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Course Orientation for Big Data Mining
ABC: Al, Big Data, Cloud Computing
Mid-Autumn Festival (Day off)

Data Science and Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data

Fundamental Big Data: MapReduce Paradigm,
Hadoop and Spark Ecosystem

Foundations of Big Data Mining in Python
Supervised Learning: Classification and Prediction
Unsupervised Learning: Cluster Analysis
Unsupervised Learning: Association Analysis
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Week Date Subject/Topics
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11
12

13
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2018/11/12
2018/11/19
2018/11/26

2018/12/03
2018/12/10
2018/12/17
2018/12/24
2018/12/31
2019/01/07

Midterm Project Report
Machine Learning with Scikit-Learn in Python

Deep Learning for Finance Big Data with
TensorFlow

Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Reinforcement Learning (RL)

Social Network Analysis (SNA)

Bridge Holiday (Extra Day Off)

Final Project Presentation
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Outline
* Recurrent Neural Networks (RNN)

* Long Short Term Memory (LSTM)

* Gated Recurrent Unit (GRU)

* Deep Learning (RNN) for
Text Analytics (NLP)

* Deep Learning (RNN) for
Time Series Prediction



Al, ML, DL

4 Artificial Intelligence (Al) A
4 Machine Learning (ML) A
Supervised Unsupervised
Learning Learning
Deep Learning (DL)
RNN LSTM GRU
. GAN )

Semi-supervised l Reinforcement

k Learning Learning ) )




Recurrent Neural Networks (RNN)
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Recurrent Neural Networks (RNN)
Time Series Forecasting
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Recurrent Neural Networks (RNN)
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Recurrent Neural Networks (RNN)
Sentiment Analysis _
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Recurrent Neural Networks (RNN)
Sentiment Analysis |
’:/’j

¢
PP

This movie IS very boring

output

hidden

Input



Recurrent Neural Networks
(RNN)
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Long / Short Term Memory
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Gated Recurrent Units
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Recurrent Neural Network (RNN)
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CS224d: Deep Learning for
Natural Language Processing

CS224d: Deep Learning for Natural Language Processing

0 )

0
were dry enjoyed ‘0‘/ \'0‘

the lecture

fifteen  minutes

Course Description

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial
part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails,
customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications.
Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-
end model and do not require traditional, task-specific feature engineering. In this spring quarter course students will learn to implement, train, debug, visualize and
invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final project will
involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector representations,

http://cs224d.stanford.edu/ 16
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Recurrent Neural Networks (RNNs)
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Source

Vanishing Gradient
Exploding Gradient

Error
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Vanishing Gradient

e

Exploding Gradient

x2
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: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-Istm-long-short-term-memory-networks-with-math-21477f8e4235
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Recurrent Neural Networks (RNN)
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RNN
Vanishing Gradient problem
Exploding Gradient problem

Error
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if |W| <1 (Vanishing)
if |W| > 1 (Exploding)
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Vanishing Gradient problem
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Long Short Term Memory

(LSTM)
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Long Short Term Memory
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Gated Recurrent Unit
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Gated Recurrent Unit

(GRU)
reset update hy
gate gate
hi—1 R o
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Inputs: outputs:

Memory from
current block

Memory from @ Output of

Input vector

previous block current block

Output of
previous block

@

Nonlinearities: Vector operations:
@ Sigmoid )
Hyperbolic +
tangent

Bias: o

Element-wise
multiplication

Element-wise
Summation /
Concatenation

Source: Shi Yan (2016), Understanding LSTM and its diagrams, https://medium.com/mireview/understanding-Istm-and-its-diagrams-37e2f46f1714
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LSTM vs GRU

T

f a3
é«— IN
> ——>0UT

LSTM

i, f and o are the input, forget and output

gates, respectively.
c and c” denote the memory cell and the

new memory cell content.
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r and z are the reset and update gates,
and h and h™ are the activation and the

candidate activation.
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Long Short Term Memory
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Long Short Term Memory
(LSTM)
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LSTM
Memory state (C)



