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週次 日期 內容（Subject/Topics）
1    101/09/12    Introduction to Web Mining (網路探勘導論)
2    101/09/19    Association Rules and Sequential Patterns 

(關聯規則和序列模式)
3    101/09/26    Supervised Learning (監督式學習)
4    101/10/03    Unsupervised Learning (非監督式學習)
5    101/10/10    國慶紀念日(放假一天)
6    101/10/17    Paper Reading and Discussion (論文研讀與討論)
7    101/10/24    Partially Supervised Learning (部分監督式學習)
8    101/10/31    Information Retrieval and Web Search 

(資訊檢索與網路搜尋)
9    101/11/07    Social Network Analysis (社會網路分析)

課程大綱 (Syllabus)
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週次 日期 內容（Subject/Topics）
10    101/11/14    Midterm Presentation (期中報告)
11    101/11/21    Web Crawling (網路爬行)
12    101/11/28    Structured Data Extraction (結構化資料擷取)
13    101/12/05    Information Integration (資訊整合)
14    101/12/12    Opinion Mining and Sentiment Analysis 

(意見探勘與情感分析)
15    101/12/19    Paper Reading and Discussion (論文研讀與討論)
16    101/12/26    Web Usage Mining (網路使用挖掘)
17    102/01/02    Project Presentation 1 (期末報告1)
18    102/01/09    Project Presentation 2 (期末報告2)

課程大綱 (Syllabus)
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Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Crawler ethics and conflicts

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 4



Web Crawlers

• Programs that automatically download Web 
pages
– Web Crawlers
– Web Spiders
– Robots
– Web Agent
– Wanderer
– Worm
– Bot
– Harvester

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 5



Motivation for crawlers
• Support universal search engines 

– Google, Yahoo, MSN/Windows Live, Ask, etc.
• Vertical (specialized) search engines

– e.g. news, shopping, papers, recipes, reviews, etc.
• Business intelligence

– keep track of potential competitors, partners
• Monitor Web sites of interest
• Evil

– harvest emails for spamming, phishing…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 6



A crawler within a search engine

Web

Text index PageRank

Page repository

googlebot

Text & link 
analysisQuery

hits

Ranker

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 7



One taxonomy of crawlers

Universal crawlers

Focused crawlers

Evolutionary crawlers Reinforcement learning crawlers

etc...

Adaptive topical crawlers

Best-first PageRank

etc...

Static crawlers

Topical crawlers

Preferential crawlers

Crawlers

• Many other criteria could be used:
– Incremental, Interactive, Concurrent, Etc.

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 8



Basic Web Crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 9



Major Steps of a Web Crawler
• Seed URLs
• Frontier 

– Crawler maintains a list of unvisited
– URL Frontier

• The next node to crawl

• Fetch Page
• Parse and Extract URLs from Page

– add URLs to frontier

• Store page
Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 10



Graph traversal 
(BFS or DFS?)

• Breadth First Search
– Implemented with QUEUE (FIFO) 
– Finds pages along shortest paths
– If we start with “good” pages, this 

keeps us close; maybe other good 
stuff…

• Depth First Search
– Implemented with STACK 

(LIFO)
– Wander away 

(“lost in cyberspace”)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 11



A basic crawler in Perl 
• Queue: a FIFO list (shift and push)

my @frontier = read_seeds($file);
while (@frontier && $tot < $max) {

my $next_link = shift @frontier;
my $page = fetch($next_link);
add_to_index($page);
my @links = extract_links($page, $next_link);
push @frontier, process(@links);

}

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 12



Open Source Crawlers
• Reference C implementation of HTTP, HTML  parsing, etc

– w3c-libwww package from World-Wide Web Consortium: 
www.w3c.org/Library/

• LWP (Perl)
– http://www.oreilly.com/catalog/perllwp/
– http://search.cpan.org/~gaas/libwww-perl-5.804/

• Open source crawlers/search engines
– Nutch: http://www.nutch.org/ (Jakarta Lucene: jakarta.apache.org/lucene/)
– Heretrix: http://crawler.archive.org/
– WIRE: http://www.cwr.cl/projects/WIRE/
– Terrier: http://ir.dcs.gla.ac.uk/terrier/

• Open source topical crawlers, Best-First-N (Java)
– http://informatics.indiana.edu/fil/IS/JavaCrawlers/

• Evaluation framework for topical crawlers (Perl)
– http://informatics.indiana.edu/fil/IS/Framework/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 13
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Web Crawler Implementation issues

• Fetching
• Parsing
• Stopword Removal and Stemming
• Link Extraction and Canonicalization
• Spider Traps
• Page Repository
• Concurrency

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 14



Implementation issues
• Don’t want to fetch same page twice!

– Keep lookup table (hash) of visited pages
– What if not visited but in frontier already?

• The frontier grows very fast!
– May need to prioritize for large crawls

• Fetcher must be robust!
– Don’t crash if download fails
– Timeout mechanism

• Determine file type to skip unwanted files
– Can try using extensions, but not reliable
– Can issue ‘HEAD’ HTTP commands to get Content-Type 

(MIME) headers, but overhead of extra Internet requests

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 15



Implementation issues

• Fetching
– Get only the first 10-100 KB per page
– Take care to detect and break redirection loops
– Soft fail for timeout, server not responding, file 

not found, and other errors

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 16



Implementation issues: Parsing

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 17



Implementation issues: Parsing
• HTML has the structure of a DOM (Document Object Model) 

tree
• Unfortunately actual HTML is often incorrect in a strict 

syntactic sense
• Crawlers, like browsers, must be robust/forgiving
• Fortunately there are tools that can help

– E.g. tidy.sourceforge.net
• Must pay attention to HTML entities and unicode in text
• What to do with a growing number of other formats?

– Flash, SVG, RSS, AJAX…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 18



Implementation issues
• Stop words

– Noise words that do not carry meaning should be eliminated 
(“stopped”) before they are indexed 

– E.g. in English: AND, THE, A, AT, OR, ON, FOR, etc…
– Typically syntactic markers
– Typically the most common terms
– Typically kept in a negative dictionary

• 10–1,000 elements
• E.g. 

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
– Parser can detect these right away and disregard them

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 19
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Implementation issues
Conflation and thesauri
• Idea: improve recall by merging words with same 

meaning
1. We want to ignore superficial morphological features, 

thus merge semantically similar tokens
– {student, study, studying, studious} => studi

2. We can also conflate synonyms into a single form using a 
thesaurus
– 30-50% smaller index
– Doing this in both pages and queries allows to 

retrieve pages about ‘automobile’ when user asks for 
‘car’

– Thesaurus can be implemented as a hash table

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 20



Implementation issues
• Stemming

– Morphological conflation based on rewrite rules
– Language dependent!
– Porter stemmer very popular for English

• http://www.tartarus.org/~martin/PorterStemmer/
• Context-sensitive grammar rules, eg:

– “IES” except (“EIES” or “AIES”) --> “Y”
• Versions in Perl, C, Java, Python, C#, Ruby, PHP, etc.

– Porter has also developed Snowball, a language to create 
stemming algorithms in any language

• http://snowball.tartarus.org/
• Ex. Perl modules: Lingua::Stem and

Lingua::Stem::Snowball

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 21
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Implementation issues
• Static vs. dynamic pages

– Is it worth trying to eliminate dynamic pages and only index 
static pages?

– Examples:
• http://www.census.gov/cgi-bin/gazetteer
• http://informatics.indiana.edu/research/colloquia.asp
• http://www.amazon.com/exec/obidos/subst/home/hom

e.html/002-8332429-6490452
• http://www.imdb.com/Name?Menczer,+Erico
• http://www.imdb.com/name/nm0578801/

– Why or why not? How can we tell if a page is dynamic? 
What about ‘spider traps’?

