Social Media Apps Programming

Google Cloud Platform

1041SMAP10
TLMXM1A (8687) (M2143) (Fall 2015)
(MIS MBA) (2 Credits, Elective) [Full English Course]
Wed 9,10 (16:10-18:00) B310

Min-Yuh Day, Ph.D.
Assistant Professor

Department of Information Management
Tamkang University

http://mail.tku.edu.tw/myday

2015-12-09
Course Schedule (1/3)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Subject/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2015/09/16</td>
<td>Course Orientation and Introduction to Social Media and Mobile Apps Programming</td>
</tr>
<tr>
<td>2</td>
<td>2015/09/23</td>
<td>Introduction to Android / iOS Apps Programming</td>
</tr>
<tr>
<td>3</td>
<td>2015/09/30</td>
<td>Developing Android Native Apps with Java (Android Studio) (MIT App Inventor)</td>
</tr>
<tr>
<td>4</td>
<td>2015/10/07</td>
<td>Developing iPhone / iPad Native Apps with Swift (XCode)</td>
</tr>
<tr>
<td>5</td>
<td>2015/10/14</td>
<td>Mobile Apps using HTML5/CSS3/JavaScript</td>
</tr>
<tr>
<td>6</td>
<td>2015/10/21</td>
<td>jQuery Mobile</td>
</tr>
</tbody>
</table>
Course Schedule (2/3)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Subject/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2015/10/28</td>
<td>Create Hybrid Apps with Phonegap</td>
</tr>
<tr>
<td>8</td>
<td>2015/11/04</td>
<td>jQuery Mobile/Phonegap</td>
</tr>
<tr>
<td>9</td>
<td>2015/11/11</td>
<td>jQuery Mobile/Phonegap</td>
</tr>
<tr>
<td>10</td>
<td>2015/11/18</td>
<td>Midterm Exam Week</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Midterm Project Report)</td>
</tr>
<tr>
<td>11</td>
<td>2015/11/25</td>
<td>Invited Talk: Business Intelligent and Analysis in PIXNET, the Dominant Blog Platform in Taiwan [Speaker: Dr. Rick Cheng-Yu Lu, CTO, PIXNET]</td>
</tr>
<tr>
<td>12</td>
<td>2015/12/02</td>
<td>Case Study on Social Media Apps Programming and Marketing in Google Play and App Store</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Subject/Topics</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>2015/12/09</td>
<td>Google Cloud Platform</td>
</tr>
<tr>
<td>14</td>
<td>2015/12/16</td>
<td>Google App Engine and Google Map API</td>
</tr>
<tr>
<td>15</td>
<td>2015/12/23</td>
<td>Facebook API (Facebook JavaScript SDK) (Integrate Facebook with iOS/Android Apps)</td>
</tr>
<tr>
<td>16</td>
<td>2015/12/30</td>
<td>Twitter API</td>
</tr>
<tr>
<td>17</td>
<td>2016/01/06</td>
<td>Final Project Presentation</td>
</tr>
<tr>
<td>18</td>
<td>2016/01/13</td>
<td>Final Exam Week (Final Project Presentation)</td>
</tr>
</tbody>
</table>
Outline

• Google Cloud Platform
 – Google App Engine
 – Google Cloud Datastore
 – Google Cloud Endpoints

• Mobile App with Google Cloud Platform
Google Cloud Platform

https://cloud.google.com/

Build at the speed of Google

Get $300 in credit towards a 60-day free trial.
This trial is absolutely free and you will not be billed unless you decide to upgrade to a paid account.

Start your free trial or See the FAQ

Watch the keynote address from Google Cloud Platform Live

Learn about our new products, including Google Container Engine and Google Cloud Interconnect, as well as Firebase, a powerful API to store and sync data in real-time.

Watch the event
Google Cloud Platform

- Google Cloud Platform is a set of modular cloud-based services that allow you to create anything from simple websites to complex applications.

Source: https://cloud.google.com/
Google Cloud Platform

- Hosting + Compute
- Storage
- Big Data
- Services

Source: https://cloud.google.com/products/
Google Cloud Platform

Compute
- App Engine
- Compute Engine
- Container Engine

Storage
- Cloud Datastore
- Cloud SQL
- Cloud Storage

Big Data
- Big Query

Services
- Cloud Endpoints
- Translate API
- Prediction API

Source: https://cloud.google.com/products/
Why Google Cloud Platform

Google Cloud Platform enables developers to build, test and deploy applications on Google’s highly-scalable and reliable infrastructure. Choose from computing, storage and application services for your web, mobile and backend solutions.

Run on Google’s infrastructure

Build on the same infrastructure that allows Google to return billions of search results in milliseconds, serve 6 billion hours of YouTube video per month and provide storage for 425 million Gmail users.

Global network

Google has one of the largest and most advanced computer networks. Google's backbone network has thousands of miles of fiber optic cable, uses advanced software-defined networking and has edge caching services to deliver fast, consistent and scalable performance. In fact, we even laid our own fiber optic cable under the Pacific Ocean.

Redundancy

"[Google's] ability to build, organize, and operate a huge network of servers and fiber-optic cables with an efficiency and speed that rocks physics on its heels...This is what makes Google

Source: https://cloud.google.com/why-google/
Why Google

Run on Google’s infrastructure
Build on the same infrastructure that allows Google to return billions of search results in milliseconds, serve 6 billion hours of YouTube video per month and provide storage for 425 million Gmail users.

