

社群網路行銷分析

確認性因素分析 (Confirmatory Factor Analysis)

1032SMMA07 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326

<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2015-05-15

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2015/02/27 和平紀念日補假(放假一天)
- 2 2015/03/06 社群網路行銷分析課程介紹
 (Course Orientation for Social Media Marketing Analytics)
- 3 2015/03/13 社群網路行銷分析 (Social Media Marketing Analytics)
- 4 2015/03/20 社群網路行銷研究 (Social Media Marketing Research)
- 5 2015/03/27 測量構念 (Measuring the Construct)
- 6 2015/04/03 兒童節補假(放假一天)
- 7 2015/04/10 社群網路行銷個案分析 | (Case Study on Social Media Marketing I)
- 8 2015/04/17 測量與量表 (Measurement and Scaling)
- 9 2015/04/24 探索性因素分析 (Exploratory Factor Analysis)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 10 2015/05/01 社群運算與大數據分析 (Social Computing and Big Data Analytics) [Invited Speaker: Irene Chen, Consultant, Teradata]
- 11 2015/05/08 期中報告 (Midterm Presentation)
- 12 2015/05/15 確認性因素分析 (Confirmatory Factor Analysis)
- 13 2015/05/22 社會網路分析 (Social Network Analysis)
- 14 2015/05/29 社群網路行銷個案分析 II (Case Study on Social Media Marketing II)
- 15 2015/06/05 社群網路情感分析 (Sentiment Analysis on Social Media)
- 16 2015/06/12 期末報告 I (Term Project Presentation I)
- 17 2015/06/19 端午節補假(放假一天)
- 18 2015/06/26 期末報告 II (Term Project Presentation II)

Outline

- Confirmatory Factor Analysis (CFA)
- Structured Equation Modeling (SEM)
- Partial-least-squares (PLS) based SEM (PLS-SEM)
 PLS, PLS-Graph, Smart-PLS
- Covariance based SEM (CB-SEM)

– LISREL, EQS, AMOS

Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE, 2013

Source: http://www.amazon.com/Partial-Squares-Structural-Equation-Modeling/dp/1452217440/

統計分析入門與應用:SPSS中文版+PLS-SEM (SmartPLS), 基峰資訊, 2014

Source: http://24h.pchome.com.tw/books/prod/DJAV0S-A82328045

Second generation Data Analysis Techniques

Confirmatory Factor Analysis (CFA)

Structural Equation Modeling (SEM)

Partial-least-squares-based SEM
(PLS-SEM)Covariance-based SEM
(CB-SEM)PLS
PLS-Graph
Smart-PLSLISREL
EQS
AMOS

Source: Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000)

Types of Factor Analysis

- Exploratory Factor Analysis (EFA)
 - is used to discover the factor structure of a construct and examine its reliability.
 It is data driven.
- Confirmatory Factor Analysis (CFA)
 - is used to confirm the fit of the hypothesized factor structure to the observed (sample) data.
 It is theory driven.

Structural Equation Modeling (SEM)

 Structural Equation Modeling (SEM) techniques such as LISREL and Partial Least Squares (PLS) are

second generation data analysis techniques

Data Analysis Techniques

- Second generation data analysis techniques
 - SEM
 - PLS, LISREL
 - statistical conclusion validity
- First generation statistical tools
 - Regression models:
 - linear regression, LOGIT, ANOVA, and MANOVA

SEM models in the IT literature

- Partial-least-squares-based SEM (PLS-SEM)
 PLS, PLS-Graph, Smart-PLS
- Covariance-based SEM (CB-SEM)

– LISREL, EQS, AMOS

The TAM Model

Structured Equation Modeling (SEM)

• Structural model

 the assumed causation among a set of dependent and independent constructs

Measurement model

 – loadings of observed items (measurements) on their expected latent variables (constructs).

