Web Mining (網路探勘)

Unsupervised Learning

(非監督式學習)

1011WM04 TLMXM1A Wed 8,9 (15:10-17:00) U705

Min-Yuh Day

戴敏育

Assistant Professor

專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2012-10-03

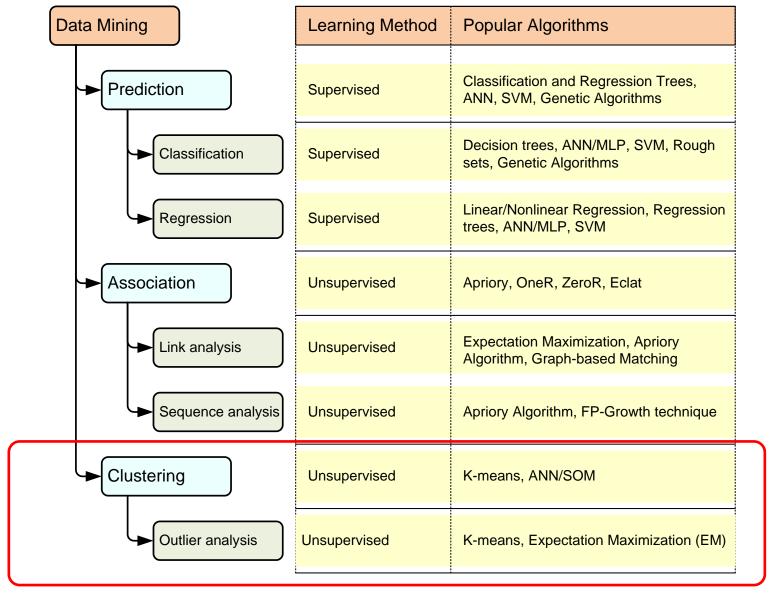
課程大綱 (Syllabus)

```
週次 日期 內容(Subject/Topics)
  101/09/12 Introduction to Web Mining (網路探勘導論)
  101/09/19
            Association Rules and Sequential Patterns
             (關聯規則和序列模式)
  101/09/26
3
            Supervised Learning (監督式學習)
  101/10/03
            Unsupervised Learning (非監督式學習)
  101/10/10
            國慶紀念日(放假一天)
5
  101/10/17
            Paper Reading and Discussion (論文研讀與討論)
6
  101/10/24
            Partially Supervised Learning (部分監督式學習)
  101/10/31
8
            Information Retrieval and Web Search
             (資訊檢索與網路搜尋)
  101/11/07 Social Network Analysis (社會網路分析)
9
```

課程大綱 (Syllabus)

```
週次 日期 內容(Subject/Topics)
              Midterm Presentation (期中報告)
10
   101/11/14
   101/11/21 Web Crawling (網路爬行)
11
   101/11/28 Structured Data Extraction (結構化資料擷取)
12
   101/12/05
              Information Integration (資訊整合)
13
   101/12/12
              Opinion Mining and Sentiment Analysis
14
              (意見探勘與情感分析)
   101/12/19
              Paper Reading and Discussion (論文研讀與討論)
15
   101/12/26
16
              Web Usage Mining (網路使用挖掘)
   102/01/02
              Project Presentation 1 (期末報告1)
17
   102/01/09
              Project Presentation 2 (期末報告2)
18
```

A Taxonomy for Data Mining Tasks



Outline

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

Supervised learning vs. unsupervised learning

- Supervised learning:
 - discover patterns in the data that relate data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning:
 - The data have no target attribute.
 - We want to explore the data to find some intrinsic structures in them.

Clustering

- Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 - In fact, association rule mining is also unsupervised

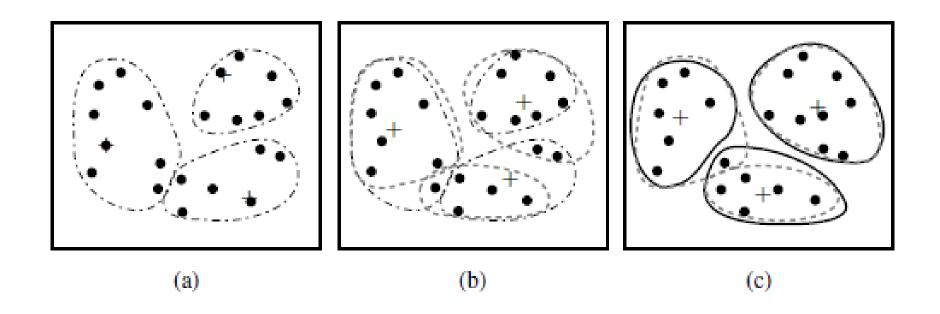
Outline

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

Cluster Analysis

- Used for automatic identification of natural groupings of things
- Part of the machine-learning family
- Employ unsupervised learning
- Learns the clusters of things from past data, then assigns new instances
- There is not an output variable
- Also known as segmentation