Find out more

Focus on your product
Rapidly develop, deploy and iterate your applications without worrying about system administration. Google manages your application, database and storage servers so you don’t have to.

Find out more

Mix and match services

Find out more

Scale to millions of users
Applications hosted on Cloud Platform can automatically scale up to handle the most demanding Internet-scale workloads and scale down when traffic subsides. You pay only for what you use.

Find out more

Performance you can count on

Every millisecond of latency matters. Google's compute infrastructure gives you consistent CPU, memory and disk performance. Our network and edge cache serve responses rapidly to your users across the world.

Find out more

Get the support you need
With our worldwide community of users, partner ecosystem and premium support packages, Google provides a full range of resources to help you get started and grow.

Find out more

Source: https://cloud.google.com/
Customers of Google Cloud Platform

Snapchat
“App Engine enabled us to focus on developing the application. We wouldn’t have gotten here without the ease of development that App Engine gave us.”
Bobby Murphy CTO and co-Founder
Read Snapchat’s story

Webfilings
“Google App Engine has the breadth and the depth to grow with you. Every 6 months, it gets better. The Google App Engine team knows what you need to make a competitive application.”
Brett Harper Director of Product Development
Read Webfilings’ story

Khan Academy
“If we didn’t have Google App Engine, we’d be spending a lot more time figuring out server setup and working on routers. Our ability to focus on the actual product is the benefit of Google App Engine.”
Ben Kamens Lead Developer
Read Khan Academy’s story

Rovio
“Google App Engine allows us to launch games very quickly with teams of one or two developers per game. Because Google manages all the servers, there is little required of us in terms of maintenance.”
Stefan Hauk lead server developer for web games
Read Rovio’s story

MAG Interactive
“Our rapid growth to 5M Ruzzle players in less than six months required a highly scalable server solution. Google App Engine transformed this huge challenge into a picnic.”

Interactions Marketing
“We are always looking for ways to maximize return and minimize investment. BigQuery is the perfect combination. It’s an on-demand, scalable resource.”

Source: https://cloud.google.com/customers/
‘Angry Birds’ Soars Online with Google App Engine

Rovio, creator of the blockbuster “Angry Birds” game series, turned to Google App Engine when it came time to adapt its mobile apps for web browsers. The Finland-based company needed a platform that could support explosive demand and provide robust capabilities to deliver a superior user experience. Google App Engine provides both while requiring minimal maintenance, which gives the company’s developers time to focus on improving the games.

Challenge

Rovio knew that bringing its games online presented an enormous opportunity. In early 2011, a development team began planning a version of “Angry Birds” for Google Chrome. The company wanted to launch the game at Google’s annual I/O conference that spring, just a few months away.

The developers needed a platform that would scale effortlessly: The mobile app had already hit more than 140 million downloads, and the team expected demand for the free online version to be overwhelming. They also wanted a low-maintenance system that would make it easy to update features and bring new titles online.

Solution

The developers chose Google App Engine to build the game because they knew it would allow them to work quickly and provide the scalability needed to support an enormous user base. “Angry Birds Chrome” finished on schedule, followed by other titles such as “Angry Birds Google+” and “Angry Birds Friends.” Rovio also created customized versions for companies, sports teams and other partners.

Source: https://cloud.google.com/customers/
Compute

Compute Engine

Compute Engine is Google’s Infrastructure-as-a-Service (IaaS). Run large-scale workloads on virtual machines hosted on Google’s infrastructure. Choose a VM that fits your needs and gain the performance and consistency of Google’s worldwide fiber network. With per-minute billing, you pay only for what you use.

App Engine

App Engine is Google’s Platform-as-a-Service (PaaS). Develop your application easily using built-in services that make you more productive. Deploy to a fully-managed platform and let Google carry the pager. Just download the SDK and start building immediately for free with no credit card required.

Container Engine

Container Engine makes it easy to run Docker containers on Google Cloud Platform. Powered by Kubernetes, Container Engine takes care of provisioning and maintaining the underlying virtual machine cluster, scaling your application, and operational logistics like logging, monitoring, and health management.

Source: https://cloud.google.com/products/
Storage

Cloud Datastore

Cloud Datastore provides a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries.

Cloud SQL

Store and manage data using a fully-managed, relational MySQL database. Google handles replication, patch management and database management to ensure availability and performance.

Cloud Storage

Use a durable and highly available object storage service. With global edge-caching, your users have fast access to your app’s data from any location. Google manages versioning, guarantees a strong SLA and provides a simple API that allows you to manage your data programmatically.

Source: https://cloud.google.com/products/
BigQuery

• Analyze Big Data in the cloud with BigQuery.
• Run fast, SQL-like queries against multi-terabyte datasets in seconds.
• Scalable and easy to use, BigQuery gives you real-time insights about your data

Source: https://cloud.google.com/products/
Services

Cloud Pub/Sub
Connect your services with reliable, many-to-many, asynchronous messaging hosted on Google's infrastructure. Cloud Pub/Sub automatically scales as you need it and provides a foundation for building your own robust, global services.

Cloud DNS
Reliable, resilient, low-latency DNS serving from Google's worldwide network of Anycast DNS servers. Create DNS records with an easy to use command line interface, or program against a full featured RESTful API to customize the service to your specific needs.

