AI in Finance
Big Data Analytics
Machine Learning in Finance Application with Scikit-Learn In Python

Min-Yuh Day, Ph.D.
Associate Professor
Department of Information Management
Tamkang University

http://mail.tku.edu.tw/myday

2019-11-19
Course Schedule (1/2)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Subject/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019/09/10</td>
<td>Course Orientation on AI in Finance Big Data Analytics</td>
</tr>
<tr>
<td>2</td>
<td>2019/09/17</td>
<td>AI in FinTech: Financial Services Innovation and Application</td>
</tr>
<tr>
<td>3</td>
<td>2019/09/24</td>
<td>ABC: AI, Big Data, Cloud Computing</td>
</tr>
<tr>
<td>4</td>
<td>2019/10/01</td>
<td>Business Models of Fintech</td>
</tr>
<tr>
<td>5</td>
<td>2019/10/08</td>
<td>Event Studies in Finance</td>
</tr>
<tr>
<td>6</td>
<td>2019/10/15</td>
<td>Case Study on AI in Finance Big Data Analytics I</td>
</tr>
<tr>
<td>7</td>
<td>2019/10/22</td>
<td>Foundations of AI in Finance Big Data Analytics with Python</td>
</tr>
<tr>
<td>8</td>
<td>2019/10/29</td>
<td>Case Study on Financial Industry Practice I</td>
</tr>
<tr>
<td>9</td>
<td>2019/11/05</td>
<td>Quantitative Investing with Pandas in Python</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Subject/Topics</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>2019/11/12</td>
<td>Midterm Project Report</td>
</tr>
<tr>
<td>11</td>
<td>2019/11/19</td>
<td>Machine Learning in Finance Application with Scikit-Learn In Python</td>
</tr>
<tr>
<td>13</td>
<td>2019/12/03</td>
<td>Case Study on AI in Finance Big Data Analytics II</td>
</tr>
<tr>
<td>14</td>
<td>2019/12/10</td>
<td>Deep Learning for Financial Time Series Forecasting with TensorFlow II</td>
</tr>
<tr>
<td>15</td>
<td>2019/12/17</td>
<td>Case Study on Financial Industry Practice II</td>
</tr>
<tr>
<td>17</td>
<td>2019/12/31</td>
<td>Final Project Presentation I</td>
</tr>
<tr>
<td>18</td>
<td>2020/01/07</td>
<td>Final Project Presentation II</td>
</tr>
</tbody>
</table>
Machine Learning in Finance Application with Scikit-Learn In Python
Outline

• Machine Learning in Finance Application with Scikit-Learn In Python
 – Machine Learning
 – Scikit-Learn

https://github.com/ageron/handson-ml2

Artificial Intelligence
Machine Learning & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

AI, ML, DL

Artificial Intelligence (AI)

Machine Learning (ML)

Supervised Learning

Unsupervised Learning

Deep Learning (DL)

CNN
RNN LSTM GRU
GAN

Semi-supervised Learning

Reinforcement Learning

Source: https://leonardoaraujosantos.gitbooks.io/artificial-intelligence/content/deep_learning.html
3 Machine Learning Algorithms

Machine Learning Models

- Deep Learning
- Association rules
- Decision tree
- Clustering
- Bayesian
- Kernel
- Ensemble
- Dimensionality reduction
- Regression Analysis
- Instance based

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Machine Learning (ML) / Deep Learning (DL)

- Machine Learning (ML)
 - Supervised Learning
 - Decision Tree Classifiers
 - Linear Classifiers
 - Rule-based Classifiers
 - Probabilistic Classifiers
 - Unsupervised Learning
 - Reinforcement Learning
 - Deep Learning (DL)
 - Support Vector Machine (SVM)
 - Neural Network (NN)
 - Naïve Bayes (NB)
 - Bayesian Network (BN)
 - Maximum Entropy (ME)

