AI for Investment Analysis

Python Scikit-Learn

(Machine Learning for Investment Analysis with Scikit-Learn in Python)

1082AIIA08
MBA, IMTKU (M2399) (8409) (Spring 2020)
Wed 3, 4 (10:10-12:00) (B206)

Min-Yuh Day
Associate Professor
Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2020-05-06
<table>
<thead>
<tr>
<th>週次 (Week)</th>
<th>日期 (Date)</th>
<th>內容 (Subject/Topics)</th>
</tr>
</thead>
</table>
| 1 2020/03/04 | 2020/03/04 | 人工智能投資分析課程介紹
(Course Orientation on AI for Investment Analysis) |
| 2 2020/03/11 | 2020/03/11 | AI 金融科技: 金融服務創新應用
(AI in FinTech: Financial Services Innovation and Application) |
| 3 2020/03/18 | 2020/03/18 | 機器人理財顧問與AI交談機器人
(Robo-Advisors and AI Chatbots) |
| 4 2020/03/25 | 2020/03/25 | 投資心理學與行為財務學
(Investing Psychology and Behavioral Finance) |
| 5 2020/04/01 | 2020/04/01 | 財務金融事件研究法
(Event Studies in Finance) |
| 6 2020/04/08 | 2020/04/08 | 人工智能投資分析個案研究 I
(Case Study on AI for Investment Analysis I) |
課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
7 2020/04/15 Python AI投資分析基礎
 (Foundations of AI Investment Analysis in Python)
8 2020/04/22 Python Pandas 量化投資分析
 (Quantitative Investing with Pandas in Python)
9 2020/04/29 期中報告 (Midterm Project Report)
10 2020/05/06 Python Scikit-Learn 機器學習投資分析
 (Machine Learning for Investment Analysis with Scikit-Learn in Python)
11 2020/05/13 TensorFlow 深度學習投資分析Ⅰ
 (Deep Learning for Investment Analysis with TensorFlow I)
12 2020/05/20 TensorFlow 深度學習投資分析Ⅱ
 (Deep Learning for Investment Analysis with TensorFlow II)
<table>
<thead>
<tr>
<th>週次 (Week)</th>
<th>日期 (Date)</th>
<th>內容 (Subject/Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2020/05/27</td>
<td>人工智慧投資分析個案研究 II (Case Study on Artificial Intelligence for Investment Analysis II)</td>
</tr>
<tr>
<td>14</td>
<td>2020/06/03</td>
<td>TensorFlow 深度學習投資分析 III (Deep Learning for Investment Analysis with TensorFlow III)</td>
</tr>
<tr>
<td>15</td>
<td>2020/06/10</td>
<td>投資組合最佳化與程式交易 (Portfolio Optimization and Algorithmic Trading)</td>
</tr>
<tr>
<td>16</td>
<td>2020/06/17</td>
<td>期末報告 I (Final Project Presentation I)</td>
</tr>
<tr>
<td>17</td>
<td>2020/06/24</td>
<td>期末報告 II (Final Project Presentation II)</td>
</tr>
<tr>
<td>18</td>
<td>2020/07/01</td>
<td>教師彈性補充教學</td>
</tr>
</tbody>
</table>
Machine Learning for Investment Analysis with Scikit-Learn in Python
Outline

• Machine Learning for Investment Analysis with Scikit-Learn in Python
 – Machine Learning
 – Scikit-Learn
Aurélien Géron (2019),
O’Reilly Media, 2019

https://github.com/ageron/handson-ml2

Artificial Intelligence
Machine Learning & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Artificial Intelligence (AI)

Machine Learning (ML)

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

Deep Learning (DL)
- CNN
- RNN
- LSTM
- GRU
- GAN
Deep Learning Evolution

Source: http://www.erogol.com/brief-history-machine-learning/
3 Machine Learning Algorithms

Machine Learning Models

- Deep Learning
- Association rules
- Decision tree
- Clustering
- Bayesian
- Kernel
- Ensemble
- Dimensionality reduction
- Regression Analysis
- Instance based