Cloud Endpoints
Create RESTful services from your code and make them accessible to iOS, Android and Javascript clients. Automatically generate client libraries to make wiring up the frontend easy. Built-in critical infrastructure includes denial-of-service protection, OAuth 2.0 support and client key management.

Translate API
Create multilingual apps and translate text into other languages programmatically. Thousands of language pairs are available.

Source: https://cloud.google.com/products/
• Use Google’s machine learning algorithms to analyze data and predict future outcomes using a familiar RESTful interface.

Source: https://cloud.google.com/products/
Google Cloud Platform Solutions

Cloud Platform enables you to build a wide variety of robust applications. See how you can quickly and easily build a mobile, gaming, or Hadoop solution.

Mobile
Build and host the backend for any mobile app. With an infrastructure that is managed automatically, you can focus on your app.

Read about Mobile

Hadoop
Take advantage of the performance and cost efficiency of Google Cloud Platform to run Apache Hadoop. Directly access data in Google Cloud Storage and BigQuery from Hadoop.

Read about Hadoop

Source: https://cloud.google.com/solutions/
Try Google Cloud Platform for Free

Get $300 in credit to use for 60 days.
This trial is absolutely free and you will not be billed
unless you decide to upgrade to a paid account.

Why Sign Up?

$300 Credit for Free
Sign up and get $300 to spend on Google Cloud Platform over the next 60 days and discover the power of our products.

Access to Google Cloud Platform Products
Test drive virtual machines, autoscaling web applications, databases, object storage, network and DNS services, big data ETL and real-time queries, translation, machine learning, and more.

You Won’t be Billed

Source: https://cloud.google.com/free-trial/
Mobile App with Google Cloud Platform

Build your mobile app with Google Cloud Platform

Build and host the backend for any mobile app. With an infrastructure that is managed automatically, you can focus on your app. Then, scale infinitely to support millions of users.

Start your free trial or Contact sales

Deploy an app in 300 seconds

See how easy it is to develop a mobile backend using custom code with Google Cloud Endpoints. Automatically generated strongly-typed client libraries for iOS, Android, and Javascript make calling backend APIs simple.

Benefits of building mobile apps on Google Cloud Platform:

Source: https://cloud.google.com/solutions/mobile/
Mobile App with Google Cloud Platform

Deploy an app in 300 seconds

See how easy it is to develop a mobile backend using custom code with Google Cloud Endpoints. Automatically generated strongly-typed client libraries for iOS, Android, and Javascript make calling backend APIs simple.

Benefits of building mobile apps on Google Cloud Platform:

- **Automatic scaling and load balancing**
 All you have to do is write your application code and we’ll handle the rest. No matter how many users you have, App Engine will scale to your needs.

- **Geo-proximity search**
 Leverage App Engine's Search API for geo-proximity search.

- **Push notifications**
 Use Google Cloud Messaging to send data to your Android users and the Sockets API to send push notifications to your iOS users.

- **Data processing**
 Application logs can provide insight into app usage and backend behavior. BigQuery enables you to gather real-time ad-hoc analysis of your log files, analyzing terabytes of data in seconds.

- **Static content serving**
 App Engine serves static files from dedicated servers and caches that are separate from the application servers.

- **Data storage**
 Google Cloud Storage lets you store objects and files up to terabytes in size using a simple REST based interface.

Source: https://cloud.google.com/solutions/mobile/
Mobile Solutions on the Google Cloud Platform

- Your Application Code running on Google App Engine (GAE), Google Compute Engine (GCE), and Client Devices
- Google Cloud Platform Services
- Capabilities Included

Google Infrastructure

1. Load balancing across GAE Instances
2. Auto Scaling
3. Static content serving and caching
4. DoS protection
5. Monitoring and Management

Source: https://cloud.google.com/developers/articles/mobile-application-solutions/
Mobile Solution on Google Cloud Platform

- Support for Android and iOS devices through native applications
- Storage, retrieval, and processing data outside of mobile devices
- Orchestrating push notification to Android and IOS devices
- Geo-location awareness and geo-proximity search
- User authentication
- High scalability

Source: https://cloud.google.com/developers/articles/mobile-application-solutions/
Mobile App Solutions Architecture

Source: https://cloud.google.com/developers/articles/mobile-application-solutions/
Mobile App Solutions Architecture

• Android and/or iOS mobile clients.
• Google Cloud Endpoints used for communications between the clients and the backend over REST API with optional OAuth2 authentication.
• Your mobile backend application code running on Google App Engine and responsible for serving requests from the clients.

Source: https://cloud.google.com/developers/articles/mobile-application-solutions/
Storing data

Mobile Backend Running On Google App Engine Instances

GAE App Engine Datastore

Google Cloud Storage
Google App Engine

Datastore Quotas and limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum entity size</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>Maximum transaction size</td>
<td>10 megabytes</td>
</tr>
<tr>
<td>Maximum number of index entries for an entity</td>
<td>20000</td>
</tr>
<tr>
<td>Maximum number of bytes in composite indexes for an entity</td>
<td>2 megabytes</td>
</tr>
</tbody>
</table>

Source: https://cloud.google.com/appengine/docs/java/datastore/
Optimizing data access with Memcache

Source: https://cloud.google.com/developers/articles/mobile-application-solutions/
Google App Engine
Platform as a Service (PaaS)

build and run applications on Google’s infrastructure

Source: https://cloud.google.com/appengine/docs
Google App Engine
Platform as a Service (PaaS)

Google Compute Engine
Infrastructure as a Service (IaaS)

Source: https://cloud.google.com/appengine/docs
Google App Engine

• 1 GB of data storage and traffic for free

• can be increased by enabling paid applications

Source: https://cloud.google.com/appengine/docs/whatisgoogleappengine
Google App Engine supports apps written in a variety of programming languages: Python, Java, PHP, Go

Source: https://cloud.google.com/appengine/docs/whatsgoogleappengine
Google App Engine

Run your applications on a fully-managed Platform-as-a-Service (PaaS) using built-in services that make you more productive. Just download the SDK and start building immediately.