Cluster Analysis

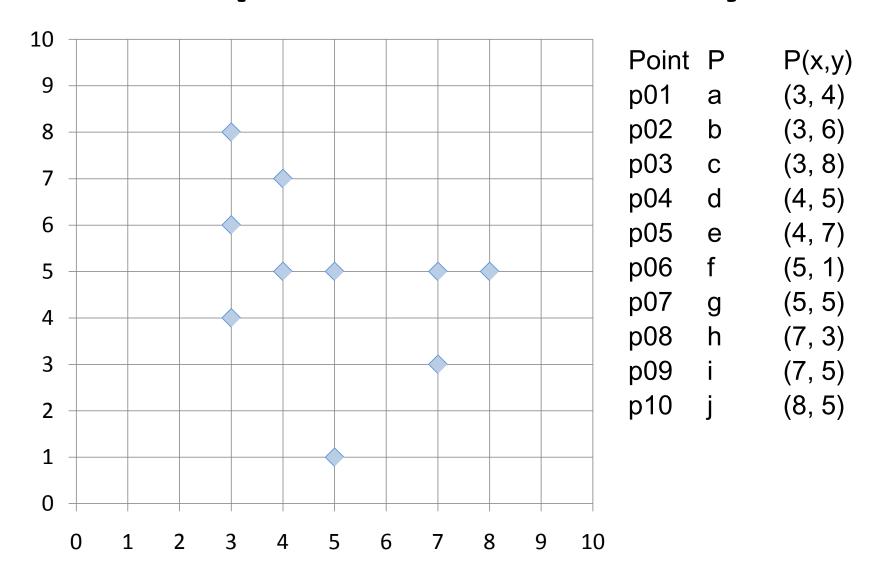


Clustering of a set of objects based on the *k-means method.* (The mean of each cluster is marked by a "+".)

Cluster Analysis

- Clustering results may be used to
 - Identify natural groupings of customers
 - Identify rules for assigning new cases to classes for targeting/diagnostic purposes
 - Provide characterization, definition, labeling of populations
 - Decrease the size and complexity of problems for other data mining methods
 - Identify outliers in a specific domain (e.g., rare-event detection)

Example of Cluster Analysis



Cluster Analysis for Data Mining

- Analysis methods
 - Statistical methods
 (including both hierarchical and nonhierarchical),
 such as k-means, k-modes, and so on
 - Neural networks

 (adaptive resonance theory [ART],
 self-organizing map [SOM])
 - Fuzzy logic (e.g., fuzzy c-means algorithm)
 - Genetic algorithms
- Divisive versus Agglomerative methods

Cluster Analysis for Data Mining

- How many clusters?
 - There is not a "truly optimal" way to calculate it
 - Heuristics are often used
 - 1. Look at the sparseness of clusters
 - 2. Number of clusters = $(n/2)^{1/2}$ (n: no of data points)
 - 3. Use Akaike information criterion (AIC)
 - 4. Use Bayesian information criterion (BIC)
- Most cluster analysis methods involve the use of a distance measure to calculate the closeness between pairs of items
 - Euclidian versus Manhattan (rectilinear) distance