LSTM
forget gate (f)

fe=0(Wy-[h—1, 2] + by)
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LSTM

Memory state (C)
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LSTM

output gate (0)
Enh> or =0 (Wy [hi—1,2¢] + bo)
Q)

hy = oy * tanh (C})
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LSTM
forget (f), input (i), output (o) gates
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Gated Recurrent Unit

(GRU)

update (z), reset (r) gates

hy

Tt

2z =0 (W, - [hi—1,x¢])
ri =0 (W, - [hi—1,x¢))
he = tanh (W - [ry % hy_1, z4])
he = (1 — 2;) % hy—q + 24 * Iy
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LSTM Recurrent Neural Network

one to one one to many many to one many to many many to many
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Long Short Term Memory (LSTM)
for Time Series Forecasting
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The Sequence to Sequence model
(seq2seq)

ENCODER Reply
SR Yes, what's __ up? — <END>
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Incoming Email DECODER



Decoder

Sequence to Sequence
(Seq2Seq)

Knowledge IS power




Natural Language Processing (NLP)

Part-of-speech tagging

Text segmentation

Word sense disambiguation
Syntactic ambiguity
Imperfect or irregular input
Speech acts

45



NLP Tasks

Question answering
Automatic summarization
Natural language generation
Natural language understanding
Machine translation

Foreign language reading
Foreign language writing.
Speech recognition
Text-to-speech

Text proofing

Optical character recognition

46



NLP

Classical NLP

Pre-processing Modeling

AP e e oo e e e o e e e o e e = -

Modeling Inference
(English) (English)
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Modeling 1 1 N : 1
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S ) '?;f;i’fff : Entity Extraction :
I 1
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I 1
1 1
I 1
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Topic Modelling

Documents

Documents

e

Dense Embeddings Hidden Layers Output Units

obtained via word2vec,
doc2vec, GloVe, etc.

AYLIEN
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Modern NLP Pipeline

Pre-processing

r— — — — — — — /7 7 1

Pre-processed

Documents Documents

Task / Output

[—————

I Classification

Bag-of-Words
&
Vectorization

| Sentiment Analysis

|
[ ——
P Dccaments. | [[wordzvec ] | I
- I Similarity
o) )

Source: https://github.com/fortiema/talks/blob/master/opendata2016sh/pragmatic-nlp-opendata2016sh.pdf 48

— Entity Extraction
Word Embeddings

Topic Modeling




l

Documents

Modern NLP Pipeline

Modeling

Modeling

Task / Output

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/

Sentiment Analysis

Entity Extraction

Topic Modeling
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Documents

Deep Learning NLP

Pre-generated Lookup
OR
Generated in 1st level
of NeuralNet

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/

Task / Output

Sentiment Analysis

Entity Extraction

Topic Modeling
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BERT:
Pre-training of Deep
Bidirectional Transformers for
Language Understanding

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805
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BERT

Bidirectional Encoder Representations from Transformers

BERT (Ours) OpenAl GPT

Pre-training model architectures

BERT uses a bidirectional Transformer.

OpenAl GPT uses a left-to-right Transformer.

ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM
to generate features for downstream tasks.

Among three, only BERT representations are jointly conditioned on both left and right

context in all layers.
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BERT input representation

/ /- N /7 N /7 N /- N 7 N /-

Input [CLS) 1 my dog is [cute ] [SEP] he ( likes ][ play ] ##ing ]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEF‘] Ehe EIikes Eplay E”ing

+ + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB

+ + + + + + + + + +
Position
Embeddings E0 El Ez E3 E4 ES E6 E7 E8 E9

The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805



Class
Label

BERT Sequence-level tasks

—

[ T, ][ Teer ][ T, ]

BERT

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,

Bas || B4 Ex | Bsem || B | [Bw Bas || E E, Ex
NG PN N\ DN DANG
_fr a iy B B e B p Ny T
TN T / \ / \ Y / N\
cLs) o fok (SEP) T | Tox [CLS] Tok 1 Tok 2 Tok N

Sentence 1

RTE, SWAG

I_|_| |

Sentence 2

|

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 54



BERT Token-level tasks

Start/End Span
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Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