Start your free trial

Features

- Popular languages and frameworks
 Write applications in some of the most popular programming languages: Python, Java, PHP and Go. Use existing frameworks such as Django, Flask, Spring and webapp2. Develop locally with

 https://cloud.google.com/appengine/

- Focus on your code
 Let Google worry about database administration, server configuration, sharding and load balancing. With Traffic Splitting, you can A/B test different live versions of your app. Multitenancy support lets you compartmentalize your application data.

- Multiple storage options
 Choose the storage option you need: a traditional MySQL database using Cloud SQL, a schemaless NoSQL datastore, or object storage using Cloud Storage.
Features

Popular languages and frameworks
Write applications in some of the most popular programming languages: Python, Java, PHP and Go. Use existing frameworks such as Django, Flask, Spring and webapp2. Develop locally with language-specific SDKs. Pair your applications with Compute Engine to integrate other familiar technologies such as Node.js, C++, Scala, Hadoop, MongoDB, Redis and more.

Focus on your code
Let Google worry about database administration, server configuration, sharding and load balancing. With Traffic Splitting, you can A/B test different live versions of your app. Multitenancy support lets you compartmentalize your application data.

Multiple storage options
Choose the storage option you need: a traditional MySQL database using Cloud SQL, a schemaless NoSQL datastore, or object storage using Cloud Storage.

Powerful built-in services
App Engine makes you more productive by eliminating the need to write boilerplate code. Managed services, such as Task Queues, Memcache and the Users API, let you build any application.

Familiar development tools
Use the tools you know, including Eclipse, IntelliJ, Maven, Git, Jenkins, PyCharm and more. The App Engine SDK allows you to test applications locally in a simulated environment and then deploy your app with simple command-line tools or the desktop launcher.

Deploy at Google scale
Some of the world’s most popular web services are built on our platform. You can scale up to 7 billion requests per day and automatically scale down when traffic subsides.

https://cloud.google.com/appengine/
Cloud Datastore

Use a managed, NoSQL schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries.

Start your free trial

Features

- **Schemaless access, with SQL-like querying**
 No need to worry about data models and migration. Cloud Datastore is a schemaless storage service that allows you to be agile by removing the need to think about the underlying structure of the database.

- **Managed database**
 Cloud Datastore is fully managed. Google automatically handles sharding and replication in order to provide you with a highly available and consistent database.

- **Autoscale with your users**
 Cloud Datastore automatically scales depending on your needs. This allows you to focus on building your application and not on worrying about provisioning and load anticipation.

https://cloud.google.com/datastore/
Google Cloud Datastore

schemaless access, with SQL-like querying
No need to worry about data models and migration. Cloud Datastore is a schemaless storage service that allows you to be agile by removing the need to think about the underlying structure of the data. Cloud Datastore provides a robust query engine that allows you to search for data across multiple properties and sort as needed.

Managed database
Cloud Datastore is fully managed. Google automatically handles sharding and replication in order to provide you with a highly available and consistent database.

Autoscale with your users
Cloud Datastore automatically scales depending on your needs. This allows you to focus on building your application and not on worrying about provisioning and load anticipation.

ACID transactions
Cloud Datastore provides ACID transactions using optimistic concurrency control. Your application can execute multiple datastore operations in a single transaction in which either all succeed or all fail, ensuring the integrity of your data.

Built-in redundancy
With a single API call, data is automatically replicated across multiple data centers. High availability and durability are built in from the very core.

Local development tools
With the Cloud Datastore Development Kit, you can develop, test and iterate your applications locally without doing full deployments.

Access your data from anywhere
Build solutions that span App Engine and Compute Engine, and rely on Cloud Datastore as the integration point. With the RESTful interface that is exposed by Cloud Datastore, data can easily be accessed by any deployment target.

https://cloud.google.com/datastore/
Google Cloud Endpoints

Create RESTful services and make them accessible to iOS, Android and Javascript clients. Automatically generate client libraries to make wiring up the frontend easy. Built-in features include denial-of-service protection, OAuth 2.0 support and client key management.

Features

- **One tool, multiple clients**
 Build client libraries for Android, iOS and web-based clients from one source. Cloud Endpoints wraps your code to build an API server in just a few steps. Cloud Endpoint API libraries are available in Java, Python, Go and PHP. Learn more

- **Extending App Engine infrastructure**
 All of the tools and libraries made available in App Engine are now available to your mobile devices. Access Datastore, Cloud Storage and Task Queues using your App Engine backend with no extra

- **Low maintenance client-server**
 Because Cloud Endpoints is backed by App Engine, you have no servers to maintain, no load balancing to worry about and the same quick and painless scaling. Like App Engine and our other Cloud services, you only pay for what you use.

