# Social Media Marketing Management 社會媒體行銷管理

## 確認性因素分析 (Confirmatory Factor Analysis)

1002SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325

**Min-Yuh Day** 

戴敏育

**Assistant Professor** 

專任助理教授

**Dept. of Information Management, Tamkang University** 

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2013-06-01

## 課程大綱 (Syllabus)

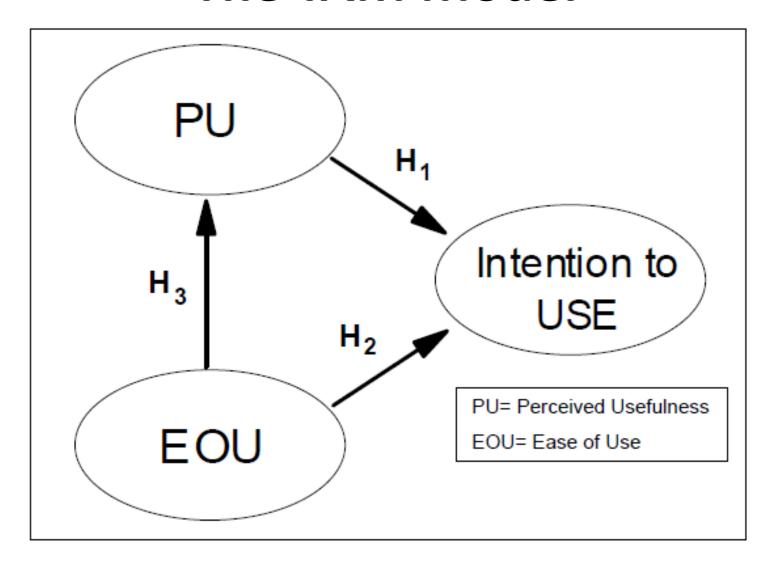
```
週次 日期 內容(Subject/Topics)
  102/02/19 社會媒體行銷管理課程介紹
             (Course Orientation of Social Media Marketing Management)
  102/02/26
            社群網路
             (Social Media: Facebook, Youtube, Blog, Microblog)
  102/03/05
            社群網路行銷 (Social Media Marketing)
3
  102/03/12 行銷管理 (Marketing Management)
  102/03/19 社群網路服務與資訊系統理論
5
             (Theories of Social Media Services and Information Systems)
  102/03/26
            行銷理論 (Marketing Theories)
6
  102/04/02 教學行政觀摩日 (Off-campus study)
  102/04/09 行銷管理論文研討
8
             (Paper Reading on Marketing Management)
  102/04/16 社群網路行為研究 (Behavior Research on Social Media)
```

## 課程大綱 (Syllabus)

```
內容(Subject/Topics)
週次
      日期
    102/04/23
10
              期中報告 (Midterm Presentation)
    102/04/30
              社群網路商業模式 [Invited Speaker: Dr. Rick Cheng-Yu Lu]
11
               (Business Models and Issues of Social Media)
    102/05/07
              社群網路策略 (Strategy of Social Media)
12
    102/05/14
              社群口碑與社群網路探勘
13
               (Social Word-of-Mouth and Web Mining on Social Media)
    102/05/21 社群網路論文研討 (Paper Reading on Social Media)
14
    102/05/28 探索性因素分析 (Exploratory Factor Analysis)
15
   102/06/04 (> 6/01) 確認性因素分析 (Confirmatory Factor Analysis)
16
   102/06/11 (> 6/04) 期末報告1 (Term Project Presentation 1)
17
   102/06/18 (> 6/11) 期末報告2 (Term Project Presentation 2)
18
```

### **Types of Factor Analysis**

- Exploratory Factor Analysis (EFA)
  - is used to discover the factor structure of a construct and examine its reliability.
     It is data driven.
- Confirmatory Factor Analysis (CFA)
  - is used to confirm the fit of the hypothesized factor structure to the observed (sample) data.
     It is theory driven.


# Structural Equation Modeling (SEM)

Structural Equation Modeling (SEM)
 techniques such as
 LISREL and
 Partial Least Squares (PLS)
 are
 second generation data analysis techniques

### **Data Analysis Techniques**

- Second generation data analysis techniques
  - SEM
    - PLS, LISREL
  - statistical conclusion validity
- First generation statistical tools
  - Regression models:
    - linear regression, LOGIT, ANOVA, and MANOVA

### The TAM Model



# Structured Equation Modeling (SEM)

- Structural model
  - the assumed causation among a set of dependent and independent constructs
- Measurement model
  - loadings of observed items (measurements)
     on their expected latent variables (constructs).

