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週次 日期 內容（Subject/Topics）
1    101/09/12    Introduction to Web Mining (網路探勘導論)
2    101/09/19    Association Rules and Sequential Patterns 

(關聯規則和序列模式)
3    101/09/26    Supervised Learning (監督式學習)
4    101/10/03    Unsupervised Learning (非監督式學習)
5    101/10/10    國慶紀念日(放假一天)
6    101/10/17    Paper Reading and Discussion (論文研讀與討論)
7    101/10/24    Partially Supervised Learning (部分監督式學習)
8    101/10/31    Information Retrieval and Web Search 

(資訊檢索與網路搜尋)
9    101/11/07    Social Network Analysis (社會網路分析)

課程大綱 (Syllabus)
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週次 日期 內容（Subject/Topics）
10    101/11/14    Midterm Presentation (期中報告)
11    101/11/21    Web Crawling (網路爬行)
12    101/11/28    Structured Data Extraction (結構化資料擷取)
13    101/12/05    Information Integration (資訊整合)
14    101/12/12    Opinion Mining and Sentiment Analysis 

(意見探勘與情感分析)
15    101/12/19    Paper Reading and Discussion (論文研讀與討論)
16    101/12/26    Web Usage Mining (網路使用挖掘)
17    102/01/02    Project Presentation 1 (期末報告1)
18    102/01/09    Project Presentation 2 (期末報告2)

課程大綱 (Syllabus)
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A Taxonomy for Data Mining Tasks
Data Mining

Prediction

Classification

Regression

Clustering

Association

Link analysis

Sequence analysis

Learning Method Popular Algorithms

Supervised

Supervised

Supervised

Unsupervised

Unsupervised

Unsupervised

Unsupervised

Decision trees, ANN/MLP, SVM, Rough 
sets, Genetic Algorithms 

Linear/Nonlinear Regression, Regression 
trees, ANN/MLP, SVM

Expectation Maximization, Apriory 
Algorithm, Graph-based Matching

Apriory Algorithm, FP-Growth technique

K-means, ANN/SOM

Outlier analysis Unsupervised K-means, Expectation Maximization (EM)

Apriory, OneR, ZeroR, Eclat  

Classification and Regression Trees, 
ANN, SVM, Genetic Algorithms

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 4



Outline

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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Supervised learning vs. 
unsupervised learning

• Supervised learning:
discover patterns in the data that relate data 
attributes with a target (class) attribute. 
– These patterns are then utilized to predict the 

values of the target attribute in future data 
instances. 

• Unsupervised learning: 
The data have no target attribute. 
– We want to explore the data to find some intrinsic 

structures in them. 
Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 6



Clustering
• Clustering is a technique for finding similarity groups in 

data, called clusters. I.e., 
– it groups data instances that are similar to (near) each other in 

one cluster and data instances that are very different (far away) 
from each other into different clusters. 

• Clustering is often called an unsupervised learning task as 
no class values denoting an a priori grouping of the data 
instances are given, which is the case in supervised 
learning. 

• Due to historical reasons, clustering is often considered 
synonymous with unsupervised learning.
– In fact, association rule mining is also unsupervised

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 7



Outline

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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Cluster Analysis

• Used for automatic identification of natural 
groupings of things

• Part of the machine-learning family 
• Employ unsupervised learning
• Learns the clusters of things from past data, 

then assigns new instances
• There is not an output variable
• Also known as segmentation

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 9



Cluster Analysis

10

Clustering of a set of objects based on the k-means method. 
(The mean of each cluster is marked by a “+”.)

Source: Han & Kamber (2006)



Cluster Analysis

• Clustering results may be used to
– Identify natural groupings of customers
– Identify rules for assigning new cases to classes for 

targeting/diagnostic purposes
– Provide characterization, definition, labeling of 

populations
– Decrease the size and complexity of problems for 

other data mining methods 
– Identify outliers in a specific domain 

(e.g., rare-event detection)

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 11
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Cluster Analysis for Data Mining
• Analysis methods

– Statistical methods 
(including both hierarchical and nonhierarchical), 
such as k-means, k-modes, and so on

– Neural networks 
(adaptive resonance theory [ART], 
self-organizing map [SOM])

– Fuzzy logic (e.g., fuzzy c-means algorithm)
– Genetic algorithms 

• Divisive versus Agglomerative methods
Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 13



Cluster Analysis for Data Mining
• How many clusters?

– There is not a “truly optimal” way to calculate it
– Heuristics are often used

1. Look at the sparseness of clusters
2. Number of clusters = (n/2)1/2 (n: no of data points)

3. Use Akaike information criterion (AIC)
4. Use Bayesian information criterion (BIC)

• Most cluster analysis methods involve the use of a 
distance measure to calculate the closeness between 
pairs of items 
– Euclidian versus Manhattan (rectilinear) distance

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 14



Outline

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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k-Means Clustering Algorithm
• k : pre-determined number of clusters
• Algorithm (Step 0: determine value of k)
Step 1: Randomly generate k random points as initial 

cluster centers
Step 2: Assign each point to the nearest cluster center
Step 3: Re-compute the new cluster centers
Repetition step: Repeat steps 2 and 3 until some 

convergence criterion is met (usually that the 
assignment of points to clusters becomes stable)

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 16



Cluster Analysis for Data Mining -
k-Means Clustering Algorithm

 Step 1 Step 2 Step 3

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 17



Similarity and Dissimilarity Between Objects

• Distances are normally used to measure the similarity or 
dissimilarity between two data objects

• Some popular ones include: Minkowski distance:

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-
dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

q q

pp

qq

jxixjxixjxixjid )||...|||(|),(
2211

−++−+−=

||...||||),(
2211 pp jxixjxixjxixjid −++−+−=

18Source: Han & Kamber (2006)



Similarity and Dissimilarity Between Objects 
(Cont.)

• If q = 2, d is Euclidean distance:

– Properties
• d(i,j) ≥ 0
• d(i,i) = 0
• d(i,j) = d(j,i)
• d(i,j) ≤ d(i,k) + d(k,j)

• Also, one can use weighted distance, parametric Pearson 
product moment correlation, or other disimilarity measures

)||...|||(|),( 22

22

2

11 pp jxixjxixjxixjid −++−+−=

19Source: Han & Kamber (2006)



Euclidean distance vs
Manhattan distance 

• Distance of two point x1 = (1, 2) and x2 (3, 5)

20

1 2 3

1

2

3

4

5 x2 (3, 5)

2
x1 = (1, 2)

33.61

Euclidean distance:
= ((3-1)2 + (5-2)2 )1/2

= (22 + 32)1/2

= (4 + 9)1/2

= (13)1/2

= 3.61

Manhattan distance:
= (3-1) + (5-2)
= 2 + 3
= 5



The K-Means Clustering Method

• Example
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21Source: Han & Kamber (2006)
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K-Means Clustering
Step by Step
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Step 1: K=2, Arbitrarily choose K object as initial cluster center
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Point P P(x,y) m1 
distance

m2 
distance Cluster

p01 a (3, 4) 0.00 5.10 Cluster1
p02 b (3, 6) 2.00 5.10 Cluster1
p03 c (3, 8) 4.00 5.83 Cluster1
p04 d (4, 5) 1.41 4.00 Cluster1
p05 e (4, 7) 3.16 4.47 Cluster1
p06 f (5, 1) 3.61 5.00 Cluster1
p07 g (5, 5) 2.24 3.00 Cluster1
p08 h (7, 3) 4.12 2.24 Cluster2
p09 i (7, 5) 4.12 1.00 Cluster2
p10 j (8, 5) 5.10 0.00 Cluster2

Initial m1 (3, 4)
Initial m2 (8, 5)

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

M2 = (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

m1 = (3, 4)

K-Means Clustering
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Point P P(x,y) m1 
distance

m2 
distance Cluster
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p07 g (5, 5) 2.24 3.00 Cluster1
p08 h (7, 3) 4.12 2.24 Cluster2
p09 i (7, 5) 4.12 1.00 Cluster2
p10 j (8, 5) 5.10 0.00 Cluster2

Initial m1 (3, 4)
Initial m2 (8, 5)
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M2 = (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

m1 = (3, 4)

K-Means Clustering

Euclidean distance 
b(3,6) m2(8,5)
= ((8-3)2 + (5-6)2 )1/2

= (52 + (-1)2)1/2

= (25 + 1)1/2

= (26)1/2

= 5.10

Euclidean distance 
b(3,6) m1(3,4)
= ((3-3)2 + (4-6)2 )1/2

= (02 + (-2)2)1/2

= (0 + 4)1/2

= (4)1/2

= 2.00
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Point P P(x,y) m1 
distance

m2 
distance Cluster

p01 a (3, 4) 1.43 4.34 Cluster1
p02 b (3, 6) 1.22 4.64 Cluster1
p03 c (3, 8) 2.99 5.68 Cluster1
p04 d (4, 5) 0.20 3.40 Cluster1
p05 e (4, 7) 1.87 4.27 Cluster1
p06 f (5, 1) 4.29 4.06 Cluster2
p07 g (5, 5) 1.15 2.42 Cluster1
p08 h (7, 3) 3.80 1.37 Cluster2
p09 i (7, 5) 3.14 0.75 Cluster2
p10 j (8, 5) 4.14 0.95 Cluster2

m1 (3.86, 5.14)
m2 (7.33, 4.33)
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m1 = (3.86, 5.14)

M2 = (7.33, 4.33)

Step 4: Update the cluster means, 
Repeat Step 2, 3, 
stop when no more new assignment

K-Means Clustering
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Point P P(x,y) m1 
distance

m2 
distance Cluster

p01 a (3, 4) 1.95 3.78 Cluster1
p02 b (3, 6) 0.69 4.51 Cluster1
p03 c (3, 8) 2.27 5.86 Cluster1
p04 d (4, 5) 0.89 3.13 Cluster1
p05 e (4, 7) 1.22 4.45 Cluster1
p06 f (5, 1) 5.01 3.05 Cluster2
p07 g (5, 5) 1.57 2.30 Cluster1
p08 h (7, 3) 4.37 0.56 Cluster2
p09 i (7, 5) 3.43 1.52 Cluster2
p10 j (8, 5) 4.41 1.95 Cluster2

m1 (3.67, 5.83)
m2 (6.75, 3.50)

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

M2 = (6.75., 3.50)

m1 = (3.67, 5.83)

Step 4: Update the cluster means, 
Repeat Step 2, 3,
stop when no more new assignment

K-Means Clustering
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K-Means Clustering



29

Point P P(x,y) m1 
distance

m2 
distance Cluster

p01 a (3, 4) 1.95 3.78 Cluster1
p02 b (3, 6) 0.69 4.51 Cluster1
p03 c (3, 8) 2.27 5.86 Cluster1
p04 d (4, 5) 0.89 3.13 Cluster1
p05 e (4, 7) 1.22 4.45 Cluster1
p06 f (5, 1) 5.01 3.05 Cluster2
p07 g (5, 5) 1.57 2.30 Cluster1
p08 h (7, 3) 4.37 0.56 Cluster2
p09 i (7, 5) 3.43 1.52 Cluster2
p10 j (8, 5) 4.41 1.95 Cluster2

m1 (3.67, 5.83)
m2 (6.75, 3.50)

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

stop when no more new assignment

K-Means Clustering



Outline

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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Distance functions
• Key to clustering. “similarity” and 

“dissimilarity” can also commonly used terms.
• There are numerous distance functions for 

– Different types of data
• Numeric data
• Nominal data

– Different specific applications

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 31



Distance functions for numeric attributes
• Most commonly used functions are 

– Euclidean distance and 
– Manhattan (city block) distance

• We denote distance with: dist(xi, xj), where xi
and xj are data points (vectors)

• They are special cases of Minkowski distance. 
h is positive integer.

hh
jrir

h
ji

h
jiji xxxxxxdist

1

2211 ))(...)()((),( −++−+−=xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 32



Euclidean distance and 
Manhattan distance 

• If h = 2, it is the Euclidean distance

• If h = 1, it is the Manhattan distance

• Weighted Euclidean distance

22
22

2
11 )(...)()(),( jrirjijiji xxxxxxdist −++−+−=xx

||...||||),( 2211 jrirjijiji xxxxxxdist −++−+−=xx

22
222

2
111 )(...)()(),( jrirrjijiji xxwxxwxxwdist −++−+−=xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 33



Squared distance and 
Chebychev distance 

• Squared Euclidean distance: to place 
progressively greater weight on data points 
that are further apart. 

• Chebychev distance: one wants to define two 
data points as "different" if they are different 
on any one of the attributes. 

22
22

2
11 )(...)()(),( jrirjijiji xxxxxxdist −++−+−=xx

|)| ..., |,| |,max(|),( 2211 jrirjijiji xxxxxxdist −−−=xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 34



Distance functions for binary and 
nominal attributes 

• Binary attribute: has two values or states but 
no ordering relationships, e.g., 
– Gender: male and female. 

• We use a confusion matrix to introduce the 
distance functions/measures.

• Let the ith and jth data points be xi and xj
(vectors)

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 35



Confusion matrix

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 36



Symmetric binary attributes
• A binary attribute is symmetric if both of its 

states (0 and 1) have equal importance, and 
carry the same weights, e.g., male and female 
of the attribute Gender 

• Distance function: Simple Matching 
Coefficient, proportion of mismatches of their 
values 

dcba
cbdist ji +++

+
=),( xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 37



Symmetric binary attributes: 
example

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 38



Asymmetric binary attributes
• Asymmetric: if one of the states is more 

important or more valuable than the other. 
– By convention, state 1 represents the more 

important state, which is typically the rare or 
infrequent state. 

– Jaccard coefficient is a popular measure

– We can have some variations, adding weights

cba
cbdist ji ++

+
=),( xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 39



Nominal attributes

• Nominal attributes: with more than two states 
or values.
– the commonly used distance measure is also 

based on the simple matching method. 
– Given two data points xi and xj, let the number of 

attributes be r, and the number of values that 
match in xi and xj be q.

r
qrdist ji

−
=),( xx

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 40



Distance function for text documents
• A text document consists of a sequence of sentences and 

each sentence consists of a sequence of words. 
• To simplify: a document is usually considered a “bag” of 

words in document clustering. 
– Sequence and position of words are ignored. 

• A document is represented with a vector just like a 
normal data point. 

• It is common to use similarity to compare two 
documents rather than distance. 
– The most commonly used similarity function is the cosine 

similarity. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 41



Outline

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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Cluster Evaluation: 
hard problem

• The quality of a clustering is very hard to 
evaluate because
– We do not know the correct clusters

• Some methods are used: 
– User inspection

• Study centroids, and spreads
• Rules from a decision tree.
• For text documents, one can read some documents in 

clusters. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 43



Cluster evaluation: ground truth
• We use some labeled data (for classification)
• Assumption: Each class is a cluster.
• After clustering, a confusion matrix is 

constructed. From the matrix, we compute 
various measurements, entropy, purity, 
precision, recall and F-score. 
– Let the classes in the data D be C = (c1, c2, …, ck). 

The clustering method produces k clusters, which 
divides D into k disjoint subsets, D1, D2, …, Dk. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 44



Evaluation measures: Entropy

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 45



Evaluation measures: purity

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 46



An example

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 47



A remark about ground truth 
evaluation

• Commonly used to compare different clustering 
algorithms. 

• A real-life data set for clustering has no class labels. 
– Thus although an algorithm may perform very well on some 

labeled data sets, no guarantee that it will perform well on the 
actual application data at hand. 

• The fact that it performs well on some label data sets 
does give us some confidence of the quality of the 
algorithm. 

• This evaluation method is said to be based on external 
data or information. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 48



Evaluation based on internal information
• Intra-cluster cohesion (compactness):

– Cohesion measures how near the data points in a 
cluster are to the cluster centroid. 

– Sum of squared error (SSE) is a commonly used 
measure. 

• Inter-cluster separation (isolation): 
– Separation means that different cluster centroids 

should be far away from one another. 

• In most applications, expert judgments are 
still the key. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 49



Indirect evaluation 
• In some applications, clustering is not the primary task, 

but used to help perform another task. 
• We can use the performance on the primary task to 

compare clustering methods. 
• For instance, in an application, the primary task is to 

provide recommendations on book purchasing to online 
shoppers. 
– If we can cluster books according to their features, we might be 

able to provide better recommendations. 
– We can evaluate different clustering algorithms based on how 

well they help with the recommendation task. 
– Here, we assume that the recommendation can be reliably 

evaluated. 

Source: Bing Liu (2011) , Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 50



Summary

• Unsupervised Learning
– Clustering

• Cluster Analysis
• k-Means Clustering Algorithm
• Similarity and Distance Functions
• Cluster Evaluation
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