Structured Equation Modeling (SEM)

- The combined analysis of the measurement and the structural model enables:
 - measurement errors of the observed variables to be analyzed as an integral part of the model
 - factor analysis to be combined in one operation with the hypotheses testing
- SEM

– factor analysis and hypotheses are tested in the same analysis

Structure Model

Structured Equation Modeling (SEM) Path Model (Causal Model)

Structured Equation Modeling (SEM) Path Model and Constructs

Continuous Moderating Effect (Moderator)

Categorical Moderation Effect (Moderator)

Hierarchical Component Model First Order Construct vs. Second Order Construct

Measurement Model

Measuring Loyalty 5 Variables (Items) (5:1)

(Zeithaml, Berry & Parasuraman, 1996)

Source: Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman,

"The Behavioral Consequences of Service Quality," Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp. 31-46

23

Measurement Model

Example of a Path Model With Three Constructs

Difference Between Reflective and Formative Measures

Reflective Measurement Model

Formative Measurement Model

Satisfaction as a Reflective Construct

Satisfaction as a Formative Construct

Formative Construct The service is good The personnel SAT is friendly The rooms are clean

Satisfaction as a Reflective and Formative Construct

Causal priority between the indicator and the construct From the construct to the indicators: reflective From the indicators to the construct: formative Diamantopoulos and Winklhofer (2001)

Is the construct a trait explaining the indicators or rather a combination of the indicator? If trait: reflective If combination: formative Fornell and Bookstein (1982)

Do the indicators represent consequences or causes of the construct?

If consequences: reflective

If causes: formative

Rossieter (2002)

3

Are the items mutually interchangeable? If yes: reflective If no: formative Jarvis, MacKenzie, and Podsakoff (2003)

Structured Equation Modeling (SEM)

Measurement model of the exogenous latent variables

Measurement model of the endogenous latent variables

Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.

Structured Equation Modeling (SEM) with Partial Least Squares (PLS)

Framework for Applying PLS in Structural Equation Modeling

Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.
CB-SEM vs. PLS-SEM

Source: Nils Urbach and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares, " Journal of Information Technology Theory and Application, 11(2), 5-40.

Exhibit 1.6 Rules of Thumb for Choosing Between PLS-SEM and CB-SEM

Use PLS-SEM when

- The goal is predicting key target constructs or identifying key "driver" constructs.
- Formatively measured constructs are part of the structural model. Note that formative measures can also be used with CB-SEM, but doing so requires construct specification modifications (e.g., the construct must include both formative and reflective indicators to meet identification requirements).
- The structural model is complex (many constructs and many indicators).
- The sample size is small and/or the data are non-normally distributed.
- The plan is to use latent variable scores in subsequent analyses.

Use CB-SEM when

- The goal is theory testing, theory confirmation, or the comparison of alternative theories.
- Error terms require additional specification, such as the covariation.
- The structural model has non-recursive relationships.
- The research requires a global goodness-of-fit criterion.

Source: Adapted from The Journal of Marketing Theory and Practice 19(2) (Spring 2011), 139–151. Copyright © 2011 by M. E. Sharpe, Inc. Used by permission. All Rights Reserved. Not for reproduction.

Source: Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE

Use of Structural Equation Modeling Tools 1994-1997

	I&M	ISR	MISQ	All Three
SEM Approaches	(n=106)	(n=27)	(n=38)	Journals
PLS	2%	19%	11%	7%
LISREL	3%	15%	11%	7%
Other *	3%	11%	3%	4%
Total %	8%	45%	25%	18%

* Other includes SEM techniques such as <u>AMOS</u> and <u>EQS</u>.

Comparative Analysis between Techniques

Issue	LISREL	PLS	Linear Regression
Objective of Overall Analysis	Show that the null hypothesis of the entire proposed model is plausible, while rejecting path-specific null hypotheses of no effect.	Reject a set of path- specific null hypotheses of no effect.	Reject a set of path- specific null hypotheses of no effect.
Objective of Variance Analysis	Overall model fit, such as insignificant χ^2 or high AGFI.	Variance explanation (high R-square)	Variance explanation (high R-square)
Required Theory Base	Requires sound theory base. Supports confirmatory research.	Does not necessarily require sound theory base. Supports both exploratory and confirmatory research.	Does not necessarily require sound theory base. Supports both exploratory and confirmatory research.
Assumed Distribution	Multivariate normal, if estimation is through ML. Deviations from multivariate normal are supported with other estimation techniques.	Relatively robust to deviations from a multivariate distribution.	Relatively robust to deviations from a multivariate distribution, with established methods of handling non- multivariate distributions.
Required Minimal Sample Size	At least 100-150 cases.	At least 10 times the number of items in the most complex construct.	Supports smaller sample sizes, although a sample of at least 30 is required.