# Structured Equation Modeling (SEM)

- The combined analysis of the measurement and the structural model enables:
  - measurement errors of the observed variables to be analyzed as an integral part of the model
  - factor analysis to be combined in one operation with the hypotheses testing
- SEM
  - factor analysis and hypotheses are tested in the same analysis

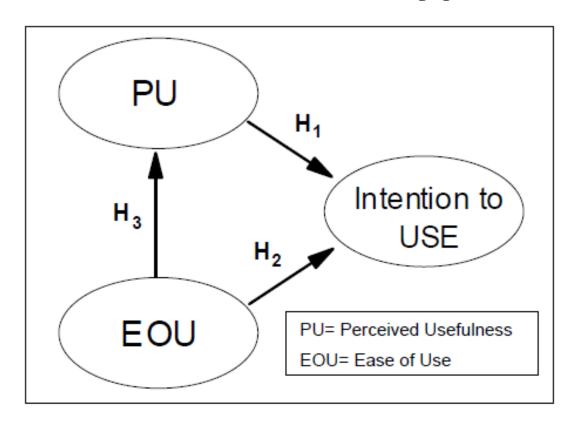
## Use of Structural Equation Modeling Tools 1994-1997

| 0514.4         | I&M     | ISR    | MISQ   | All Three |
|----------------|---------|--------|--------|-----------|
| SEM Approaches | (n=106) | (n=27) | (n=38) | Journals  |
| PLS            | 2%      | 19%    | 11%    | 7%        |
| LISREL         | 3%      | 15%    | 11%    | 7%        |
| Other *        | 3%      | 11%    | 3%     | 4%        |
| Total %        | 8%      | 45%    | 25%    | 18%       |

<sup>\*</sup> Other includes SEM techniques such as AMOS and EQS.

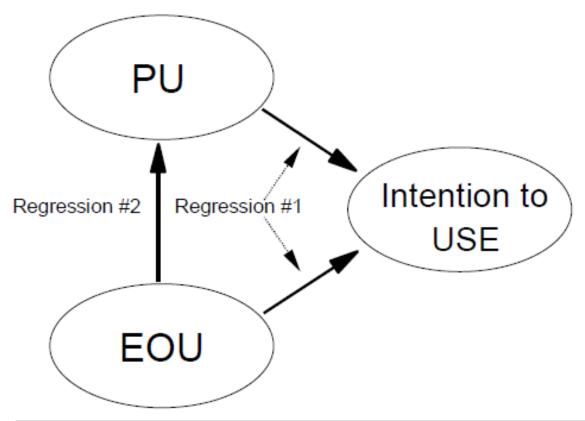
### SEM models in the IT literature

- Partial-least-squares-based SEM
  - PLS
- Covariance-based SEM
  - LISREL


# Comparative Analysis between Techniques

| Issue                                | LISREL                                                                                                                                | PLS                                                                                                  | Linear Regression                                                                                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective of<br>Overall<br>Analysis  | Show that the null hypothesis of the entire proposed model is plausible, while rejecting path-specific null hypotheses of no effect.  | Reject a set of path-<br>specific null<br>hypotheses of no<br>effect.                                | Reject a set of path-<br>specific null hypotheses of<br>no effect.                                                                                     |
| Objective of<br>Variance<br>Analysis | Overall model fit, such as insignificant $\chi^2$ or high AGFI.                                                                       | Variance explanation (high R-square)                                                                 | Variance explanation (high R-square)                                                                                                                   |
| Required<br>Theory Base              | Requires sound theory base. Supports confirmatory research.                                                                           | Does not necessarily require sound theory base. Supports both exploratory and confirmatory research. | Does not necessarily require sound theory base. Supports both exploratory and confirmatory research.                                                   |
| Assumed<br>Distribution              | Multivariate normal, if estimation is through ML. Deviations from multivariate normal are supported with other estimation techniques. | Relatively robust to deviations from a multivariate distribution.                                    | Relatively robust to<br>deviations from a<br>multivariate distribution,<br>with established methods<br>of handling non-<br>multivariate distributions. |
| Required<br>Minimal<br>Sample Size   | At least 100-150 cases.                                                                                                               | At least 10 times the number of items in the most complex construct.                                 | Supports smaller sample sizes, although a sample of at least 30 is required.                                                                           |

## **Capabilities by Research Approach**


| Capabilities                                                                                                                                                                                                   | LISREL        | PLS           | Regression                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------------------------------------------|
| Maps paths to many dependent (latent or observed) variables in the same research model and analyze all the paths simultaneously rather than one at a time.                                                     | Supported     | Supported     | Not supported                                           |
| Maps specific and error variance of the<br>observed variables into the research<br>model.                                                                                                                      | Supported     | Not supported | Not supported                                           |
| Maps <u>reflective</u> observed variables                                                                                                                                                                      | Supported     | Supported     | Supported                                               |
| Maps formative observed variables                                                                                                                                                                              | Not supported | Supported     | Not supported                                           |
| Permits rigorous analysis of all the variance components of each observed variable (common, specific, and error) as an integral part of assessing the <a href="mailto:structural_model">structural_model</a> . | Supported     | Not supported | Not supported                                           |
| Allows setting of non-common variance of<br>an observed variable to a given value in<br>the research model.                                                                                                    | Supported     | Not supported | Supported by<br>adjusting the<br>correlation<br>matrix. |
| Analyzes all the paths, both measurement<br>and structural, in one analysis.                                                                                                                                   | Supported     | Supported     | Not supported                                           |
| Can perform a confirmatory factor analysis                                                                                                                                                                     | Supported     | Supported     | Not supported                                           |
| Provides a statistic to compare alternative<br>confirmatory factor analyses models                                                                                                                             | Supported     | Not supported | Not supported                                           |