Source: https://cloud.google.com/endpoints/
Google Cloud Endpoints

Features

- **One tool, multiple clients**
 Build client libraries for Android, iOS and web-based clients from one source. Cloud Endpoints wraps your code to build an API server in just a few steps. Cloud Endpoint API libraries are available in Java, Python, Go and PHP. Learn more about Cloud Endpoints in our documentation or just dive in and try our sample Tic Tac Toe web application.

- **Extending App Engine infrastructure**
 All of the tools and libraries made available in App Engine are now available to your mobile devices. Access Datastore, Cloud Storage and Task Queues using your App Engine backend with no extra work. Integrate OAuth 2.0 authentication quickly by following our examples.

- **Low maintenance client-server**
 Because Cloud Endpoints is backed by App Engine, you have no servers to maintain, no load balancing to worry about and the same quick and painless scaling. Like App Engine and our other Cloud services, you only pay for what you use.

Source: https://cloud.google.com/endpoints/
Mobile Apps Backend on Google App Engine

Google Cloud Endpoints Architecture

Source: https://cloud.google.com/appengine/docs/java/endpoints/
Mobile App, Google App Engine, Cloud Datasotre

Mobile Backend Starter

http://www.youtube.com/watch?v=v5u_Owttbfew
Google Cloud by Ivan Hawkes

Mobile, Web, and Cloud
The Triple Crown of Modern Applications

Ido Green - Developer Advocate, Google
Danny Hermes - Developer Programs Engineer, Google

http://www.youtube.com/watch?v=6_oO9Gwf_do
Build your mobile app with Google Cloud Platform

http://www.youtube.com/watch?v=ZZNb1NOPTp8
App Engine Architecture and Services

http://www.youtube.com/watch?v=QJp6hmASstQ
Google Cloud Datastore

Datastore is a database (persistent storage) for App Engine

Source: Datastore Introduction, http://www.youtube.com/watch?v=fQazhzcC-rg
Google Cloud Platform

With Google Cloud Platform, developers can build, test and deploy applications on Google’s highly-scalable and reliable infrastructure for your web, mobile and backend solutions.

Focus on writing code, not on infrastructure, and use the same infrastructure that Google uses for your application, computing and big data needs.

Get started quickly

If you’re ready to get started, try these solutions for getting software up and running on our platform:

- LAMP development stack
- Ruby development stack
Try Google Cloud Platform for free

Build on top of the infrastructure that powers Google.
Sign up for free and get $300 to spend over 60 days on all Google Cloud Platform services.

Certain terms and conditions apply. Learn more

Country: Taiwan

Account type:
- Business
- Individual

Name and address:
- Business name
- Name
- Street address

Got $300 to kick start your app.
Sign up for free and get $300 to spend on Google Cloud Platform over the next 60 days.

Why do you need my billing information?
We use your billing information to verify that you’re a real person. Don’t worry, you will not be billed for the free trial.

Do I have to pay when my free trial ends?
No. You’re under no obligation to buy anything when the free trial ends. If you want to continue to use Google Cloud Platform, just upgrade before your trial runs out.

Questions?
Check out the FAQ or leave us a message.
Try Google Cloud Platform for free

Google Developers Console

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>imydy@gmail.com</td>
</tr>
</tbody>
</table>

Primary contact

<table>
<thead>
<tr>
<th>Card number</th>
<th>Visa</th>
<th>Amex</th>
<th>Mastercard</th>
<th>Discover</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>YY</td>
<td>CVC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit or debit card

Billing communication language

English (United States)

I have read and agree to the Google Cloud Platform Free Trial Terms of Service.

Accept and start free trial Clear
Get started quickly

If you're ready to get started, try these solutions for getting software up and running on our platform!

LAMP development stack

LAMP (an acronym for Linux, Apache, MySQL, and PHP) is the archetypal open-source web development stack for many developers, and it runs great on Compute Engine!

Ruby development stack

Ruby on Rails is one of the most popular frameworks for developing web applications, powering sites like Github, Basecamp and Shopify. Rapidly create new features, easily maintain code, and take advantage of the many open source contributions to Ruby on Rails, running on Compute Engine.

Quickstart for Wordpress

Set up a project, download a zip, change your config file, and deploy—and you'll have a working WordPress project running on Google Cloud Platform, with App Engine as your hosting environment.

App Engine "Hello World" starter

Start editing a working "Hello World" app right now, in the browser. This gives you a good starting point and a feel for what it's like editing a working App Engine application.

Documentation

Use the following section or the left-hand navigation to access the various sets of documentation that cover Google Cloud Platform. Choose from computing and hosting, storage, big data, management, services, and developer tools.

Computing and hosting

- App Engine
- Compute Engine
Google Cloud Platform

https://cloud.google.com/docs/

Computing and hosting

App Engine

App Engine is Google's Platform-as-a-Service (PaaS). Develop your application easily using built-in services that make you more productive. Deploy to a fully-managed platform and let Google carry the pager. Just download the SDK and start building immediately for free with no credit card required.

- Overview
- Get Started
- Tutorials: Java, PHP, Python, Go
- Documentation

Compute Engine

Compute Engine is Google's Infrastructure-as-a-Service (IaaS). Run large-scale workloads on virtual machines hosted on Google's infrastructure. Choose a VM that fits your needs and gain the performance and consistency of Google's worldwide fiber network. With per-minute billing, you pay only for what you use.

