Tamkang University

Practices of Business Intelligence 描述性分析 1:

數據的性質、統計模型與可視化

(Descriptive Analytics I: Nature of Data, Statistical

Modeling, and Visualization)

1071BI04 MI4 (M2084) (2888) Wed, 7, 8 (14:10-16:00) (B217)

<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2018-10-03

課程大綱 (Syllabus)

- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2018/09/12 商業智慧實務課程介紹 (Course Orientation for Practices of Business Intelligence)
- 2 2018/09/19 商業智慧、分析與資料科學 (Business Intelligence, Analytics, and Data Science)
- 3 2018/09/26 人工智慧、大數據與雲端運算 (ABC: AI, Big Data, and Cloud Computing)
- 4 2018/10/03 描述性分析I:數據的性質、統計模型與可視化 (Descriptive Analytics I: Nature of Data, Statistical Modeling, and Visualization)
- 5 2018/10/10 國慶紀念日(放假一天)(National Day)(Day off)
- 6 2018/10/17 描述性分析II:商業智慧與資料倉儲 (Descriptive Analytics II: Business Intelligence and Data Warehousing)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

7 2018/10/24 預測性分析I:資料探勘流程、方法與演算法 (Predictive Analytics I: Data Mining Process,

Methods, and Algorithms)

- 8 2018/10/31 預測性分析II:文本、網路與社群媒體分析 (Predictive Analytics II: Text, Web, and Social Media Analytics)
- 9 2018/11/07 期中報告 (Midterm Project Report)
- 10 2018/11/14 期中考試 (Midterm Exam)
- 11 2018/11/21 處方性分析:最佳化與模擬 (Prescriptive Analytics: Optimization and Simulation)

12 2018/11/28 社會網絡分析 (Social Network Analysis)

課程大綱 (Syllabus)

- 週次(Week) 日期(Date) 內容(Subject/Topics) 13 2018/12/05 機器學習與深度學習 (Machine Learning and Deep Learning) 14 2018/12/12 自然語言處理 (Natural Language Processing) 15 2018/12/19 AI交談機器人與對話式商務 (AI Chatbots and Conversational Commerce) 16 2018/12/26 商業分析的未來趨勢、隱私與管理考量 (Future Trends, Privacy and Managerial Considerations in Analytics) 17 2019/01/02 期末報告 (Final Project Presentation)
- 18 2019/01/09 期末考試 (Final Exam)

Descriptive Analytics I: Nature of Data, **Statistical Modeling**, and Visualization

Outline

- Descriptive Analytics I
- Nature of Data
- Statistical Modeling
- Visualization

Three Types of Analytics

A Data to Knowledge Continuum

A Simple Taxonomy of Data

Data Preprocessing Steps

An Analytics Approach to Predicting Student Attrition

A Graphical Depiction of the Class Imbalance Problem

Relationship between Statistics and Descriptive Analytics

Understanding the Specifics about Box-and-Whiskers Plots

Relationship between Dispersion and Shape Properties.

A Process Flow for Developing Regression Models.

The Logistic Function

$$f(y) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Predicting NCAA Bowl Game Outcomes

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

A Sample Time Series of Data on Quarterly Sales Volumes

Quarterly Product Sales (in Millions)

The Role of Information Reporting in Managerial Decision Making

A Taxonomy of Charts and Graphs

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

A Gapminder Chart That Shows the Wealth and Health of Nations

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

Magic Quadrant for Business Intelligence and Analytics Platforms

A Storyline Visualization in Tableau Software

An Overview of SAS Visual Analytics Architecture

A Screenshot from SAS Visual Analytics

A Sample Executive Dashboard

igraph

Products - News O On github

igraph – The network analysis package

igraph is a collection of network analysis tools with the emphasis on **efficiency**, **portability** and ease of use. igraph is **open source** and free. igraph can be programmed in **R**, **Python** and **C/C++**.

igraph R package

🎽 igraph

python-igraph

igraph C library

R/igraph 1.0.0 Repositories at Github R/igraph 0.7.1 C/igraph 0.7.1 R/igraph 0.7.0 python-igraph 0.7.0 C/igraph 0.7.0 R/igraph 0.6.5

Recent news

R/igraph 1.0.0

June 24, 2015

Release Notes

This is a new major release, with a lot of UI changes. We tried to make it easier to use, with short and easy to remember, consistent function names. Unfortunately

http://igraph.org/redirect.html

Gephi

Download Blog Wiki Forum Support Bug tracker

Home Features Learn Develop Plugins Services Consortium

The Open Graph Viz Platform

Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free.

Runs on Windows, Mac OS X and Linux.