### **TAM Model and Hypothesis**

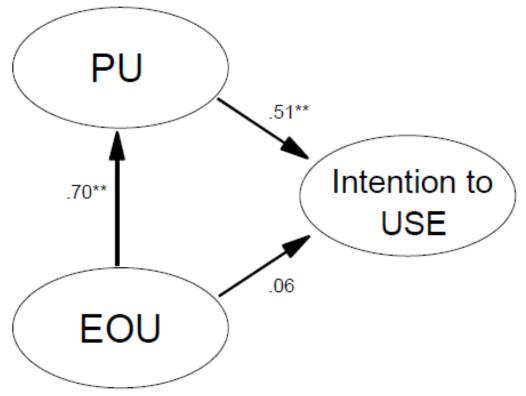


|                | Hypothesis                                                                 |
|----------------|----------------------------------------------------------------------------|
| H <sub>1</sub> | PU will impact the system outcome construct, Intention to Use the System.  |
| H <sub>2</sub> | EOU will impact the system outcome construct, Intention to Use the System. |
| H <sub>3</sub> | EOU will impact PU.                                                        |

### **TAM Causal Path Findings via Linear Regression Analysis**



|               | DV               | F (R <sup>2</sup> ) | IV  | Coefficient   |
|---------------|------------------|---------------------|-----|---------------|
|               |                  |                     |     | (T-value)     |
| Regression #1 | Intention to Use | 23.80** (.24)       | PU  | .41 (4.45**)  |
|               |                  |                     | EOU | .10 (1.07)    |
|               |                  |                     |     |               |
| Regression #2 | PU               | 124.01** (.44)      | EOU | .66 (11.14**) |


<sup>\*\* =</sup> Significant at the .01 level

# Factor Analysis and Reliabilities for Example Dataset

|             |       |      | Factors |      | Cronbach's |
|-------------|-------|------|---------|------|------------|
| Construct   | Item  | 1    | 2       | 3    | α          |
|             | PU1   | .543 | .277    | .185 |            |
| Perceived   | PU2   | .771 | .178    | .053 |            |
| Usefulness  | PU3   | .827 | .315    | .185 | .91        |
| (PU)        | PU4   | .800 | .268    | .234 |            |
|             | PU5   | .762 | .352    | .236 |            |
|             | PU6   | .844 | .437    | .290 |            |
| Perceived   | EOU1  | .265 | .751    | .109 |            |
| Ease-of-Use | EOU2  | .217 | .774    | .150 |            |
| (EOU)       | EOU3  | .270 | .853    | .103 | .93        |
|             | EOU4  | .303 | .787    | .105 |            |
|             | EOU5  | .248 | .831    | .179 |            |
|             | EOU6  | .242 | .859    | .152 |            |
| Intention   | IUSE1 | .183 | .147    | .849 |            |
| To Use      | IUSE2 | .224 | .062    | .835 | .80        |
| (IUSE)      | IUSE3 | .139 | .226    | .754 |            |

Rotation Method: Varimax with Kaiser Normalization (Rotation converged in 6 iterations)

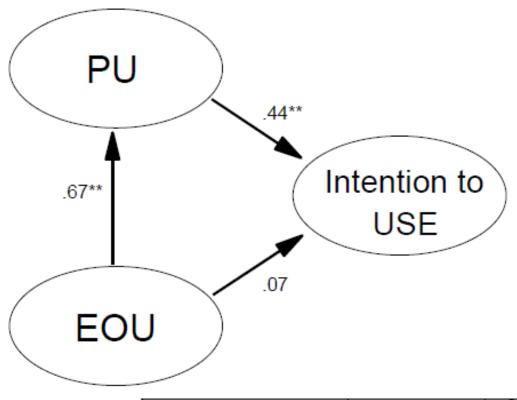
### **TAM Standardized Causal Path Findings via LISREL Analysis**



| LISREL         |  |  |
|----------------|--|--|
| Fit Indices    |  |  |
| $X^2 = 160.17$ |  |  |
| df = 87        |  |  |
| AGFI = .84     |  |  |
| RMR = .047     |  |  |

| Link                | Coefficient  | SMC |
|---------------------|--------------|-----|
|                     | (T-value)    |     |
| PU -> Intended Use  | .51 (3.94**) | .30 |
| EOU -> Intended Use | .06 (.48)    |     |
| EOU -> PU           | .70 (7.05**) | .48 |
|                     |              |     |

<sup>\*\* =</sup> Significant at the .01 level


# Standardized Loadings and Reliabilities in LISREL Analysis

|                                   |                                              | Latent Constr                                                              | atent Construct Loading (and Error                                                         |                                            |             |  |
|-----------------------------------|----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-------------|--|
| Construct                         | Item                                         | PU                                                                         | EOU                                                                                        | IUSE                                       | Coefficient |  |
| Perceived<br>Usefulness<br>(PU)   | PU1<br>PU2<br>PU3<br>PU4<br>PU5<br>PU6       | 0.99 (.50)<br>1.10 (.39)**<br>0.93 (.45)**<br>1.07 (.26)**<br>1.10 (.29)** |                                                                                            |                                            | .95         |  |
| Perceived<br>Ease-of-Use<br>(EOU) | EOU1<br>EOU2<br>EOU3<br>EOU4<br>EOU5<br>EOU6 | 1.11 (.24)                                                                 | 0.78 (.45)<br>0.95 (.38)**<br>0.92 (.25)**<br>0.99 (.31)**<br>1.00 (.27)**<br>0.94 (.21)** |                                            | .94         |  |
| Intention<br>To Use<br>(IUSE)     | IUSE1<br>IUSE2<br>IUSE3                      |                                                                            |                                                                                            | 1.36 (.34)<br>2.17 (.38)**<br>1.15 (.53)** | .95         |  |

The first item loading in each latent variable is fixed at 1.00 and does not have a t-value.

