Python自然語言處理
(Python for Natural Language Processing)

Min-Yuh Day
Associate Professor
Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2020-03-18
課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)

1 2020/03/04 人工智慧文本分析課程介紹
(Course Orientation on Artificial Intelligence for Text Analytics)

2 2020/03/11 文本分析的基礎：自然語言處理
(Foundations of Text Analytics: Natural Language Processing; NLP)

3 2020/03/18 Python自然語言處理
(Python for Natural Language Processing)

4 2020/03/25 處理和理解文本
(Processing and Understanding Text)

5 2020/04/01 文本表達特徵工程
(Feature Engineering for Text Representation)

6 2020/04/08 人工智能文本分析個案研究Ⅰ
(Case Study on Artificial Intelligence for Text Analytics Ⅰ)
課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
7 2020/04/15 文本分類 (Text Classification)
8 2020/04/22 文本摘要和主題模型
 (Text Summarization and Topic Models)
9 2020/04/29 期中報告 (Midterm Project Report)
10 2020/05/06 文本相似度和分群 (Text Similarity and Clustering)
11 2020/05/13 語意分析和命名實體識別
 (Semantic Analysis and Named Entity Recognition; NER)
12 2020/05/20 情感分析 (Sentiment Analysis)
週次 (Week)	日期 (Date)	內容 (Subject/Topics)
13 | 2020/05/27 | 人工智慧文本分析個案研究 II
(Case Study on Artificial Intelligence for Text Analytics II)
14 | 2020/06/03 | 深度學習和通用句子嵌入模型
(Deep Learning and Universal Sentence-Embedding Models)
15 | 2020/06/10 | 問答系統與對話系統
(Question Answering and Dialogue Systems)
16 | 2020/06/17 | 期末報告 I (Final Project Presentation I)
17 | 2020/06/24 | 期末報告 II (Final Project Presentation II)
18 | 2020/07/01 | 教師彈性補充教學
Outline

• Python for Natural Language Processing
Python for Natural Language Processing
Connect Google Colab in Google Drive
Google Colab
Connect Colaboratory to Google Drive
Google Colab
Google Colab
Run Jupyter Notebook
Python3 GPU
Google Colab
print('Hello World')
Natural Language Processing (NLP) and Text Mining

- Raw text
- Sentence Segmentation
- Tokenization
- Part-of-Speech (POS)
- Stop word removal
- Stemming / Lemmatization
- Dependency Parser
- String Metrics & Matching

Source: Nitin Hardeniya (2015), NLTK Essentials, Packt Publishing; Florian Leitner (2015), Text mining - from Bayes rule to dependency parsing
Get things done

spaCy is designed to help you do real work — to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It’s easy to install, and its API is simple and productive. We like to think of spaCy as the Ruby on Rails of Natural Language Processing.

Blazing fast

spaCy excels at large-scale information extraction tasks. It’s written from the ground up in carefully memory-managed Cython. Independent research in 2015 found spaCy to be the fastest in the world. If your application needs to process entire web dumps, spaCy is the library you want to be using.

Deep learning

spaCy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, PyTorch, scikit-learn, Gensim and the rest of Python’s awesome AI ecosystem. With spaCy, you can easily construct linguistically sophisticated statistical models for a variety of NLP problems.

https://spacy.io/
Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Text Analytics and Natural Language Processing (NLP)

Python for Natural Language Processing

spaCy

- spaCy: Industrial-Strength Natural Language Processing in Python
- Source: https://spacy.io/usage/spacy-101

```python
1 #!python -m spacy download en_core_web_sm
2
3 import spacy
4 nlp = spacy.load('en_core_web_sm')
5 doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
6 for token in doc:
7     print(token.text, token.pos_, token.dep_)
```

Apple PROPN nsubj
looking VERB aux
at ADP prep
buying VERB pcomp
U.K. PROPN compound
startup NOUN dobj
for ADP prep
$ SYM quantmod
1 NUM compound
billion NUM pobj
```python
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
import pandas as pd
cols = ("text", "lemma", "POS", "explain", "stopword")
rows = []
for t in doc:
    row = [t.text, t.lemma_, t.pos_, spacy.explain(t.pos_), t.is_stop]
    rows.append(row)
df = pd.DataFrame(rows, columns=cols)
df
```

