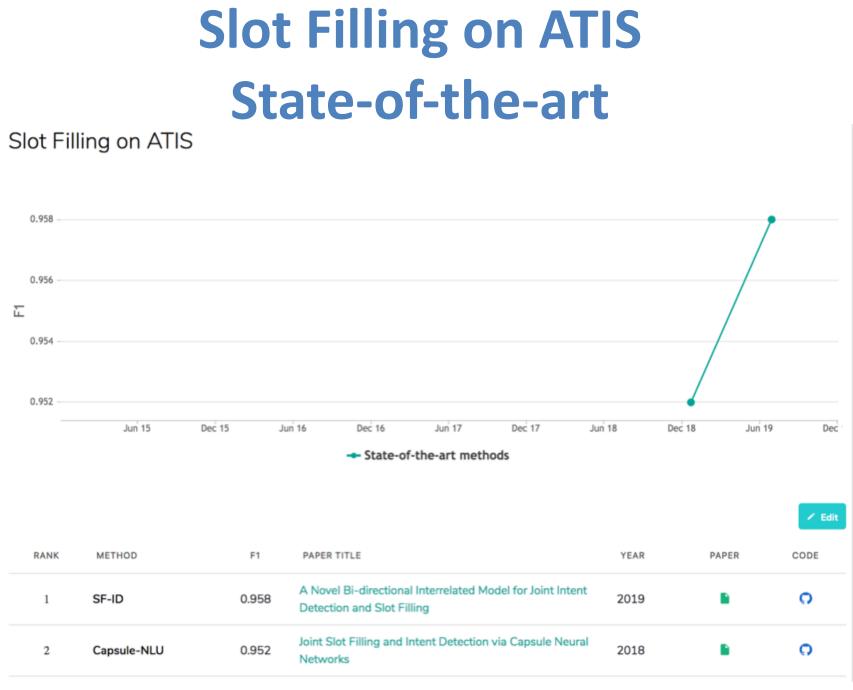
Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

SF-ID Network (E et al., 2019) Slot Filling (SF) Intent Detection (ID)


A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling

Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

Intent Detection on ATIS State-of-the-art


Intent Detection on ATIS

						Edit
RANK	METHOD	ACCURACY	PAPER TITLE	YEAR	PAPER	CODE
1	SF-ID	0.9776	A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling	2019	•	0
2	Capsule-NLU	0.950	Joint Slot Filling and Intent Detection via Capsule Neural Networks	2018	•	0

Source: https://paperswithcode.com/sota/intent-detection-on-atis

Z Edit

Source: https://paperswithcode.com/sota/slot-filling-on-atis

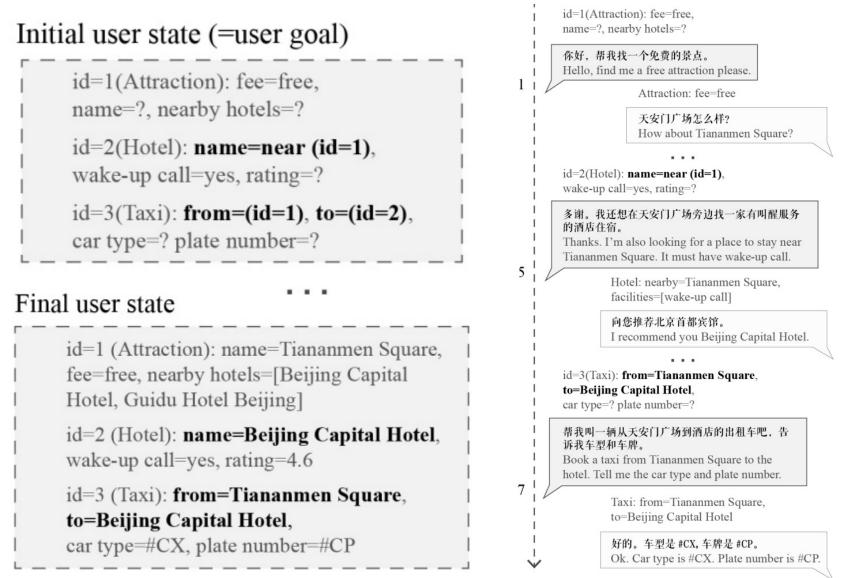
Restaurants Dialogue Datasets

- MIT Restaurant Corpus
 - <u>https://groups.csail.mit.edu/sls/downloads/restaurant/</u>
- CamRest676 (Cambridge restaurant dialogue domain dataset)
 - https://www.repository.cam.ac.uk/handle/1810/260970
- DSTC2 (Dialog State Tracking Challenge 2 & 3)
 - <u>http://camdial.org/~mh521/dstc/</u>