– What do Google and other search engines do?
Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 22
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More implementation issues
• Relative vs. Absolute URLs

– Crawler must translate relative URLs into absolute URLs
– Need to obtain Base URL from HTTP header, or HTML Meta 

tag, or else current page path by default
– Examples

• Base: http://www.cnn.com/linkto/

• Relative URL: intl.html
• Absolute URL: http://www.cnn.com/linkto/intl.html

• Relative URL: /US/
• Absolute URL: http://www.cnn.com/US/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 23
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More implementation issues
• URL canonicalization

– All of these:
• http://www.cnn.com/TECH
• http://WWW.CNN.COM/TECH/
• http://www.cnn.com:80/TECH/
• http://www.cnn.com/bogus/../TECH/

– Are really equivalent to this canonical form:
• http://www.cnn.com/TECH/

– In order to avoid duplication, the crawler must transform 
all URLs into canonical form

– Definition of “canonical” is arbitrary, e.g.:
• Could always include port
• Or only include port when not default :80

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 24
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More on Canonical URLs
• Some transformation are trivial, for example:

 http://informatics.indiana.edu
 http://informatics.indiana.edu/

 http://informatics.indiana.edu/index.html#fragment
 http://informatics.indiana.edu/index.html

 http://informatics.indiana.edu/dir1/./../dir2/
 http://informatics.indiana.edu/dir2/

 http://informatics.indiana.edu/%7Efil/
 http://informatics.indiana.edu/~fil/

 http://INFORMATICS.INDIANA.EDU/fil/
 http://informatics.indiana.edu/fil/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 25
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More on Canonical URLs
Other transformations require heuristic assumption about the 

intentions of the author or configuration of the Web server:
1. Removing default file name

 http://informatics.indiana.edu/fil/index.html
 http://informatics.indiana.edu/fil/
– This is reasonable in general but would be wrong in this case 

because the default happens to be ‘default.asp’ instead of 
‘index.html’

2. Trailing directory
 http://informatics.indiana.edu/fil
 http://informatics.indiana.edu/fil/
– This is correct in this case but how can we be sure in general that 

there isn’t a file named ‘fil’ in the root dir?

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 26
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Convert URLs to canonical forms

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 27



More implementation issues
• Spider traps

– Misleading sites: indefinite number of pages 
dynamically generated by CGI scripts 

– Paths of arbitrary depth created using soft directory 
links and path rewriting features in HTTP server

– Only heuristic defensive measures:
• Check URL length; assume spider trap above some threshold, 

for example 128 characters
• Watch for sites with very large number of URLs
• Eliminate URLs with non-textual data types
• May disable crawling of dynamic pages, if can detect

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 28



More implementation issues
• Page repository

– Naïve: store each page as a separate file
• Can map URL to unique filename using a hashing function, e.g. MD5
• This generates a huge number of files, which is inefficient from the 

storage perspective
– Better: combine many pages into a single large file, using some 

XML markup to separate and identify them
• Must map URL to {filename, page_id}

– Database options
• Any RDBMS -- large overhead
• Light-weight, embedded databases such as Berkeley DB

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 29



Concurrency
• A crawler incurs several delays:

– Resolving the host name in the URL to an IP 
address using DNS

– Connecting a socket to the server and sending 
the request

– Receiving the requested page in response
• Solution: Overlap the above delays by 

fetching many pages concurrently

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 30



Architecture of a 
concurrent 

crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 31



Concurrent crawlers
• Can use multi-processing or multi-threading
• Each process or thread works like a sequential 

crawler, except they share data structures: 
frontier and repository

• Shared data structures must be synchronized 
(locked for concurrent writes)

• Speedup of factor of 5-10 are easy this way

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 32



Universal crawlers
• Support universal search engines
• Large-scale
• Huge cost (network bandwidth) of crawl is 

amortized over many queries from users
• Incremental updates to existing index and 

other data repositories

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 33



Large-scale universal crawlers
• Two major issues:
1. Performance

• Need to scale up to billions of pages

2. Policy
• Need to trade-off coverage, freshness, and 

bias (e.g. toward “important” pages)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 34



Large-scale crawlers: scalability
• Need to minimize overhead of DNS lookups
• Need to optimize utilization of network bandwidth and 

disk throughput (I/O is bottleneck)
• Use asynchronous sockets

– Multi-processing or multi-threading do not scale up to billions of 
pages

– Non-blocking: hundreds of network connections open 
simultaneously

– Polling socket to monitor completion of network transfers

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 35



High-level 
architecture of a 
scalable universal 

crawler

Several parallel queues 
to spread load across 

servers (keep 
connections alive)

DNS server using UDP 
(less overhead than 

TCP), large persistent 
in-memory cache, and 

prefetching

Optimize use of network 
bandwidth

Optimize disk I/O throughputHuge farm of crawl machines

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 36



Universal crawlers: Policy
• Coverage

– New pages get added all the time
– Can the crawler find every page?

• Freshness
– Pages change over time, get removed, etc.
– How frequently can a crawler revisit ?

• Trade-off!
– Focus on most “important” pages (crawler bias)?
– “Importance” is subjective

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 37



Maintaining a “fresh” collection
• Universal crawlers are never “done”
• High variance in rate and amount of page changes
• HTTP headers are notoriously unreliable

– Last-modified
– Expires

• Solution
– Estimate the probability that a previously visited page has 

changed in the meanwhile
– Prioritize by this probability estimate

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 38



Preferential crawlers
• Assume we can estimate for each page an importance measure, 

I(p)
• Want to visit pages in order of decreasing I(p)
• Maintain the frontier as a priority queue sorted by I(p)
• Possible figures of merit:

– Precision ~ 
| p: crawled(p) & I(p) > threshold | / | p: crawled(p) |

– Recall ~
| p: crawled(p) & I(p) > threshold | / | p: I(p) > threshold |

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 39



Preferential crawlers
• Selective bias toward some pages, eg. most “relevant”/topical, 

closest to seeds, most popular/largest PageRank, unknown 
servers, highest rate/amount of change, etc…

• Focused crawlers
– Supervised learning: classifier based on labeled examples

• Topical crawlers
– Best-first search based on similarity(topic, parent)
– Adaptive crawlers

• Reinforcement learning
• Evolutionary algorithms/artificial life

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 40



Preferential crawling algorithms: 
Examples

• Breadth-First
– Exhaustively visit all links in order encountered

• Best-N-First
– Priority queue sorted by similarity, explore top N at a time
– Variants: DOM context, hub scores

• PageRank
– Priority queue sorted by keywords, PageRank

• SharkSearch
– Priority queue sorted by combination of similarity, anchor text, similarity of parent, etc. 

(powerful cousin of FishSearch)

• InfoSpiders
– Adaptive distributed algorithm using an evolving population of learning agents

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 41



Focused crawlers
• Can have multiple topics with as many classifiers, 

with scores appropriately combined 
– (Chakrabarti et al. 1999)

• Can use a distiller to find topical hubs periodically, 
and add these to the frontier

• Can accelerate with the use of a critic 
– (Chakrabarti et al. 2002)

• Can use alternative classifier algorithms to naïve-
Bayes, e.g. SVM and neural nets have reportedly 
performed better 
– (Pant & Srinivasan 2005)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 42



Topical crawlers
• All we have is a topic (query, description, keywords) 

and a set of seed pages (not necessarily relevant)
• No labeled examples
• Must predict relevance of unvisited links to prioritize
• Original idea: Menczer 1997, Menczer & Belew 1998 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 43



Crawler ethics and conflicts
• Crawlers can cause trouble, even unwillingly, if 

not properly designed to be “polite” and “ethical”
• For example, sending too many requests in rapid 

succession to a single server can amount to a 
Denial of Service (DoS) attack!
– Server administrator and users will be upset
– Crawler developer/admin IP address may be blacklisted

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 44



Crawler etiquette (important!)
• Identify yourself

– Use ‘User-Agent’ HTTP header to identify crawler, website with 
description of crawler and contact information for crawler 
developer