Learn More on Gephi Platform »

Support us! We are non-profit. Help us to innovate and empower the community by donating only 8C: Donate

APPLICATIONS

- Exploratory Data Analysis: intuition-oriented analysis by networks manipulations in real time.
- Link Analysis: revealing the underlying structures of associations between objects.
- Social Network Analysis: easy creation of social

Like Photoshop[™] for graphs.

the Community

Gephi: An Open Source Software for Diploring and Manipulating Net Matter Restance of Medica Research Software Matter Software Software

PAPERS

LATEST NEWS

Gephi updates with 0.9.1 version

https://gephi.org/

Discovering, Analyzing, **Visualizing and Presenting Data** with Python in Google Colab

Google Colab

e e e Hello, Colaboratory - Colabora ×			
← → C			
CO Hello, Colaboratory 🗟 File Edit View Insert Runtime Tools		SHARE	
CODE TEXT CELL CELL	COPY TO DRIVE CONNECT -	EDITING	1
Table of contents $\ \ $ Code snippets $\ \ $ Files $\ \ imes$			
Getting Started	CO Welcome to Colaboratory!		
Highlighted Features	Colaboratory is a free Jupyter notebook environment that requires no setup and runs entirely in the cloud. See FAQ for more info.	e our	
TensorFlow execution			-
GitHub	Getting Started		
Visualization	 <u>Overview of Colaboratory</u> <u>Loading and saving data: Local files, Drive, Sheets, Google Cloud Storage</u> 		
Forms	Importing libraries and installing dependencies Using Google Cloud BigQuery		
Examples	<u>Forms, Charts, Markdown, & Widgets</u>		
Local runtime support	 <u>TensorFlow with GPU</u> <u>Machine Learning Crash Course</u>: <u>Intro to Pandas</u> & <u>First Steps with TensorFlow</u> 		
SECTION			
	 Highlighted Features 		
	Seedbank		
	Looking for Colab notebooks to learn from? Check out <u>Seedbank</u> , a place to discover interactive machine learning examples.		
	✓ TensorFlow execution		
	Colaboratory allows you to execute TensorFlow code in your browser with a single click. The example below adds two matrice	es.	
	$\begin{bmatrix} 1. & 1. & 1. \end{bmatrix}_{+} \begin{bmatrix} 1. & 2. & 3. \end{bmatrix}_{-} \begin{bmatrix} 2. & 3. & 4. \end{bmatrix}$		

https://colab.research.google.com/notebooks/welcome.ipynb

u

The Quant Finance PyData Stack

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Python matplotlib

matpletlib

Python Pandas

http://pandas.pydata.org/

Iris flower data set

setosa

versicolor

virginica

Iris Classfication

Source: http://suruchifialoke.com/2016-10-13-machine-learning-tutorial-iris-classification/

iris.data

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

5.1,3.5,1.4,0.2, Iris-setosa 4.9,3.0,1.4,0.2, Iris-setosa 4.7,3.2,1.3,0.2, Iris-setosa 4.6,3.1,1.5,0.2, Iris-setosa 5.0,3.6,1.4,0.2, Iris-setosa 5.4,3.9,1.7,0.4, Iris-setosa 4.6,3.4,1.4,0.3, Iris-setosa 5.0,3.4,1.5,0.2, Iris-setosa 4.4,2.9,1.4,0.2, Iris-setosa 4.9,3.1,1.5,0.1, Iris-setosa 5.4,3.7,1.5,0.2, Iris-setosa 4.8,3.4,1.6,0.2, Iris-setosa 4.8,3.0,1.4,0.1,Iris-setosa 4.3,3.0,1.1,0.1, Iris-setosa 5.8,4.0,1.2,0.2, Iris-setosa 5.7,4.4,1.5,0.4, Iris-setosa 5.4,3.9,1.3,0.4, Iris-setosa 5.1,3.5,1.4,0.3, Iris-setosa 5.7,3.8,1.7,0.3, Iris-setosa 5.1,3.8,1.5,0.3, Iris-setosa 5.4,3.4,1.7,0.2, Iris-setosa 5.1,3.7,1.5,0.4, Iris-setosa 4.6,3.6,1.0,0.2, Iris-setosa 5.1,3.3,1.7,0.5, Iris-setosa 4.8,3.4,1.9,0.2, Iris-setosa 5.0,3.0,1.6,0.2, Iris-setosa

setosa

virginica

versicolor

Iris Data Visualization

Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html

Connect Google Colab in Google Drive

▲ My Drive - Google Drive × +							
$\leftarrow \rightarrow$	C https://drive.	google.com/drive/u/2/my-drive	⊕ ☆				
	Drive	Q Search Drive - ? ?		0			
+	New	Connect apps to Drive ×		≡ 6			
•	My Drive	All - colab					
	Computers	Colaboratory offered by https://colab.research.google.com					
•••	Shared with me	A data analysis tool that combines code, output, and descriptive text into one collaborative document.					
C	Recent						
*	Starred						
	Trash		Name 个				
	Backups						
\bigcirc	Storage						
	0 bytes of 15 GB used UPGRADE STORAGE						
	Get Backup and Sync for Mac	X Access anywhere Share easily					