<sup>\*\*</sup> Significant at the .01 level

### **TAM Causal Path Findings via PLS Analysis**

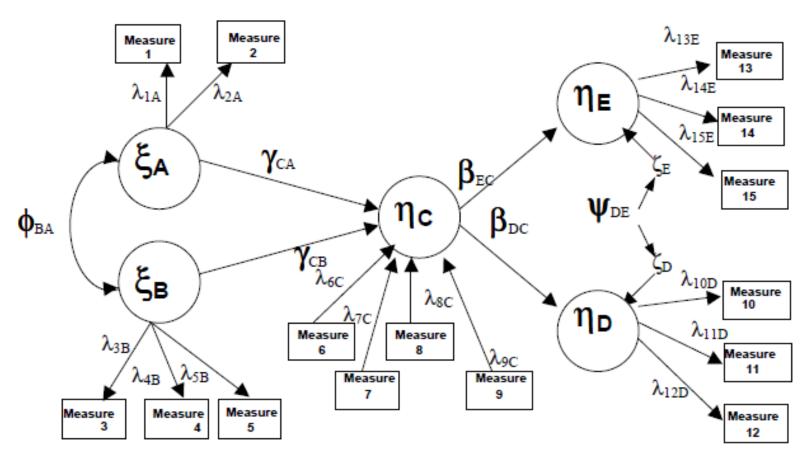


| Link                | Coefficient<br>(T-value) | R <sup>2</sup> |
|---------------------|--------------------------|----------------|
| PU -> Intended Use  | .44 (3.69**)             | .24            |
| EOU -> Intended Use | .07 (.12)                |                |
| EOU -> PU           | .67 (10.20**)            | .44            |

\*\* = Significant at the .01 level

## **Loadings in PLS Analysis**

|             |       | La     | tent Constru | ıct    |
|-------------|-------|--------|--------------|--------|
| Construct   | Item  | PU     | EOU          | IUSE   |
|             | PU1   | .776** | .613         | .405   |
| Perceived   | PU2   | .828** | .498         | .407   |
| Usefulness  | PU3   | .789** | .448         | .302   |
| (PU)        | PU4   | .886** | .558         | .353   |
|             | PU5   | .862** | .591         | .451   |
|             | PU6   | .879** | .562         | .406   |
| Perceived   | EOU1  | .534   | .802**       | .323   |
| Ease-of-Use | EOU2  | .557   | .839**       | .338   |
| (EOU)       | EOU3  | .467   | .886**       | .260   |
|             | EOU4  | .562   | .843**       | .289   |
|             | EOU5  | .542   | .865**       | .304   |
|             | EOU6  | .508   | .889**       | .288   |
| Intention   | IUSE1 | .350   | .270         | .868** |
| To Use      | IUSE2 | .380   | .234         | .858** |
| (IUSE)      | IUSE3 | .336   | .280         | .814** |


N.B. A reliability statistic not automatically produced in PLS.

<sup>\*\*</sup> Significant at the .01 level

# **AVE and Correlation Among Constructs in PLS Analysis**

| AVE/ Correlation | IUSE | ā    | EOU  |
|------------------|------|------|------|
| IUSE             | .721 |      |      |
| PU               | .468 | .742 |      |
| EOU              | .359 | .632 | .738 |

# Generic Theoretical Network with Constructs and Measures



Exogenous Latent Variables A and B

Endogenous Latent Variables C, D, and E

## Number Of Covariance-based SEM Articles Reporting SEM Statistics in IS Research

|                                             | I&M      | ISR      | MISQ     | All Journals |
|---------------------------------------------|----------|----------|----------|--------------|
| Statistics                                  | (n=6)    | (n=7)    | (n=5)    | (n=18)       |
| GFI reported                                | 3 (50%)  | 3 (43%)  | 1 (20%)  | 7 (39%)      |
| Of GFI reported, number > 0.90              | 1 (33%)  | 2 (67%)  | 1 (100%) | 4 (57%)      |
| AGFI reported                               | 2 (33%)  | 2 (29%)  | 1 (20%)  | 5 (28%)      |
| Of AGFI reported, number > 0.80             | 1 (50%)  | 2 (100%) | 1 (100%) | 4 (80%)      |
| RMR reported                                | 2 (33%)  | 4 (57%)  | 2 (40%)  | 8 (44%)      |
| Of RMR reported, number < 0.05              | 0 (0%)   | 1 (25%)  | 1 (50%)  | 2 (25%)      |
| χ <sup>2</sup> insignificance reported      | 3 (50%)  | 2 (29%)  | 0 (0%)   | 5 (28%)      |
| Of $\chi^2$ insig. reported, number > .05   | 3 (100%) | 1 (50%)  | 0 (0%)   | 4 (80%)      |
| Ratio χ² / df reported                      | 5 (83%)  | 6 (86%)  | 4 (80%)  | 15 (83%)     |
| Of ratio $\chi^2$ / df reported, number < 3 | 5 (100%) | 5 (83%)  | 2 (50%)  | 12 (80%)     |
| <u>SMC</u>                                  | 2 (33%)  | 3 (43%)  | 2 (40%)  | 7 (39%)      |
| NFI reported                                | 3 (50%)  | 3 (43%)  | 3 (60%)  | 9 (50%)      |
| Of NFI reported, number > .90               | 2 (67%)  | 3 (100%) | 3 (100%) | 8 (89%)      |
| CFI reported                                | 3 (50%)  | 2 (29%)  | 1 (20%)  | 6 (33%)      |
| T-values or significance of paths           | 4 (67%)  | 6 (86%)  | 4 (80%)  | 14 (78%)     |
| Construct Reliability reported              | 5 (83%)  | 7 (100%) | 4 (80%)  | 16 (89%)     |
| Use of Nested Models                        | 4 (67%)  | 6 (86%)  | 3 (60%)  | 13 (72%)     |