Data Mining Tasks & Methods

<table>
<thead>
<tr>
<th>Data Mining Tasks & Methods</th>
<th>Data Mining Algorithms</th>
<th>Learning Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification</td>
<td>Decision Trees, Neural Networks, Support Vector Machines, kNN, Naive Bayes, GA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Regression</td>
<td>Linear/Nonlinear Regression, ANN, Regression Trees, SVM, kNN, GA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Time series</td>
<td>Autoregressive Methods, Averaging Methods, Exponential Smoothing, ARIMA</td>
<td>Supervised</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link analysis</td>
<td>Expectation Maximization, Apriori Algorithm, Graph-Based Matching</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Sequence analysis</td>
<td>Apriori Algorithm, FP-Growth, Graph-Based Matching</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Segmentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering</td>
<td>k-means, Expectation Maximization (EM)</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Outlier analysis</td>
<td>k-means, Expectation Maximization (EM)</td>
<td>Unsupervised</td>
</tr>
</tbody>
</table>

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), *Business Intelligence, Analytics, and Data Science: A Managerial Perspective*, 4th Edition, Pearson
Data Mining Methods

• Classification
 – Classification
 • Class Label Prediction
 – Regression
 • Numeric Value Prediction

• Clustering
• Association

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Evaluation

(Accuracy of Classification Model)
Assessing the Classification Model

• Predictive accuracy
 – Hit rate
• Speed
 – Model building; predicting
• Robustness
• Scalability
• Interpretability
 – Transparency, explainability

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Accuracy

Precision

Validity

Reliability
Accuracy vs. Precision

A

High Accuracy
High Precision

B

Low Accuracy
High Precision

C

High Accuracy
Low Precision

D

Low Accuracy
Low Precision
Accuracy vs. Precision

- **A**: High Accuracy, High Precision, High Validity, High Reliability
- **B**: Low Accuracy, High Precision, Low Validity, High Reliability
- **C**: High Accuracy, Low Precision, High Validity, Low Reliability
- **D**: Low Accuracy, Low Precision, Low Validity, Low Reliability
Accuracy vs. Precision

A
- High Accuracy
- High Precision
- High Validity
- High Reliability

B
- Low Accuracy
- High Precision
- Low Validity
- High Reliability

C
- High Accuracy
- Low Precision
- High Validity
- Low Reliability

D
- Low Accuracy
- Low Precision
- Low Validity
- Low Reliability
Confusion Matrix for Tabulation of Two-Class Classification Results

![Confusion Matrix Diagram]

- **True Positive Count (TP)**
- **False Positive Count (FP)**
- **False Negative Count (FN)**
- **True Negative Count (TN)**

Accuracy

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

True Positive Rate

\[
\text{True Positive Rate} = \frac{TP}{TP + FN}
\]

True Negative Rate

\[
\text{True Negative Rate} = \frac{TN}{TN + FP}
\]

Precision

\[
\text{Precision} = \frac{TP}{TP + FP}
\]

Recall

\[
\text{Recall} = \frac{TP}{TP + FN}
\]

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Sensitivity = True Positive Rate

Specificity = True Negative Rate
Estimation Methodologies for Classification

- **Simple split** (or holdout or test sample estimation)
 - Split the data into 2 mutually exclusive sets training (~70%) and testing (30%)
 - For ANN, the data is split into three sub-sets (training [~60%], validation [~20%], testing [~20%])
k-Fold Cross-Validation

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Estimation Methodologies for Classification
Area under the ROC curve

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
True Class (actual value)

<table>
<thead>
<tr>
<th>Predictive Class (prediction outcome)</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True Positive (TP)</td>
<td>False Positive (FP)</td>
</tr>
<tr>
<td>Negative</td>
<td>False Negative (FN)</td>
<td>True Negative (TN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>N</td>
</tr>
</tbody>
</table>

Accuracy = \[
\frac{TP + TN}{TP + TN + FP + FN} \]

True Positive Rate (Sensitivity) = \[
\frac{TP}{TP + FN} \]

True Negative Rate (Specificity) = \[
\frac{TN}{TN + FP} \]