Capabilities by Research Approach

Capabilities	LISREL	PLS	Regression
Maps paths to many dependent (latent or observed) variables in the same research model and analyze all the paths simultaneously rather than one at a time.	Supported	Supported	Not supported
Maps specific and error variance of the observed variables into the research model.	Supported	Not supported	Not supported
Maps reflective observed variables	Supported	Supported	Supported
Maps formative observed variables	Not supported	Supported	Not supported
Permits rigorous analysis of all the variance components of each observed variable (common, specific, and error) as an integral part of assessing the <u>structural</u> <u>model</u> .	Supported	Not supported	Not supported
Allows setting of non-common variance of an observed variable to a given value in the research model.	Supported	Not supported	Supported by adjusting the correlation matrix.
Analyzes all the paths, both measurement and structural, in one analysis.	Supported	Supported	Not supported
Can perform a confirmatory factor analysis	Supported	Supported	Not supported
Provides a statistic to compare alternative confirmatory factor analyses models	Supported	Not supported	Not supported

TAM Model and Hypothesis

	Hypothesis
H ₁	<u>PU</u> will impact the system outcome construct, Intention to Use the System.
H_2	EOU will impact the system outcome construct, Intention to Use the System.
H ₃	EOU will impact PU.

TAM Causal Path Findings via Linear Regression Analysis

	DV	$F(R^2)$	IV	Coefficient
				(T-value)
Regression #1	Intention to Use	23.80** (.24)	PU	.41 (4.45**)
			EOU	.10 (1.07)
Regression #2	PU	124.01** (.44)	EOU	.66 (11.14**)

** = Significant at the .01 level

Factor Analysis and Reliabilities for Example Dataset

			Factors		Cronbach's
Construct	Item	1	2	3	α
	PU1	.543	.277	.185	
Perceived	PU2	.771	.178	.053	
Usefulness	PU3	.827	.315	.185	.91
(PU)	PU4	.800	.268	.234	
	PU5	.762	.352	.236	
	PU6	.844	.437	.290	
Perceived	EOU1	.265	.751	.109	
Ease-of-Use	EOU2	.217	.774	.150	
(EOU)	EOU3	.270	.853	.103	.93
	EOU4	.303	.787	.105	
	EOU5	.248	.831	.179	
	EOU6	.242	.859	.152	
Intention	IUSE1	.183	.147	.849	
To Use	IUSE2	.224	.062	.835	.80
(IUSE)	IUSE3	.139	.226	.754	

Rotation Method: Varimax with Kaiser Normalization (Rotation converged in 6 iterations)

TAM Standardized Causal Path Findings via LISREL Analysis

Standardized Loadings and Reliabilities in LISREL Analysis

		Latent Const	atent Construct Loading (and Error) Re				
Construct	Item	PU	EOU	IUSE	Coefficient		
	PU1	0.99 (.50)					
Perceived	PU2	1.10 (.39)**					
Usefulness	PU3	0.93 (.45)**			.95		
(PU)	PU4	1.07 (.26)**					
	PU5	1.10 (.29)**					
	PU6	1.11 (.24)**					
	EOU1		0.78 (.45)				
Perceived	EOU2		0.95 (.38)**				
Ease-of-Use	EOU3		0.92 (.25)**		.94		
(EOU)	EOU4		0.99 (.31)**				
	EOU5		1.00 (.27)**				
	EOU6		0.94 (.21)**				
Intention	IUSE1			1.36 (.34)			
To Use	IUSE2			2.17 (.38)**	.95		
(IUSE)	IUSE3			1.15 (.53)**			

The first item loading in each latent variable is fixed at 1.00 and does not have a t- value. ** Significant at the .01 level

TAM Causal Path Findings via PLS Analysis

Loadings in PLS Analysis

		Latent Construct			
Construct	Item	PU	EOU	IUSE	
	PU1	.776**	.613	.405	
Perceived	PU2	.828**	.498	.407	
Usefulness	PU3	.789**	.448	.302	
(PU)	PU4	.886**	.558	.353	
	PU5	.862**	.591	.451	
	PU6	.879**	.562	.406	
Perceived	EOU1	.534	.802**	.323	
Ease-of-Use	EOU2	.557	.839**	.338	
(EOU)	EOU3	.467	.886**	.260	
	EOU4	.562	.843**	.289	
	EOU5	.542	.865**	.304	
	EOU6	.508	.889**	.288	
Intention	IUSE1	.350	.270	.868**	
To Use	IUSE2	.380	.234	.858**	
(IUSE)	IUSE3	.336	.280	.814**	

N.B. A reliability statistic not automatically produced in PLS.