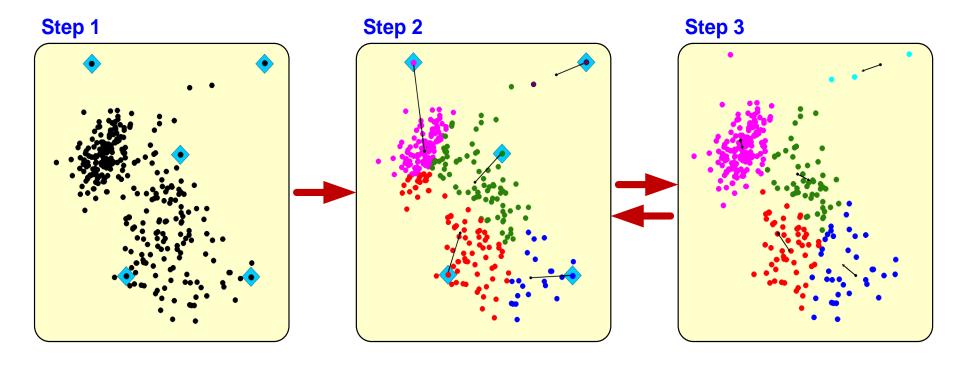
Outline

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

k-Means Clustering Algorithm

- *k* : pre-determined number of clusters
- Algorithm (Step 0: determine value of k)
- Step 1: Randomly generate *k* random points as initial cluster centers
- Step 2: Assign each point to the nearest cluster center
- Step 3: Re-compute the new cluster centers
- Repetition step: Repeat steps 2 and 3 until some convergence criterion is met (usually that the assignment of points to clusters becomes stable)

Cluster Analysis for Data Mining k-Means Clustering Algorithm



Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$
 where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

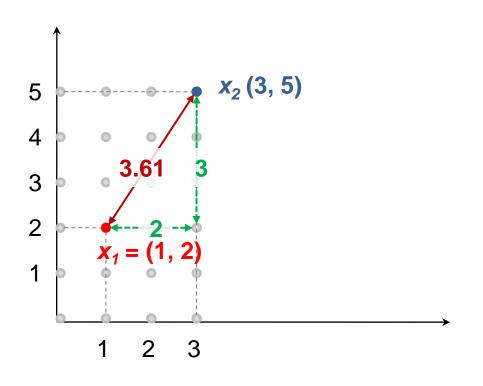
• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Euclidean distance vs Manhattan distance

• Distance of two point $x_1 = (1, 2)$ and $x_2 (3, 5)$



Euclidean distance:

$$= ((3-1)^2 + (5-2)^2)^{1/2}$$

$$= (2^2 + 3^2)^{1/2}$$

$$= (4 + 9)^{1/2}$$

$$=(13)^{1/2}$$

$$= 3.61$$

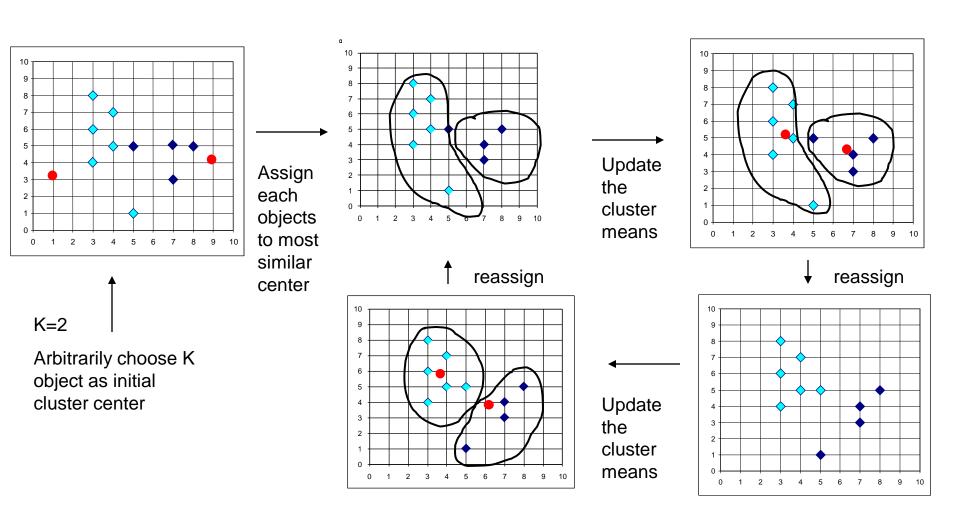
Manhattan distance:

$$= (3-1) + (5-2)$$

$$= 2 + 3$$

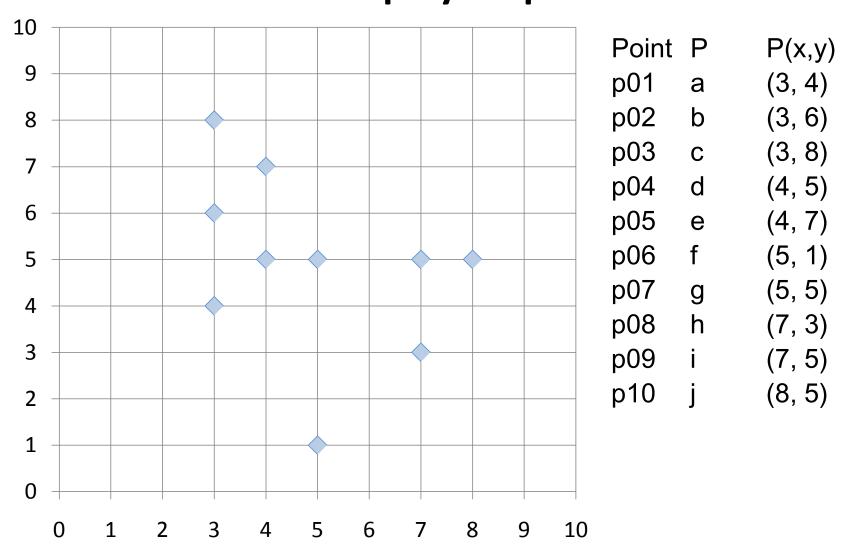
The K-Means Clustering Method

Example



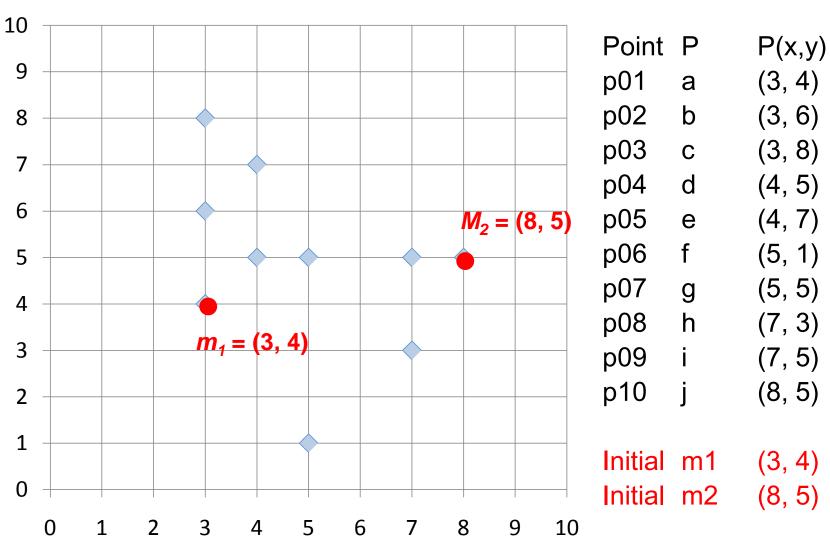
Source: Han & Kamber (2006)

K-Means Clustering Step by Step



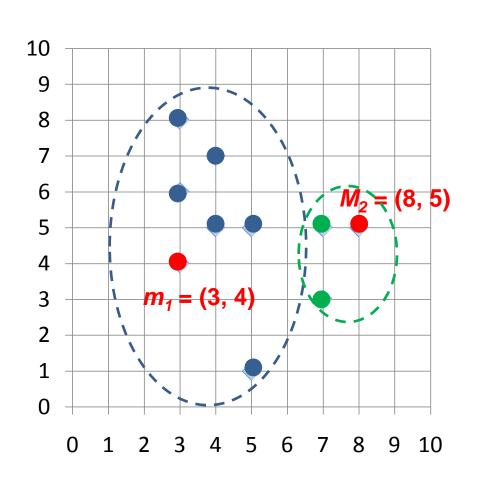
K-Means Clustering

Step 1: K=2, Arbitrarily choose K object as initial cluster center



Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center



Point	Р	P(x,y)	m1 distance	m2 distance	Cluster
p01	а	(3, 4)	0.00	5.10	Cluster1
p02	b	(3, 6)	2.00	5.10	Cluster1
p03	С	(3, 8)	4.00	5.83	Cluster1
p04	d	(4, 5)	1.41	4.00	Cluster1
p05	е	(4, 7)	3.16	4.47	Cluster1
p06	f	(5, 1)	3.61	5.00	Cluster1
p07	g	(5, 5)	2.24	3.00	Cluster1
p08	h	(7, 3)	4.12	2.24	Cluster2
p09	i	(7, 5)	4.12	1.00	Cluster2
p10	j	(8, 5)	5.10	0.00	Cluster2