CrossWOZ:

A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

MultiWOZ	CrossWOZ
usr: I'm looking for a college type attraction.	usr: 你好,可以帮我推荐一个评分是4.5分以上的景点吗?
	Hello, could you recommend an attraction with a rating of 4.5 or higher?
usr: I would like to visit in town centre please.	sys: 天安门城楼,簋街小吃和 <u>北京欢乐谷</u> 都是很不错的地方呢。
	Tiananmen, Gui Street, and Beijing Happy Valley are very nice places.
usr: Can you find an Indian restaurant for me	usr: 我喜欢 <u>北京欢乐谷</u> , 你知道这个景点周边的酒店都是什么吗?
that is also in the town centre ?	I like Beijing Happy Valley. What hotels are around this attraction?
Schema	sys: 那可多了,有A酒店, B酒店, C酒店。
usr: I want a hotel in San Diego and I want to	There are many, such as hotel A, hotel B, and hotel C.
check out on Thursday next week.	usr: 太好了, 我正打算在 景点附近 找个酒店住宿呢, 知道哪家评分
	是4分以上,提供叫醒服务的不?
usr: I need a one way flight to go there.	Great! I am planning to find a hotel to stay near the attraction. Which
	one has a rating of 4 or higher and offers wake-up call service?


CrossWOZ:

A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

Туре		Single-domain goal					lti-domain	goal
Dataset	DSTC2	WOZ 2.0	Frames	KVRET	M2M	MultiWOZ	Schema	CrossWOZ
Language	EN	EN	EN	EN	EN	EN	EN	CN
Speakers	H2M	H2H	H2H	H2H	M2M	H2H	M2M	H2H
# Domains	1	1	1	3	2	7	16	5
# Dialogues	1,612	600	1,369	2,425	1,500	8,438	16,142	5,012
# Turns	23,354	4,472	19,986	12,732	14,796	115,424	329,964	84,692
Avg. domains	1	1	1	1	1	1.80	1.84	3.24
Avg. turns	14.5	7.5	14.6	5.3	9.9	13.7	20.4	16.9
# Slots	8	4	61	13	14	25	214	72
# Values	212	99	3,871	1363	138	4,510	14,139	7,871

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

Task-Oriented Dialogue

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

The Evaluation of Chinese Human-Computer Dialogue Technology, SMP2019-ECDT

- 自然語言理解
 - Natural Language Understanding (NLU)
- 對話管理 Dialog Management (DM)
- 自然語言生成
 Natural Language Generation (NLG)