Connect Colaboratory to Google Drive

4	My Drive - Google Drive × co Untitled0.ipynb - Colaboratory × +	
÷	→ C https://colab.research.google.com/drive/1Qu0onZxHA6vR2hjTN7FG-YuEZwfQprp8?authuser=2	☆ 🛛 🗌 🗘 🗄
CC	O A Untitled0.ipynb ☆ File Edit View Insert Runtime Tools Help	COMMENT 🚓 SHARE 🗛
	CODE TEXT ↑ CELL CELL	CONNECT 👻 🎤 EDITING 🖍
3	0	:

🝐 My Drive - Google Drive 🛛 🗙 😋	O Untitled0.ipynb - Colaboratory X	+	
\leftarrow \rightarrow C $\$ https://colab.researce	ch.google.com/drive/1Qu0onZxHA6	vR2hjTN7FG-YuEZwfQprp8?authuser=2 2 🖸 🚺 🖸 :	
CO C	time Tools Help	Comment 🚓 share A	
E CODE E TEXT	Run all %/Ctrl+F9	CONNECT - EDITING	
R	Run before %/Ctrl+F8		
R R	Run the focused cell %/Ctrl+Enter		
-	Run selection %/Ctrl+Shift+Enter	· · · · · · · · · · · · · · · · · · ·	
R	Run after %/Ctrl+F10		
Ir	Interrupt execution %/Ctrl+M I		
R	Restart runtime %/Ctrl+M .		
R	Restart and run all		
R	Reset all runtimes		
c	Change runtime type		
N	Manage sessions		

Run Jupyter Notebook Python3 GPU Google Colab

A My Drive - Google Drive X O Untitled0.ipynb - Colabo	ratory × +	
\leftarrow \rightarrow C \triangleq https://colab.research.google.com/drive/10	u0onZxHA6vR2hjTN7FG-YuEZwfQprp8?authuser=2	☆ 🖬 🗌 🖓 🗄
CO Untitled0.ipynb 📩 File Edit View Insert Runtime Tools Help		COMMENT SHARE A
CODE E TEXT A CELL CELL		CONNECT - EDITING
	Notebook settings Runtime type Python 3	
	Omit code cell output when saving this notebook	

Google Colab Python Hello World print('Hello World')

ω ι	Untitled0.ipynb - Colaboratory × +	
\leftarrow	→ C https://colab.research.google.com/drive/1Qu0onZxHA6vR2hjTN7FG-YuEZwfQprp8?authuser=2#scrollTo=6s-m3sER8G1u	☆ 🗔 📿 :
CO	▲ Untitled0.ipynb ☆ File Edit View Insert Runtime Tools Help	COMMENT 🚓 SHARE 🗛
	CODE E TEXT A CELL CELL	ECTED - PEDITING
>	<pre>print('Hello World')</pre>	:
	E→ Hello World	

Data Visualization in Google Colab


```
import seaborn as sns
sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, hue="species")
```


Source: https://seaborn.pydata.org/generated/seaborn.pairplot.html

https://colab.research.google.com/drive/1KRqtEUd2Hg4dM2au9bfVQKrxWnW

```
N309-
```

```
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter matrix
# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read csv(url, names=names)
print(df.head(10))
print(df.tail(10))
print(df.describe())
print(df.info())
print(df.shape)
print(df.groupby('class').size())
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
df.hist()
plt.show()
scatter matrix(df)
plt.show()
sns.pairplot(df, hue="class", size=2)
```

import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns from pandas.plotting import scatter_matrix

Import Libraries import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns from pandas.plotting import scatter_matrix print('imported')

imported

```
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))
```

```
# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
df = pd.read_csv(url, names=names)
print(df.head(10))
```

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa

df.tail(10)

print(df.tail(10))

	sepal-length	sepal-width	petal-length	petal-width	class
140	6.7	3.1	5.6	2.4	Iris-virginica
141	6.9	3.1	5.1	2.3	Iris-virginica
142	5.8	2.7	5.1	1.9	Iris-virginica
143	6.8	3.2	5.9	2.3	Iris-virginica
144	6.7	3.3	5.7	2.5	Iris-virginica
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

df.describe()

print(df.describe())

	sepal-length	sepal-width	petal-length	petal-width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

print(df.info()) print(df.shape)

print(df.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal-length 150 non-null float64
sepal-width 150 non-null float64
petal-length 150 non-null float64
class 150 non-null float64
class 150 non-null object
dtypes: float64(4), object(1)
memory usage: 5.9+ KB
None
```

```
print(df.shape)
```

(150, 5)

print(df.groupby('class').size())

class Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 dtype: int64

plt.rcParams["figure.figsize"] = (10,8) df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) plt.show()

```
plt.rcParams["figure.figsize"] = (10,8)
df.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
plt.show()
```


df.hist() plt.show()

df.hist() plt.show<u>()</u>

scatter_matrix(df) plt.show()

scatter_matrix(df)
plt.show()

sns.pairplot(df, hue="class", size=2)

sns.pairplot(df, hue="class", size=2)

<seaborn.axisgrid.PairGrid at 0x7f1d21267390>

Summary

- Descriptive Analytics I
- Nature of Data
- Statistical Modeling
- Visualization

References

- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- EMC Education Services (2015), Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley