Tamkang University

Practices of Business Intelligence 預測性分析 II:

文本、網路與社群媒體分析

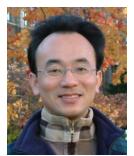
(Predictive Analytics II:

Text, Web, and Social Media Analytics)

1071BI07

MI4 (M2084) (2888)

Wed, 7, 8 (14:10-16:00) (B217)



<u>Min-Yuh Day</u> <u>戴敏育</u>

Assistant Professor

專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2018-10-31

課程大綱 (Syllabus)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2018/09/12 商業智慧實務課程介紹 (Course Orientation for Practices of Business Intelligence)
- 2 2018/09/19 商業智慧、分析與資料科學 (Business Intelligence, Analytics, and Data Science)
- 3 2018/09/26 人工智慧、大數據與雲端運算 (ABC: AI, Big Data, and Cloud Computing)
- 4 2018/10/03 描述性分析I:數據的性質、統計模型與可視化 (Descriptive Analytics I: Nature of Data, Statistical Modeling, and Visualization)
- 5 2018/10/10 國慶紀念日(放假一天)(National Day)(Day off)
- 6 2018/10/17 描述性分析II:商業智慧與資料倉儲 (Descriptive Analytics II: Business Intelligence and Data Warehousing)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

7 2018/10/24 預測性分析I:資料探勘流程、方法與演算法 (Predictive Analytics I: Data Mining Process,

Methods, and Algorithms)

8 2018/10/31 預測性分析II:文本、網路與社群媒體分析 (Predictive Analytics II: Text, Web, and Social Media Analytics)

9 2018/11/07 期中報告 (Midterm Project Report)

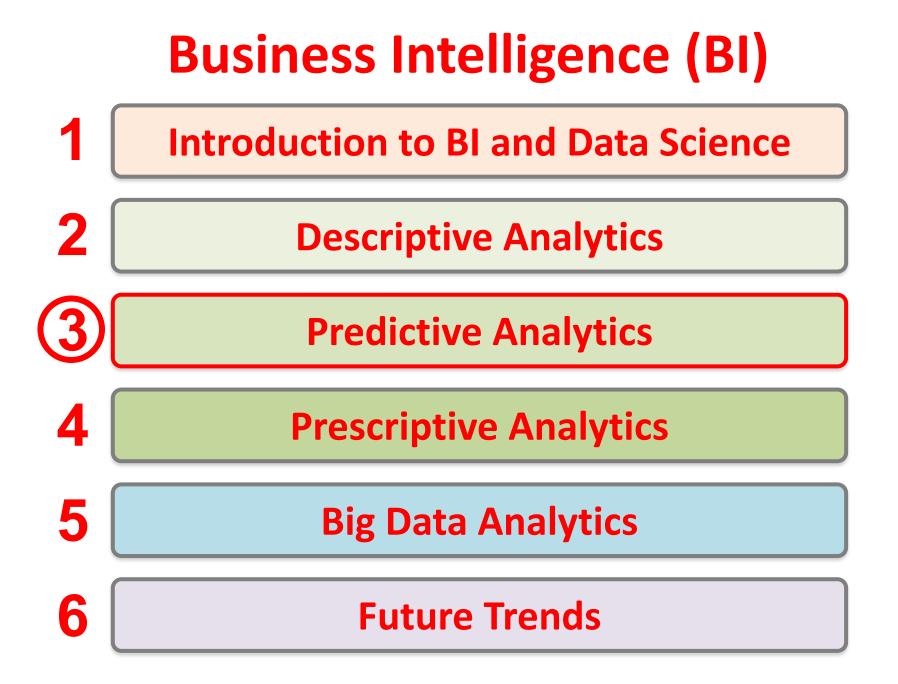
10 2018/11/14 期中考試 (Midterm Exam)

11 2018/11/21 處方性分析:最佳化與模擬 (Prescriptive Analytics: Optimization and Simulation)

12 2018/11/28 社會網絡分析 (Social Network Analysis)

課程大綱 (Syllabus)

- 週次(Week) 日期(Date) 內容(Subject/Topics) 13 2018/12/05 機器學習與深度學習 (Machine Learning and Deep Learning) 14 2018/12/12 自然語言處理 (Natural Language Processing) 15 2018/12/19 AI交談機器人與對話式商務 (AI Chatbots and Conversational Commerce) 16 2018/12/26 商業分析的未來趨勢、隱私與管理考量 (Future Trends, Privacy and Managerial Considerations in Analytics) 17 2019/01/02 期末報告 (Final Project Presentation)
- 18 2019/01/09 期末考試 (Final Exam)