- Overview
- Get Started
- Tutorial
- Documentation

Storage

Cloud SQL

Store and manage data using a relational MySQL database. Google handles replication, patch management and database management to ensure availability and performance, and you can even have your instance automatically co-locate with your deployed applications.

- Overview
- Tutorial

Cloud Storage

Use a durable and highly available object storage service. With global edge-caching, your users have fast access to your app's data from any location. Google manages versioning, guarantees a strong SLA and provides a simple API that allows you to manage your data programmatically.

- Overview
- Tutorial

Cloud Datastore

Cloud Datastore provides a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries.

- Overview
- Tutorial
- Documentation
Start editing a working "Hello World" app right now, in the browser.

This gives you a good starting point and a feel for what it's like editing a working App Engine application.
Try Google App Engine Now

1. NAME YOUR PROJECT
2. SELECT YOUR LANGUAGE
3. EXPLORE THE STARTER CODE
4. INSTALL GOOGLE CLOUD SDK
5. RUN YOUR APP LOCALLY
6. CREATE YOUR PROJECT AND DEPLOY
Google App Engine

Try Google App Engine Now

Creating an App Engine app is easy, and it's free to start. Upload your app and share it with users right away, at no charge and with no commitment required.

1. NAME YOUR PROJECT

You use your project to manage all of the Google Cloud Platform resources for your app, including deployment, access control, billing, and services. You can change your project name later.

 HelloWorldGoogleAppEngine

2. SELECT YOUR LANGUAGE

 Python Java
Google App Engine

2. SELECT YOUR LANGUAGE

- Python
- Java
- PHP
- Go

3. EXPLORE THE STARTER CODE

Browse the starter code and see the app running below.

HELLO WORLD - JAVA

```java
package myapp;

import java.io.IOException;
import javax.servlet.http.*;

public class DemoServlet extends HttpServlet {
    @Override
    public void doGet(HttpServletRequest req, HttpServletResponse resp) throws IOException {
        resp.setContentType("text/plain");
    }
}
```
3 EXPLORE THE STARTER CODE

Browse the starter code and see the app running below.

HELLO WORLD - JAVA

```java
package myapp;

import java.io.IOException;
import javax.servlet.http.*;

public class DemoServlet extends HttpServlet {
    @Override
    public void doGet(HttpServletRequest req, HttpServletResponse resp)
        throws IOException {
        resp.setContentType("text/plain");
        resp.getWriter().println("{ "name": "World" }");
    }
}
```

Hello, World
Google App Engine

HELLO WORLD - JAVA

```java
package myapp;

import java.io.IOException;
import javax.servlet.http.*;

public class DemoServlet extends HttpServlet {
    @Override
    public void doGet(HttpServletRequest req, HttpServletResponse resp)
            throws IOException {
        resp.setContentType("text/plain");
        resp.getWriter().println("{'name': 'World'}");
    }
}
```

Hello, World
Google App Engine

4 INSTALL GOOGLE CLOUD SDK

1. Download and install Google Cloud SDK by running the following command in your shell or Terminal:

 curl https://sdk.cloud.google.com/ | bash

 Follow the prompts to install the Java App Engine package.

2. Restart your shell or Terminal to pick up environment changes.

3. Sign in to Google Cloud Platform using this command:

 gcloud auth login

4. Install the App Engine package for Java using this command:

 gcloud components update gae-java

5 RUN YOUR APP LOCALLY
5 RUN YOUR APP LOCALLY

Note: App Engine supports Java 7. Make sure you have the Java 7 JDK installed.

1. Download appengine-trypack.zip and unpack it. This creates your project directory, including src/ and war/ subdirectories.

2. Download and install Apache Maven version 3.0 or later. The starter app includes an Apache Maven build file.

3. Build and run the sample locally using the following commands:

 cd appengine-trypack
 mvn package
 dev_appserver.sh target/appengine-trypack.jar

 You can stop the server by pressing Ctrl-C in the command window.

4. Visit the locally running app in your browser: http://localhost:8080

6 CREATE YOUR PROJECT AND DEPLOY

Now that you've seen your app running on your local machine, you're ready to create and deploy your project, HelloWorldGoogleAppEngine.
Google App Engine

5 RUN YOUR APP LOCALLY

Note: App Engine supports Java 7. Make sure you have the [Java 7 JDK](https://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html) installed.

1. Download `appengine-try-java.zip` and unpack it. This creates your project directory, including `src/` and `war/` subdirectories.

2. Download and install Apache Maven version 3.0 or later. The starter app includes an Apache Maven build file.

3. Build and run the sample locally using the following commands:

   ```
   cd appengine-try-java
   mvn package
   dev_appserver.sh target/appengine-try-java-1.0
   ```

 You can stop the server by pressing Ctrl-C in the command window.

4. Visit the locally running app in your browser: `http://localhost:8080`

6 CREATE YOUR PROJECT AND DEPLOY

Now that you've seen your app running on your local machine, you're ready to create and deploy your project, `HelloWorldGoogleAppEngine`.
CREATE YOUR PROJECT AND DEPLOY

Congratulations! Your project is ready. Your unique project ID is `psychic-outcome-783`.

Deploy your app from your local dev environment using this command:

```
appcfg.sh -A psychic-outcome-783 update target/appengine-try-java-1.0
```

After deploying your app, you can visit it with your browser at this URL:

`psychic-outcome-783.appspot.com`

That's it! You're running on Google App Engine. Go to your project dashboard to see how your app is performing.
Google App Engine
Build an App Engine Application using Python

Creating a Guestbook
1. Download the App Engine SDK
2. Explaining the webapp2 Framework
3. Using the Users Service
4. Handling Forms with webapp2
5. Using the Datastore
6. Using Templates
7. Using Static Files
8. Uploading Your Application

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Introduction

Welcome to Google App Engine! Creating an App Engine application is easy, only takes a few minutes, and it’s free to start.

Google App Engine applications can be written in the Python 2.7, Java, Go or PHP programming languages. This tutorial covers Python 2.7. If you would prefer to use Java, Go or PHP to build your applications, see the Java, Go or PHP guides.

In this tutorial, you will learn how to:

1. Download the App Engine SDK
2. Explaining the webapp2 Framework
3. Using the Users Service
4. Handling Forms with webapp2
5. Using the Datastore
6. Using Templates
7. Using Static Files
8. Uploading Your Application

By the end of the tutorial, you will have implemented a working application, a simple guest book that lets users post messages to a public message board.

Get set up

Before we continue, you will need to download the App Engine Python SDK, which includes a web server application that simulates the
Google App Engine

Python

Introduction

Welcome to Google App Engine! Creating an App Engine application is easy, only takes a few minutes, and it’s free to start.

Google App Engine applications can be written in the Python 2.7, Java, Go or PHP programming languages. This tutorial covers Python 2.7. If you would prefer to use Java, Go or PHP to build your applications, see the Java, Go or PHP guides.

In this tutorial, you will learn how to:

- build an App Engine application using Python
- use the webapp2 web application framework
- use the App Engine datastore with the Python modeling API
- integrate an App Engine application with Google Accounts for user authentication
- use Jinja2 templates with your app
- upload your app to App Engine

By the end of the tutorial, you will have implemented a working application, a simple guest book that lets users post messages to a public message board.

Get set up

Before we continue, you will need to download the App Engine Python SDK, which includes a web server application that simulates the App Engine environment, and tools to deploy your application to the App Engine production environment. Follow the directions for your operating system, then come back here so we can get going!
Explaining the webapp2 Framework

The Web Server Gateway Interface (WSGI) standard is simple, but it would be cumbersome to write all of the code that uses it by hand. Web application frameworks handle these details for you, so you can focus your development efforts on your application's features. Google App Engine supports any framework written in pure Python that speaks WSGI, including Django, CherryPy, Pylons, web.py, and web2py. You can bundle a framework of your choosing with your application code by copying its code into your application directory.

App Engine includes a simple web application framework, called webapp2. The webapp2 framework is already installed in the App Engine environment and in the App Engine Python SDK, so you do not need to bundle it with your application code to use it. We will use webapp2 for the rest of this tutorial.

Hello, webapp2!

A webapp2 application has two parts:

- one or more RequestHandler classes that process requests and build responses
- a WSGIApplication instance that routes incoming requests to handlers based on the URL

Let's take a look at Hello World:

```python
import webapp2

class MainPage(webapp2.RequestHandler):
    def get(self):
        self.response.headers["Content-Type"] = "text/plain"
        self.response.write("Hello, World!")

app = webapp2.WSGIApplication([]
```

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Using the Users Service

Google App Engine provides several useful services based on Google infrastructure, accessible by applications using libraries included with the App Engine Python SDK. One such service is the Users service, which lets your application integrate with Google user accounts. With the Users service, your users can use the Google accounts they already have to sign in to your application.

Let's use the Users service to personalize this application's greeting.

Using Users

We're going to build on the Hello, World! application. You can clone the code for this step from this branch on GitHub, or if you already have the original Hello, World! app, replace its contents with the following:

```python
from google.appengine.api import users

import webapp2

class MainPage(webapp2.RequestHandler):

  def get(self):
    # Checks for active Google account session
    user = users.get_current_user()

    if user:
      self.response.headers['Content-Type'] = 'text/html; charset=utf-8'
      self.response.write('Hello, ' + user.nickname())
```

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Handling Forms with webapp2

If we want users to be able to post their own greetings, we need a way to process information submitted by the user with a web form. The webapp2 framework makes processing form data easy.

From Hello World to Guestbook

In order to prepare the Hello World app we've created thus far, please make the following changes:

- Rename the top level helloworld directory to guestbook
- Rename helloworld.py to guestbook.py
- Replace the handlers section of app.yaml with:

```
app.yaml

handlers:
  - url: /.*
    script: guestbook.app
```

Restart the development server using the new guestbook directory.

Handling Web Forms With webapp2

Declare that you are using webapp2 by adding this libraries section to your app.yaml:

```
app.yaml

libraries:
  - webapp2
```

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Using the Datastore

Storing data in a scalable web application can be tricky. A user could be interacting with any of dozens of web servers at a given time, and the user’s next request could go to a different web server than the previous request. All web servers need to be interacting with data that is also spread out across dozens of machines, possibly in different locations around the world.

With Google App Engine, you don’t have to worry about any of that. App Engine’s infrastructure takes care of all of the distribution, replication, and load balancing of data behind a simple API—and you get a powerful query engine and transactions as well.

App Engine's data repository, the High Replication Datastore (HRD), uses the Paxos algorithm to replicate data across multiple datacenters. Data is written to the Datastore in objects known as entities. Each entity has a key that uniquely identifies it. An entity can optionally designate another entity as its parent; the first entity is a child of the parent entity. The entities in the Datastore thus form a hierarchically-structured space similar to the directory structure of a file system. An entity’s parent, parent’s parent, and so on recursively, are its ancestors; its children, children’s children, and so on, are its descendants. An entity without a parent is a root entity.

The Datastore is extremely resilient in the face of catastrophic failure, but its consistency guarantees may differ from what you’re familiar with. Entities descended from a common ancestor are said to belong to the same entity group: the common ancestor’s key is the group’s parent key, which serves to identify the entire group. Queries over a single entity group, called ancestor queries, refer to the parent key instead of a specific entity’s key. Entity groups are a unit of both consistency and transactionality: whereas queries over multiple entity groups may return stale, eventually consistent results, those limited to a single entity group always return up-to-date, strongly consistent results.

The sample application in this guide organizes related entities into entity groups, and uses ancestor queries on those entity groups to return strongly consistent results. In the example code comments, we highlight some ways this approach might affect the design of your application. For more detailed information, see Structuring Data for Strong Consistency.

A Complete Example Using the Datastore

Here is a new version of guestbook/guestbook.py that creates a page footer that stores greetings in the Datastore. The rest of this page discusses excerpts from this larger example, organized under the topics of storing the greetings and retrieving them.
Using Templates

HTML embedded in code is messy and difficult to maintain. It's better to use a templating system, where the HTML is kept in a separate file with special syntax to indicate where the data from the application appears. There are many templating systems for Python: EZT, Cheetah, ClearSilver, Quixote, Django, and Jinja2 are just a few. You can use your template engine of choice by bundling it with your application code.

For your convenience, App Engine includes the Django and Jinja2 templating engines.

Using Jinja2 Templates

First modify the libraries section at the bottom of guestbook/app.yaml:

```yaml
app.yaml

libraries:
  - name: webapp2
    version: latest
  - name: jinja2
    version: latest
```

This configuration makes the newest supported version of Jinja2 available to your application. To avoid possible compatibility issues, serious applications should use an actual version number rather than latest.

Now modify the statements at the top of guestbook/guestbook.py:

```python
guestbook.py

import os
```

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Using Static Files

Unlike a traditional web hosting environment, Google App Engine does not serve files directly out of your application's source directory unless configured to do so. We named our template file `index.html`, but this does not automatically make the file available at the URL `/index.html`.

But there are many cases where you want to serve static files directly to the web browser. Images, CSS stylesheets, JavaScript code, movies and Flash animations are all typically stored with a web application and served directly to the browser. App Engine can serve specific files directly without you having to code your own handler.

Using Static Files

Edit `guestbook/app.yaml` and replace its contents with the following:

```yaml
app.yaml

version: 1
runtime: python27
api_version: 1
threadsafe: true

# Handlers match in order, put above the default handler.
handlers:
- url: /stylesheets
  static_dir: stylesheets
- url: /.*
  script: guestbook.app
```

Source: https://cloud.google.com/appengine/docs/python/gettingstartedpython27/introduction
Uploading Your Application

To upload your application:

1. Sign in to App Engine using your Google account. If you do not have a Google account, you can create a Google account with an email address and password.

2. If you haven't already done so, create a project for your App Engine app as follows:
 a. Visit the Google Cloud Platform Console and click Create Project.
 b. Supply the desired project name in the New Project form. It doesn't have to match your app name, but using the same name as your app might make administration easier.
 c. Accept the generated project ID or supply your own ID. This project ID is used as the App Engine application ID. Note that this ID can only be used once: if you subsequently delete your project, you won't be able to re-use the ID in a new project.

3. Note the application ID (project ID) you created above.

4. Upload your finished application to Google App Engine by invoking the following command. This opens a browser window for you to sign in using your Google account. You'll be providing the project ID as the argument for -A.

 appcfg.py -A <YOUR_PROJECT_ID> update guestbook/

5. The Datastore Indexes may take some time to generate before your application is available. You will receive a NeedIndexError when accessing your app if the indexes are still in the process of being generated. This is a transient error for the example, so try a little later if at first you receive this exception.

6. Your app is now deployed and ready for users!
Google Cloud Platform

Pricing overview
Run your application using the same technology and tools used at Google. Cloud Platform provides the building blocks so you can develop quickly, using the services that you need.

Pricing calculator
Want to get a sense of what running in the cloud will cost? The pricing calculator provides a quick and easy way to estimate what your usage will look like.

Pricing philosophy
We believe that pricing should be as simple as possible and the burden of getting the best deal should be on us, not you. That's why we have sustained-use discounts, pay by the minute pricing, and believe in Moore's law in the cloud.

Billing questions
Sometimes you just need to get questions about your bill answered. Take a look at our frequently asked questions and if you don't get an answer contact us.

Get a custom quote
See philosophy
See billing FAQs
Summary

• Google Cloud Platform
 – Google App Engine
 – Google Cloud Datastore
 – Google Cloud Endpoints

• Mobile App with Google Cloud Platform
References

• Google Cloud Platform, https://cloud.google.com/

• Google App Engine, https://cloud.google.com/appengine/

• Google Cloud Datastore, https://cloud.google.com/datastore/

• Google Cloud Endpoints, https://cloud.google.com/endpoints/