<table>
<thead>
<tr>
<th>text</th>
<th>lemma</th>
<th>POS</th>
<th>explain</th>
<th>stopword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Apple</td>
<td>PROPN</td>
<td>proper noun</td>
<td>False</td>
</tr>
<tr>
<td>is</td>
<td>be</td>
<td>VERB</td>
<td>verb</td>
<td>True</td>
</tr>
<tr>
<td>looking</td>
<td>look</td>
<td>VERB</td>
<td>verb</td>
<td>False</td>
</tr>
<tr>
<td>at</td>
<td>at</td>
<td>ADP</td>
<td>adposition</td>
<td>True</td>
</tr>
<tr>
<td>buying</td>
<td>buy</td>
<td>VERB</td>
<td>verb</td>
<td>False</td>
</tr>
<tr>
<td>U.K.</td>
<td>U.K.</td>
<td>PROPN</td>
<td>proper noun</td>
<td>False</td>
</tr>
<tr>
<td>startup</td>
<td>startup</td>
<td>NOUN</td>
<td>noun</td>
<td>False</td>
</tr>
<tr>
<td>for</td>
<td>for</td>
<td>ADP</td>
<td>adposition</td>
<td>True</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>SYM</td>
<td>symbol</td>
<td>False</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>NUM</td>
<td>numeral</td>
<td>False</td>
</tr>
<tr>
<td>billion</td>
<td>billion</td>
<td>NUM</td>
<td>numeral</td>
<td>False</td>
</tr>
</tbody>
</table>
```python
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Stanford University is located in California. It is a great university.")
import pandas as pd
cols = ("text", "lemma", "POS", "explain", "stopword")
rows = []
for t in doc:
    row = [t.text, t.lemma_, t.pos_, spacy.explain(t.pos_), t.is_stop]
    rows.append(row)
df = pd.DataFrame(rows, columns=cols)
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>lemma</td>
<td>POS</td>
<td>explain</td>
<td>stopword</td>
</tr>
<tr>
<td>Stanford</td>
<td>Stanford</td>
<td>PROPN</td>
<td>proper noun</td>
<td>False</td>
</tr>
<tr>
<td>University</td>
<td>University</td>
<td>PROPN</td>
<td>proper noun</td>
<td>False</td>
</tr>
<tr>
<td>is</td>
<td>be</td>
<td>VERB</td>
<td>verb</td>
<td>True</td>
</tr>
<tr>
<td>located</td>
<td>locate</td>
<td>VERB</td>
<td>verb</td>
<td>False</td>
</tr>
<tr>
<td>in</td>
<td>in</td>
<td>ADP</td>
<td>adposition</td>
<td>True</td>
</tr>
<tr>
<td>California</td>
<td>California</td>
<td>PROPN</td>
<td>proper noun</td>
<td>False</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>PUNCT</td>
<td>punctuation</td>
<td>False</td>
</tr>
<tr>
<td>It</td>
<td>-PRON-</td>
<td>PRON</td>
<td>pronoun</td>
<td>True</td>
</tr>
<tr>
<td>is</td>
<td>be</td>
<td>VERB</td>
<td>verb</td>
<td>True</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>DET</td>
<td>determiner</td>
<td>True</td>
</tr>
<tr>
<td>great</td>
<td>great</td>
<td>ADJ</td>
<td>adjective</td>
<td>False</td>
</tr>
<tr>
<td>university</td>
<td>university</td>
<td>NOUN</td>
<td>noun</td>
<td>False</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>PUNCT</td>
<td>punctuation</td>
<td>False</td>
</tr>
</tbody>
</table>
Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvWFUbeo4ZJ1zTunjMqf2RkCrT

```python
from spacy import displacy

displacy.render(doc, style="dep", jupyter=True)
```
```python
import spacy
nlp = spacy.load("en_core_web_sm")
text = "Stanford University is located in California. It is a great university."
doc = nlp(text)
for ent in doc.ents:
    print(ent.text, ent.label_)
```

```
Stanford University ORG
California GPE
```

```python
from spacy import displacy
text = "Stanford University is located in California. It is a great university."
doc = nlp(text)
displacy.render(doc, style="ent", jupyter=True)
```

```
Stanford University ORG is located in California GPE. It is a great university.
```
Keras preprocessing text

```python
# keras.preprocessing.text Tokenizer
from keras.preprocessing.text import Tokenizer

# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

# create the tokenizer
t = Tokenizer()

# fit the tokenizer on the documents
t.fit_on_texts(docs)

print('docs:', docs)

print('word_counts:', t.word_counts)

print('document_count:', t.document_count)

print('word_index:', t.word_index)

print('word_docs:', t.word_docs)

# integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')

print('texts_to_matrix:')

print(texts_to_matrix)
```

Using TensorFlow backend.

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1), ('document_count: 5

word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8)

word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}

texts_to_matrix:

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
$$
Text Classification
Text Classification Workflow

• Step 1: Gather Data
• Step 2: Explore Your Data
• Step 2.5: Choose a Model*
• Step 3: Prepare Your Data
• Step 4: Build, Train, and Evaluate Your Model
• Step 5: Tune Hyperparameters
• Step 6: Deploy Your Model

Source: https://developers.google.com/machine-learning/guides/text-classification/
Text Classification Flowchart

Text Classification S/W<1500: N-gram

Text Classification S/W>=1500: Sequence

Select top_k features [freq]

min(top...1K, 2K, ... 15K, 20K, 25K, ... 90K, all)

Normalization mode

samplewise None featurewise

Embeddings

Yes S/W < 15K

Fine-tuned pre-trained embedding Frozen pre-trained embedding

Embeddings learned from scratch

No Build model

RNN stacked RNN CNN-RNN sepCNN CNN

Hyperparameter tuning

Step 2.5: Choose a Model

Samples/Words < 1500
150,000/100 = 1500

IMDb review dataset, the samples/words-per-sample ratio is ~ 144

Step 2.5: Choose a Model

Samples/Words < 15,000

1,500,000/100 = 15,000
Step 3: Prepare Your Data

Texts:
T1: 'The mouse ran up the clock'
T2: 'The mouse ran down'

Token Index:
{'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6,}.

NOTE: 'the' occurs most frequently, so the index value of 1 is assigned to it. Some libraries reserve index 0 for unknown tokens, as is the case here.

Sequence of token indexes:
T1: 'The mouse ran up the clock' = [1, 2, 3, 4, 1, 5]
T1: 'The mouse ran down' = [1, 2, 3, 6]
One-hot encoding

'The mouse ran up the clock' =

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
<td>[0, 0, 1, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
<td>[0, 0, 0, 1, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
<td>[0, 0, 0, 0, 1, 0, 0, 0]</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>[0, 1, 0, 0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
<td>[0, 0, 0, 0, 0, 1, 0, 0]</td>
</tr>
</tbody>
</table>

[0, 1, 2, 3, 4, 5, 6]
Word embeddings

Male-Female

Verb Tense

Country-Capital

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
Word embeddings

The mouse ran up the clock

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
</tr>
</tbody>
</table>

The mouse ran down

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>down</td>
<td>6</td>
</tr>
</tbody>
</table>

Embedding layer (output dim = 4)

- The mouse ran up the clock:
 - [0.236, -0.141, 0.000, 0.045],
 - [0.006, 0.652, 0.270, -0.556],
 - [0.305, 0.569, -0.028, 0.496],
 - [0.421, 0.195, -0.058, 0.477],
 - [0.236, -0.141, 0.000, 0.045],
 - [0.844, -0.001, 0.763, 0.201]

- The mouse ran down:
 - [0.236, -0.141, 0.000, 0.045],
 - [0.006, 0.652, 0.270, -0.556],
 - [0.305, 0.569, -0.028, 0.496],
 - [0.466, -0.326, 0.884, 0.007]

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)

tfdict = {}
for term in terms:
 if term not in tfdict:
 tfdict[term] = 1
 else:
 tfdict[term] += 1

a = []
for k,v in tfdict.items():
 a.append('{}: {}'.format(k,v))
print(a)
sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)

sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}

word2id = dict([(v, k) for (k, v) in id2word.items()])
sorted_by_value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted_by_value: ', sorted_by_value)
sorted_by_value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted_by_value2: ', sorted_by_value2)
sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted_by_value_reverse: ', sorted_by_value_reverse)
sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)
print('sorted_by_value_reverse_dict', sorted_by_value_reverse_dict)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}
print('id2word', id2word)

word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id', word2id)
print('len_words:', len(word2id))

sorted_by_key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted_by_key: ', sorted_by_key)

tfstring = '\n'.join(a)
print(tfstring)

tf = tfdict.get('mouse')
print(tf)

sorted_by_value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted_by_value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted_by_value_reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted_by_value_reverse_dict {'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id {'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len_words: 6
sorted_by_key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word counts:', t.word_counts)
print('document count:', t.document_count)
print('word index:', t.word_index)
print('word docs:', t.word_docs)
integer encode documents
texts to matrix = t.texts_to_matrix(docs, mode='count')
print('texts to matrix: ')
print(texts_to_matrix)

Source: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)
integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix:')
print(texts_to_matrix)
texts_to_matrix =
t.texts_to_matrix(docs, mode='count')

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word_counts: OrderedDict([(\'well\', 1), (\'done\', 1), (\'good\', 1), (\'work\', 2), (\'great\', 1), (\'effort\', 1), (\'nice\', 1), (\'excellent\', 1)])
document_count: 5
word_index: {\'work\': 1, \'well\': 2, \'done\': 3, \'good\': 4, \'great\': 5, \'effort\': 6, \'nice\': 7, \'excellent\': 8}
word_docs: {\'done\': 1, \'well\': 1, \'work\': 2, \'good\': 1, \'great\': 1, \'effort\': 1, \'nice\': 1, \'excellent\': 1}
texts_to_matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 1.]]

Source: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

create the tokenizer

fit the tokenizer on the documents

t.fit_on_texts(docs)

print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

integer encode documents

texts_to_matrix = t.texts_to_matrix(docs, mode='tfidf')

print('texts_to_matrix:')
print(texts_to_matrix)

texts_to_matrix:
[[0. 0. 1.25276297 1.25276297 0. 0. 0. 0. 0. 0.]
 [0. 0.98082925 0. 0. 1.25276297 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1.25276297 1.25276297 0. 0. 0.]
 [0. 0.98082925 0. 0. 0. 0. 0. 0. 1.25276297 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.25276297]]
NLTK (Natural Language Toolkit)

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, plus comprehensive API documentation, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics using Python,” and “an amazing library to play with natural language.”

Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://nltk.org/book_1ed.)

Some simple things you can do with NLTK

Tokenize and tag some text:

```python
>>> import nltk
```

http://www.nltk.org/
Python Jieba “结巴” 中文分词

https://github.com/fxsjy/jieba
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
wordspos = pseg.cut(sentence)
result = ''
for word, pos in wordspos:
 print(word + ' (' + pos + '))'
 result = result + ' ' + word + ' (' + pos + ')''
print(result.strip())
```python
import jieba
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
```

銀行產業正在改變，金融機構欲挖角科技人才
銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技人才
銀行 (n)
產業 (n)
正在 (t)
改變 (v)
， (x)
金融 (n)
機構 (n)
欲 (d)
挖角 (n)
科技人才 (n)
銀行(n) 產業(n) 正在(t) 改變(v) ，(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
```python
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
wordpos = pseg.cut(sentence)
result = ''
for word, pos in wordpos:
    print(word + ' (' + pos + '))
    result = result + ' ' + word + ' (' + pos + '))'
print(result.strip())
```

銀行產業正在改變，金融機構欲挖角科技人才
銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技人才
銀行 (n)
產業 (n)
正在 (t)
改變 (v)
， (x)
金融 (n)
機構 (n)
欲 (d)
挖角 (n)
科技人才 (n)
銀行(n) 產業(n) 正在(t) 改變(v) ，(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
Python Jieba “结巴”中文分词

• https://github.com/fxsjy/jieba
• jieba.set_dictionary('data/dict.txt.big')
 – #/anaconda/lib/python3.5/site-packages/jieba
 – dict.txt (5.4MB)(349,046)
 – dict.txt.big.txt (8.6MB)(584,429)
 – dict.txt.small.txt (1.6MB)(109,750)
 – dict.tw.txt (4.2MB)(308,431)
• https://github.com/ldkrsi/jieba-zh_TW
 – 结巴中文斷詞台灣繁體版本
TensorFlow NLP Examples

• Basic Text Classification
 (Text Classification) (46 Seconds)

• NMT with Attention
 (20-30 minutes)
Text Classification
IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHLsLIrLYtPCvCHaoO1W-i_gror

Table of contents

Copyright 2018 The TensorFlow Authors.
Licensed under the Apache License, Version 2.0 (the "License");
MIT License

Text classification with movie reviews
Download the IMDB dataset
Explore the data
Convert the integers back to words
Prepare the data
Build the model
Hidden units
Loss function and optimizer
Create a validation set
Train the model
Evaluate the model

Copyright 2018 The TensorFlow Authors.

Text classification with movie reviews

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

```python
# memory footprint support libraries/code
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install psutil
import psutil
import humanize
import os
import GPUtil as GPU
GPUs = GPU.getGPUs()
gpu = GPUs[0]
def printm():
    return psutil.Process(os.getpid())

# def printm():
#     return psutil.Process(os.getpid())
```
Summary

• Python for Natural Language Processing
References

• Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.

• Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.

• Christopher D. Manning and Hinrich Schütze (1999), Foundations of Statistical Natural Language Processing, The MIT Press.

• Nitin Hardeniya (2015), NLTK Essentials, Packt.

• Bing Liu (2009), Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.