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Data Mining Tasks & Methods

<table>
<thead>
<tr>
<th>Data Mining Tasks & Methods</th>
<th>Data Mining Algorithms</th>
<th>Learning Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Decision Trees, Neural Networks, Support Vector Machines, kNN, Naïve Bayes, GA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Regression</td>
<td>Linear/Nonlinear Regression, ANN, Regression Trees, SVM, kNN, GA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Time series</td>
<td>Autoregressive Methods, Averaging Methods, Exponential Smoothing, ARIMA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link analysis</td>
<td>Expectation Maximization, Apriori Algorithm, Graph-Based Matching</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Sequence analysis</td>
<td>Apriori Algorithm, FP-Growth, Graph-Based Matching</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Segmentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td>k-means, Expectation Maximization (EM)</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Outlier analysis</td>
<td>k-means, Expectation Maximization (EM)</td>
<td>Unsupervised</td>
</tr>
</tbody>
</table>

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), *Business Intelligence, Analytics, and Data Science: A Managerial Perspective*, 4th Edition, Pearson
Data Mining Methods

• Classification
 – Classification
 • Class Label Prediction
 – Regression
 • Numeric Value Prediction

• Clustering

• Association

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Evaluation

(Accuracy of Classification Model)
Assessing the Classification Model

• Predictive accuracy
 – Hit rate
• Speed
 – Model building; predicting
• Robustness
• Scalability
• Interpretability
 – Transparency, explainability

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Accuracy vs. Precision

A: High Accuracy High Precision
B: Low Accuracy High Precision
C: High Accuracy Low Precision
D: Low Accuracy Low Precision
Accuracy vs. Precision

A
High Accuracy
High Precision
High Validity
High Reliability

B
Low Accuracy
High Precision
Low Validity
High Reliability

C
High Accuracy
Low Precision
High Validity
Low Reliability

D
Low Accuracy
Low Precision
Low Validity
Low Reliability
Accuracy vs. Precision

A
- High Accuracy
- High Precision
- High Validity
- High Reliability

B
- Low Accuracy
- High Precision
- Low Validity
- High Reliability

C
- High Accuracy
- Low Precision
- High Validity
- Low Reliability

D
- Low Accuracy
- Low Precision
- Low Validity
- Low Reliability
Confusion Matrix for Tabulation of Two-Class Classification Results

<table>
<thead>
<tr>
<th>True/Observed Class</th>
<th>Predicted Class</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive Count (TP)</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Positive Count (FP)</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Negative Count (FN)</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Negative Count (TN)</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

\[
\text{True Positive Rate} = \frac{TP}{TP + FN}
\]

\[
\text{True Negative Rate} = \frac{TN}{TN + FP}
\]

\[
\text{Precision} = \frac{TP}{TP + FP} \quad \text{Recall} = \frac{TP}{TP + FN}
\]

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Sensitivity = True Positive Rate

Specificity = True Negative Rate
Estimation Methodologies for Classification

• **Simple split** (or holdout or test sample estimation)

 – Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)

 – For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), *Business Intelligence, Analytics, and Data Science: A Managerial Perspective*, 4th Edition, Pearson
k-Fold Cross-Validation

![Diagram of k-Fold Cross-Validation]

Repeated for all 10 folds

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Estimation Methodologies for Classification
Area under the ROC curve

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
<table>
<thead>
<tr>
<th>True Class (actual value)</th>
<th>Predictive Class (prediction outcome)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>P</td>
</tr>
<tr>
<td>False Positive (TP)</td>
<td>False Positive (FP)</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>N</td>
</tr>
<tr>
<td>False Negative (FN)</td>
<td>True Negative (TN)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>P'</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>N'</td>
</tr>
</tbody>
</table>

True Positive Rate (Sensitivity) = \(\frac{TP}{TP + FN} \)

True Negative Rate (Specificity) = \(\frac{TN}{TN + FP} \)

False Positive Rate = \(\frac{FP}{FP + TN} \)

False Positive Rate (1-Specificity) = \(\frac{FP}{FP + TN} \)