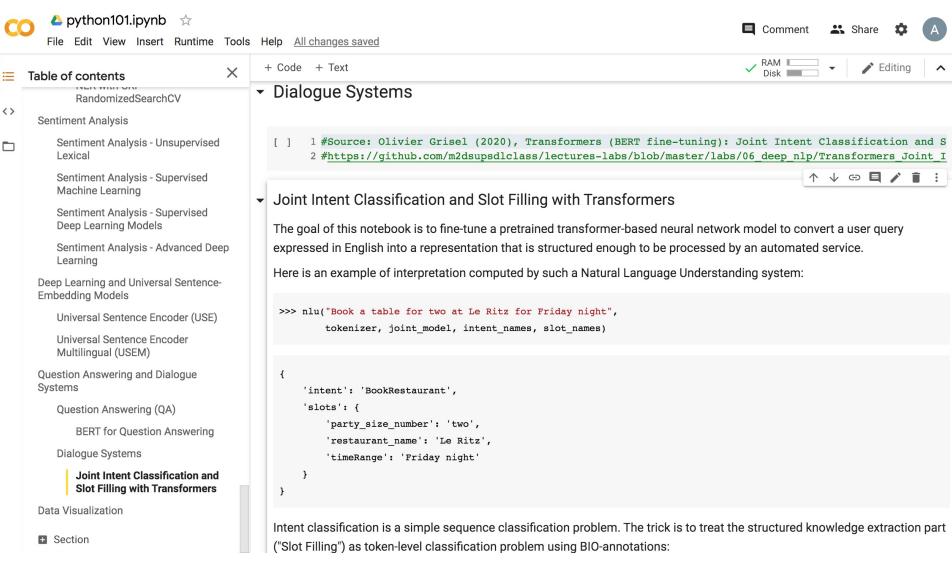
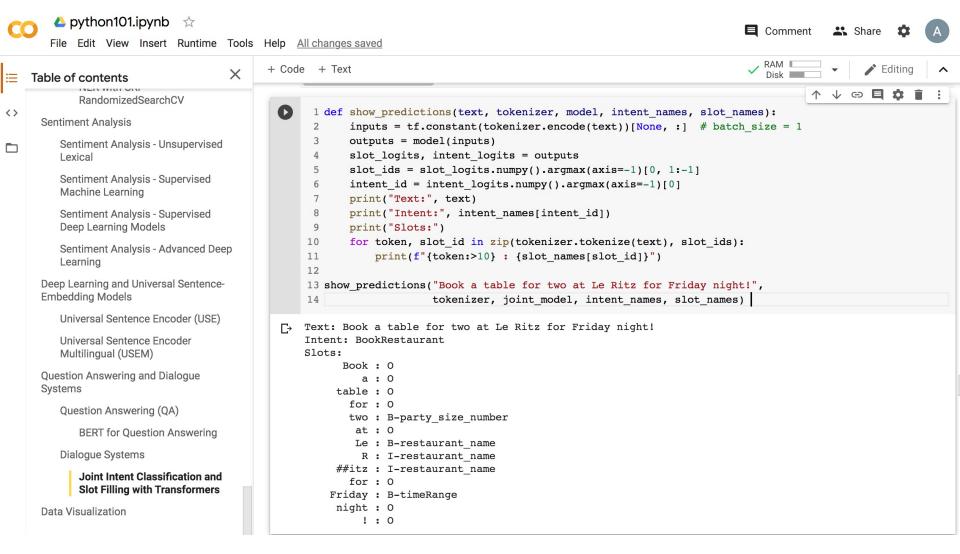
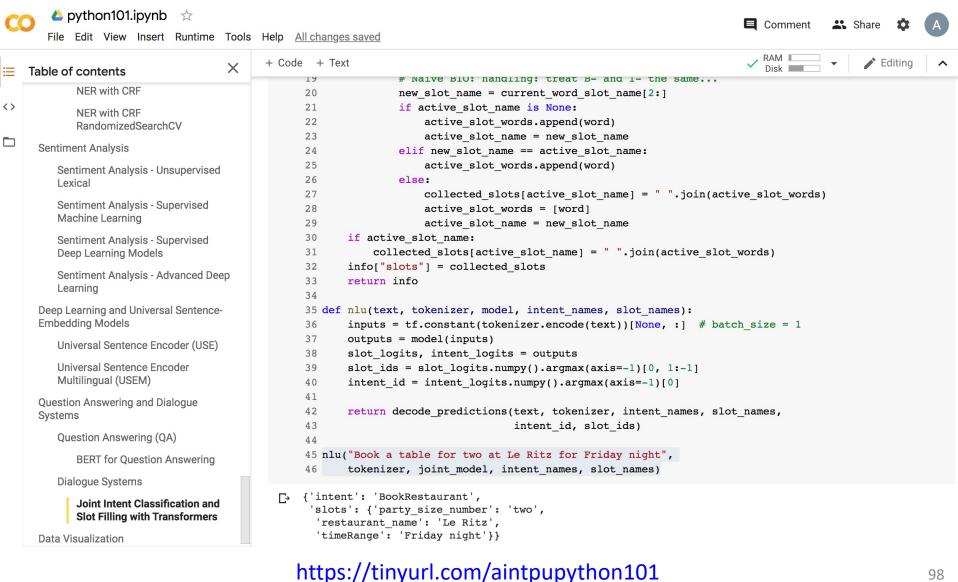