** Significant at the .01 level

AVE and Correlation Among Constructs in PLS Analysis

AVE/ Correlation	IUSE	PU	EOU
IUSE	.721		
PU	.468	.742	
EOU	.359	.632	.738

Generic Theoretical Network with Constructs and Measures

Exogenous Latent Variables A and B

Endogenous Latent Variables C, D, and E

Number of Covariance-based SEM Articles Reporting SEM Statistics in IS Research

	I&M	ISR	MISQ	All Journals
Statistics	(n=6)	(n=7)	(n=5)	(n=18)
GFI reported	3 (50%)	3 (43%)	1 (20%)	7 (39%)
Of <u>GFI</u> reported, number > 0.90	1 (33%)	2 (67%)	1 (100%)	4 (57%)
AGFI reported	2 (33%)	2 (29%)	1 (20%)	5 (28%)
Of <u>AGFI</u> reported, number > 0.80	1 (50%)	2 (100%)	1 (100%)	4 (80%)
RMR reported	2 (33%)	4 (57%)	2 (40%)	8 (44%)
Of <u>RMR</u> reported, number < 0.05	0 (0%)	1 (25%)	1 (50%)	2 (25%)
χ ² insignificance reported	3 (50%)	2 (29%)	0 (0%)	5 (28%)
Of χ^2 insig. reported, number > .05	3 (100%)	1 (50%)	0 (0%)	4 (80%)
Ratio χ^2 / df reported	5 (83%)	6 (86%)	4 (80%)	15 (83%)
Of ratio χ^2 / df reported, number < 3	5 (100%)	5 (83%)	2 (50%)	12 (80%)
<u>SMC</u>	2 (33%)	3 (43%)	2 (40%)	7 (39%)
NFI reported	3 (50%)	3 (43%)	3 (60%)	9 (50%)
Of <u>NFI</u> reported, number > .90	2 (67%)	3 (100%)	3 (100%)	8 (89%)
CFI reported	3 (50%)	2 (29%)	1 (20%)	6 (33%)
T-values or significance of paths	4 (67%)	6 (86%)	4 (80%)	14 (78%)
Construct Reliability reported	5 (83%)	7 (100%)	4 (80%)	16 (89%)
Use of Nested Models	4 (67%)	6 (86%)	3 (60%)	13 (72%)

Notes: Rows in gray should receive special attention when reporting results 11 articles used LISREL, 6 EQS, and 1 AMOS

Number of PLS Studies Reporting PLS Statistics in IS Research (Rows in gray should receive special attention when reporting results)

	I&M	ISR	MISQ	All Journals
PLS Statistics	(n=2)	(n=5)	(n=4)	(n=11)
R ² reported	2 (100%)	5 (100%)	4 (100%)	11 (100%)
AVE reported	2 (100%)	5 (100%)	3 (75%)	10 (91%)
T-values or significance of paths	2 (100%)	5 (100%)	4 (100%)	11 (100%)
Construct Reliability reported	2 (100%)	4 (80%)	3 (75%)	9 (82%)
Use of <u>Nested Models</u>	0 (0%)	0 (0%)	0 (0%)	0 (0%)

Structure Model

In <u>LISREL</u> terminology, the <u>structural model</u> contains the following:

- <u>exogenous</u> latent constructs called Xi or Ksi (ξ), depending on the dictionary used.
- <u>endogenous</u> latent constructs called Eta (η).
- paths connecting ξ to η represented statistically as Gamma (γ) coefficients.
- paths connecting one η to another are designated Beta (β).
- shared correlation matrix among ξ ; called Phi (φ).
- shared correlation matrix among the error terms of the η called Psi (ψ).
- the error terms themselves are known as ζ (Zeta).