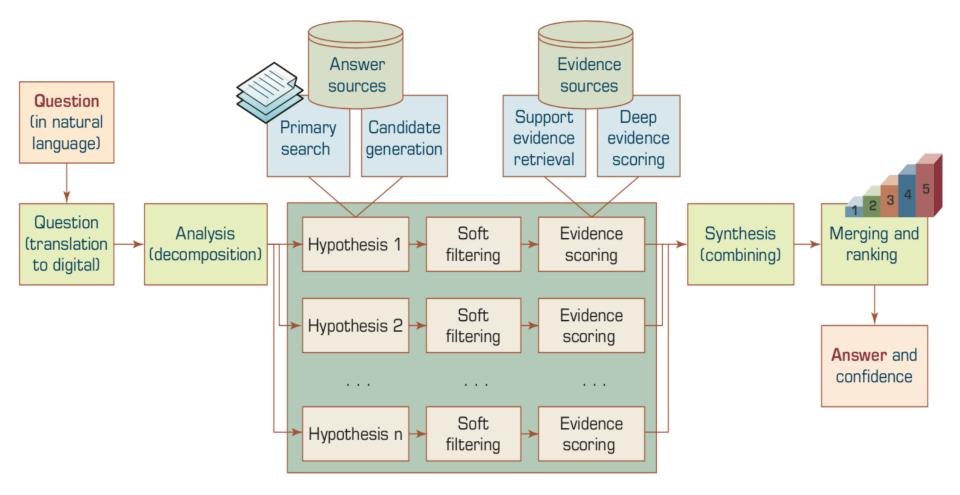


Predictive Analytics II: Text, Web, and Social Media Analytics

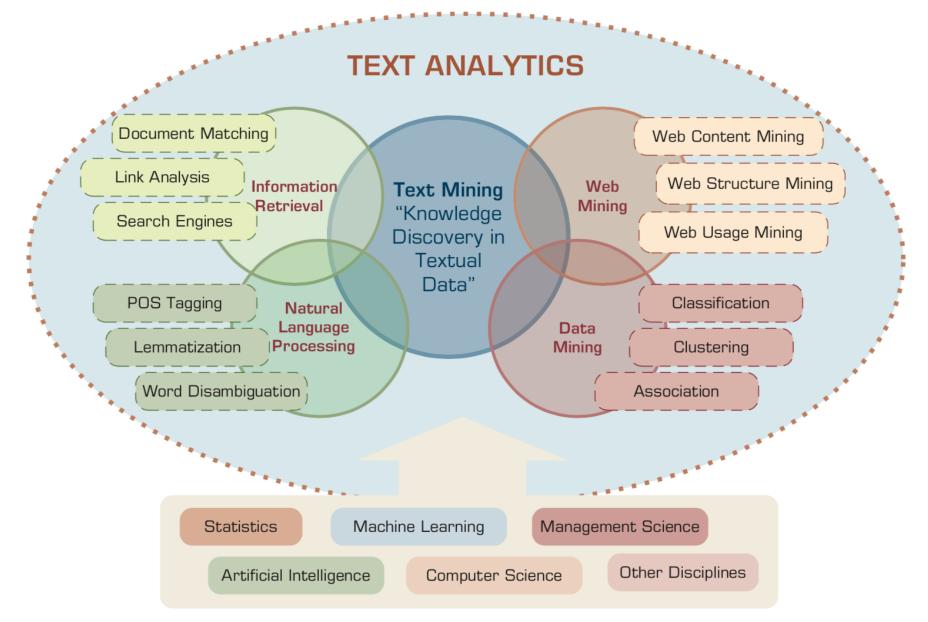
Outline

- Text Analytics and Text Mining Overview
 - -Natural Language Processing (NLP)
 - Text Mining Applications
 - -Text Mining Process
 - -Sentiment Analysis
- Web Mining Overview
 - -Search Engines
 - -Web Usage Mining (Web Analytics)
- Social Analytics

A High-Level Depiction of DeepQA Architecture



Text Analytics and Text Mining



Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Text Analytics

Text Analytics =

Information Retrieval + Information Extraction + Data Mining + Web Mining

Text Analytics = Information Retrieval + Text Mining

Text mining

- Text Data Mining
- Knowledge Discovery in Textual Databases

Application Areas of Text Mining

- Information extraction
- Topic tracking
- Summarization
- Categorization
- Clustering
- Concept linking
- Question answering

Natural Language Processing (NLP)

 Natural language processing (NLP) is an important component of text mining and is a subfield of artificial intelligence and computational linguistics.

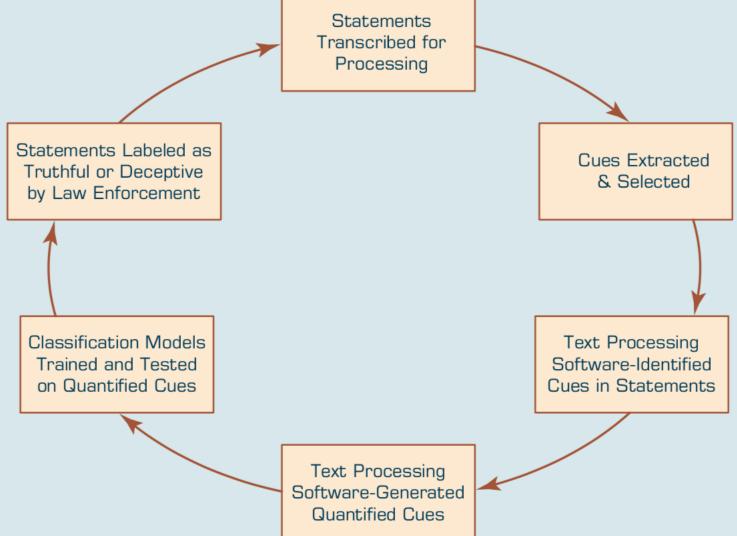
Natural Language Processing (NLP)

- Part-of-speech tagging
- Text segmentation
- Word sense disambiguation
- Syntactic ambiguity
- Imperfect or irregular input
- Speech acts

NLP Tasks

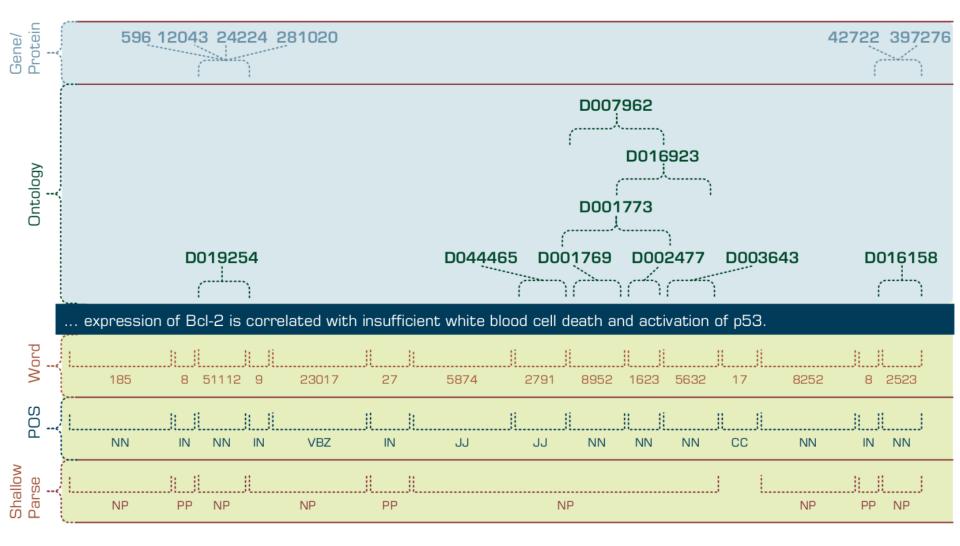
- Question answering
- Automatic summarization
- Natural language generation
- Natural language understanding
- Machine translation
- Foreign language reading
- Foreign language writing.
- Speech recognition
- Text-to-speech
- Text proofing
- Optical character recognition