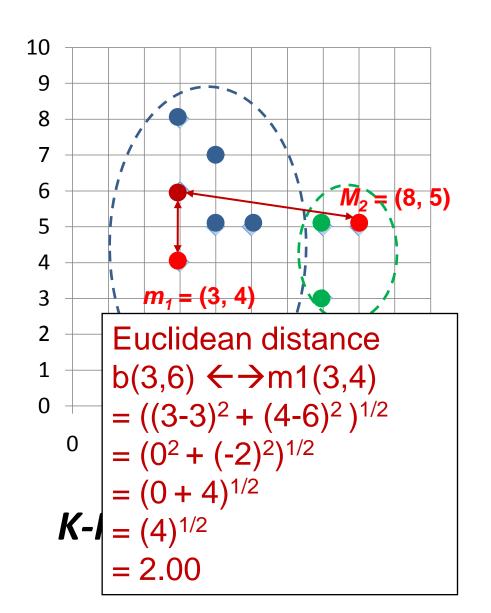
K-Means Clustering

Initial m1 (3, 4)

Initial m2 (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center



Point	Р	P(x,y)	m1 distance	m2 distance	Cluster			
p01	а	(3, 4)	0.00	5.10	Cluster1			
p02	b	(3, 6)	2.00	5.10	Cluster1			
p03	С	(3, 8)	4.00	5.83	Cluster1			
pQ4	_d_	(4 5)	1 41	4 00	Cluster1			
p(E	Euclidean distance b(3,6) $\leftarrow \rightarrow$ m2(8,5) = ((8-3)^2 + (5-6)^2)^{1/2} = (5^2 + (-1)^2)^{1/2}							
p(b(
$ = ((8-3)^2 + (5-6)^2)^{1/2}$								
	$= (5^2 + (-1)^2)^{1/2}$							
$ = (25 + 1)^{1/2} $								
l l	•	$6)^{1/2}$			212			
Ρ =	5.	10			#IZ			

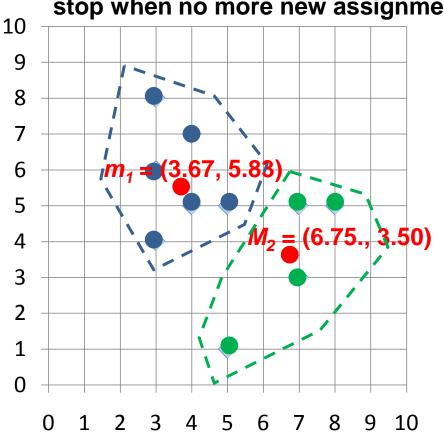
Initial m1 (3, 4)

Initial m2 (8, 5)

Step 4: Update the cluster means, m2 m1 Repeat Step 2, 3, **Point** P(x,y)Cluster distance distance stop when no more new assignment 10 p01 1.43 4.34 Cluster1 (3, 4)9 p02 (3, 6)1.22 4.64 Cluster1 8 (3, 8)p03 2.99 5.68 Cluster1 7 p04 3.40 Cluster1 d (4, 5)0.20 6 $m_1 = (3.86, 5.1)$ 5 p05 (4, 7)1.87 4.27 Cluster1 4 (5, 1) $M_2 = (7.33, A.33)$ p06 4.06 Cluster2 4.29 3 Cluster1 p07 (5, 5)1.15 2.42 2 p08 (7, 3)3.80 1.37 Cluster2 1 p09 (7, 5)3.14 0.75 Cluster2 0 p10 (8, 5)4.14 0.95 Cluster2 3 5 8 10 0 6 m1 (3.86, 5.14) **K-Means** Clustering

m2 (7.33, 4.33)

Step 4: Update the cluster means,
Repeat Step 2, 3,
stop when no more new assignment