Structure Model

To illustrate, <u>IUSE</u> and <u>PU</u> would be considered to be <u>endogenous</u> constructs in the <u>TAM</u> running example used earlier. Both are predicted by one or more other variables, or <u>latent constructs</u>. <u>EOU</u>, however, would be considered to be an <u>exogenous</u> latent construct in that no other variable in this particular model predicts it. The causal path <u>PU</u> (ξ_1) \Rightarrow <u>IUSE</u> (ξ_2) was estimated as a β coefficient. The causal path <u>EOU</u> (η_1) \Rightarrow <u>PU</u> (ξ_1) was estimated as a γ coefficient.

Measurement Model

In addition, the measurement model consists of:

- X and Y variables, which are observations or the actual data collected. X and Y are the measures of the <u>exogenous</u> and <u>endogenous</u> constructs, respectively. Each X should load onto one ξ, and each Y should load onto one η.
- Lambda X (λ_X) representing the path between an observed variable X and its ξ, i.e., the item <u>loading</u> on its <u>latent variable</u>.
- Theta Delta (Θ_δ) representing the error variance associated with this X item, i.e., the variance not reflecting its <u>latent variable</u> ξ.
- Lambda Y (λ_Y) representing the path between an observed variable Y and its η, i.e., the item <u>loading</u> on its <u>latent variable</u>.
- Theta Epsilon (Θ_ε) representing the error variance associated with this Y item, i.e., the variance not reflecting its <u>latent variable</u> η.

SEM

The holistic analysis that SEM is capable of performing is carried out via one of two distinct statistical techniques:

- 1. covariance analysis
 - employed in LISREL, EQS and AMOS
- 2. partial least squares
 - employed in PLS and PLS-Graph

Comparative Analysis Based on Statistics Provided by SEM

Statistics	LISREL	PLS	Regression
Analysis of overall model fit	Provided	Provided	Provided
Analysis of individual	Provided	Provided	Provided
causation paths			
Analysis of individual item	Provided	Provided	Not provided
loading paths			
Analysis of residual non-	Provided	Not Provided	Not provided
common error			
Type of variance examined	1. Common	Common	Common
	Specific	Combined specific and	
	3. Error	error	
Analysis of statistical power	Not available	Available through the <u>f</u>	Available
		statistic.	

Comparative Analysis Based on Capabilities

Capabilities	LISREL	PLS	Regression
Examines interaction effect on	Supported	Supported	Supported
cause-effect paths			
Examines interaction effect on	Supported	Not readily supported	Not supported
item loadings			
Examines interaction effect on	Supported	Not readily supported	Not supported
non-common variance			
Examines interaction effect on the	Supported	Not readily supported	Not supported
entire model			
Can cope with relatively small	Problematic	Supported	Supported
sample size			
Readily examines interaction	Problematic	Supported	Supported
effect with numerous variable			
levels			
Can constrain a path to a given	Supported	Not supported	Not supported
value			
Examines nested models	Supported	Supported	Supported

Comparative Analysis Based on Capabilities

Capabilities	LISREL	PLS	Regression
Establishment of causation	No	No	No
Possible over-fitting	Problematic	Less problematic	Less problematic
Testing of suspected non-	Problematic	Problematic	Mitigated by data
linear effect			transformation
Suspected influential outliers	Problematic	Problematic	Mitigated by data
			transformation
Suspected	Problematic	Problematic	Mitigated by data
heteroscedasticity			transformation
Suspected polynomial	Problematic	Problematic	Mitigated by data
relation			transformation

Heuristics for Statistical Conclusion Validity (Part 1)

Validity	Technique	Heuristic		
Construct Validity				
Convergent Validity	<u>CFA</u> used in covariance-based SEM only.	<u>GFI</u> > .90, <u>NFI</u> > .90, <u>AGFI</u> > .80 (or >.90) and an insignificant χ^2 , to show <u>unidimensionality</u> . In addition, item loadings should be above .707, to show that over half the variance is captured by the latent construct [Chin, 1998b, Hair et al., 1998, Segars, 1997, Thompson et al., 1995].		
Discriminant Validity	<u>CFA</u> used in covariance-based SEM only.	Comparing the χ^2 of the original model with an alternative model where the constructs in question are united as one construct. If the χ^2 is significantly smaller in the original model, discriminant validity has been shown [Segars, 1997].		
Convergent & Discriminant Validities	PCA used in PLS can assess factor analysis but not as rigorously as a CFA in LISREL does and without examining unidimensionality	Each construct <u>AVE</u> should be larger than its correlation with other constructs, and each item should load more highly on its assigned construct than on the other constructs.		
Reliability				
Internal Consistency	<u>Cronbach's α</u>	<u>Cronbach's α</u> s should be above .60 for exploratory research and above .70 for confirmatory research [Nunnally, 1967, Nunnally, 1978, Nunnally and Bernstein, 1994, Peter, 1979].		
	SEM	The internal consistency coefficient should be above .70 [Hair et al., 1998, Thompson et al., 1995].		
Unidimensional Reliability	Covariance-based SEM only.	Model comparisons favor <u>unidimensionality</u> with a significantly smaller χ^2 in the proposed <u>measurement</u> <u>model</u> in comparison with alternative <u>measurement</u> <u>models</u> [Segars, 1997].		

Heuristics for Statistical Conclusion Validity (Part 2)

Model Validity			
AGFI	LISREL	AGFI > .80 [Segars and Grover, 1993]	
Squared	LISREL, PLS	No official guidelines exist, but, clearly, the larger	
Multiple		these values, the better	
Correlations			
χ^2	LISREL	Insignificant and χ^2 to degrees of freedom ratio of less	
		than 3:1 [Chin and Todd, 1995, Hair et al., 1998]	
Residuals	LISREL	RMR <.05 [Hair et al., 1998]	
<u>NFI</u>	LISREL	<u>NFI</u> > .90 [Hair et al., 1998]	
Path Validity	LISREL	The β and γ coefficients must be significant;	
Coefficients		standardized values should be reported for	
		comparison purposes [Bollen, 1989, Hair et al., 1998,	
		Jöreskog and Sörborn, 1989]	
		•	
	PLS	Significant t-values [Thompson et al., 1995].	
	Linear Regression	Significant t-values [Thompson et al., 1995].	
Nested Models			
	LISREL	A nested model is rejected based on insignificant βs	
		and γ s paths and an insignificant change in the χ^2	
		between the models given the change in degrees of	
		freedom [Anderson and Gerbing, 1988]	
		[Jöreskog and Sörbom, 1989]	
	PLS	A <u>nested model</u> is rejected if it does not yield	
		significant a <u>f</u> [Chin and Todd, 1995].	
	Linear Regression	A <u>nested model</u> in a stepwise regression is rejected if	
		it does not yield a significant change in the <u>F statistic</u>	
		(reflected directly in the change in R ²) [Neter et al.,	
		1990].	

APPENDIX B

INSTRUCTIONS TO SUBJECTS AND INSTRUMENTATION

INSTRUCTIONS:

As part of an ongoing study on Internet use, we would be grateful if you could devote 10 minutes to completing this instrument.

- 1. Please logon to the Internet and access www.travelocity.com
- 2. Use the Web-site to search for a flight to Heathrow Airport (London) next month.
- Then, please fill in the instrument below.

Please circle the appropriate category:

Gender	M , F		
Age group	15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 50-54, 55-59, 60-64, 65-	69, abov	ve 70
What languag	e do you speak at home (English, Italian, Hindi, Cantonese, etc.)?		
Have you ever bought products on the World Wide Web			No
How many times have you used Travelocity.com?			
Have you given your credit card number on the Web?			No

Please indicate your agreement with the next set of statements using the following rating scale:

	1	2	3	4	5		6		7
	Strongly	Agree	Somewhat	Neutral	Somewhat	Dis	agree	Str	ongly
	Agree		Agree		Disagree			Dis	agree
Code*	ltem						Agree	Dis	agree
EOU1	Travelocity.	com is easy	to use.				123	34	567
EOU2	It is easy to	become sk	illful at using Tr	avelocity.com	1.		123	34	567
EOU3	Learning to	operate Tra	velocity.com is	easy.			123	34	567
EOU4	Travelocity.	com is flexit	ole to interact w	ith .			123	34	567
EOU5	My interacti	ion with Trav	elocity.com is (clear and und	lerstandable .		1 2 3	34	567
EOU6	It is easy to	interact with	h Travelocity.co	m.			123	34	567
PU1	Travelocity.	.com is usef	ul for searching	and buying f	lights .		123	34	567
PU2	Travelocity.	com improv	es my performa	ance in flight :	searching and		123	34	567
	buying.								
PU3	Travelocity.	com enable	s me to search	and buy fligh	ts faster.		123	34	567
PU4	Travelocity.	com enhan	ces my effective	eness in flight	searching and		123	34	567
	buying.								
PU5	Travelocity.	.com makes	it easier to sea	rch for and p	urchase flights.		123	3 4	567
PU6	Travelocity.	com increas	ses my producti	vity in search	ing and purchasi	ng	123	34	567
	flights.								
IUSE1	I am very lil	kely to buy b	ooks from Trav	elocity.com.			123	34	567
IUSE2	I would use	my credit c	ard to purchase	e from Travelo	ocity.com.		123	3 4	567
IUSE3	I would not	hesitate to p	provide information	tion about my	/ habits to		123	34	567
	Travelocity.								

Thank You!

* Students did not receive the item codes****.

A Practical Guide To Factorial Validity Using PLS-Graph

- Gefen, David and Straub, Detmar (2005)

 "A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example," Communications of the Association for Information Systems: Vol. 16, Article 5. Available at:
 - http://aisel.aisnet.org/cais/vol16/iss1/5

PLS-Graph Model

Extracting PLS-Graph Model

Displaying the PLS-Graph Model

PCA with a Varimax Rotation of the Same Data

	Component		
	1	2	3
eou3	.894	.092	.072
eou2	.784	.178	.115
eou1	.782	.167	.114
eou4	.771	.310	.047
pu2	.097	.856	034
pu1	.159	.810	.164
pu3	.261	.772	.260
pu4	.337	.700	.294
Use1	.030	.186	.883
Use2	.186	.144	.870

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 5 iterations.

Correlations in the lst file as compared with the Square Root of the AVE

Correlations of latent variables				
Bu	y Tick PU	PEO	U	
Buy Tick PU PEOU	1.000 0.418 0.266	1.000 0.497	1.000	

	AVE	SQRT of AVE
Buy Ticket	0.817	0.903881
PU	0.69	0.830662
PEOU	0.698	0.835464

Explaining Information Technology Usage: A Test of Competing Models

Fig. 1. Simplified technology acceptance model.

Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models

Fig. 2. Expectation-disconfirmation model.

Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models

Fig. 3. Integrated model.

Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.
Explaining Information Technology Usage: A Test of Competing Models

Fig. 4. PLS analysis of TAM. Path significance: ${}^{a}p < 0.001$; ${}^{b}p < 0.01$; ${}^{c}p < 0.05$; ${}^{ns}p > 0.05$. Parentheses indicate R^{2} values.

Source: Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.

Explaining Information Technology Usage: A Test of Competing Models

Fig. 5. PLS analysis of EDT. Path significance: ${}^{a}p < 0.001$; ${}^{ns}p > 0.10$. Parentheses indicate R^{2} values.

Explaining Information Technology Usage: A Test of Competing Models

Summary

- Confirmatory Factor Analysis (CFA)
- Structured Equation Modeling (SEM)
- Partial-least-squares (PLS) based SEM (PLS-SEM) – PLS
- Covariance based SEM (CB-SEM)
 - LISREL

References

- Joseph F. Hair, William C. Black, Barry J. Babin, Rolph E. Anderson (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall
- Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt (2013), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE
- Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000) "Structural Equation Modeling and Regression: Guidelines for Research Practice," Communications of the Association for Information Systems: Vol. 4, Article 7. Available at: http://aisel.aisnet.org/cais/vol4/iss1/7
- Straub, Detmar; Boudreau, Marie-Claude; and Gefen, David (2004) "Validation Guidelines for IS Positivist Research," Communications of the Association for Information Systems: Vol. 13, Article 24.

Available at: http://aisel.aisnet.org/cais/vol13/iss1/24

 Gefen, David and Straub, Detmar (2005) "A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example," Communications of the Association for Information Systems: Vol. 16, Article 5.

Available at: http://aisel.aisnet.org/cais/vol16/iss1/5

Urbach, Nils, and Frederik Ahlemann (2010) "Structural equation modeling in information systems research using partial least squares," Journal of Information Technology Theory and Application, 11(2), 5-40.

Available at: http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1247&context=jitta

- Premkumar, G., and Anol Bhattacherjee (2008), "Explaining information technology usage: A test of competing models," Omega 36(1), 64-75.
- 蕭文龍 (2014), 統計分析入門與應用: SPSS中文版+PLS-SEM (SmartPLS), 基峰資訊