Accuracy = \(\frac{TP + TN}{TP + TN + FP + FN} \)

True Positive Rate = \(\frac{TP}{TP + FN} \)

True Negative Rate = \(\frac{TN}{TN + FP} \)

Precision = \(\frac{TP}{TP + FP} \)

Recall = \(\frac{TP}{TP + FN} \)

True Positive Rate (Sensitivity) = \(\frac{TP}{TP + FN} \)

Sensitivity

= True Positive Rate

= Recall

= Hit rate

= \(\frac{TP}{(TP + FN)} \)
True Negative Rate = \frac{TN}{TN + FP}

Specificity = True Negative Rate
= \frac{TN}{N}
= \frac{TN}{(TN + FP)}

True Negative Rate (Specificity) = \frac{TN}{TN + FP}

False Positive Rate (1 - Specificity) = \frac{FP}{FP + TN}

Precision

= Positive Predictive Value (PPV)

\[\text{Precision} = \frac{TP}{TP + FP} \]

Recall

= True Positive Rate (TPR)

= Sensitivity

= Hit Rate

\[\text{Recall} = \frac{TP}{TP + FN} \]

F1 score (F-score)(F-measure)
is the harmonic mean of precision and recall

= \(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \)

\[F = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \]

Recall = True Positive Rate (TPR) = Sensitivity = Hit Rate = TP / (TP + FN)

Specificity = True Negative Rate = TN / N = TN / (TN + FP)

FPR = 0.28

FP = TP + FN

True Positive Rate (TPR) = TP / N

Negative Predictive Value (NPV) = TN / (FP + TN)

PPV = 0.69

TPR = 0.63

Recall = TP / (TP + FN)

False Positive Rate (1-Specificity) = FP / (FP + TN)

F1 = 0.66

F1 score (F-score) (F-measure)

= 2*TP / (2*TP + FP + FN)

= 2*precision*recall / precision + recall

Accuracy = (TP + TN) / (TP + TN + FP + FN)

= (TP + TN) / N
A

<table>
<thead>
<tr>
<th>True Positives (TP)</th>
<th>False Positives (FP)</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>72</td>
<td>109</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

- **TPR (True Positive Rate)**: \(\frac{63}{63+28}\) = 0.63
- **FPR (False Positive Rate)**: \(\frac{28}{63+28}\) = 0.28
- **PPV (Positive Predictive Value)**: \(\frac{63}{63+28}\) = 0.69
- **F1 Score**: \(\frac{2 \times 0.63 \times 0.69}{0.63 + 0.69}\) = 0.66
- **Accuracy (ACC)**: \(\frac{63 + 72}{200}\) = 0.68

B

<table>
<thead>
<tr>
<th>True Positives (TP)</th>
<th>False Positives (FP)</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>46</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

- **TPR (True Positive Rate)**: \(\frac{77}{77+23}\) = 0.77
- **FPR (False Positive Rate)**: \(\frac{23}{77+23}\) = 0.77
- **PPV (Positive Predictive Value)**: \(\frac{77}{77+23}\) = 0.50
- **F1 Score**: \(\frac{2 \times 0.77 \times 0.50}{0.77 + 0.50}\) = 0.61
- **Accuracy (ACC)**: \(\frac{77 + 23}{200}\) = 0.50

Recall

Recall = True Positive Rate (TPR) = Sensitivity = Hit Rate

Precision

Precision = Positive Predictive Value (PPV)

Recall

Recall = True Positive Rate (TPR)
Recall = Sensitivity
Recall = Hit Rate

Precision

Precision = Positive Predictive Value (PPV)
Precision = \(\frac{TP}{TP + FP} \)

The Quant Finance PyData Stack

Quantopian

PyThalesians

Zipline

DX Analytics

PyAlgoTrade

QuantLib

StatsModels

Statistics in Python

scikit-learn

matplotlib

pandas

y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}

SciPy

NumPy

SymPy

Ipython

Jupyter

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#5
Scikit-Learn
Machine Learning in Python
Scikit-Learn

scikit-learn
Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ...

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, non-negative matrix factorization.