Notes: Rows in gray should receive special attention when reporting results 11 articles used LISREL, 6 EQS, and 1 AMOS

## Number of PLS Studies Reporting PLS Statistics in IS Research (Rows in gray should receive special attention when reporting results)

|                                   | I&M      | ISR      | MISQ     | All Journals |
|-----------------------------------|----------|----------|----------|--------------|
| PLS Statistics                    | (n=2)    | (n=5)    | (n=4)    | (n=11)       |
| R <sup>2</sup> reported           | 2 (100%) | 5 (100%) | 4 (100%) | 11 (100%)    |
| AVE reported                      | 2 (100%) | 5 (100%) | 3 (75%)  | 10 (91%)     |
| T-values or significance of paths | 2 (100%) | 5 (100%) | 4 (100%) | 11 (100%)    |
| Construct Reliability reported    | 2 (100%) | 4 (80%)  | 3 (75%)  | 9 (82%)      |
| Use of Nested Models              | 0 (0%)   | 0 (0%)   | 0 (0%)   | 0 (0%)       |

#### In <u>LISREL</u> terminology, the <u>structural model</u> contains the following:

- <u>exogenous</u> latent constructs called Xi or Ksi (ξ), depending on the dictionary used.
- endogenous latent constructs called Eta (η).
- paths connecting  $\xi$  to  $\eta$  represented statistically as Gamma  $(\gamma)$  coefficients.
- paths connecting one η to another are designated Beta (β).
- shared correlation matrix among ξ ; called Phi (φ).
- shared correlation matrix among the error terms of the η called Psi (ψ).
- the error terms themselves are known as ζ (Zeta).

To illustrate, <u>IUSE</u> and <u>PU</u> would be considered to be <u>endogenous</u> constructs in the <u>TAM</u> running example used earlier. Both are predicted by one or more other variables, or <u>latent constructs</u>. <u>EOU</u>, however, would be considered to be an <u>exogenous</u> latent construct in that no other variable in this particular model predicts it. The causal path <u>PU</u> ( $\xi_1$ )  $\Rightarrow$  <u>IUSE</u> ( $\xi_2$ ) was estimated as a  $\beta$  coefficient. The causal path <u>EOU</u> ( $\eta_1$ )  $\Rightarrow$  <u>PU</u> ( $\xi_1$ ) was estimated as a  $\gamma$  coefficient.

In addition, the measurement model consists of:

- X and Y variables, which are observations or the actual data collected. X
  and Y are the measures of the exogenous and endogenous constructs,
  respectively. Each X should load onto one ξ, and each Y should load onto
  one η.
- Lambda X (λ<sub>X</sub>) representing the path between an observed variable X and its ξ, i.e., the item <u>loading</u> on its <u>latent variable</u>.
- Theta Delta (Θ<sub>δ</sub>) representing the error variance associated with this X item, i.e., the variance not reflecting its <u>latent variable</u> ξ.
- Lambda Y ( $\lambda_Y$ ) representing the path between an observed variable Y and its  $\eta$ , i.e., the item <u>loading</u> on its <u>latent variable</u>.
- Theta Epsilon (Θ<sub>ε</sub>) representing the error variance associated with this Y item, i.e., the variance not reflecting its <u>latent variable</u> η.

- The holistic analysis that SEM is capable of performing is carried out via one of two distinct statistical techniques:
- 1. covariance analysis
  - employed in LISREL, EQS and AMOS
- 2. partial least squares
  - employed in PLS and PLS-Graph

# Comparative Analysis Based on Statistics Provided by SEM

| Statistics                                | LISREL                        | PLS                                       | Regression   |
|-------------------------------------------|-------------------------------|-------------------------------------------|--------------|
| Analysis of overall model fit             | Provided                      | Provided                                  | Provided     |
| Analysis of individual causation paths    | Provided                      | Provided                                  | Provided     |
| Analysis of individual item loading paths | Provided                      | Provided                                  | Not provided |
| Analysis of residual non-<br>common error | Provided                      | Not Provided                              | Not provided |
| Type of variance examined                 | Common     Specific     Error | Common<br>Combined specific and<br>error  | Common       |
| Analysis of statistical power             | Not available                 | Available through the <u>f</u> statistic. | Available    |