Point	Р	P(x,y)	distance	distance	Cluster
p01	а	(3, 4)	1.95	3.78	Cluster1
p02	b	(3, 6)	0.69	4.51	Cluster1
p03	С	(3, 8)	2.27	5.86	Cluster1
p04	d	(4, 5)	0.89	3.13	Cluster1
p05	е	(4, 7)	1.22	4.45	Cluster1
p06	f	(5, 1)	5.01	3.05	Cluster2
p07	g	(5, 5)	1.57	2.30	Cluster1
p08	h	(7, 3)	4.37	0.56	Cluster2
p09	i	(7, 5)	3.43	1.52	Cluster2
p10	j	(8, 5)	4.41	1.95	Cluster2

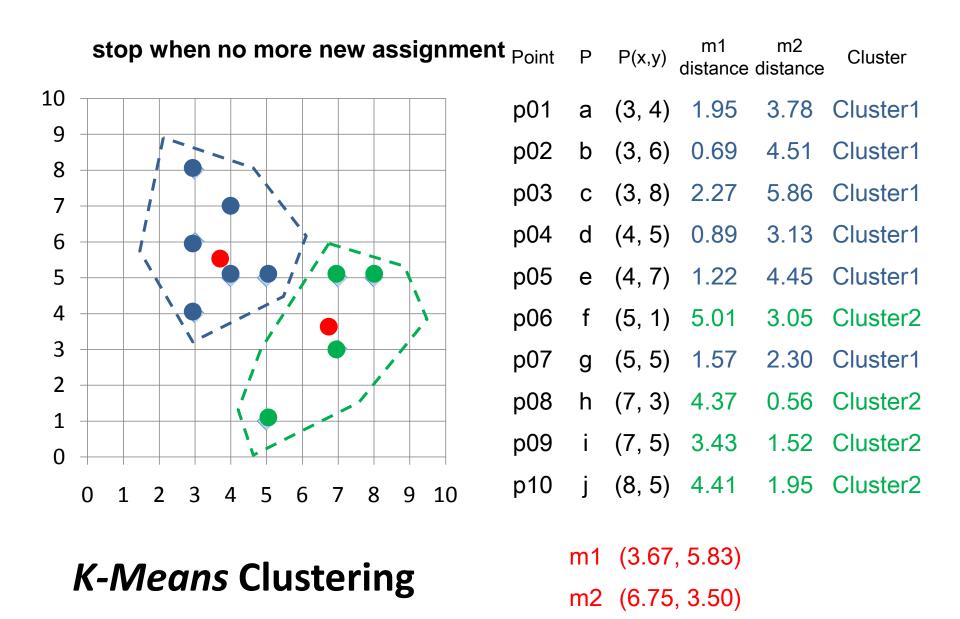
m1

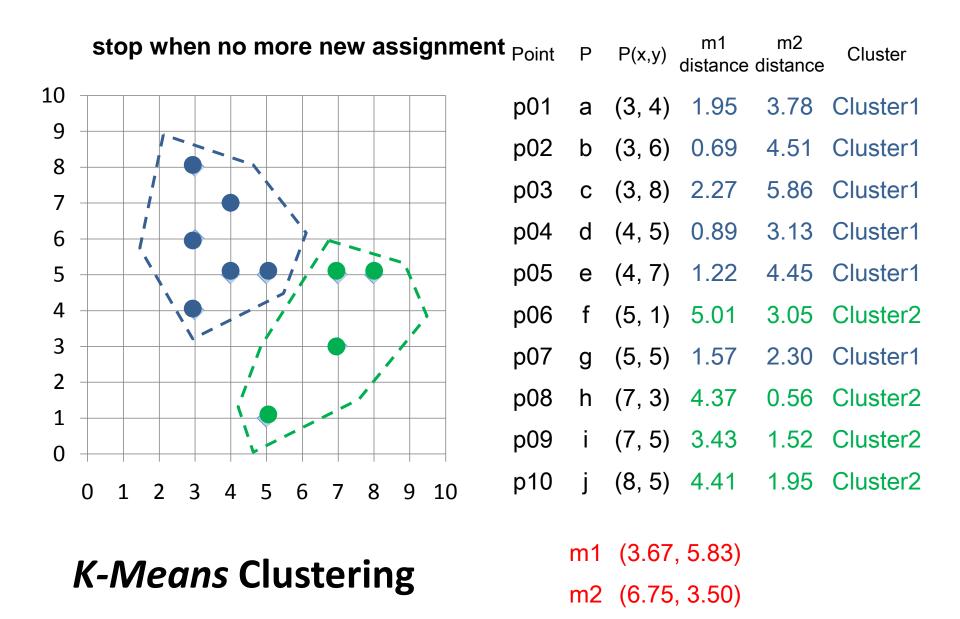
m2

K-Means Clustering

m1 (3.67, 5.83)

m2 (6.75, 3.50)