False Positive Rate = \[
\frac{FP}{FP + TN} \]

False Positive Rate (1 - Specificity) = \[
\frac{FP}{FP + TN} \]

True Positive Rate (Sensitivity) = \(\frac{TP}{TP + FN} \)

Sensitivity
- True Positive Rate
- Recall
- Hit rate
- \(TP / (TP + FN) \)

\[True Positive Rate = \frac{TP}{TP + FN}\]
True Class (actual value)

<table>
<thead>
<tr>
<th>True Class (actual value)</th>
<th>Predictive Class (prediction outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>True Positive (TP)</td>
<td>True Positive (TP)</td>
</tr>
<tr>
<td>False Positive (FP)</td>
<td>False Positive (FP)</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>False Negative (FN)</td>
<td>False Negative (FN)</td>
</tr>
<tr>
<td>True Negative (TN)</td>
<td>True Negative (TN)</td>
</tr>
</tbody>
</table>

True Negative Rate

\[
\text{True Negative Rate} = \frac{TN}{TN + FP}
\]

Specificity

- **True Negative Rate**
 - \(= \frac{TN}{N} \)
 - \(= \frac{TN}{(TN + FP)} \)

\[
\text{Specificity} = \text{True Negative Rate} = \frac{TN}{TN + FP}
\]

\[
\text{False Positive Rate} (1 - \text{Specificity}) = \frac{FP}{FP + TN}
\]

Source

True Class (actual value)

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive (TP)</td>
<td>False Positive (FP)</td>
</tr>
<tr>
<td>False Negative (FN)</td>
<td>True Negative (TN)</td>
</tr>
</tbody>
</table>

Precision

\[\text{Precision} = \frac{TP}{TP + FP} \]

Recall

\[\text{Recall} = \frac{TP}{TP + FN} \]

F1 score (F-score) (F-measure)

is the harmonic mean of precision and recall

\[F = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \]

Recall

- **True Positive Rate (TPR)**
- **Sensitivity**
- **Hit Rate**
- **TP / (TP + FN)**

Specificity

- **True Negative Rate**
- **True Negative Rate (Specificity)**
- **TN / (TN + FP)**

Precision

- **Positive Predictive Value (PPV)**
- **TP / (TP + FP)**

F1 score (F-score)

- **F**
- **F = 2 * precision * recall / (precision + recall)**
- **F** is the harmonic mean of precision and recall
- **F = 2TP / (P + P’)**
- **F = 2TP / (2TP + FP + FN)**

Accuracy

- **Accuracy**
- **TP + TN / (TP + TN + FP + FN)**
- **F1 score (F-score)**
- **F**
- **F** is the harmonic mean of precision and recall
- **F = 2TP / (P + P’)**
- **F = 2TP / (2TP + FP + FN)**
Recall
- True Positive Rate (TPR)
- Sensitivity
- Hit Rate

Precision
- Positive Predictive Value (PPV)

TPR = \frac{TP}{TP + FN}

FPR = \frac{FP}{FP + TN}

PPV = \frac{TP}{TP + FP}

F1 = \frac{2 \times TP}{2 \times TP + FP + FN}

ACC = \frac{TP + TN}{TP + FP + TN + FN}

Example A:
- TP = 63
- FP = 28
- FN = 37
- TN = 72

TPR = \frac{63}{63 + 28} = 0.63

FPR = \frac{28}{28 + 72} = 0.28

PPV = \frac{63}{63 + 28} = 0.69

F1 = \frac{2 \times 63}{2 \times 63 + 28 + 37} = 0.66

ACC = \frac{63 + 72}{200} = 0.68

Example B:
- TP = 77
- FP = 23
- FN = 77
- TN = 23

TPR = \frac{77}{77 + 23} = 0.77

FPR = \frac{23}{23 + 77} = 0.77

PPV = \frac{77}{77 + 23} = 0.50

F1 = \frac{2 \times 77}{2 \times 77 + 23 + 77} = 0.61

ACC = \frac{77 + 23}{200} = 0.50

Recall
= True Positive Rate (TPR)
= Sensitivity
= Hit Rate

Precision
= Positive Predictive Value (PPV)