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Table of contents	<	+ Code + Text	✓ RAM Disk ✓ Editing
Semantic Analysis Named Entity Recognition (NER)	•	Question Answering and Dialo	gue Systems
NER with CRF			
NER with CRF RandomizedSearchCV	-	Question Answering (QA)	Question Answering and
Sentiment Analysis			Diele wie Orietewee
Sentiment Analysis - Unsupervised Lexical	-	BERT for Question Answering	Dialogue Systems
Sentiment Analysis - Supervised Machine Learning		Source: Apoorv Nandan (2020), BERT (from Hug https://keras.io/examples/nlp/text_extraction_w	
Sentiment Analysis - Supervised Deep Learning Models		Description: Fine tune pretrained BERT from Hug	
Sentiment Analysis - Advanced Deep Learning		Introduction	
Deep Learning and Universal Sentence- Embedding Models			tion-Answering Dataset). In SQuAD, an input consists of a question, and a paragraph for paragraph that answers the question. We evaluate our performance on this data with the
Universal Sentence Encoder (USE)		"Exact Match" metric, which measures the perce	ntage of predictions that exactly match any one of the ground-truth answers.
Universal Sentence Encoder Multilingual (USEM)		We fine-tune a BERT model to perform this task a	as follows:
Question Answering and Dialogue Systems		 Feed the context and the question as input Take two vectors S and T with dimensions 	
Question Answering (QA)			g the start and end of the answer span. The probability of a token being the start of the answer
BERT for Question Answering			e representatio of the token in the last layer of BERT, followed by a softmax over all tokens. The
Dialogue Systems			answer is compute similarly with the vector T.
Joint Intent Classification and Slot Filling with Transformers		 Fine-tune BERT and learn S and T along the References: 	way.
Data Visualization		BERT	
Section		• <u>SQuAD</u>	

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT


Table of contents X	+ Code + Text			V RAM Disk	🖍 Editir	ng
RandomizedSearchCV	Downloading: 100%	433/433 [00:29<00:00, 14	4.5B/s]			
Sentiment Analysis	Downloading: 100%	536M/536M [00:29<00:00	0. 18.3MB/s]			
Sentiment Analysis - Unsupervised Lexical	Model: "model"		-,]			
Sentiment Analysis - Supervised Machine Learning	Layer (type)		Param #	Connected to		
Sentiment Analysis - Supervised Deep Learning Models	input_1 (InputLayer)	[(None, 384)] (0			
Sentiment Analysis - Advanced Deep	<pre>input_3 (InputLayer)</pre>	[(None, 384)] (0			<u> </u>
Learning	input_2 (InputLayer)	[(None, 384)] (0			
Deep Learning and Universal Sentence- Embedding Models	tf_bert_model (TFBertModel) ((None, 384, 768), (109482240	input_1[0][0]		
Universal Sentence Encoder (USE)	start_logit (Dense)	(None, 384, 1)	768	<pre>tf_bert_model[0][0]</pre>		
Universal Sentence Encoder Multilingual (USEM)	end_logit (Dense)	(None, 384, 1)	768	tf_bert_model[0][0]		
Question Answering and Dialogue	flatten (Flatten)	(None, 384) (0	<pre>start_logit[0][0]</pre>		
Systems	flatten_1 (Flatten)	(None, 384) (0	<pre>end_logit[0][0]</pre>		
Question Answering (QA) BERT for Question Answering	activation_7 (Activation)	(None, 384) (0	flatten[0][0]		_
Dialogue Systems	activation_8 (Activation)	(0	flatten_1[0][0]		
Joint Intent Classification and Slot Filling with Transformers	Total params: 109,483,776 Trainable params: 109,483,	776				
Data Visualization	Non-trainable params: 0					
+ Section	CPU times: user 20.8 s, sys Wall time: 1min 42s	s: 7.75 s, total: 28.5 s				