Outline

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

Distance functions

- Key to clustering. "similarity" and "dissimilarity" can also commonly used terms.
- There are numerous distance functions for
 - Different types of data
 - Numeric data
 - Nominal data
 - Different specific applications

Distance functions for numeric attributes

- Most commonly used functions are
 - Euclidean distance and
 - Manhattan (city block) distance
- We denote distance with: $dist(\mathbf{x}_i, \mathbf{x}_j)$, where \mathbf{x}_i and \mathbf{x}_i are data points (vectors)
- They are special cases of Minkowski distance.
 h is positive integer.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = ((x_{i1} - x_{j1})^h + (x_{i2} - x_{j2})^h + ... + (x_{ir} - x_{jr})^h)^{\overline{h}}$$

Euclidean distance and Manhattan distance

• If h = 2, it is the Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

• If h = 1, it is the Manhattan distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ir} - x_{jr}|$$

Weighted Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{w_{1}(x_{i1} - x_{j1})^{2} + w_{2}(x_{i2} - x_{j2})^{2} + \dots + w_{r}(x_{ir} - x_{jr})^{2}}$$

Squared distance and Chebychev distance

 Squared Euclidean distance: to place progressively greater weight on data points that are further apart.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}$$

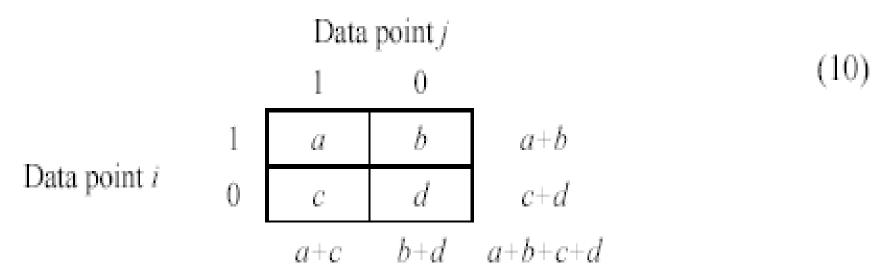
 Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$$

Distance functions for binary and nominal attributes

- Binary attribute: has two values or states but no ordering relationships, e.g.,
 - Gender: male and female.
- We use a confusion matrix to introduce the distance functions/measures.
- Let the *i*th and *j*th data points be x_i and x_j (vectors)

Confusion matrix



- a: the number of attributes with the value of 1 for both data points.
- b: the number of attributes for which $x_{if} = 1$ and $x_{jf} = 0$, where $x_{if}(x_{jf})$ is the value of the fth attribute of the data point $\mathbf{x}_i(\mathbf{x}_i)$.
- c: the number of attributes for which $x_{if} = 0$ and $x_{if} = 1$.
- d: the number of attributes with the value of 0 for both data points.

Symmetric binary attributes

- A binary attribute is symmetric if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender
- Distance function: Simple Matching
 Coefficient, proportion of mismatches of their values

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{b+c}{a+b+c+d}$$

Symmetric binary attributes: example

 \mathbf{x}_1 \mathbf{x}_2

1	1	1	0	1	0	0
0	1	1	0	0	1	0

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{2+1}{2+2+1+2} = \frac{3}{7} = 0.429$$

Asymmetric binary attributes

- Asymmetric: if one of the states is more important or more valuable than the other.
 - By convention, state 1 represents the more important state, which is typically the rare or infrequent state.
 - Jaccard coefficient is a popular measure

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{b+c}{a+b+c}$$

We can have some variations, adding weights

Nominal attributes

- Nominal attributes: with more than two states or values.
 - the commonly used distance measure is also based on the simple matching method.
 - Given two data points \mathbf{x}_i and \mathbf{x}_j , let the number of attributes be r, and the number of values that match in \mathbf{x}_i and \mathbf{x}_j be q.