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.
Scikit-Learn Machine Learning Map

Iris flower data set

setosa versicolor virginica

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set
Iris Classification

<table>
<thead>
<tr>
<th>Sepal Length</th>
<th>Sepal Width</th>
<th>Petal Length</th>
<th>Petal Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.0</td>
<td>1.4</td>
<td>0.1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.3</td>
<td>3.0</td>
<td>1.1</td>
<td>0.1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.7</td>
<td>4.4</td>
<td>1.5</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.3</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.3</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.7</td>
<td>3.8</td>
<td>1.7</td>
<td>0.3</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.8</td>
<td>1.5</td>
<td>0.3</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.4</td>
<td>1.7</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.7</td>
<td>1.5</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.6</td>
<td>1.0</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.1</td>
<td>3.3</td>
<td>1.7</td>
<td>0.5</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.8</td>
<td>3.4</td>
<td>1.9</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>1.6</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.6</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>
Iris Data Visualization

Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html
Data Visualization in Google Colab

```
import seaborn as sns
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")
```

Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html
import seaborn as sns
sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2)
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

Import Libraries
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
print('imported')

imported
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))

Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10)).

<table>
<thead>
<tr>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>
```python
print(df.describe())
```

<table>
<thead>
<tr>
<th></th>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>150.000000</td>
<td>150.000000</td>
<td>150.000000</td>
<td>150.000000</td>
</tr>
<tr>
<td>mean</td>
<td>5.843333</td>
<td>3.054000</td>
<td>3.758667</td>
<td>1.198667</td>
</tr>
<tr>
<td>std</td>
<td>0.828066</td>
<td>0.433594</td>
<td>1.764420</td>
<td>0.763161</td>
</tr>
<tr>
<td>min</td>
<td>4.300000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>0.100000</td>
</tr>
<tr>
<td>25%</td>
<td>5.100000</td>
<td>2.800000</td>
<td>1.600000</td>
<td>0.300000</td>
</tr>
<tr>
<td>50%</td>
<td>5.800000</td>
<td>3.000000</td>
<td>4.350000</td>
<td>1.300000</td>
</tr>
<tr>
<td>75%</td>
<td>6.400000</td>
<td>3.300000</td>
<td>5.100000</td>
<td>1.800000</td>
</tr>
<tr>
<td>max</td>
<td>7.900000</td>
<td>4.400000</td>
<td>6.900000</td>
<td>2.500000</td>
</tr>
</tbody>
</table>
```python
df.tail(10)
```

<table>
<thead>
<tr>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>6.7</td>
<td>3.1</td>
<td>5.6</td>
<td>2.4 Iris-virginica</td>
</tr>
<tr>
<td>141</td>
<td>6.9</td>
<td>3.1</td>
<td>5.1</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>142</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9 Iris-virginica</td>
</tr>
<tr>
<td>143</td>
<td>6.8</td>
<td>3.2</td>
<td>5.9</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>144</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5 Iris-virginica</td>
</tr>
<tr>
<td>145</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>146</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9 Iris-virginica</td>
</tr>
<tr>
<td>147</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0 Iris-virginica</td>
</tr>
<tr>
<td>148</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>149</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8 Iris-virginica</td>
</tr>
</tbody>
</table>
print(df.info())
print(df.shape)

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal-length 150 non-null float64
sepal-width 150 non-null float64
petal-length 150 non-null float64
petal-width 150 non-null float64
class 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB
None

print(df.shape)

(150, 5)
df.groupby('class').size()

print(df.groupby('class').size())

class
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
df.hist()
plt.show()
scatter_matrix(df)
plt.show()
sns.pairplot(df, hue="class", size=2)
Machine Learning
Supervised Learning
Classification and Prediction
Data Mining and Machine Learning in Google Colab

```python
# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

# Import sklearn
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier

print("Imported")

# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
df.hist()
plt.show()
```
Import sklearn
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
print("Imported")
Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2)
```python
# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2).
```

Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2).
```
```
df.corr()
```

<table>
<thead>
<tr>
<th></th>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>sepal-length</td>
<td>1.000000</td>
<td>-0.109369</td>
<td>0.871754</td>
<td>0.817954</td>
</tr>
<tr>
<td>sepal-width</td>
<td>-0.109369</td>
<td>1.000000</td>
<td>-0.420516</td>
<td>-0.356544</td>
</tr>
<tr>
<td>petal-length</td>
<td>0.871754</td>
<td>-0.420516</td>
<td>1.000000</td>
<td>0.962757</td>
</tr>
<tr>
<td>petal-width</td>
<td>0.817954</td>
<td>-0.356544</td>
<td>0.962757</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
# Split-out validation dataset
array = df.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y,
test_size=validation_size, random_state=seed)
score = 'accuracy'
# Models

```python
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DT', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
```
# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results =
model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %.4f (%.4f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
# Models
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DT', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))

# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %4f (%4f)" % (name, cv_results.mean(), cv_results.std())
print(msg)

LR: 0.9667 (0.0408)
LDA: 0.9750 (0.0382)
KNN: 0.9833 (0.0333)
DT: 0.9750 (0.0382)
NB: 0.9750 (0.0534)
SVM: 0.9917 (0.0250)
# Make predictions on validation dataset
model = KNeighborsClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
# Make predictions on validation dataset
model = KNeighborsClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
predictions = model.predict(X_validation)
print(classification_report(Y_validation, predictions))
print(model)

0.9000

[[ 7  0  0]
 [ 0 11  1]
 [ 0  2  9]]

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.85</td>
<td>0.92</td>
<td>0.88</td>
<td>12</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.90</td>
<td>0.82</td>
<td>0.86</td>
<td>11</td>
</tr>
<tr>
<td>avg / total</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>30</td>
</tr>
</tbody>
</table>

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
# Make predictions on validation dataset
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

# Make predictions on validation dataset
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9333
[[ 7  0  0]
 [ 0 10  2]
 [ 0  0 11]]

precision   recall   f1-score  support
Iris-setosa  1.00     1.00     1.00     7
Iris-versicolor  1.00     0.83     0.91     12
Iris-virginica   0.85     1.00     0.92     11

avg / total     0.94     0.93     0.93     30

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
# Make predictions on validation dataset
model = DecisionTreeClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9000
[[ 7  0  0]
 [ 0 11  1]
 [ 0  2  9]]

            precision  recall  f1-score  support

Iris-setosa      1.00    1.00     1.00       7
Iris-versicolor  0.85    0.92     0.88      12
Iris-virginica   0.90    0.82     0.86      11

avg / total     0.90    0.90     0.90      30

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                        max_features=None, max_leaf_nodes=None,
                        min_impurity_decrease=0.0, min_impurity_split=None,
                        min_samples_leaf=1, min_samples_split=2,
                        min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                        splitter='best')
# Make predictions on validation dataset

```python
model = GaussianNB()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
```

```
0.8333
[[7 0 0]
 [0 9 3]
 [0 2 9]]

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 7
 Iris-versicolor 0.82 0.75 0.78 12
 Iris-virginica 0.75 0.82 0.78 11

 avg / total 0.84 0.83 0.83 30

GaussianNB(priors=None)
```
# Make predictions on validation dataset
model = LogisticRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.8000
[[ 7  0  0]
 [ 0  7  5]
 [ 0 10  0]]

precision     recall     f1-score     support

Iris-setosa   1.00        1.00         1.00         7
Iris-versicolor 0.88       0.58         0.70        12
Iris-virginica 0.67       0.91         0.77        11

avg / total   0.83        0.80         0.80        30

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)
# Make predictions on validation dataset
model = LinearDiscriminantAnalysis()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9667
[[ 7  0  0]
 [ 0 11  1]
 [ 0  0 11]]

precision    recall    f1-score    support

Iris-setosa    1.00    1.00    1.00    7
Iris-versicolor 1.00    0.92    0.96    12
Iris-virginica  0.92    1.00    0.96    11

avg / total    0.97    0.97    0.97    30

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001)
# Make predictions on validation dataset
```
model = MLPClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model).
```