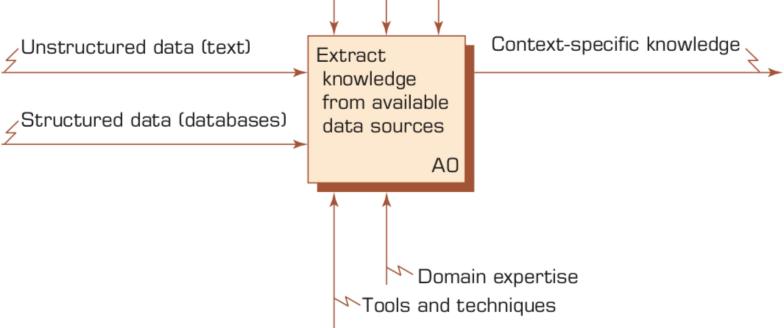
Text-Based Deception-Detection Process



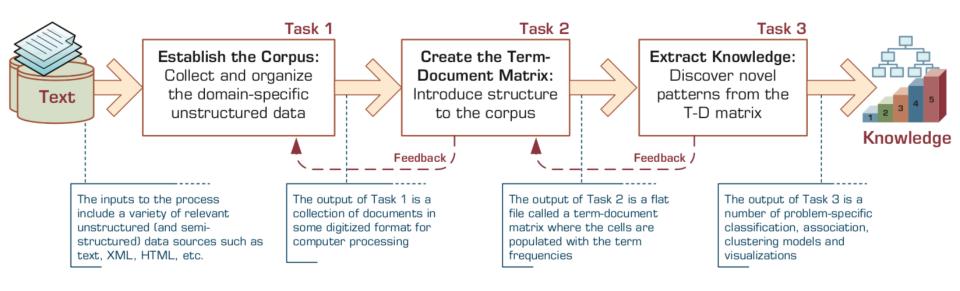
Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Multilevel Analysis of Text for Gene/Protein Interaction Identification