Recall = \(\frac{TP}{TP + FN} \)

Precision = \(\frac{TP}{TP + FP} \)

The Quant Finance PyData Stack

Quantopian

PyThalesians

Zipline

DX Analytics

PyAlgoTrade

QuantLib

StatsModels

NetworkX

scikits-image

PyMC

SciPy

matplotlib

pandas

SymPy

IPython

Python
Scikit-Learn

Machine Learning in Python
Scikit-Learn

Scikit-learn
Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification
Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.
Algorithms: SVM, nearest neighbors, random forest, ...

Regression
Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso, ...

Clustering
Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes
Algorithms: k-Means, spectral clustering, mean-shift, ...

Dimensionality reduction
Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-negative matrix factorization.

Model selection
Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning
Modules: grid search, cross validation, metrics.

Preprocessing
Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

Source: http://scikit-learn.org/
Scikit-Learn Machine Learning Map

classification
- SVC
- Ensemble Classifiers
- Naive Bayes
- Text Data
- Linear SVC
- KNeighbors Classifier
- SGD Classifier

<10K samples
- Spectral Clustering
- GMM
- MiniBatch KMeans
- Meanshift
- VBGMM

<10K samples
- <10K samples
- >50 samples
- few features should be important
- >50 samples
- few features should be important
- just looking
- predicting structure
- predicting a quantity
- do you have labeled data
- number of categories known

<10K samples
- tougher luck

regression
- SGD Regressor
- Lasso
- ElasticNet
- RidgeRegression
- SVR(kernel="rbf")
- SVR(kernel="linear")

scikit-learn algorithm cheat-sheet

Scikit-Learn Machine Learning Map

Scikit-Learn Machine Learning Map

Scikit-Learn Machine Learning Map
Iris flower data set

setosa versicolor virginica

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set
Iris Classification

iris.data

5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9, 3.0, 1.4, 0.2, Iris-setosa
4.7, 3.2, 1.3, 0.2, Iris-setosa
4.6, 3.1, 1.5, 0.2, Iris-setosa
5.0, 3.6, 1.4, 0.2, Iris-setosa
5.4, 3.9, 1.7, 0.4, Iris-setosa
4.6, 3.4, 1.4, 0.3, Iris-setosa
5.0, 3.4, 1.5, 0.2, Iris-setosa
4.4, 2.9, 1.4, 0.2, Iris-setosa
4.9, 3.1, 1.5, 0.1, Iris-setosa
5.4, 3.7, 1.5, 0.2, Iris-setosa
4.8, 3.4, 1.6, 0.2, Iris-setosa
4.8, 3.0, 1.4, 0.1, Iris-setosa
4.3, 3.0, 1.1, 0.1, Iris-setosa
5.8, 4.0, 1.2, 0.2, Iris-setosa
5.7, 4.4, 1.5, 0.4, Iris-setosa
5.4, 3.9, 1.3, 0.4, Iris-setosa
5.1, 3.5, 1.4, 0.3, Iris-setosa
5.7, 3.8, 1.7, 0.3, Iris-setosa
5.1, 3.8, 1.5, 0.3, Iris-setosa
5.4, 3.4, 1.7, 0.2, Iris-setosa
5.1, 3.7, 1.5, 0.4, Iris-setosa
4.6, 3.6, 1.0, 0.2, Iris-setosa
5.1, 3.3, 1.7, 0.5, Iris-setosa
4.8, 3.4, 1.9, 0.2, Iris-setosa
5.0, 3.0, 1.6, 0.2, Iris-setosa
5.0, 3.4, 1.6, 0.4, Iris-setosa

setosa

versicolor

virginica
Iris Data Visualization

Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html
Data Visualization in Google Colab

```python
import seaborn as sns
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")
```
import seaborn as sns
sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")

Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2)
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

Import Libraries
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
print('imported')

imported
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))
```python
print(df.describe())
```