E(cle || E, E, Ex
O i
[CLS) ][ Tok 1 Tok 2 Tok N

I |

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805



General Language Understanding Evaluation
(GLUE) benchmark

GLUE Test results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 8.0 61.7| 74.0
BILSTM+ELMo+Attn  76.4/76.1 648 799 904 360 733 849 568 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 800 823 560| 752
BERTgBASE 84.6/83.4 712 90.1 935 521 858 889 664 | 79.6
BERT | ArGE 86.7/85.9 72.1 91.1 949 60.5 865 893 70.1| 81.9

MNLI: Multi-Genre Natural Language Inference

QQP: Quora Question Pairs
QNLI: Question Natural Language Inference
SST-2: The Stanford Sentiment Treebank

CoLA: The Corpus of Linguistic Acceptability

STS-B:The Semantic Textual Similarity Benchmark

MRPC: Microsoft Research Paraphrase Corpus
RTE: Recognizing Textual Entailment
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Natural Language Processing with Python
— Analyzing Text with the Natural Language Toolkit

& - C ® www.nltk.org/book/

This version of the NLTK book is updated for Python 3 and NLTK 3. The first edition of the book, published by O'Reilly, is available at
http://nltk.org/book led/.(There are currently no plans for a second edition of the book.)

Natural Language Processing with Python

— Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

0. Preface
. Language Processing and Python
. Accessing Text Corpora and Lexical Resources

. Processing Raw Text
. Writing Structured Programs

1
2
3
4
5. Categorizing and Tagging Words (minor fixes still required)
6
7
8

. Learning to Classify Text
. Extracting Information from Text
. Analyzing Sentence Structure
9. Building Feature Based Grammars
10. Analyzing the Meaning of Sentences (minor fixes still required)
11. Managing Linguistic Data (minor fixes still required)
12. Afterword: Facing the Language Challenge

Bibliography
Term Index

This book is made available under the terms of the Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License.
Please post any questions about the materials to the nltk-users mailing list. Please report any errors on the issue tracker.

http://www.nltk.org/book/
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Fastest in the world

spaCy excels at large-scale information
extraction tasks. It's written from the
ground up in carefully memory-managed
Cython. Independent research has
confirmed that spaCy is the fastest in the
world. If your application needs to
process entire web dumps, spaCy is the
library you want to be using.

spaCy

Get things done

spaCy is designed to help you do real
work — to build real products, or gather
real insights. The library respects your
time, and tries to avoid wasting it. It's
easy to install, and its APl is simple and
productive. | like to think of spaCy as the
Ruby on Rails of Natural Language
Processing.

https://spacy.io/

HOME USAGE API DEMOS BLOG ()

Industrial-Strength
Natural Language
Processing

in Python

Deep learning

spaCy is the best way to prepare text for
deep learning. It interoperates
seamlessly with TensorFlow, Keras,
Scikit-Learn, Gensim and the rest of

Python's awesome Al ecosystem. spaCy
helps you connect the statistical models
trained by these libraries to the rest of
your application.

59
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gensim

-
gensim oot

. = Direct insbtall with:
Gopic modelling for humans U casy_install U gensim
Home Tutorials Install Support API About

from gensim import corpora, models, similarities G e n Si m iS a F RE E Pyth O n I i b ra ry

# Load corpus iterator from a Matrix Market file on disk.
corpus = corpora.MmCorpus('/path/to/corpus.mm') o Scalable statistical semantics

# Initialize Latent Semantic Indexing with 200 dimensions.
1si = models.LsiModel(corpus, num_topics=200)

o Analyze plain-text documents for semantic structure

# Convert another corpus to the Latent space and index it.
index = similarities.MatrixSimilarity(1lsi[another_corpus])

o Retrieve semantically similar documents
# Compute similarity of a query vs. indexed documents

sims = index[query]

https://radimrehurek.com/gensim/ 60
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TextBlob

C)star 3,777

TextBlob is a Python (2 and 3)
library for processing textual
data. It provides a consistent
API for diving into common
natural language processing
(NLP) tasks such as part-of-
speech tagging, noun phrase
extraction, sentiment analysis,
and more.