# Comparative Analysis Based on Capabilities

| Capabilities                                                            | LISREL      | PLS                   | Regression    |
|-------------------------------------------------------------------------|-------------|-----------------------|---------------|
| Examines interaction effect on<br>cause-effect paths                    | Supported   | Supported             | Supported     |
| Examines interaction effect on<br>item loadings                         | Supported   | Not readily supported | Not supported |
| Examines interaction effect on<br>non-common variance                   | Supported   | Not readily supported | Not supported |
| Examines interaction effect on the<br>entire model                      | Supported   | Not readily supported | Not supported |
| Can cope with relatively small sample size                              | Problematic | Supported             | Supported     |
| Readily examines interaction<br>effect with numerous variable<br>levels | Problematic | Supported             | Supported     |
| Can constrain a path to a given value                                   | Supported   | Not supported         | Not supported |
| Examines nested models                                                  | Supported   | Supported             | Supported     |

# Comparative Analysis Based on Capabilities

| Capabilities                   | LISREL      | PLS              | Regression        |
|--------------------------------|-------------|------------------|-------------------|
| Establishment of causation     | No          | No               | No                |
| Possible over-fitting          | Problematic | Less problematic | Less problematic  |
| Testing of suspected non-      | Problematic | Problematic      | Mitigated by data |
| linear effect                  |             |                  | transformation    |
| Suspected influential outliers | Problematic | Problematic      | Mitigated by data |
|                                |             |                  | transformation    |
| Suspected                      | Problematic | Problematic      | Mitigated by data |
| <u>heteroscedasticity</u>      |             |                  | transformation    |
| Suspected polynomial           | Problematic | Problematic      | Mitigated by data |
| relation                       |             |                  | transformation    |

### **Heuristics for Statistical Conclusion Validity (Part 1)**

| Validity                             | Technique                                                                                                                        | Heuristic                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construct Validit                    | ,                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |
| Convergent<br>Validity               | CFA used in covariance-based SEM only.                                                                                           | <u>GFI</u> > .90, <u>NFI</u> > .90, <u>AGFI</u> > .80 (or >.90) and an insignificant $χ^2$ , to show <u>unidimensionality</u> . In addition, item loadings should be above .707, to show that over half the variance is captured by the latent construct [Chin, 1998b, Hair et al., 1998, Segars, 1997, Thompson et al., 1995]. |
| Discriminant<br>Validity             | CFA used in covariance-based SEM only.                                                                                           | Comparing the $\chi^2$ of the original model with an alternative model where the constructs in question are united as one construct. If the $\chi^2$ is significantly smaller in the original model, discriminant validity has been shown [Segars, 1997].                                                                       |
| Convergent & Discriminant Validities | PCA used in PLS can assess factor analysis but not as rigorously as a CFA in LISREL does and without examining unidimensionality | Each construct AVE should be larger than its correlation with other constructs, and each item should load more highly on its assigned construct than on the other constructs.                                                                                                                                                   |
| Reliability                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |
| Internal<br>Consistency              | Cronbach's α                                                                                                                     | Cronbach's αs should be above .60 for exploratory research and above .70 for confirmatory research [Nunnally, 1967, Nunnally, 1978, Nunnally and Bernstein, 1994, Peter, 1979].                                                                                                                                                 |
|                                      | SEM                                                                                                                              | The internal consistency coefficient should be above .70 [Hair et al., 1998, Thompson et al., 1995].                                                                                                                                                                                                                            |
| Unidimensional<br>Reliability        | Covariance-based SEM only.                                                                                                       | Model comparisons favor <u>unidimensionality</u> with a significantly smaller χ² in the proposed <u>measurement model</u> in comparison with alternative <u>measurement models</u> [Segars, 1997].                                                                                                                              |

### **Heuristics for Statistical Conclusion Validity (Part 2)**

| Model Validity |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>AGFI</u>    | LISREL            | AGFI > .80 [Segars and Grover, 1993]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Squared        | LISREL, PLS       | No official guidelines exist, but, clearly, the larger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Multiple       |                   | these values, the better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Correlations   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\chi^2$       | LISREL            | Insignificant and χ <sup>2</sup> to degrees of freedom ratio of less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                   | than 3:1 [Chin and Todd, 1995, Hair et al., 1998]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Residuals      | LISREL            | RMR <.05 [Hair et al., 1998]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>NFI</u>     | LISREL            | NFI > .90 [Hair et al., 1998]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Path Validity  | LISREL            | The β and γ coefficients must be significant;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Coefficients   |                   | standardized values should be reported for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                   | comparison purposes [Bollen, 1989, Hair et al., 1998,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                   | Jöreskog and Sörbom, 1989]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | PLS               | Significant t-values [Thompson et al., 1995].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Linear Regression | Significant t-values [Thompson et al., 1995].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nested Models  | T                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | LISREL            | A <u>nested model</u> is rejected based on insignificant βs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |                   | and $\gamma$ s paths and an insignificant change in the $\chi^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                   | between the models given the change in degrees of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                   | freedom [Anderson and Gerbing, 1988]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                   | [Jöreskog and Sörbom, 1989]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | DLC               | A product of the prod |
|                | PLS               | A <u>nested model</u> is rejected if it does not yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Linear Degreesier | significant a <u>f</u> [Chin and Todd, 1995].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Linear Regression | A <u>nested model</u> in a stepwise regression is rejected if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                   | it does not yield a significant change in the <u>F statistic</u> (reflected directly in the change in <u>R</u> <sup>2</sup> ) [Neter et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                   | 1990].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                   | 1000].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### APPENDIX B