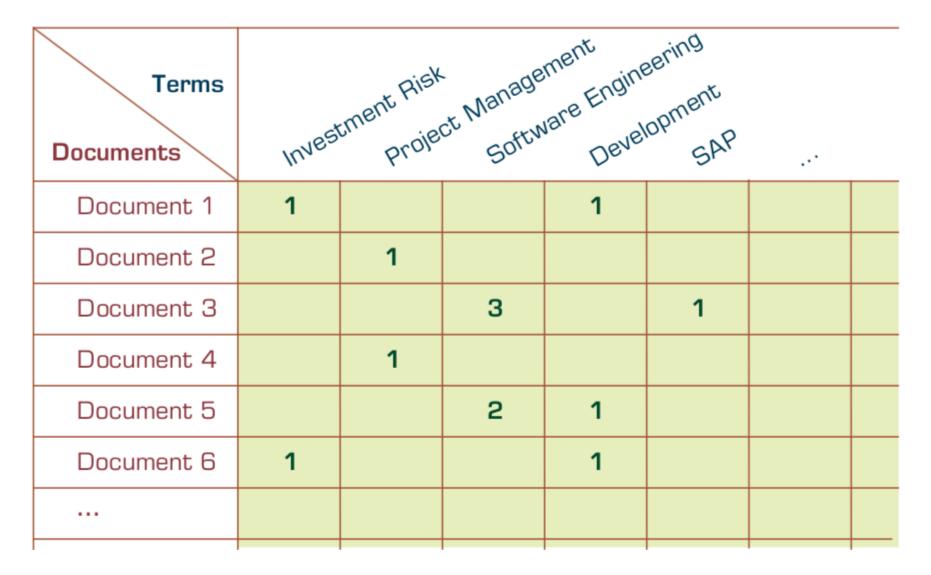




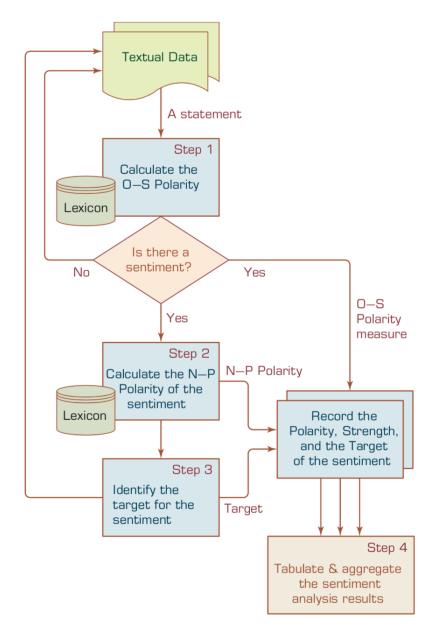
The Three-Step/Task Text Mining Process



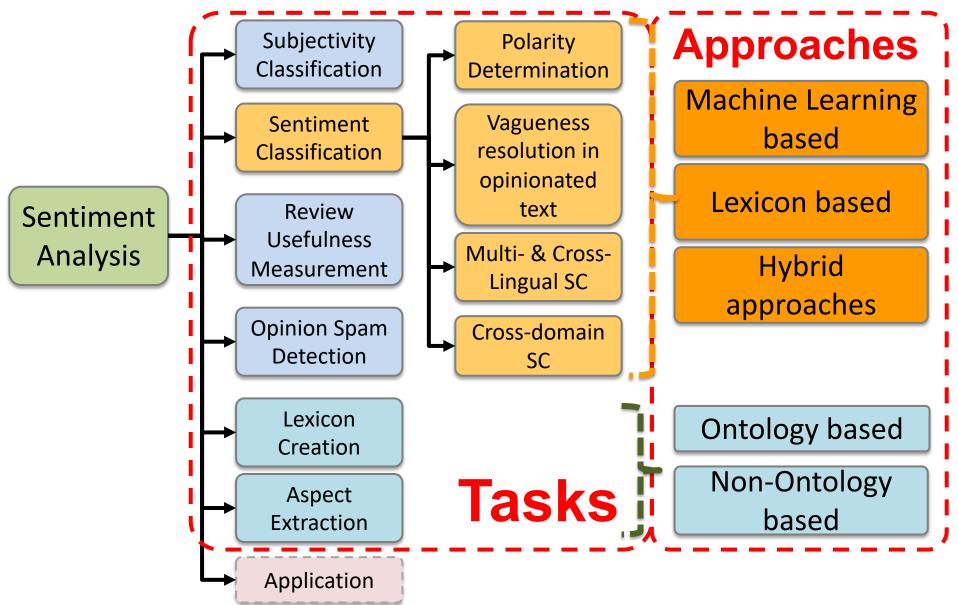
Term–Document Matrix



A Multistep Process to Sentiment Analysis

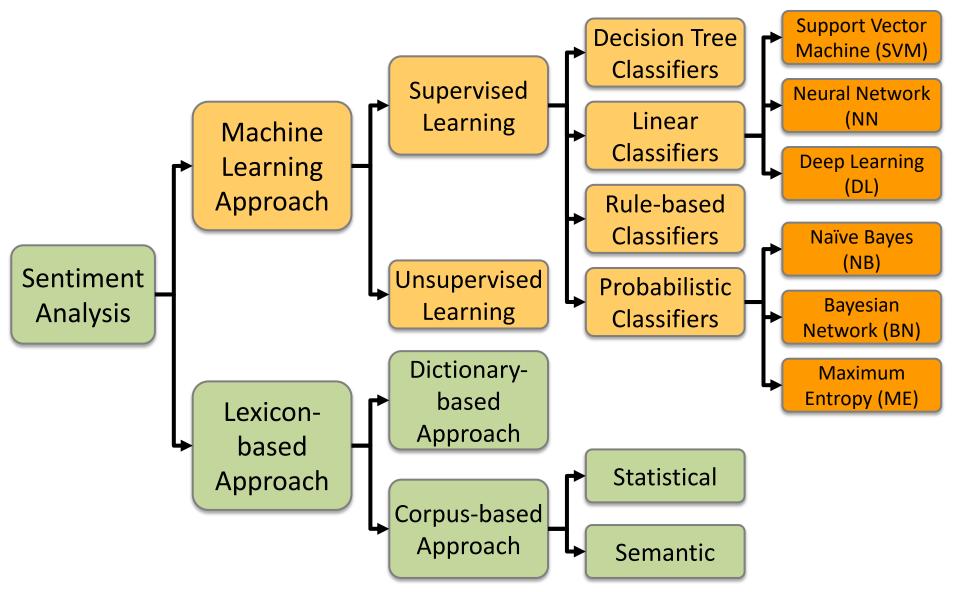


Sentiment Analysis



Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Classification Techniques



Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

Example of Opinion: review segment on iPhone

- "I bought an iPhone a few days ago.
- It was such a nice phone.
- The touch screen was really cool.
- The voice quality was clear too.
- However, my mother was mad with me as I did not tell her before I bought it.
- She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

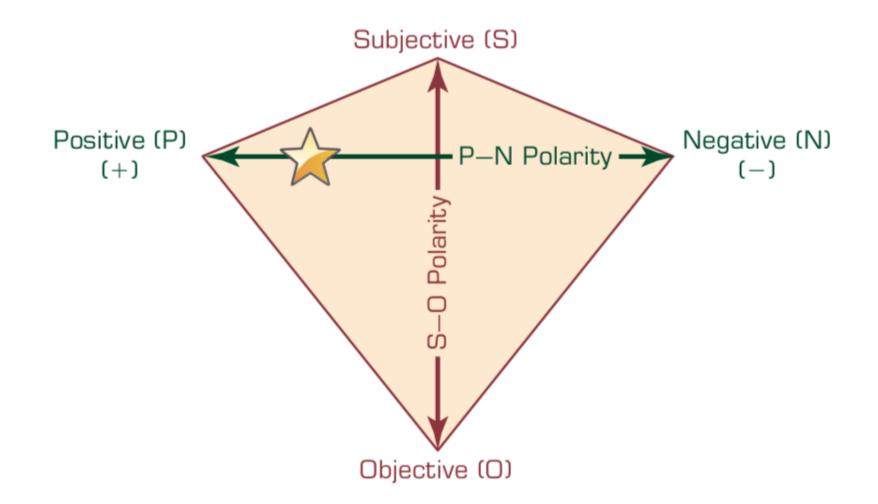
Example of Opinion: review segment on iPhone

- "(1) I bought an <u>iPhone</u> a few days ago.
- (2) It was such a **nice** phone.
- (3) The touch screen was really cool.
- (4) The voice quality was clear too.

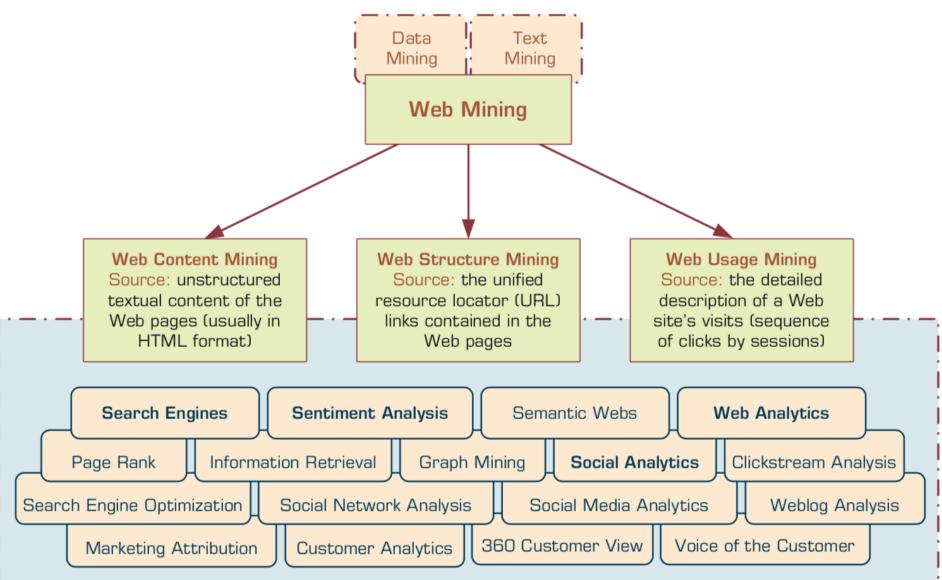
Opinion

- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too **expensive**, and wanted me to return it to the shop. ... " -Negative

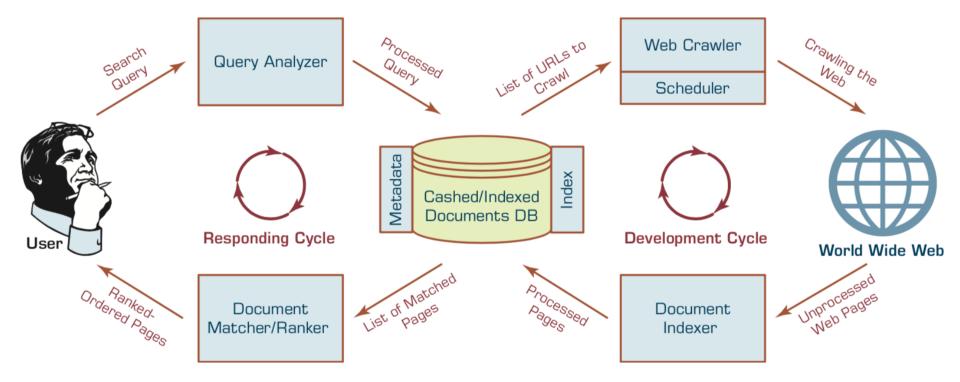
P–N Polarity and S–O Polarity Relationship



Taxonomy of Web Mining



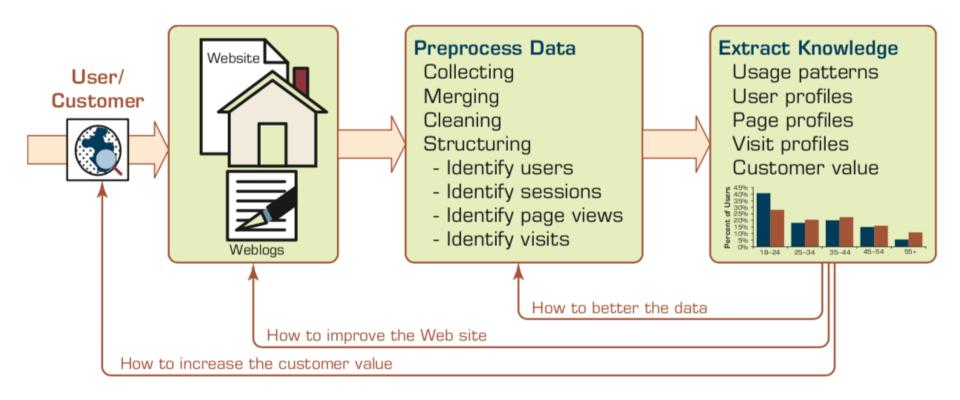
Structure of a Typical Internet Search Engine



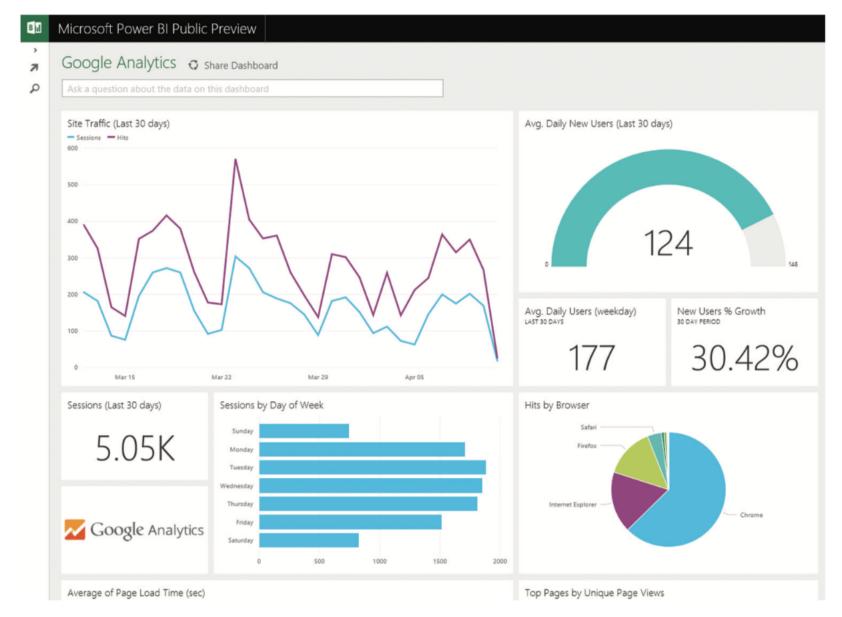
Web Usage Mining (Web Analytics)

- Web usage mining (Web analytics)
 is the extraction of useful information
 from data generated
 through Web page visits and transactions.
- Clickstream Analysis

Extraction of Knowledge from Web Usage Data



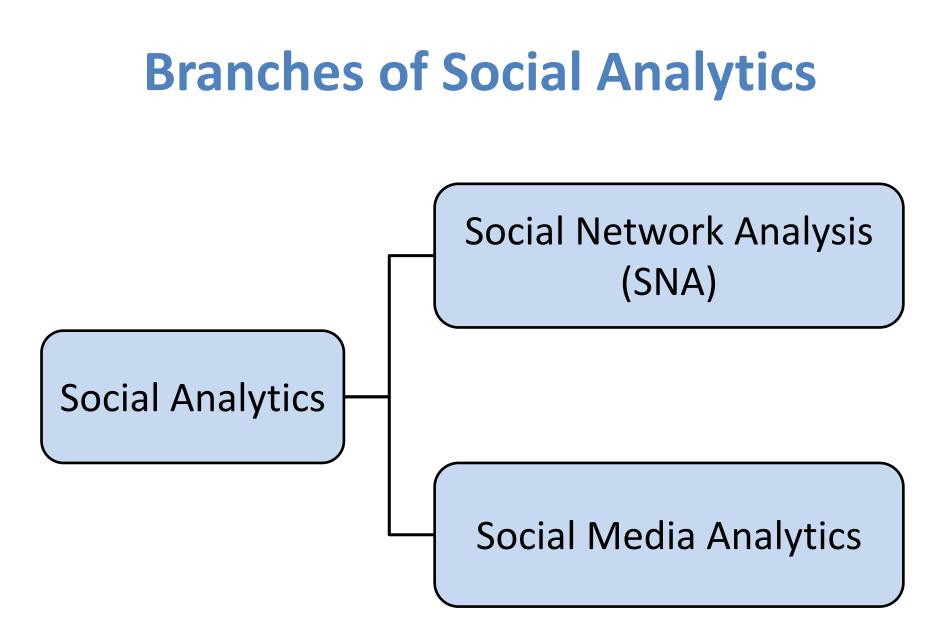
Web Analytics Dashboard



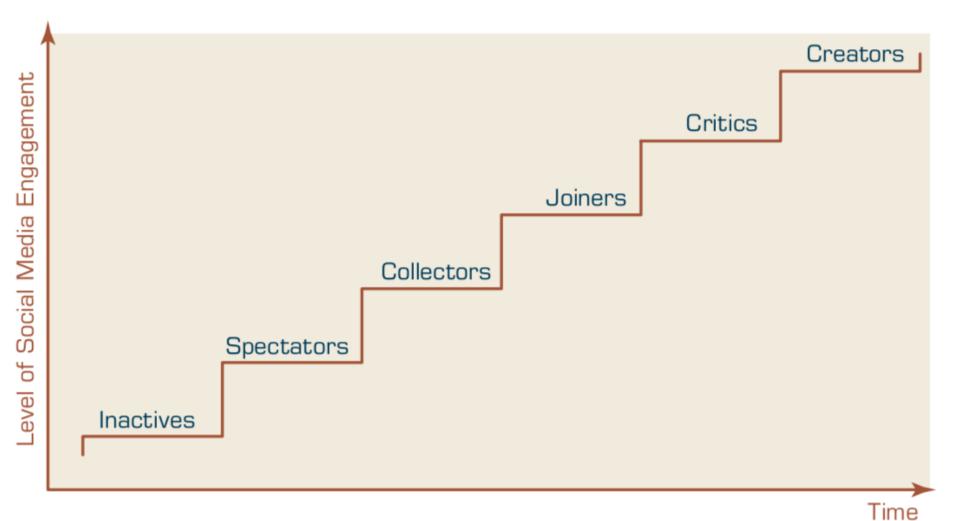
Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Social Analytics

 Social analytics is defined as monitoring, analyzing, measuring and interpreting digital interactions and relationships of people, topics, ideas and content.



Evolution of Social Media User Engagement

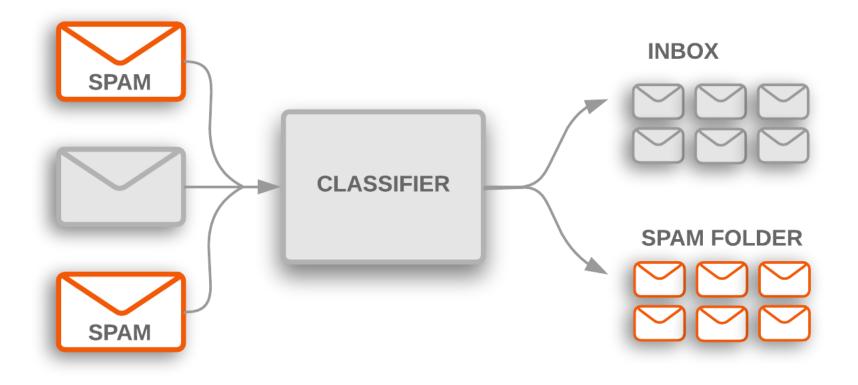


Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

CO	▲ python101.ipynb ☆ File Edit View Insert Runtime Tools Help		SHARE	A
	CODE TEXT ↑ CELL CELL	CONNECT -	EDITING	^
> -	Keras preprocessing text			
	<pre> 1 # keras.preprocessing.text Tokenizer 2 from keras.preprocessing.text import Tokenizer 3 # define 5 documents 4 docs = ['Well donel', 'Good work', 'Great effort', 'nice work', 'Excellent!'] 5 # create the tokenizer 6 t = Tokenizer() 7 # fit the tokenizer on the documents 8 t.fit_on_texts(docs) 9 print('docs:', docs) 10 print('word_counts:', t.word_counts) 11 print('document_count:', t.document_count) 12 print('word_index:', t.word_index) 13 print('word_docs:', t.word_docs) 14 # integer encode documents 15 texts_to_matrix = t.texts_to_matrix(docs, mode='count') 16 print('texts_to_matrix) </pre>			
	<pre> Using TensorFlow backend. docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!'] word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), (' document_count: 5 word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8} word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1} texts_to_matrix: [[0. 0. 1. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0.] </pre>		excellent'	, 1

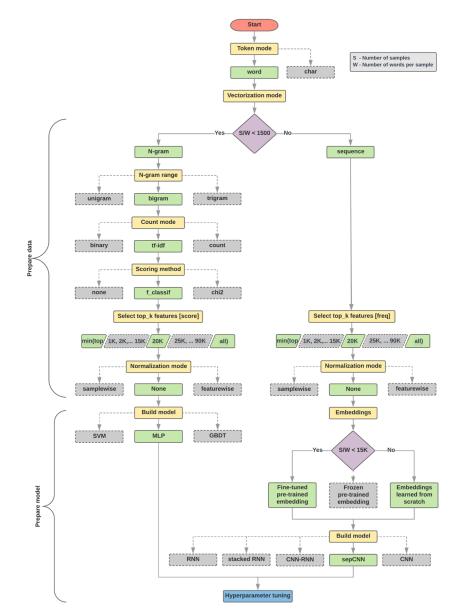
Text Classification



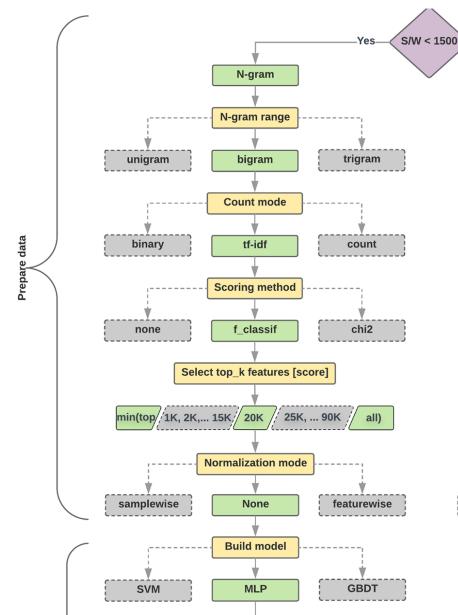
Text Classification Workflow

- Step 1: Gather Data
- Step 2: Explore Your Data
- Step 2.5: Choose a Model*
- Step 3: Prepare Your Data
- Step 4: Build, Train, and Evaluate Your Model
- Step 5: Tune Hyperparameters
- Step 6: Deploy Your Model

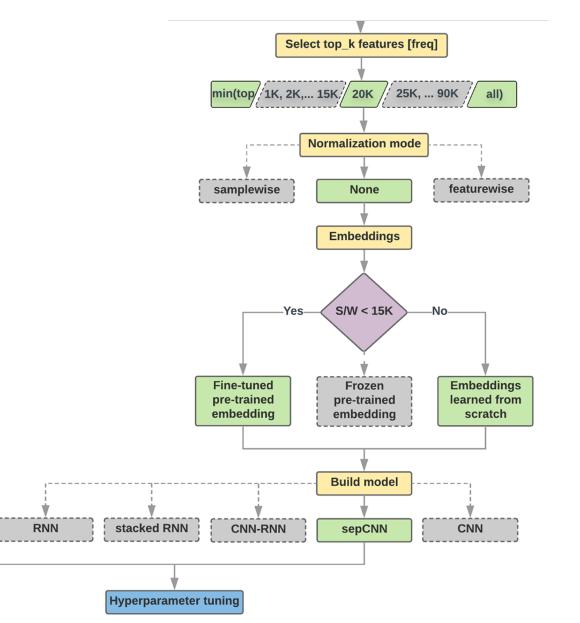
Text Classification Flowchart



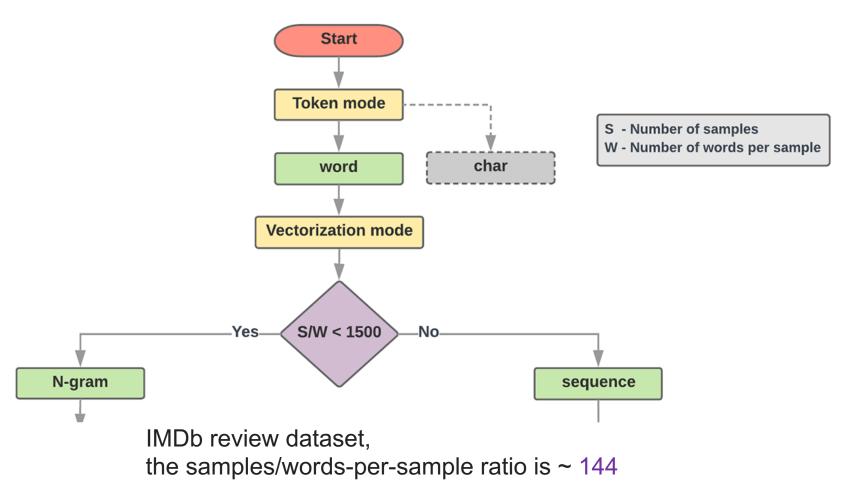
Text Classification S/W<1500: N-gram



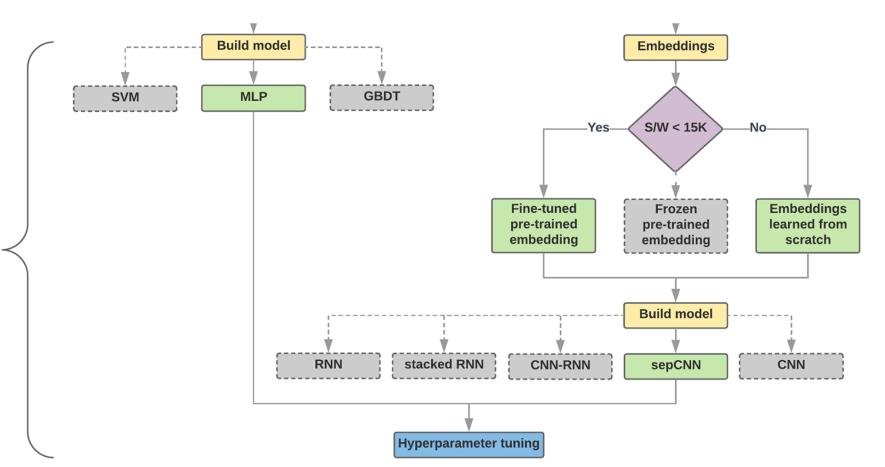
Text Classification S/W>=1500: Sequence



Step 2.5: Choose a Model Samples/Words < 1500 150,000/100 = 1500



Step 2.5: Choose a Model Samples/Words < 15,000 1,500,000/100 = 15,000



Prepare model

Step 3: Prepare Your Data

Texts:

- T1: 'The mouse ran up the clock'
- T2: 'The mouse ran down'

Token Index:
{'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6,}.
NOTE: 'the' occurs most frequently,
 so the index value of 1 is assigned to it.
 Some libraries reserve index 0 for unknown tokens,
 as is the case here.

Sequence of token indexes: T1: 'The mouse ran up the clock' = [1, 2, 3, 4, 1, 5]T1: 'The mouse ran down' = [1, 2, 3, 6]

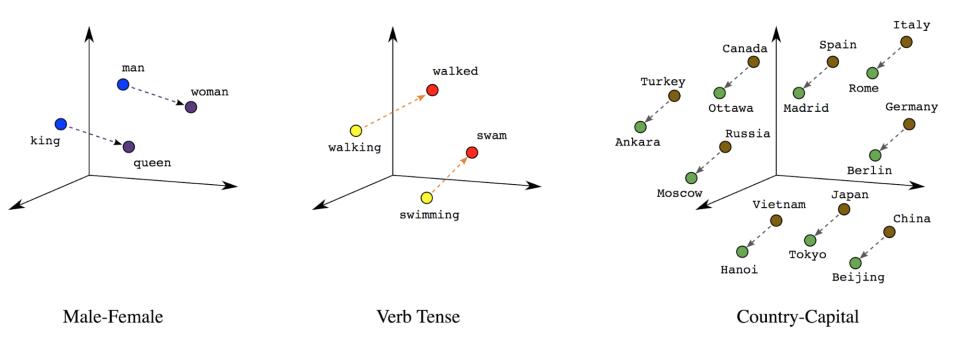
One-hot encoding

'The mouse ran up the clock' =

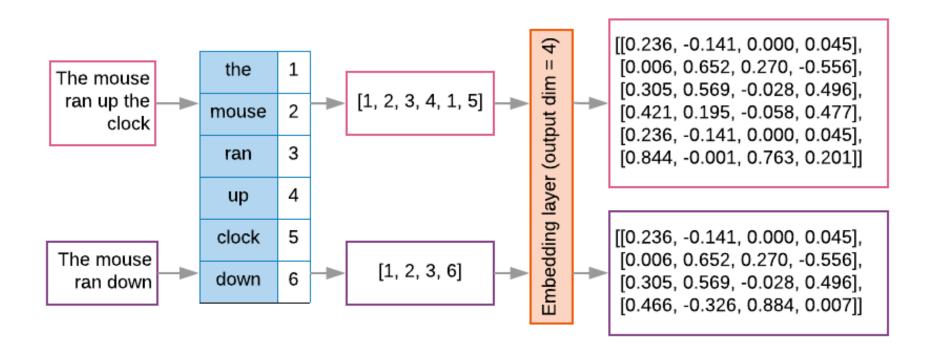
The	1	[[0,	1,	0,	0,	0,	0,	0],
mouse	2		[0,	0,	1,	0,	0,	0,	0],
ran	3		[0,	0,	0,	1,	0,	0,	0],
up	4		[0,	0,	0,	0,	1,	0,	0],
the	1		[0,	1,	0,	0,	0,	0,	0],
clock	5		[0,	0,	0,	0,	0,	1,	0]]

[0, 1, 2, 3, 4, 5, 6]

Word embeddings



Word embeddings



```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)
```

```
1 t1 = 'The mouse ran up the clock'
2 t2 = 'The mouse ran down'
3 s1 = t1.lower().split(' ')
4 s2 = t2.lower().split(' ')
5 terms = s1 + s2
6 sortedset = sorted(set(terms))
7 print('terms =', terms)
8 print('sortedset =', sortedset)
```

terms = ['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
sortedset = ['clock', 'down', 'mouse', 'ran', 'the', 'up']

```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)
tfdict = \{\}
for term in terms:
    if term not in tfdict:
        tfdict[term] = 1
    else:
        tfdict[term] += 1
a = []
for k,v in tfdict.items():
    a.append('{}, {}'.format(k,v))
print(a)
```

['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down'] ['the, 3', 'mouse, 2', 'ran, 2', 'up, 1', 'clock, 1', 'down, 1'] https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT sorted_by_value_reverse = sorted(tfdict.items(),
key=lambda kv: kv[1], reverse=True)

sorted_by_value_reverse_dict =
dict(sorted_by_value_reverse)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}

word2id = dict([(v, k) for (k, v) in id2word.items()])

sorted_by_value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted_by_value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted_by_value_reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted_by_value_reverse_dict {'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id {'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len_words: 6
sorted_by_key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

```
sorted by value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted by value: ', sorted by value)
sorted by value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted by value2: ', sorted by value2)
sorted by value reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted by value reverse: ', sorted by value reverse)
sorted by value reverse dict = dict(sorted by value reverse)
print('sorted by value reverse dict', sorted by value reverse dict)
id2word = {id: word for id, word in enumerate(sorted by value reverse dict)}
print('id2word', id2word)
word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id', word2id)
print('len words:', len(word2id))
sorted by key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted by key: ', sorted by key)
tfstring = '\n'.join(a)
print(tfstring)
tf = tfdict.get('mouse')
print(tf)
 ± -\- -/-
```

```
sorted_by_value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted_by_value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted_by_value_reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted_by_value_reverse_dict {'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id {'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len_words: 6
sorted_by_key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1
```

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

from

keras.preprocessing.text import Tokenizer

```
1 from keras.preprocessing.text import Tokenizer
 2 # define 5 documents
 3 docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
 4 # create the tokenizer
 5 t = Tokenizer()
 6 # fit the tokenizer on the documents
 7 t.fit on texts(docs)
 8 print('docs:', docs)
 9 print('word counts:', t.word counts)
10 print('document count:', t.document count)
11 print('word index:', t.word index)
12 print('word docs:', t.word docs)
13 # integer encode documents
14 texts to matrix = t.texts to matrix(docs, mode='count')
15 print('texts to matrix:')
16 print(texts to matrix)
docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('ni
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 1. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1.]]
```

from

keras.preprocessing.text import Tokenizer

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice
work', 'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document_count:', t.document_count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='count')
print('texts to matrix:')
print(texts to matrix)
```

texts_to_matrix =

t.texts_to_matrix(docs, mode='count')

```
docs: ['Well done!', 'Good work', 'Great effort',
'nice work', 'Excellent!']
word counts: OrderedDict([('well', 1), ('done', 1),
('good', 1), ('work', 2), ('great', 1), ('effort', 1),
('nice', 1), ('excellent', 1)])
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good':
4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1,
'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.]]
```

t.texts_to_matrix(docs, mode='tfidf')

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work',
'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document count:', t.document count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='tfidf')
print('texts to matrix:')
print(texts to matrix)
```

texts_to_matrix: [[0. 0. 1.25276297 1.25276297 0. 0. 0. 0. 0. 0.] [0. 0.98082925 0. 0. 1.25276297 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1.25276297 1.25276297 0. 0.] [0. 0.98082925 0. 0. 0. 0. 0. 1.25276297 0.] [0. 0. 0. 0. 0. 0. 0. 0. 1.25276297]]

Summary

- Text Analytics and Text Mining Overview
 - -Natural Language Processing (NLP)
 - Text Mining Applications
 - -Text Mining Process
 - -Sentiment Analysis
- Web Mining Overview
 - -Search Engines
 - -Web Usage Mining (Web Analytics)
- Social Analytics

References

- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.