Useful Links

TextBlob @ GitHub
Issue Tracker

Stay Informed

() Follow @sloria

Donate

If you find TextBlob useful,

TextBlob

TextBlob: Simplified Text
Processing

Release v0.12.0. (Changelog)

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple
API for diving into common natural language processing (NLP) tasks such as part-of-
speech tagging, noun phrase extraction, sentiment analysis, classification, translation,
and more.

from textblob import TextBlob

text = '

The titular threat of The Blob has always struck me as the ultimate movie
monster: an insatiably hungry, amoeba-like mass able to penetrate
virtually any safeguard, capable of-—as a doomed doctor chillingly
describes it—-"assimilating flesh on contact.

Snide comparisons to gelatin be damned, it's a concept with the most
devastating of potential consequences, not unlike the grey goo scenario
proposed by technological theorists fearful of

artificial intelligence run rampant.

blob = TextBlob(text)
blob.tags # [('The', 'DT'), ('titular', 'JJ'),

# ('threat', 'NN'), ('of', "IN'), ...]
blob.noun_phrases # WordList(['titular threat', 'blob',
# 'ultimate movie monster',
# 'amoeba-like mass', ...])

for sentence in blob.sentences:
print(sentence.sentiment.polarity)
# 0.060

https://textblob.readthedocs.io 61
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Polyglot

A polyglot

Docs » Welcome to polyglot's documentation! O Edit on GitHub

Installation

Language Detection polyglot

Tokenization

Command Line Interface downloads |17k/month | pypi package [16.7.4 | build passing

Downloading Models

Welcome to polyglot’s documentation!

o Polyglot is a natural language pipeline that supports massive multilingual applications.

SRl Es e TR o Free software: GPLv3 license

Named Entity Extraction « Documentation: http:/polyglot.readthedocs.org.
Morphological Analysis

Transliteration Features

Sentiment
o Tokenization (165 Languages)

o Language detection (196 Languages)

o Named Entity Recognition (40 Languages)
e Part of Speech Tagging (16 Languages)

o Sentiment Analysis (136 Languages)

e Word Embeddings (137 Languages)

e Morphological analysis (135 Languages)

e Transliteration (69 Languages)

polyglot

https://polyglot.readthedocs.io/
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scikit-learn

Home Installation Documentation ~

powered by Goog|e

Classification

Identifying to which category an object be-
longs to.

Applications: Spam detection, Image recog-
nition.

Algorithms: SVM, nearest neighbors, random
forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.

Applications: Visualization, Increased effi-
ciency

Examples

Custom Search

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute asso-
ciated with an object.
Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...
— Examples

Model selection

Comparing, validating and choosing parame-
ters and models.

Goal: Improved accuracy via parameter tun-
ing

http://scikit-learn.org/

Clustering

Automatic grouping of similar objects into
sets.
Applications: Customer segmentation,

Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

63


http://scikit-learn.org/

TensorFlow NLP Examples

e Basic Text Classification
(Text Classification) (46 Seconds)

— https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/
keras/basic text classification.ipynb

« NMT with Attention
(20-30 minutes)

— https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow
/contrib/eager/python/examples/nmt with attention/nmt with attention.ipynb
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https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb

Text Classification
IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i gror

& tf02_basic-text-classification.ipynb 7~
Bl COMMENT 2% SHARE o

File Edit View Insert Runtime Tools Help

CODE TEXT 4 CELL ¥ CELL CONNECT ~ 2 EDITING A

Table of contents Code snippets Files X

) Copyright 2018 The TensorFlow Authors.
Copyright 2018 The TensorFlow Authors. .
5 2 cells hidden
Licensed under the Apache License,
Version 2.0 (the "License");

~ Text classification with movie reviews

MIT License

Text classification with movie reviews .? O
View on TensorFlow.org Run in Google Colab View source on GitHub

Download the IMDB dataset
This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—

Explore the data classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000
reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of
positive and negative reviews.

Convert the integers back to
words

Prepare the data This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using
tf.keras, see the MLCC Text Classification Guide.