<table>
<thead>
<tr>
<th></th>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>150.000000</td>
<td>150.000000</td>
<td>150.000000</td>
<td>150.000000</td>
</tr>
<tr>
<td>mean</td>
<td>5.843333</td>
<td>3.054000</td>
<td>3.758667</td>
<td>1.198667</td>
</tr>
<tr>
<td>std</td>
<td>0.828066</td>
<td>0.433594</td>
<td>1.764420</td>
<td>0.763161</td>
</tr>
<tr>
<td>min</td>
<td>4.300000</td>
<td>2.000000</td>
<td>1.000000</td>
<td>0.100000</td>
</tr>
<tr>
<td>25%</td>
<td>5.100000</td>
<td>2.800000</td>
<td>1.600000</td>
<td>0.300000</td>
</tr>
<tr>
<td>50%</td>
<td>5.800000</td>
<td>3.000000</td>
<td>4.350000</td>
<td>1.300000</td>
</tr>
<tr>
<td>75%</td>
<td>6.400000</td>
<td>3.300000</td>
<td>5.100000</td>
<td>1.800000</td>
</tr>
<tr>
<td>max</td>
<td>7.900000</td>
<td>4.400000</td>
<td>6.900000</td>
<td>2.500000</td>
</tr>
</tbody>
</table>
df.tail(10)

```python
print(df.tail(10)).
```

<table>
<thead>
<tr>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>6.7</td>
<td>3.1</td>
<td>5.6</td>
<td>2.4 Iris-virginica</td>
</tr>
<tr>
<td>141</td>
<td>6.9</td>
<td>3.1</td>
<td>5.1</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>142</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9 Iris-virginica</td>
</tr>
<tr>
<td>143</td>
<td>6.8</td>
<td>3.2</td>
<td>5.9</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>144</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5 Iris-virginica</td>
</tr>
<tr>
<td>145</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>146</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9 Iris-virginica</td>
</tr>
<tr>
<td>147</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0 Iris-virginica</td>
</tr>
<tr>
<td>148</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>2.3 Iris-virginica</td>
</tr>
<tr>
<td>149</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8 Iris-virginica</td>
</tr>
</tbody>
</table>
print(df.info())
print(df.shape)

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal-length 150 non-null float64
sepal-width 150 non-null float64
petal-length 150 non-null float64
petal-width 150 non-null float64
class 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB
None

print(df.shape)

(150, 5)
df.groupby('class').size()

print(df.groupby('class').size())

class
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64
```python
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
```
df.hist()
plt.show()
scatter_matrix(df)
plt.show()
sns.pairplot(df, hue="class", size=2)
Machine Learning
Supervised Learning
Classification
and
Prediction
Data Mining and Machine Learning in Google Colab

```python
# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix

# Import sklearn
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier

print("Imported")

# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
df.hist()
plt.show()
```
Import sklearn
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
print("Imported")
Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue='class', size=2)
Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())

plt.rcParams["figure.figsize"] = (10, 8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()

df.hist()
plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2).
```python
df.corr()
```

<table>
<thead>
<tr>
<th></th>
<th>sepal-length</th>
<th>sepal-width</th>
<th>petal-length</th>
<th>petal-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>sepal-length</td>
<td>1.000000</td>
<td>-0.109369</td>
<td>0.871754</td>
<td>0.817954</td>
</tr>
<tr>
<td>sepal-width</td>
<td>-0.109369</td>
<td>1.000000</td>
<td>-0.420516</td>
<td>-0.356544</td>
</tr>
<tr>
<td>petal-length</td>
<td>0.871754</td>
<td>-0.420516</td>
<td>1.000000</td>
<td>0.962757</td>
</tr>
<tr>
<td>petal-width</td>
<td>0.817954</td>
<td>-0.356544</td>
<td>0.962757</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZDIFF354Nf_Lw
Split-out validation dataset
array = df.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y,
test_size=validation_size, random_state=seed)
scoring = 'accuracy'

len(Y_validation).
Models

```python
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DT', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
```
evaluate each model in turn
results = []
names = []
for name, model in models:
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 cv_results =
model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %.4f (%.4f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
```python
# Models
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('DT', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))

# evaluate each model in turn
results = []
names = []
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=seed)
    cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %.4f (%.4f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)

LR: 0.9667 (0.0408)
LDA: 0.9750 (0.0382)
KNN: 0.9833 (0.0333)
DT: 0.9750 (0.0382)
NB: 0.9750 (0.0534)
SVM: 0.9917 (0.0250)
```