– Use ‘From’ HTTP header to specify crawler developer email
– Do not disguise crawler as a browser by using their ‘User-

Agent’ string
• Always check that HTTP requests are successful, and in case of 

error, use HTTP error code to determine and immediately address 
problem

• Pay attention to anything that may lead to too many requests to 
any one server, even unwillingly, e.g.:
– redirection loops
– spider traps

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 45



Crawler etiquette (important!)
• Spread the load, do not overwhelm a server

– Make sure that no more than some max. number of requests to any single 
server per unit time, say < 1/second

• Honor the Robot Exclusion Protocol
– A server can specify which parts of its document tree any crawler is or is 

not allowed to crawl by a file named ‘robots.txt’ placed in the HTTP root 
directory, e.g. http://www.indiana.edu/robots.txt

– Crawler should always check, parse, and obey this file before sending any 
requests to a server

– More info at:
• http://www.google.com/robots.txt
• http://www.robotstxt.org/wc/exclusion.html

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 46
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More on robot exclusion
• Make sure URLs are canonical before 

checking against robots.txt 
• Avoid fetching robots.txt for each request 

to a server by caching its policy as relevant 
to this crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 47



www.apple.com/robots.txt

# robots.txt for http://www.apple.com/

User-agent: *
Disallow: 

All crawlers…

…can go anywhere!

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 48
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www.microsoft.com/robots.txt
# Robots.txt file for http://www.microsoft.com

User-agent: *
Disallow: /canada/Library/mnp/2/aspx/
Disallow: /communities/bin.aspx
Disallow: /communities/eventdetails.mspx
Disallow: /communities/blogs/PortalResults.mspx
Disallow: /communities/rss.aspx
Disallow: /downloads/Browse.aspx
Disallow: /downloads/info.aspx
Disallow: /france/formation/centres/planning.asp
Disallow: /france/mnp_utility.mspx
Disallow: /germany/library/images/mnp/
Disallow: /germany/mnp_utility.mspx
Disallow: /ie/ie40/
Disallow: /info/customerror.htm
Disallow: /info/smart404.asp
Disallow: /intlkb/
Disallow: /isapi/
#etc…

All crawlers…

…are not 
allowed in 

these paths…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 49
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www.springer.com/robots.txt
# Robots.txt for http://www.springer.com (fragment)

User-agent: Googlebot
Disallow: /chl/*
Disallow: /uk/*
Disallow: /italy/*
Disallow: /france/*

User-agent: slurp
Disallow:
Crawl-delay: 2

User-agent: MSNBot
Disallow:
Crawl-delay: 2

User-agent: scooter
Disallow:

# all others
User-agent: *
Disallow: /

Google crawler is 
allowed everywhere 
except these paths

Yahoo and 
MSN/Windows Live 

are allowed 
everywhere but 

should slow down

AltaVista has no limits

Everyone else keep off!

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 50
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More crawler ethics issues
• Is compliance with robot exclusion a matter of 

law? 
– No! Compliance is voluntary, but if you do not comply, 

you may be blocked
– Someone (unsuccessfully) sued Internet Archive over a 

robots.txt related issue
• Some crawlers disguise themselves

– Using false User-Agent 
– Randomizing access frequency to look like a 

human/browser
– Example: click fraud for ads

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 51



More crawler ethics issues
• Servers can disguise themselves, too

– Cloaking: present different content based on User-
Agent

– E.g. stuff keywords on version of page shown to search 
engine crawler

– Search engines do not look kindly on this type of 
“spamdexing” and remove from their index sites that 
perform such abuse

• Case of bmw.de made the news

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 52



Gray areas for crawler ethics 
• If you write a crawler that unwillingly follows links 

to ads, are you just being careless, or are you 
violating terms of service, or are you violating the 
law by defrauding advertisers?
– Is non-compliance with Google’s robots.txt in this case 

equivalent to click fraud?
• If you write a browser extension that performs 

some useful service, should you comply with 
robot exclusion?

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 53



Summary
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Crawler ethics and conflicts

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 54
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