
Web Mining
(網路探勘)

1

1011WM08
TLMXM1A

Wed 8,9 (15:10-17:00) U705

Web Crawling
(網路爬行)

Min-Yuh Day
戴敏育

Assistant Professor
專任助理教授

Dept. of Information Management, Tamkang University
淡江大學資訊管理學系

http://mail. tku.edu.tw/myday/
2012-11-21

http://mail.tku.edu.tw/myday/�
http://mail.tku.edu.tw/myday/cindex.htm�
http://www.im.tku.edu.tw/en_index.html�
http://english.tku.edu.tw/index.asp�
http://www.tku.edu.tw/�
http://www.im.tku.edu.tw/�
http://mail.im.tku.edu.tw/~myday/�
http://mail.tku.edu.tw/myday/�

週次 日期 內容（Subject/Topics）
1 101/09/12 Introduction to Web Mining (網路探勘導論)
2 101/09/19 Association Rules and Sequential Patterns

(關聯規則和序列模式)
3 101/09/26 Supervised Learning (監督式學習)
4 101/10/03 Unsupervised Learning (非監督式學習)
5 101/10/10 國慶紀念日(放假一天)
6 101/10/17 Paper Reading and Discussion (論文研讀與討論)
7 101/10/24 Partially Supervised Learning (部分監督式學習)
8 101/10/31 Information Retrieval and Web Search

(資訊檢索與網路搜尋)
9 101/11/07 Social Network Analysis (社會網路分析)

課程大綱 (Syllabus)

2

週次 日期 內容（Subject/Topics）
10 101/11/14 Midterm Presentation (期中報告)
11 101/11/21 Web Crawling (網路爬行)
12 101/11/28 Structured Data Extraction (結構化資料擷取)
13 101/12/05 Information Integration (資訊整合)
14 101/12/12 Opinion Mining and Sentiment Analysis

(意見探勘與情感分析)
15 101/12/19 Paper Reading and Discussion (論文研讀與討論)
16 101/12/26 Web Usage Mining (網路使用挖掘)
17 102/01/02 Project Presentation 1 (期末報告1)
18 102/01/09 Project Presentation 2 (期末報告2)

課程大綱 (Syllabus)

3

Outline
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Crawler ethics and conflicts

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 4

Web Crawlers

• Programs that automatically download Web
pages
– Web Crawlers
– Web Spiders
– Robots
– Web Agent
– Wanderer
– Worm
– Bot
– Harvester

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 5

Motivation for crawlers
• Support universal search engines

– Google, Yahoo, MSN/Windows Live, Ask, etc.
• Vertical (specialized) search engines

– e.g. news, shopping, papers, recipes, reviews, etc.
• Business intelligence

– keep track of potential competitors, partners
• Monitor Web sites of interest
• Evil

– harvest emails for spamming, phishing…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 6

A crawler within a search engine

Web

Text index PageRank

Page repository

googlebot

Text & link
analysisQuery

hits

Ranker

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 7

One taxonomy of crawlers

Universal crawlers

Focused crawlers

Evolutionary crawlers Reinforcement learning crawlers

etc...

Adaptive topical crawlers

Best-first PageRank

etc...

Static crawlers

Topical crawlers

Preferential crawlers

Crawlers

• Many other criteria could be used:
– Incremental, Interactive, Concurrent, Etc.

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 8

Basic Web Crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 9

Major Steps of a Web Crawler
• Seed URLs
• Frontier

– Crawler maintains a list of unvisited
– URL Frontier

• The next node to crawl

• Fetch Page
• Parse and Extract URLs from Page

– add URLs to frontier

• Store page
Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 10

Graph traversal
(BFS or DFS?)

• Breadth First Search
– Implemented with QUEUE (FIFO)
– Finds pages along shortest paths
– If we start with “good” pages, this

keeps us close; maybe other good
stuff…

• Depth First Search
– Implemented with STACK

(LIFO)
– Wander away

(“lost in cyberspace”)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 11

A basic crawler in Perl
• Queue: a FIFO list (shift and push)

my @frontier = read_seeds($file);
while (@frontier && $tot < $max) {

my $next_link = shift @frontier;
my $page = fetch($next_link);
add_to_index($page);
my @links = extract_links($page, $next_link);
push @frontier, process(@links);

}

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 12

Open Source Crawlers
• Reference C implementation of HTTP, HTML parsing, etc

– w3c-libwww package from World-Wide Web Consortium:
www.w3c.org/Library/

• LWP (Perl)
– http://www.oreilly.com/catalog/perllwp/
– http://search.cpan.org/~gaas/libwww-perl-5.804/

• Open source crawlers/search engines
– Nutch: http://www.nutch.org/ (Jakarta Lucene: jakarta.apache.org/lucene/)
– Heretrix: http://crawler.archive.org/
– WIRE: http://www.cwr.cl/projects/WIRE/
– Terrier: http://ir.dcs.gla.ac.uk/terrier/

• Open source topical crawlers, Best-First-N (Java)
– http://informatics.indiana.edu/fil/IS/JavaCrawlers/

• Evaluation framework for topical crawlers (Perl)
– http://informatics.indiana.edu/fil/IS/Framework/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 13

http://ir.dcs.gla.ac.uk/terrier/�
http://homer.informatics.indiana.edu/~nan/6S/�
http://www.oreilly.com/catalog/perllwp/�
http://search.cpan.org/~gaas/libwww-perl-5.804/�
http://www.w3c.org/Library/�
http://www.nutch.org/�
http://informatics.indiana.edu/fil/IS/Framework/�
http://www.cwr.cl/projects/WIRE/�
http://crawler.archive.org/�
http://informatics.indiana.edu/fil/IS/JavaCrawlers/�

Web Crawler Implementation issues

• Fetching
• Parsing
• Stopword Removal and Stemming
• Link Extraction and Canonicalization
• Spider Traps
• Page Repository
• Concurrency

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 14

Implementation issues
• Don’t want to fetch same page twice!

– Keep lookup table (hash) of visited pages
– What if not visited but in frontier already?

• The frontier grows very fast!
– May need to prioritize for large crawls

• Fetcher must be robust!
– Don’t crash if download fails
– Timeout mechanism

• Determine file type to skip unwanted files
– Can try using extensions, but not reliable
– Can issue ‘HEAD’ HTTP commands to get Content-Type

(MIME) headers, but overhead of extra Internet requests

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 15

Implementation issues

• Fetching
– Get only the first 10-100 KB per page
– Take care to detect and break redirection loops
– Soft fail for timeout, server not responding, file

not found, and other errors

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 16

Implementation issues: Parsing

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 17

Implementation issues: Parsing
• HTML has the structure of a DOM (Document Object Model)

tree
• Unfortunately actual HTML is often incorrect in a strict

syntactic sense
• Crawlers, like browsers, must be robust/forgiving
• Fortunately there are tools that can help

– E.g. tidy.sourceforge.net
• Must pay attention to HTML entities and unicode in text
• What to do with a growing number of other formats?

– Flash, SVG, RSS, AJAX…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 18

Implementation issues
• Stop words

– Noise words that do not carry meaning should be eliminated
(“stopped”) before they are indexed

– E.g. in English: AND, THE, A, AT, OR, ON, FOR, etc…
– Typically syntactic markers
– Typically the most common terms
– Typically kept in a negative dictionary

• 10–1,000 elements
• E.g.

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
– Parser can detect these right away and disregard them

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 19

http://tidy.sourceforge.net/�

Implementation issues
Conflation and thesauri
• Idea: improve recall by merging words with same

meaning
1. We want to ignore superficial morphological features,

thus merge semantically similar tokens
– {student, study, studying, studious} => studi

2. We can also conflate synonyms into a single form using a
thesaurus
– 30-50% smaller index
– Doing this in both pages and queries allows to

retrieve pages about ‘automobile’ when user asks for
‘car’

– Thesaurus can be implemented as a hash table

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 20

Implementation issues
• Stemming

– Morphological conflation based on rewrite rules
– Language dependent!
– Porter stemmer very popular for English

• http://www.tartarus.org/~martin/PorterStemmer/
• Context-sensitive grammar rules, eg:

– “IES” except (“EIES” or “AIES”) --> “Y”
• Versions in Perl, C, Java, Python, C#, Ruby, PHP, etc.

– Porter has also developed Snowball, a language to create
stemming algorithms in any language

• http://snowball.tartarus.org/
• Ex. Perl modules: Lingua::Stem and

Lingua::Stem::Snowball

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 21

http://snowball.tartarus.org/�
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words�

Implementation issues
• Static vs. dynamic pages

– Is it worth trying to eliminate dynamic pages and only index
static pages?

– Examples:
• http://www.census.gov/cgi-bin/gazetteer
• http://informatics.indiana.edu/research/colloquia.asp
• http://www.amazon.com/exec/obidos/subst/home/hom

e.html/002-8332429-6490452
• http://www.imdb.com/Name?Menczer,+Erico
• http://www.imdb.com/name/nm0578801/

– Why or why not? How can we tell if a page is dynamic?
What about ‘spider traps’?

– What do Google and other search engines do?
Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 22

http://www.cnn.com/TECH/�
http://www.census.gov/cgi-bin/gazetteer�
http://informatics.indiana.edu/research/colloquia.asp�
http://informatics.indiana.edu/research/colloquia.asp�
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452�
http://www.imdb.com/Name?Menczer,+Erico�

More implementation issues
• Relative vs. Absolute URLs

– Crawler must translate relative URLs into absolute URLs
– Need to obtain Base URL from HTTP header, or HTML Meta

tag, or else current page path by default
– Examples

• Base: http://www.cnn.com/linkto/

• Relative URL: intl.html
• Absolute URL: http://www.cnn.com/linkto/intl.html

• Relative URL: /US/
• Absolute URL: http://www.cnn.com/US/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 23

http://www.cnn.com/�
http://www.cnn.com/linkto/intl.html�
http://www.cnn.com/linkto/intl.html�
http://www.cnn.com/US/�

More implementation issues
• URL canonicalization

– All of these:
• http://www.cnn.com/TECH
• http://WWW.CNN.COM/TECH/
• http://www.cnn.com:80/TECH/
• http://www.cnn.com/bogus/../TECH/

– Are really equivalent to this canonical form:
• http://www.cnn.com/TECH/

– In order to avoid duplication, the crawler must transform
all URLs into canonical form

– Definition of “canonical” is arbitrary, e.g.:
• Could always include port
• Or only include port when not default :80

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 24

http://www.cnn.com/TECH�
http://www.cnn.com/TECH�
http://WWW.CNN.COM/TECH/�
http://informatics.indiana.edu/~fil/�
http://www.cnn.com/bogus/../TECH/�
http://www.cnn.com/TECH/�

More on Canonical URLs
• Some transformation are trivial, for example:

 http://informatics.indiana.edu
 http://informatics.indiana.edu/

 http://informatics.indiana.edu/index.html#fragment
 http://informatics.indiana.edu/index.html

 http://informatics.indiana.edu/dir1/./../dir2/
 http://informatics.indiana.edu/dir2/

 http://informatics.indiana.edu/%7Efil/
 http://informatics.indiana.edu/~fil/

 http://INFORMATICS.INDIANA.EDU/fil/
 http://informatics.indiana.edu/fil/

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 25

http://www.tartarus.org/~martin/PorterStemmer/�
http://www.tartarus.org/~martin/PorterStemmer/�
http://informatics.indiana.edu%0Dhttp://informatics.indiana.edu/�
http://informatics.indiana.edu%0Dhttp://informatics.indiana.edu/�
http://informatics.indiana.edu/index.html�
http://informatics.indiana.edu/dir1/./../dir2/�
http://www.cnn.com/TECH/�
http://informatics.indiana.edu/%7Efil/�
http://informatics.indiana.edu/dir2/�
http://informatics.indiana.edu/dir2/�
http://informatics.indiana.edu/�
http://www.cnn.co:80/TECH/�

More on Canonical URLs
Other transformations require heuristic assumption about the

intentions of the author or configuration of the Web server:
1. Removing default file name

 http://informatics.indiana.edu/fil/index.html
 http://informatics.indiana.edu/fil/
– This is reasonable in general but would be wrong in this case

because the default happens to be ‘default.asp’ instead of
‘index.html’

2. Trailing directory
 http://informatics.indiana.edu/fil
 http://informatics.indiana.edu/fil/
– This is correct in this case but how can we be sure in general that

there isn’t a file named ‘fil’ in the root dir?

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 26

http://INFORMATICS.INDIANA.EDU/�
http://INFORMATICS.INDIANA.EDU/�
http://informatics.indiana.edu/fil/index.html%0Dhttp://informatics.indiana.edu/�
http://informatics.indiana.edu/fil/index.html%0Dhttp://informatics.indiana.edu/�

Convert URLs to canonical forms

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 27

More implementation issues
• Spider traps

– Misleading sites: indefinite number of pages
dynamically generated by CGI scripts

– Paths of arbitrary depth created using soft directory
links and path rewriting features in HTTP server

– Only heuristic defensive measures:
• Check URL length; assume spider trap above some threshold,

for example 128 characters
• Watch for sites with very large number of URLs
• Eliminate URLs with non-textual data types
• May disable crawling of dynamic pages, if can detect

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 28

More implementation issues
• Page repository

– Naïve: store each page as a separate file
• Can map URL to unique filename using a hashing function, e.g. MD5
• This generates a huge number of files, which is inefficient from the

storage perspective
– Better: combine many pages into a single large file, using some

XML markup to separate and identify them
• Must map URL to {filename, page_id}

– Database options
• Any RDBMS -- large overhead
• Light-weight, embedded databases such as Berkeley DB

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 29

Concurrency
• A crawler incurs several delays:

– Resolving the host name in the URL to an IP
address using DNS

– Connecting a socket to the server and sending
the request

– Receiving the requested page in response
• Solution: Overlap the above delays by

fetching many pages concurrently

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 30

Architecture of a
concurrent

crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 31

Concurrent crawlers
• Can use multi-processing or multi-threading
• Each process or thread works like a sequential

crawler, except they share data structures:
frontier and repository

• Shared data structures must be synchronized
(locked for concurrent writes)

• Speedup of factor of 5-10 are easy this way

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 32

Universal crawlers
• Support universal search engines
• Large-scale
• Huge cost (network bandwidth) of crawl is

amortized over many queries from users
• Incremental updates to existing index and

other data repositories

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 33

Large-scale universal crawlers
• Two major issues:
1. Performance

• Need to scale up to billions of pages

2. Policy
• Need to trade-off coverage, freshness, and

bias (e.g. toward “important” pages)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 34

Large-scale crawlers: scalability
• Need to minimize overhead of DNS lookups
• Need to optimize utilization of network bandwidth and

disk throughput (I/O is bottleneck)
• Use asynchronous sockets

– Multi-processing or multi-threading do not scale up to billions of
pages

– Non-blocking: hundreds of network connections open
simultaneously

– Polling socket to monitor completion of network transfers

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 35

High-level
architecture of a
scalable universal

crawler

Several parallel queues
to spread load across

servers (keep
connections alive)

DNS server using UDP
(less overhead than

TCP), large persistent
in-memory cache, and

prefetching

Optimize use of network
bandwidth

Optimize disk I/O throughputHuge farm of crawl machines

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 36

Universal crawlers: Policy
• Coverage

– New pages get added all the time
– Can the crawler find every page?

• Freshness
– Pages change over time, get removed, etc.
– How frequently can a crawler revisit ?

• Trade-off!
– Focus on most “important” pages (crawler bias)?
– “Importance” is subjective

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 37

Maintaining a “fresh” collection
• Universal crawlers are never “done”
• High variance in rate and amount of page changes
• HTTP headers are notoriously unreliable

– Last-modified
– Expires

• Solution
– Estimate the probability that a previously visited page has

changed in the meanwhile
– Prioritize by this probability estimate

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 38

Preferential crawlers
• Assume we can estimate for each page an importance measure,

I(p)
• Want to visit pages in order of decreasing I(p)
• Maintain the frontier as a priority queue sorted by I(p)
• Possible figures of merit:

– Precision ~
| p: crawled(p) & I(p) > threshold | / | p: crawled(p) |

– Recall ~
| p: crawled(p) & I(p) > threshold | / | p: I(p) > threshold |

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 39

Preferential crawlers
• Selective bias toward some pages, eg. most “relevant”/topical,

closest to seeds, most popular/largest PageRank, unknown
servers, highest rate/amount of change, etc…

• Focused crawlers
– Supervised learning: classifier based on labeled examples

• Topical crawlers
– Best-first search based on similarity(topic, parent)
– Adaptive crawlers

• Reinforcement learning
• Evolutionary algorithms/artificial life

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 40

Preferential crawling algorithms:
Examples

• Breadth-First
– Exhaustively visit all links in order encountered

• Best-N-First
– Priority queue sorted by similarity, explore top N at a time
– Variants: DOM context, hub scores

• PageRank
– Priority queue sorted by keywords, PageRank

• SharkSearch
– Priority queue sorted by combination of similarity, anchor text, similarity of parent, etc.

(powerful cousin of FishSearch)

• InfoSpiders
– Adaptive distributed algorithm using an evolving population of learning agents

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 41

Focused crawlers
• Can have multiple topics with as many classifiers,

with scores appropriately combined
– (Chakrabarti et al. 1999)

• Can use a distiller to find topical hubs periodically,
and add these to the frontier

• Can accelerate with the use of a critic
– (Chakrabarti et al. 2002)

• Can use alternative classifier algorithms to naïve-
Bayes, e.g. SVM and neural nets have reportedly
performed better
– (Pant & Srinivasan 2005)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 42

Topical crawlers
• All we have is a topic (query, description, keywords)

and a set of seed pages (not necessarily relevant)
• No labeled examples
• Must predict relevance of unvisited links to prioritize
• Original idea: Menczer 1997, Menczer & Belew 1998

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 43

Crawler ethics and conflicts
• Crawlers can cause trouble, even unwillingly, if

not properly designed to be “polite” and “ethical”
• For example, sending too many requests in rapid

succession to a single server can amount to a
Denial of Service (DoS) attack!
– Server administrator and users will be upset
– Crawler developer/admin IP address may be blacklisted

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 44

Crawler etiquette (important!)
• Identify yourself

– Use ‘User-Agent’ HTTP header to identify crawler, website with
description of crawler and contact information for crawler
developer

– Use ‘From’ HTTP header to specify crawler developer email
– Do not disguise crawler as a browser by using their ‘User-

Agent’ string
• Always check that HTTP requests are successful, and in case of

error, use HTTP error code to determine and immediately address
problem

• Pay attention to anything that may lead to too many requests to
any one server, even unwillingly, e.g.:
– redirection loops
– spider traps

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 45

Crawler etiquette (important!)
• Spread the load, do not overwhelm a server

– Make sure that no more than some max. number of requests to any single
server per unit time, say < 1/second

• Honor the Robot Exclusion Protocol
– A server can specify which parts of its document tree any crawler is or is

not allowed to crawl by a file named ‘robots.txt’ placed in the HTTP root
directory, e.g. http://www.indiana.edu/robots.txt

– Crawler should always check, parse, and obey this file before sending any
requests to a server

– More info at:
• http://www.google.com/robots.txt
• http://www.robotstxt.org/wc/exclusion.html

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 46

http://www.robotstxt.org/wc/exclusion.html�
http://jakarta.apache.org/lucene/�
http://www.google.com/robots.txt�

More on robot exclusion
• Make sure URLs are canonical before

checking against robots.txt
• Avoid fetching robots.txt for each request

to a server by caching its policy as relevant
to this crawler

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 47

www.apple.com/robots.txt

robots.txt for http://www.apple.com/

User-agent: *
Disallow:

All crawlers…

…can go anywhere!

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 48

http://www.microsoft.com�

www.microsoft.com/robots.txt
Robots.txt file for http://www.microsoft.com

User-agent: *
Disallow: /canada/Library/mnp/2/aspx/
Disallow: /communities/bin.aspx
Disallow: /communities/eventdetails.mspx
Disallow: /communities/blogs/PortalResults.mspx
Disallow: /communities/rss.aspx
Disallow: /downloads/Browse.aspx
Disallow: /downloads/info.aspx
Disallow: /france/formation/centres/planning.asp
Disallow: /france/mnp_utility.mspx
Disallow: /germany/library/images/mnp/
Disallow: /germany/mnp_utility.mspx
Disallow: /ie/ie40/
Disallow: /info/customerror.htm
Disallow: /info/smart404.asp
Disallow: /intlkb/
Disallow: /isapi/
#etc…

All crawlers…

…are not
allowed in

these paths…

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 49

http://www.springer.com�

www.springer.com/robots.txt
Robots.txt for http://www.springer.com (fragment)

User-agent: Googlebot
Disallow: /chl/*
Disallow: /uk/*
Disallow: /italy/*
Disallow: /france/*

User-agent: slurp
Disallow:
Crawl-delay: 2

User-agent: MSNBot
Disallow:
Crawl-delay: 2

User-agent: scooter
Disallow:

all others
User-agent: *
Disallow: /

Google crawler is
allowed everywhere
except these paths

Yahoo and
MSN/Windows Live

are allowed
everywhere but

should slow down

AltaVista has no limits

Everyone else keep off!

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 50

http://www.indiana.edu/robots.txt�

More crawler ethics issues
• Is compliance with robot exclusion a matter of

law?
– No! Compliance is voluntary, but if you do not comply,

you may be blocked
– Someone (unsuccessfully) sued Internet Archive over a

robots.txt related issue
• Some crawlers disguise themselves

– Using false User-Agent
– Randomizing access frequency to look like a

human/browser
– Example: click fraud for ads

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 51

More crawler ethics issues
• Servers can disguise themselves, too

– Cloaking: present different content based on User-
Agent

– E.g. stuff keywords on version of page shown to search
engine crawler

– Search engines do not look kindly on this type of
“spamdexing” and remove from their index sites that
perform such abuse

• Case of bmw.de made the news

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 52

Gray areas for crawler ethics
• If you write a crawler that unwillingly follows links

to ads, are you just being careless, or are you
violating terms of service, or are you violating the
law by defrauding advertisers?
– Is non-compliance with Google’s robots.txt in this case

equivalent to click fraud?
• If you write a browser extension that performs

some useful service, should you comply with
robot exclusion?

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 53

Summary
• Motivation and taxonomy of crawlers
• Basic crawlers and implementation issues
• Universal crawlers
• Preferential (focused and topical) crawlers
• Crawler ethics and conflicts

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 54

References
• Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks,

Contents, and Usage Data,” 2nd Edition, Springer.
http://www.cs.uic.edu/~liub/WebMiningBook.html

55

http://www.cs.uic.edu/~liub/WebMiningBook.html�

	Web Mining�(網路探勘)
	Slide Number 2
	Slide Number 3
	Outline
	Web Crawlers
	Motivation for crawlers
	A crawler within a search engine
	One taxonomy of crawlers
	Basic Web Crawler
	Major Steps of a Web Crawler
	Graph traversal �(BFS or DFS?)
	A basic crawler in Perl
	Open Source Crawlers
	Web Crawler Implementation issues
	Implementation issues
	Implementation issues
	Implementation issues: Parsing
	Implementation issues: Parsing
	Implementation issues
	Implementation issues
	Implementation issues
	Implementation issues
	More implementation issues
	More implementation issues
	More on Canonical URLs
	More on Canonical URLs
	Convert URLs to canonical forms
	More implementation issues
	More implementation issues
	Concurrency
	Architecture of a concurrent crawler
	Concurrent crawlers
	Universal crawlers
	Large-scale universal crawlers
	Large-scale crawlers: scalability
	High-level architecture of a scalable universal crawler
	Universal crawlers: Policy
	Maintaining a “fresh” collection
	Preferential crawlers
	Preferential crawlers
	Preferential crawling algorithms: Examples
	Focused crawlers
	Topical crawlers
	Crawler ethics and conflicts
	Crawler etiquette (important!)
	Crawler etiquette (important!)
	More on robot exclusion
	www.apple.com/robots.txt
	www.microsoft.com/robots.txt
	www.springer.com/robots.txt
	More crawler ethics issues
	More crawler ethics issues
	Gray areas for crawler ethics
	Summary
	References