#### INSTRUCTIONS TO SUBJECTS AND INSTRUMENTATION

#### INSTRUCTIONS:

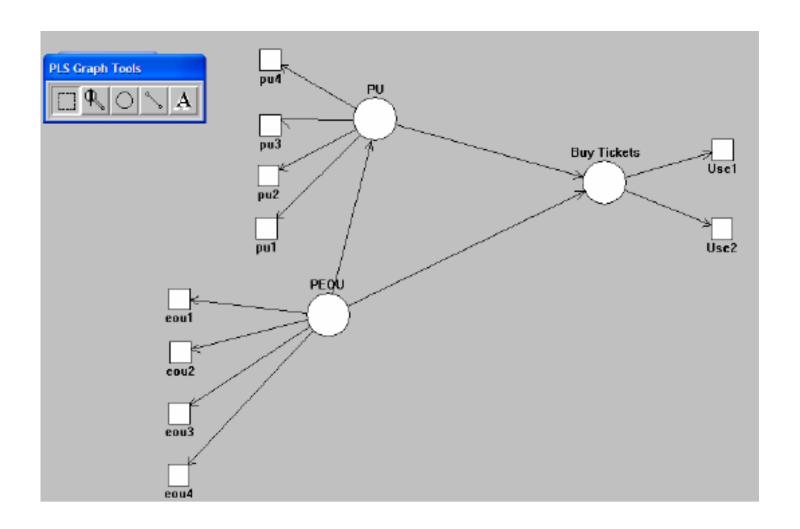
As part of an ongoing study on Internet use, we would be grateful if you could devote 10 minutes to completing this instrument.

- Please logon to the Internet and access www.travelocity.com
- Use the Web-site to search for a flight to Heathrow Airport (London) next month.
- Then, please fill in the instrument below.

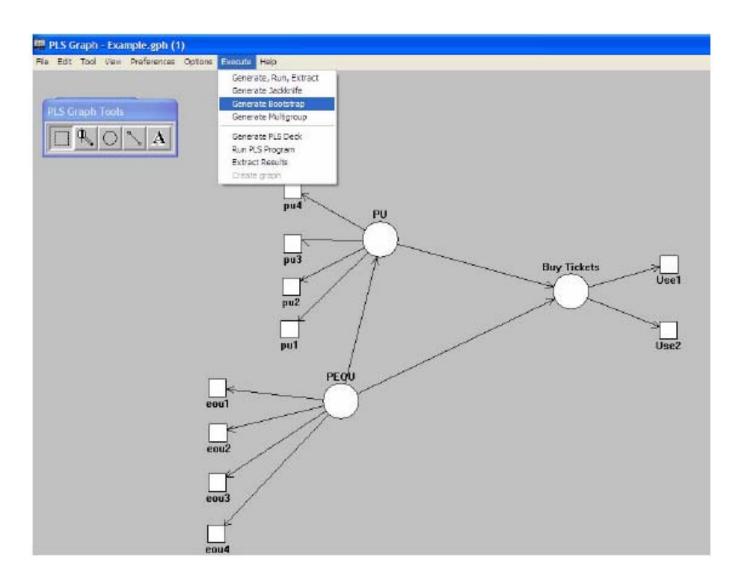
Please circle the appropriate category:

| Gender                                              | M , F                                                              |          |       |
|-----------------------------------------------------|--------------------------------------------------------------------|----------|-------|
| Age group                                           | 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 50-54, 55-59, 60-64, 65  | -69, abo | ve 70 |
| What languag                                        | e do you speak at home (English, Italian, Hindi, Cantonese, etc.)? |          |       |
| Have you ever bought products on the World Wide Web |                                                                    |          | No    |
| How many tir                                        | nes have you used Travelocity.com?                                 |          |       |
| Have you giv                                        | en your credit card number on the Web?                             | Yes,     | No    |

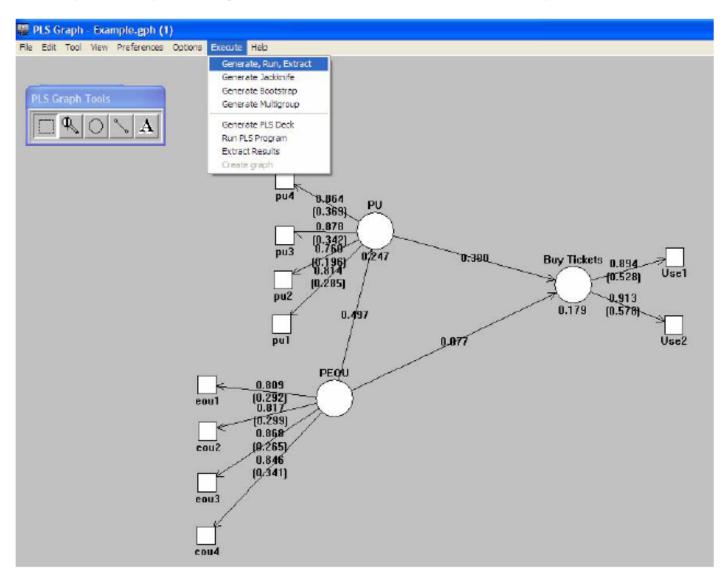
Please indicate your agreement with the next set of statements using the following rating scale:


| 1                 | 2     | 3                 | 4       | 5                    | 6        | 7                    |
|-------------------|-------|-------------------|---------|----------------------|----------|----------------------|
| Strongly<br>Agree | Agree | Somewhat<br>Agree | Neutral | Somewhat<br>Disagree | Disagree | Strongly<br>Disagree |

| Code* | Item                                                                  | Agree Disagree |
|-------|-----------------------------------------------------------------------|----------------|
|       |                                                                       |                |
| EOU1  | Travelocity.com is easy to use.                                       | 1 2 3 4 5 6 7  |
| EOU2  | It is easy to become skillful at using Travelocity.com.               | 1 2 3 4 5 6 7  |
| EOU3  | Learning to operate Travelocity.com is easy .                         | 1 2 3 4 5 6 7  |
| EOU4  | Travelocity.com is flexible to interact with .                        | 1 2 3 4 5 6 7  |
| EOU5  | My interaction with Travelocity.com is clear and understandable.      | 1 2 3 4 5 6 7  |
| EOU6  | It is easy to interact with Travelocity.com.                          | 1 2 3 4 5 6 7  |
| PU1   | Travelocity.com is useful for searching and buying flights .          | 1 2 3 4 5 6 7  |
| PU2   | Travelocity.com improves my performance in flight searching and       | 1 2 3 4 5 6 7  |
|       | buying.                                                               |                |
| PU3   | Travelocity.com enables me to search and buy flights faster.          | 1 2 3 4 5 6 7  |
| PU4   | Travelocity.com enhances my effectiveness in flight searching and     | 1 2 3 4 5 6 7  |
|       | buying.                                                               |                |
| PU5   | Travelocity.com makes it easier to search for and purchase flights.   | 1 2 3 4 5 6 7  |
| PU6   | Travelocity.com increases my productivity in searching and purchasing | 1 2 3 4 5 6 7  |
|       | flights.                                                              |                |
| IUSE1 | I am very likely to buy books from Travelocity.com.                   | 1 2 3 4 5 6 7  |
| IUSE2 | I would use my credit card to purchase from Travelocity.com.          | 1 2 3 4 5 6 7  |
| IUSE3 | I would not hesitate to provide information about my habits to        | 1 2 3 4 5 6 7  |
|       | Travelocity.                                                          |                |


#### Thank You!

<sup>\*</sup> Students did not receive the item codes\*\*\*\*.


## **PLS-Graph Model**



## **Extracting PLS-Graph Model**



## Displaying the PLS-Graph Model



# PCA with a Varimax Rotation of the Same Data

|      | Component |      |      |  |
|------|-----------|------|------|--|
|      | 1         | 2    | 3    |  |
| eou3 | .894      | .092 | .072 |  |
| eou2 | .784      | .178 | .115 |  |
| eou1 | .782      | .167 | .114 |  |
| eou4 | .771      | .310 | .047 |  |
| pu2  | .097      | .856 | 034  |  |
| pu1  | .159      | .810 | .164 |  |
| pu3  | .261      | .772 | .260 |  |
| pu4  | .337      | .700 | .294 |  |
| Use1 | .030      | .186 | .883 |  |
| Use2 | .186      | .144 | .870 |  |

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Rotation converged in 5 iterations.

# Correlations in the lst file as compared with the Square Root of the AVE

| Correlations           | s of latent | variables | S     |
|------------------------|-------------|-----------|-------|
| Buy                    | Tick PU     | PEO       | U     |
| Buy Tick<br>PU<br>PEOU | PU 0.418    |           | 1.000 |
|                        |             |           |       |

|               | AVE   | SQRT of<br>AVE |
|---------------|-------|----------------|
| Buy<br>Ticket | 0.817 | 0.903881       |
| PU            | 0.69  | 0.830662       |
| PEOU          | 0.698 | 0.835464       |
|               |       |                |

### Summary

- Confirmatory Factor Analysis (CFA) & Structured Equation Modeling (SEM)
- Covariance based SEM
  - LISREL
- Partial-least-squares (PLS) based SEM
  - PLS

### References

- Joseph F. Hair, William C. Black, Barry J. Babin, Rolph E. Anderson (2009),
   Multivariate Data Analysis, 7th Edition, Prentice Hall
- Gefen, David; Straub, Detmar; and Boudreau, Marie-Claude (2000) "Structural Equation Modeling and Regression: Guidelines for Research Practice,"
   Communications of the Association for Information Systems: Vol. 4, Article 7.
   Available at: http://aisel.aisnet.org/cais/vol4/iss1/7
- Straub, Detmar; Boudreau, Marie-Claude; and Gefen, David (2004) "Validation Guidelines for IS Positivist Research," Communications of the Association for Information Systems: Vol. 13, Article 24.
   Available at: http://aisel.aisnet.org/cais/vol13/iss1/24
- Gefen, David and Straub, Detmar (2005) "A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example," Communications of the Association for Information Systems: Vol. 16, Article 5.

Available at: http://aisel.aisnet.org/cais/vol16/iss1/5