Build the model

# memory footprint support libraries/code :
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi

!pip install gputil

!pip install psutil

Hidden units ° ;
<
4
5 l!pip install humanize
6
7
8

Loss function and optimizer

import psutil
import humanize
import os
9 import GPUtil as GPU
Train the model 10 GPUs = GPU.getGPUs()
11 gpu = GPUs[0]
Evaluate the model 12def BEAN) o r et mar

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_text classification.ipynb 65

Create a validation set
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https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_text_classification.ipynb

Al + VDI POS
TensorFlow Models

M1: Basic Classification (Image Classification) (65 Seconds)

— https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/
keras/basic classification.ipynb

M?2: Basic Text Classification (Text Classification) (46 Seconds)
— https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/

keras/basic_text classification.ipynb
M3: Basic Regression (Predict House Prices) (43 Seconds)

— https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/
keras/basic regression.ipynb

M4: Pix2Pix Eager (Option) (7-8 Hours)

— https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow
/contrib/eager/python/examples/pix2pix/pix2pix eager.ipynb

M5. NMT with Attention (Option) (20-30 minutes)

— https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow
/contrib/eager/python/examples/nmt with attention/nmt with attention.ipynb
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Basic Regression
Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2 25K AURjR6SCVBRAI]
CO & tf03_basic-regression.ipynb B COMMENT &% SHARE 0

File Edit View Insert Runtime Tools Help
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Table of contents Code snippets Files X

» Copyright 2018 The TensorFlow Authors.

Copyright 2018 The TensorFlow Authors. .
L 2 cells hidden

Predict house prices: regression

The Boston Housing Prices dataset - Predict house prices: regression

Examples and features

+ )
* View on TensorFlow.org Run in Google Colab View source on GitHub

Labels

In a regression problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a classification
problem, where we aim to predict a discrete label (for example, where a picture contains an apple or an orange).

Normalize features

Create the model This notebook builds a model to predict the median price of homes in a Boston suburb during the mid-1970s. To do this, we'll provide the

. model with some data points about the suburb, such as the crime rate and the local property tax rate.
Train the model
This example uses the tf.keras AP, see this guide for details.

Predict

1 # memory footprint support libraries/code
Conclusion 2 11ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
3 lpip install gputil
4 lpip install psutil
E3 SECTION 5 !pip install humanize
6 import psutil
7 import humanize
8 import os
9 import GPUtil as GPU
10 GPUs = GPU.getGPUs()
11 gpu = GPUs[0]
12 def printm():

13 process = psutil.Process(os.getpid())
14 print("Gen RAM Free: " + humanize.naturalsize( psutil.virtual memory().available ), " | Proc size: "
15 print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0£f}% | Total {3:.0f}MB".format(gpu.memo

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_regression.ipynb 67
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Time Series Data

df[ 'Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')

<matplotlib.axes. subplots.AxesSubplot at 0x1150bac88>

AAPL
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Long Short Term Memory (LSTM)
for Time Series Forecasting
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Deep Learning for
Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-YOnNY32geFk7CB8pVeSQM
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° 1 [# univariate data preparation
2 from numpy import array

3 # split a univariate sequence into samples
4 def split_sequence(sequence, n_steps):

5 X, y = list(), list()

6 for i in range(len(sequence)):

7 # find the end of this pattern

8 end_ix = i + n_steps

9 # check if we are beyond the sequence

10 if end_ix > len(sequence)-1:

11 break

12 # gather input and output parts of the pattern
13 seq_X, seq y = sequence[i:end_ix], sequence[end_ix]
14 X.append(seq_x)

15 y.append(seq_y)

16 return array(X), array(y)

17 # define input sequence

18 raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
19 # choose a number of time steps

20 n_steps = 3

21 # split into samples

22 X, y = split_sequence(raw_seq, n_steps)

23 # summarize the data

24 for i in range(len(X)):

25 print(X[i], y[i])

> [10 20 30] 40
[20 30 40] 50
[30 40 50] 60
[40 50 60] 70
[50 60 70] 80
[60 70 80] 90

Source: https://machinelearningmastery.com/how-to-develop-Istm-models-for-time-series-forecasting/
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§ -~ LSTM for Time Series Forecasting

1 # univariate lstm example

2 from numpy import array

3 from keras.models import Sequential
4 from keras.layers import LSTM

5 from keras.layers import Dense

6 import matplotlib.pyplot as plt

7 smatplotlib inline

8

9 # define dataset

10 X = array([[1l00, 110, 120], [1l10, 120, 130], [l20, 130, 140], [130, 140, 150], [140, 150, 160]11])
11 y = array([130, 140, 150, 160, 170])