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZDlFF354Nf_Lw
Make predictions on validation dataset
model = KNeighborsClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
Make predictions on validation dataset
model = KNeighborsClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9000
[[7 0 0]
 [0 11 1]
 [0 2 9]]

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.85</td>
<td>0.92</td>
<td>0.88</td>
<td>12</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.90</td>
<td>0.82</td>
<td>0.86</td>
<td>11</td>
</tr>
<tr>
<td>avg / total</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>30</td>
</tr>
</tbody>
</table>

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6I1nnZDlFF354Nf_Lw
Make predictions on validation dataset
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

Make predictions on validation dataset
model = SVC()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9333
[[7 0 0]
 [0 10 2]
 [0 0 11]]

<table>
<thead>
<tr>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1.00</td>
<td>0.83</td>
<td>0.91</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.85</td>
<td>1.00</td>
<td>0.92</td>
</tr>
</tbody>
</table>

avg / total 0.94 0.93 0.93 30

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6I1nnZD1FF354Nf_Lw
Make predictions on validation dataset

```python
model = DecisionTreeClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
```

0.9000

```
[[ 7  0  0]
 [ 0 11  1]
 [ 0  2  9]]
	precision     recall   f1-score    support

Iris-setosa      1.00     1.00     1.00     7
Iris-versicolor  0.85     0.92     0.88     12
Iris-virginica   0.90     0.82     0.86     11

avg / total     0.90     0.90     0.90     30
```

```
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
```

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6lJ1nnZD1FF354Nf_Lw
```python
# Make predictions on validation dataset
model = GaussianNB().
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
```

```
0.8333
[[ 7  0  0]
 [ 0  9  3]
 [ 0  2  9]]

   precision   recall   f1-score  support

Iris-setosa       1.00      1.00      1.00         7
Iris-versicolor   0.82      0.75      0.78        12
Iris-virginica    0.75      0.82      0.78        11

avg / total   0.84      0.83      0.83        30

GaussianNB(priors=None)
```
Make predictions on validation dataset
```python
model = LogisticRegression()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)
```

0.8000
```
[[ 7  0  0]
 [ 0  7  5]
 [ 0 11  0]]
```

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.88</td>
<td>0.58</td>
<td>0.70</td>
<td>12</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.67</td>
<td>0.91</td>
<td>0.77</td>
<td>11</td>
</tr>
</tbody>
</table>

avg / total | 0.83 | 0.80 | 0.80 | 30 |

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
Make predictions on validation dataset
model = LinearDiscriminantAnalysis()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%.4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model)

0.9667
[[7 0 0]
 [0 11 1]
 [0 0 11]]

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1.00</td>
<td>0.92</td>
<td>0.96</td>
<td>12</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.92</td>
<td>1.00</td>
<td>0.96</td>
<td>11</td>
</tr>
<tr>
<td>avg / total</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>30</td>
</tr>
</tbody>
</table>

LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001)
Make predictions on validation dataset
model = MLPClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print("%4f" % accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
print(model).