```
0.9000
[[7 0 0]
 [0 9 3]
 [0 0 11]]
```

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1.00</td>
<td>0.75</td>
<td>0.86</td>
<td>12</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.79</td>
<td>1.00</td>
<td>0.88</td>
<td>11</td>
</tr>
<tr>
<td>avg / total</td>
<td>0.92</td>
<td>0.90</td>
<td>0.90</td>
<td>30</td>
</tr>
</tbody>
</table>

MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,  
beta_2=0.999, early_stopping=False, epsilon=1e-08,  
hidden_layer_sizes=(100,), learning_rate='constant',  
learning_rate_init=0.001, max_iter=200, momentum=0.9,  
nesterovs_momentum=True, power_t=0.5, random_state=None,  
shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,  
verbose=False, warm_start=False)
Machine Learning
Unsupervised Learning
Cluster Analysis
K-Means Clustering
#importing the libraries
import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline
import pandas as pd

#importing the Iris dataset with pandas
# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
X = pd.read_csv(url, names=names)

#Finding the optimum number of clusters for k-means classification
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 8):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

#Plotting the results onto a line graph, allowing us to observe 'The elbow'
plt.rcParams["figure.figsize"] = (10,8)
plt.plot(range(1, 8), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') #within cluster sum of squares
plt.show()
#importing the libraries
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd

#importing the Iris dataset with pandas
# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

array = df.values
X = array[:,0:4]
Y = array[:,4]
# Finding the optimum number of clusters for k-means classification

```python
from sklearn.cluster import KMeans

wcss = []

for i in range(1, 8):
 kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
 kmeans.fit(X)
 wcss.append(kmeans.inertia_)

Plotting the results onto a line graph, allowing us to observe 'The elbow'
plt.rcParams["figure.figsize"] = (10,8)
plt.plot(range(1, 8), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') # within cluster sum of squares
plt.show()
```
**K-Means Clustering**

The elbow method ($k=3$)
**#Applying kmeans to the dataset / Creating the kmeans classifier**

```python
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X)
```

---

[https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZDIF354Nf_Lw](https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZDIF354Nf_Lw)
# Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')

# Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
```
#Applying kmeans to the dataset / Creating the kmeans classifier
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X).

#Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolor')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')

#Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
```

https://colab.research.google.com/drive/1QE7fR20xHiQ0_p6l1nnZD1FF354Nf_Lw
Time Series Data

\[ [100, 110, 120, 130, 140, 150] \]
# Time Series Data

\[ [10, 20, 30, 40, 50, 60, 70, 80, 90] \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10 20 30]</td>
<td>40</td>
</tr>
<tr>
<td>[20 30 40]</td>
<td>50</td>
</tr>
<tr>
<td>[30 40 50]</td>
<td>60</td>
</tr>
<tr>
<td>[40 50 60]</td>
<td>70</td>
</tr>
<tr>
<td>[50 60 70]</td>
<td>80</td>
</tr>
<tr>
<td>[60 70 80]</td>
<td>90</td>
</tr>
</tbody>
</table>
```python
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
%matplotlib inline

Read Stock Data from Yahoo Finance
end = dt.datetime.now()
start = dt.datetime(2017, 1, 1)

df = web.DataReader('AAPL', 'yahoo', start, end)
df.to_csv('AAPL.csv')
print(df.tail())
df2 = pd.read_csv('AAPL.csv')
print(df2.tail())

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), rowspan=10, colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), rowspan=2, colspan=9)
top.plot(df.index, df['Adj Close'], color='blue')
bottom.bar(df.index, df['Volume'])

set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('AAPL')
bottom.set_ylabel('Adj Close')
plt.figure(figsize=(12,9))
sns.distplot(df['Adj Close'].dropna(), bins=50, color='purple')