12 # reshape from [samples, timesteps] into [samples, timesteps, features]

13 X = X.reshape((X.shape[0], X.shape[l], 1))

14 # define model

15 model = Sequential()

16 model.add(LSTM(50, activation='relu', input_shape=(3, 1)))
17 model.add(Dense(1l))

18 model.compile(optimizer='adam', loss='mse')

19 # fit model

20 history = model.fit(X, y, epochs=2000, verbose=0)
21 # demonstrate prediction

22 x_input = array([150, 160, 170])

23 x_input = x_input.reshape((1l, 3, 1))

24 yhat = model.predict(x_input, verbose=0)

25 print('yhat', yhat)

26 print(model.summary())

27 # list all data in history

28 print(history.history.keys())

29 # summarize history for loss

30 print('loss:', '%f'shistory.history['loss'][-1])
31 print('loss:', history.history['loss'][-1])

32 plt.plot(history.history['loss'])

33 plt.title('model loss')

34 plt.ylabel('loss')

35 plt.xlabel('epoch')

36 plt.show()

> vhat [[181.34615]]

Source: https://machinelearningmastery.com/how-to-develop-Istm-models-for-time-series-forecasting/
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CODE TEXT 4 CELL ¥ CELL / CONNECTED 2 EDITING /
1 B univariate lstm example :
° 2 from numpy import array
3 from keras.models import Sequential
4 from keras.layers import LSTM
5 from keras.layers import Dense
6 import matplotlib.pyplot as plt
7 %matplotlib inline
8 # split a univariate sequence into samples
9 def split_sequence(sequence, n_steps):

10 X, y = list(), list()

11 for i in range(len(sequence)):

12 # find the end of this pattern

13 end_ix = i + n_steps

14 # check if we are beyond the sequence

15 if end_ix > len(sequence)-1:

16 break

17 # gather input and output parts of the pattern
18 seq_x, seq y = sequence[i:end_ix], sequence[end_ix]
19 X.append(seq_x)

20 y.append(seq_y)

21 return array(X), array(y)

22 # define input sequence

23 raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]

24 # choose a number of time steps

25 n_steps = 3

26 # split into samples

27 X, y = split_sequence(raw_seq, n_steps)

28 # reshape from [samples, timesteps] into [samples, timesteps, features]
29 n_features =1

30 X = X.reshape((X.shape[0], X.shape[l], n_features))
31 # define model

32 model = Sequential()

33 model.add(LSTM(50, activation='relu', input shape=(n_steps, n_features)))
34 model.add(Dense(1l))

35 model.compile(optimizer='adam', loss='mse')

36 # fit model

37 history = model.fit(X, y, epochs=500, verbose=0)

38 # demonstrate prediction

39 x_input = array([70, 80, 90])

40 x_input = x_input.reshape((1l, n_steps, n_features))
41 yhat = model.predict(x_input, verbose=0)

42 print(yhat)

43 print('yhat', yhat)

44 print(model.summary())

Source: https://machinelearningmastery.com/how-to-develop-Istm-models-for-time-series-forecasting/ 75
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Using TensorFlow backend.
[[102.31296]]
yhat [[102.31296]]

Layer (type) Output Shape Param #
l1stm_1 (LSTM) (None, 50) 10400
dense_1 (Dense) (None, 1) 51

Total params: 10,451
Trainable params: 10,451
Non-trainable params: 0

None

dict_keys(['loss'])

loss: 0.000000

loss: 1.2578432517784677e-07

model loss
4000
3000
8
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1000
0
0 100 200 300 400 500
epoch

Source: https://machinelearningmastery.com/how-to-develop-Istm-models-for-time-series-forecasting/
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Source: https://github.com/yash-1337/AAPL_LSTM_Stock_Predictor/blob/master/AAPL_daily_LSTM_stock_predictor.ipynb 77
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Summary

* Recurrent Neural Networks (RNN)
* Long Short Term Memory (LSTM)

* Gated Recurrent Unit (GRU)

* Deep Learning (RNN) for
Text Analytics (NLP)

* Deep Learning (RNN) for
Time Series Prediction
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