0.9000
[[7 0 0]
 [0 9 3]
 [0 0 11]]

 precision recall f1-score support
Iris-setosa 1.00 1.00 1.00 7
Iris-versicolor 1.00 0.75 0.86 12
Iris-virginica 0.79 1.00 0.88 11

 avg / total 0.92 0.90 0.90 30

MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(100,), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=None,
shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False)
Machine Learning
Unsupervised Learning
Cluster Analysis
K-Means Clustering
K-Means Clustering

```
# importing the libraries
import numpy as np
import matplotlib.pyplot as plt
*
import pandas as pd

# importing the Iris dataset with pandas
# Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

array = df.values
X = array[:,0:4]
Y = array[:,4]

# Finding the optimum number of clusters for k-means classification
from sklearn.cluster import KMeans
wcss = []

for i in range(1, 8):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

# Plotting the results onto a line graph, allowing us to observe 'The elbow'
plt.rcParams["figure.figsize"] = (10,8)
plt.plot(range(1, 8), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') #within cluster sum of squares
plt.show()
```
importing the libraries
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd

importing the Iris dataset with pandas
Load dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)

array = df.values
X = array[:,0:4]
Y = array[:,4]
#Finding the optimum number of clusters for k-means classification

```python
from sklearn.cluster import KMeans
wcss = []

for i in range(1, 8):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

#Plotting the results onto a line graph, allowing us to observe 'The elbow'
plt.rcParams['figure.figsize'] = (10,8)
plt.plot(range(1, 8), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') #within cluster sum of squares
plt.show()
```
K-Means Clustering

The elbow method ($k=3$)

![The elbow method](https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZD1FF354Nf_Lw)
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X)

#Applying kmeans to the dataset / Creating the kmeans classifier
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X).
Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')

Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')
plt.legend()
#Applying kmeans to the dataset / Creating the kmeans classifier

```python
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
y_kmeans = kmeans.fit_predict(X).
```

#Visualising the clusters

```python
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-setosa')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-versicolour')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-virginica')
```

#Plotting the centroids of the clusters

```python
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')
```

plt.legend()

https://colab.research.google.com/drive/1QE7fR2OxHiQ0_p6l1nnZDlFF354Nf_Lw
Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqd2RkCrT

```python
# !pip install pandas_datareader
import numpy as np
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt

# Read Stock Data from Yahoo Finance
end = dt.datetime.now()
start = dt.datetime(2018, 1, 1)
df = web.DataReader("^TWII", 'yahoo', start, end) #^TWII #2330.TW #^DJI #AAPL
df.to_csv('TWII.csv')
print(df.head())
print(df.tail())
df2 = pd.read_csv('TWII.csv') #df.from_csv('AAPL.csv')
print(df2.tail())

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='TWII', label='Adj Close')
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), rowspan=10, colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), rowspan=2, colspan=9)
top.plot(df.index, df['Adj Close'], color='blue') #df.index gives the dates
bottom.bar(df.index, df['Volume'])

# set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('TWII')
top.set_xlabel('Adj Close')
bottom.set_xlabel('Volume')
```
np.where
(df['MA20'] > df['MA60'], 12000, 9000)

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() # 5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() # 20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() # 60 days
df['Positions'] = np.where(df['MA20'] > df['MA60'], 12000, 9000)
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60'], 'Positions': df['Positions']})