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \frac{r - q}{r}$$

Distance function for text documents

- A text document consists of a sequence of sentences and each sentence consists of a sequence of words.
- To simplify: a document is usually considered a "bag" of words in document clustering.
 - Sequence and position of words are ignored.
- A document is represented with a vector just like a normal data point.
- It is common to use similarity to compare two documents rather than distance.
 - The most commonly used similarity function is the cosine similarity.

Outline

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

Cluster Evaluation: hard problem

- The quality of a clustering is very hard to evaluate because
 - We do not know the correct clusters
- Some methods are used:
 - User inspection
 - Study centroids, and spreads
 - Rules from a decision tree.
 - For text documents, one can read some documents in clusters.

Cluster evaluation: ground truth

- We use some labeled data (for classification)
- Assumption: Each class is a cluster.
- After clustering, a confusion matrix is constructed. From the matrix, we compute various measurements, entropy, purity, precision, recall and F-score.
 - Let the classes in the data D be $C = (c_1, c_2, ..., c_k)$. The clustering method produces k clusters, which divides D into k disjoint subsets, $D_1, D_2, ..., D_k$.

Evaluation measures: Entropy

Entropy: For each cluster, we can measure its entropy as follows:

$$entropy(D_i) = -\sum_{j=1}^k \Pr_i(c_j) \log_2 \Pr_i(c_j), \tag{29}$$

where $Pr_i(c_j)$ is the proportion of class c_j data points in cluster i or D_i . The total entropy of the whole clustering (which considers all clusters) is

$$entropy_{total}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times entropy(D_i)$$
(30)

Evaluation measures: purity

Purity: This again measures the extent that a cluster contains only one class of data. The purity of each cluster is computed with

$$purity(D_i) = \max_{j}(\Pr_i(c_j))$$
(31)

The total purity of the whole clustering (considering all clusters) is

$$purity_{total}(D) = \sum_{i=1}^{k} \frac{|D_i|}{|D|} \times purity(D_i)$$
 (32)

An example

Example 14: Assume we have a text collection *D* of 900 documents from three topics (or three classes), Science, Sports, and Politics. Each class has 300 documents. Each document in *D* is labeled with one of the topics (classes). We use this collection to perform clustering to find three clusters. Note that class/topic labels are not used in clustering. After clustering, we want to measure the effectiveness of the clustering algorithm.

Cluster	Science	Sports	Politics	Entropy	Purity
1	250	20	10	0.589	0.893
2	20	180	80	1,198	0.643
3	30	100	210	1,257	0.617
Total	300	300	300	1.031	0.711

A remark about ground truth evaluation

- Commonly used to compare different clustering algorithms.
- A real-life data set for clustering has no class labels.
 - Thus although an algorithm may perform very well on some labeled data sets, no guarantee that it will perform well on the actual application data at hand.
- The fact that it performs well on some label data sets does give us some confidence of the quality of the algorithm.
- This evaluation method is said to be based on external data or information.

Evaluation based on internal information

- Intra-cluster cohesion (compactness):
 - Cohesion measures how near the data points in a cluster are to the cluster centroid.
 - Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
 - Separation means that different cluster centroids should be far away from one another.
- In most applications, expert judgments are still the key.

Indirect evaluation

- In some applications, clustering is not the primary task, but used to help perform another task.
- We can use the performance on the primary task to compare clustering methods.
- For instance, in an application, the primary task is to provide recommendations on book purchasing to online shoppers.
 - If we can cluster books according to their features, we might be able to provide better recommendations.
 - We can evaluate different clustering algorithms based on how well they help with the recommendation task.
 - Here, we assume that the recommendation can be reliably evaluated.

Summary

- Unsupervised Learning
 - Clustering
- Cluster Analysis
- k-Means Clustering Algorithm
- Similarity and Distance Functions
- Cluster Evaluation

References

- Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," 2nd Edition, Springer. http://www.cs.uic.edu/~liub/WebMiningBook.html
- Efraim Turban, Ramesh Sharda, Dursun Delen (2011), "Decision Support and Business Intelligence Systems," 9th Edition, Pearson.
- Jiawei Han and Micheline Kamber (2006), "Data Mining: Concepts and Techniques", 2nd Edition, Elsevier.