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() # 5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() # 20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() # 60 days
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60']})
df2.plot(figsize=(12, 9), legend=True, title='AAPL')
df2.to_csv('AAPL_MA.csv')
fig = plt.gcf()
fig.set_size_inches(12, 9)
fig.savefig('AAPL_plot.png', dpi=300)
```

https://tinyurl.com/imtkupython101
np.where
(df['MA20'] > df['MA60'],
12000,
9000)

# simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() #5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() #20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() #60 days
df['Positions'] = np.where(df['MA20'] > df['MA60'], 12000, 9000)
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60'], 'Positions': df['Positions']})
df2.plot(figsize=(12, 9), legend=True, title='AAPL', secondary_y='Positions').legend(bbox_to_anchor=(1.2, 0.5))
```python
np.where
df['MA20'] > df['MA60'],
1,
0)

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() #5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() #20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() #60 days
df['Positions'] = np.where(df['MA20'] > df['MA60'], 1, 0)
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60'], 'Positions': df['Positions']})
```
Yves Hilpisch (2018), Python for Finance: Mastering Data-Driven Finance, O'Reilly

https://github.com/yhilpisch/py4fi2nd

Source: https://www.amazon.com/Python-Finance-Mastering-Data-Driven/dp/1492024333
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

https://github.com/ageron/handson-ml2
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Notebooks
1. The Machine Learning landscape
2. End-to-end Machine Learning project
3. Classification
4. Training Models
5. Support Vector Machines
6. Decision Trees
7. Ensemble Learning and Random Forests
8. Dimensionality Reduction
9. Unsupervised Learning Techniques
10. Artificial Neural Nets with Keras
11. Training Deep Neural Networks
12. Custom Models and Training with TensorFlow
13. Loading and Preprocessing Data
14. Deep Computer Vision Using Convolutional Neural Networks
15. Processing Sequences Using RNNs and CNNs
16. Natural Language Processing with RNNs and Attention
17. Representation Learning Using Autoencoders
18. Reinforcement Learning
19. Training and Deploying TensorFlow Models at Scale

https://github.com/ageron/handson-ml2
Papers with Code
State-of-the-Art (SOTA)

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Follow on Twitter for updates

Computer Vision

- Semantic Segmentation: 33 leaderboards, 667 papers with code
- Image Classification: 52 leaderboards, 564 papers with code
- Object Detection: 54 leaderboards, 467 papers with code
- Image Generation: 51 leaderboards, 231 papers with code
- Pose Estimation: 40 leaderboards, 231 papers with code

› See all 707 tasks

Natural Language Processing

- Machine Translation
- Language Modelling
- Question Answering
- Sentiment Analysis
- Text Generation

https://paperswithcode.com/sota
Papers with Code
Stock Market Prediction

Leaderboards
No evaluation results yet. Help compare methods by submit evaluation metrics.

Subtasks

- Stock Price Prediction: 3 papers with code
- Stock Trend Prediction: 2 papers with code
- Stock Prediction: 1 paper with code

https://paperswithcode.com/task/stock-market-prediction
The Quant Finance PyData Stack

Quantopian

PyThalesians

Zipline

DX Analytics

PyAlgoTrade

QuantLib

StatsModels

Stats in Python

scikits-image

image processing in python

matplotlib

pandas

\[ y_{it} = \beta x_{it} + \mu_i + \epsilon_{it} \]

SciPy

NumPy

SymPy

IPython

jupyter

Note: The diagram includes various packages and tools commonly used in quantitative finance and data analysis, such as PyTables, StatsModels, pandas, and matplotlib. The source of the image is provided at the bottom.
Summary

• Machine Learning for Investment Analysis with Scikit-Learn in Python
  – Machine Learning
  – Scikit-Learn
References

• Ties de Kok (2017), Learn Python for Research, https://github.com/TiesdeKok/LearnPythonforResearch
• Python Programming, https://pythonprogramming.net/
• Python, https://www.python.org/
• Python Programming Language, http://pythonprogramminglanguage.com/
• Numpy, http://www.numpy.org/
• Pandas, http://pandas.pydata.org/
• Skikit-learn, http://scikit-learn.org/
• Data School (2015), Machine learning in Python with scikit-learn, https://www.youtube.com/playlist?list=PL5-da3qGB5IcEmbQuqbbCOQWcS6OYBr5A