https://github.com/ageron/handson-ml2

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

GitHub Repository: https://github.com/ageron/handson-ml2

Files and Changes

<table>
<thead>
<tr>
<th>Folder/Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasets</td>
<td>Fix vertical bars</td>
</tr>
<tr>
<td>docker</td>
<td>Remove <code>pyvirtualdisplay</code> from environment.yml and add it to the Docker...</td>
</tr>
<tr>
<td>images</td>
<td>Add breakout.gif</td>
</tr>
<tr>
<td>work_in_progress</td>
<td>Remove from <code>_future_</code> imports as we move away from Python 2</td>
</tr>
<tr>
<td>.gitignore</td>
<td>Add jsb_chorales dataset to .gitignore</td>
</tr>
<tr>
<td>01_the_machine_learning_landsca...</td>
<td>Fix typo on import urllib</td>
</tr>
<tr>
<td>02_end_to_end_machine_learning...</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>03_classification.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>04_training_linear_models.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>05_support_vector_machines.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>06_decision_trees.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>07_ensemble_learning_and_rando...</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>08_dimensionality_reduction.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>09_unsupervised_learning.ipynb</td>
<td>Make notebooks 1 to 9 runnable in Colab without changes</td>
</tr>
<tr>
<td>10_neural_nets_with_keras.ipynb</td>
<td>Make notebooks 10 and 11 runnable in Colab without changes</td>
</tr>
<tr>
<td>11_training_deep_neural_networks...</td>
<td>Make notebooks 10 and 11 runnable in Colab without changes</td>
</tr>
<tr>
<td>12_custom_models_and_training...</td>
<td>loss = metric * mean of sample weights, fixes #63</td>
</tr>
<tr>
<td>13_loading_and_preprocessing_data...</td>
<td>Make notebook 13 runnable in Colab without changes</td>
</tr>
<tr>
<td>14_deep_computer_vision_with_cn...</td>
<td>Make notebooks 14 to 19 runnable in Colab without changes</td>
</tr>
<tr>
<td>15_processing_sequences_using_regex...</td>
<td>Make notebooks 14 to 19 runnable in Colab without changes</td>
</tr>
</tbody>
</table>

Repository URL: https://github.com/ageron/handson-ml2
Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow

Notebooks
1. The Machine Learning landscape
2. End-to-end Machine Learning project
3. Classification
4. Training Models
5. Support Vector Machines
6. Decision Trees
7. Ensemble Learning and Random Forests
8. Dimensionality Reduction
9. Unsupervised Learning Techniques
10. Artificial Neural Nets with Keras
11. Training Deep Neural Networks
12. Custom Models and Training with TensorFlow
13. Loading and Preprocessing Data
14. Deep Computer Vision Using Convolutional Neural Networks
15. Processing Sequences Using RNNs and CNNs
16. Natural Language Processing with RNNs and Attention
17. Representation Learning Using Autoencoders
18. Reinforcement Learning
19. Training and Deploying TensorFlow Models at Scale

https://github.com/ageron/handson-ml2
Papers with Code
State-of-the-Art (SOTA)

Browse State-of-the-Art

1509 leaderboards • 1327 tasks • 1347 datasets • 17810 papers with code

Follow on Twitter for updates

Computer Vision

- Semantic Segmentation
 - 33 leaderboards
 - 667 papers with code
- Image Classification
 - 52 leaderboards
 - 564 papers with code
- Object Detection
 - 54 leaderboards
 - 467 papers with code
- Image Generation
 - 51 leaderboards
 - 231 papers with code
- Pose Estimation
 - 40 leaderboards
 - 231 papers with code

See all 707 tasks

Natural Language Processing

- Machine Translation
- Language Modelling
- Question Answering
- Sentiment Analysis
- Text Generation

https://paperswithcode.com/sota
Papers with Code
Stock Market Prediction

Leaderboards

No evaluation results yet. Help compare methods by submit evaluation metrics.

Subtasks

- Stock Price Prediction
 - 3 papers with code

- Stock Trend Prediction
 - 2 papers with code

- Stock Prediction
 - 1 papers with code

https://paperswithcode.com/task/stock-market-prediction
The Quant Finance PyData Stack

Quantopian

PyThalesians

Zipline

DX Analytics

PyAlgoTrade

QuantLib

StatsModels

NetworkX

scikits-image

PyMC

SciPy

matplotlib

pandas

\[y_{it} = \beta x_{it} + \mu_i + \epsilon_{it} \]

NumPy

SymPy

IPython

Jupyter

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#5
Summary

• Machine Learning in Finance Application with Scikit-Learn In Python Machine Learning
 — Scikit-Learn
References

• Ties de Kok (2017), Learn Python for Research, https://github.com/TiesdeKok/LearnPythonforResearch
• Python Programming, https://pythonprogramming.net/
• Python, https://www.python.org/
• Python Programming Language, http://pythonprogramminglanguage.com/
• Numpy, http://www.numpy.org/
• Pandas, http://pandas.pydata.org/
• Skikit-learn, http://scikit-learn.org/
• Data School (2015), Machine learning in Python with scikit-learn, https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A