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT


https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

NLP Benchmark Datasets

Task	Dataset	Link
Machine Translation	WMT 2014 EN-DE	http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
	WMT 2014 EN-FR	
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Text Summarization	Newsroom	https://summari.es/
Text Summarization	DUC	https://www-nlpir.nist.gov/projects/duc/data.html
	Gigaword	https://catalog.ldc.upenn.edu/LDC2012T21
	ARC	http://data.allenai.org/arc/
	CliCR	http://aclweb.org/anthology/N18-1140
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Reading Comprehension Question Answering Question Generation	NewsQA	https://datasets.maluuba.com/NewsQA
	RACE	http://www.qizhexie.com/data/RACE_leaderboard
	SQuAD	https://rajpurkar.github.io/SQuAD-explorer/
	Story Cloze Test	http://aclweb.org/anthology/W17-0906.pdf
	NarativeQA	https://github.com/deepmind/narrativeqa
	Quasar	https://github.com/bdhingra/quasar
	SearchQA	https://github.com/nyu-dl/SearchQA
	AMR parsing	https://amr.isi.edu/index.html
Semantic Parsing	ATIS (SQL Parsing)	https://github.com/jkkummerfeld/text2sql-data/tree/master/data
	WikiSQL (SQL Parsing)	https://github.com/salesforce/WikiSQL
	IMDB Reviews	http://ai.stanford.edu/~amaas/data/sentiment/
Sentiment Analysis	SST	https://nlp.stanford.edu/sentiment/index.html
Sentiment 7 marysis	Yelp Reviews	https://www.yelp.com/dataset/challenge
	Subjectivity Dataset	http://www.cs.cornell.edu/people/pabo/movie-review-data/
	AG News	http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
Text Classification	DBpedia	https://wiki.dbpedia.org/Datasets
Text Classification	TREC	https://trec.nist.gov/data.html
	20 NewsGroup	http://qwone.com/~jason/20Newsgroups/
	SNLI Corpus	https://nlp.stanford.edu/projects/snli/
Natural Language Inference	MultiNLI	https://www.nyu.edu/projects/bowman/multinli/
	SciTail	http://data.allenai.org/scitail/
Semantic Role Labeling	Proposition Bank	http://propbank.github.io/
	OneNotes	https://catalog.ldc.upenn.edu/LDC2013T19

Source: Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A. Fox (2020). "Natural Language Processing Advancements By Deep Learning: A Survey." arXiv preprint arXiv:2003.01200.

Question Answering

• Dialogue Systems

Task Oriented Dialogue System

References

- Day, Min-Yuh and Chi-Sheng Hung, "AI Affective Conversational Robot with Hybrid Generative-based and Retrieval-based Dialogue Models", in Proceedings of The 20th IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI 2019), Los Angeles, CA, USA, July 30 August 1, 2019.
- Day, Min-Yuh, Chi-Sheng Hung, Yi-Jun Xie, Jhih-Yi Chen, Yu-Ling Kuo and Jian-Ting Lin (2019), "IMTKU Emotional Dialogue System for Short Text Conversation at NTCIR-14 STC-3 (CECG) Task", The 14th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-14), Tokyo, Japan, June 10-13, 2019.
- Zhou, Hao, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. "Emotional chatting machine: emotional conversation generation with internal and external memory." arXiv preprint arXiv:1704.01074 (2017).
- Yu, Kai, Zijian Zhao, Xueyang Wu, Hongtao Lin, and Xuan Liu. "Rich Short Text Conversation Using Semantic Key Controlled Sequence Generation." IEEE/ACM Transactions on Audio, Speech, and Language Processing (2018).
- Borah, Bhriguraj, Dhrubajyoti Pathak, Priyankoo Sarmah, Bidisha Som, and Sukumar Nandi. "Survey of Textbased Chatbot in Perspective of Recent Technologies." In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 84-96. Springer, Singapore, 2018.
- Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.
- Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. "Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).
- Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).
- Zeng, Zhaohao, Sosuke Kato, Tetsuya Sakai, and Inho Kang (2020), "Overview of the NTCIR-15 Dialogue Evaluation (DialEval-1) Task", Proceedings of NTCIR-15, 2020.
- Apoorv Nandan (2020), BERT (from HuggingFace Transformers) for Text Extraction, https://keras.io/examples/nlp/text_extraction_with_bert/
- Olivier Grisel (2020), Transformers (BERT fine-tuning): Joint Intent Classification and Slot Filling, https://m2dsupsdlclass.github.io/lectures-labs/
- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress. <u>https://github.com/Apress/text-analytics-w-python-2e</u>
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python, O'Reilly Media. https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/
- HuggingFace (2020), Transformers Notebook, https://huggingface.co/transformers/notebooks.html
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Min-Yuh Day (2020), Python 101, <u>https://tinyurl.com/aintpupython101</u>