Data Warehousing 資料倉儲

Cluster Analysis

1001DW08

MI4

Tue. 6,7 (13:10-15:00) B427

Min-Yuh Day

戴敏育

Assistant Professor

專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail.tku.edu.tw/myday/ 2011-11-29

Syllabus

```
內容(Subject/Topics)
     日期
週次
   100/09/06
              Introduction to Data Warehousing
   100/09/13
              Data Warehousing, Data Mining,
              and Business Intelligence
   100/09/20
3
              Data Preprocessing:
               Integration and the ETL process
   100/09/27
              Data Warehouse and OLAP Technology
4
5
   100/10/04
              Data Warehouse and OLAP Technology
   100/10/11
              Data Cube Computation and Data Generation
6
   100/10/18
              Data Cube Computation and Data Generation
   100/10/25
8
              Project Proposal
   100/11/01 期中考試週
9
```

Syllabus

```
內容(Subject/Topics)
      日期
週次
    100/11/08
               Association Analysis
10
    100/11/15
               Association Analysis
11
    100/11/22
12
               Classification and Prediction
    100/11/29
13
               Cluster Analysis
    100/12/06
               Social Network Analysis
14
    100/12/13
15
               Link Mining
16
    100/12/20
               Text Mining and Web Mining
    100/12/27
               Project Presentation
17
    101/01/03 期末考試週
18
```

Outline

- Cluster Analysis
- K-Means Clustering

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Cluster Analysis

Clustering of a set of objects based on the *k-means method.* (The mean of each cluster is marked by a "+".)

Cluster Analysis for Data Mining

- Analysis methods
 - Statistical methods
 (including both hierarchical and nonhierarchical),
 such as k-means, k-modes, and so on
 - Neural networks

 (adaptive resonance theory [ART],
 self-organizing map [SOM])
 - Fuzzy logic (e.g., fuzzy c-means algorithm)
 - Genetic algorithms
- Divisive versus Agglomerative methods

Cluster Analysis for Data Mining

- How many clusters?
 - There is not a "truly optimal" way to calculate it
 - Heuristics are often used
 - 1. Look at the sparseness of clusters
 - 2. Number of clusters = $(n/2)^{1/2}$ (n: no of data points)
 - 3. Use Akaike information criterion (AIC)
 - 4. Use Bayesian information criterion (BIC)
- Most cluster analysis methods involve the use of a distance measure to calculate the closeness between pairs of items
 - Euclidian versus Manhattan (rectilinear) distance

Cluster Analysis for Data Mining

- k-Means Clustering Algorithm
 - k : pre-determined number of clusters
 - Algorithm (Step 0: determine value of k)
 - Step 1: Randomly generate k random points as initial cluster centers
 - Step 2: Assign each point to the nearest cluster center
 - Step 3: Re-compute the new cluster centers
 - Repetition step: Repeat steps 2 and 3 until some convergence criterion is met (usually that the assignment of points to clusters becomes stable)

Cluster Analysis for Data Mining k-Means Clustering Algorithm

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases,
 and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type,
 value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - low inter-class similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf}).$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$
 where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Euclidean distance vs Manhattan distance

• Distance of two point $x_1 = (1, 2)$ and $x_2 (3, 5)$

Euclidean distance:

$$= ((3-1)^2 + (5-2)^2)^{1/2}$$

$$= (2^2 + 3^2)^{1/2}$$

$$= (4 + 9)^{1/2}$$

$$=(13)^{1/2}$$

$$= 3.61$$

Manhattan distance:

$$= (3-1) + (5-2)$$

$$= 2 + 3$$

Binary Variables

A contingency table for binary data

Object
$$j$$

$$1 \quad 0 \quad sum$$
Object i

$$0 \quad c \quad d \quad c+d$$

$$sum \quad a+c \quad b+d \quad p$$

 Distance measure for symmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

 Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{b+c}{a+b+c}$$

Jaccard coefficient (similarity
measure for asymmetric binary
variables):

$$sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Source: Han & Kamber (2006)

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

— map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Ratio-Scaled Variables

Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale,
 Such as Ae^{Bt} or Ae^{-Bt}

Methods:

- treat them like interval-scaled variables—not a good choice!
 (why?—the scale can be distorted)
- apply logarithmic transformation

$$y_{if} = log(x_{if})$$

treat them as continuous ordinal data treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

-f is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- -f is interval-based: use the normalized distance
- -f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$Z_{if} = \frac{\boldsymbol{r}_{if} - 1}{\boldsymbol{M}_{f} - 1}$$

Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$$

 \vec{X}^t is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

A variant: Tanimoto coefficient

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$$

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - 1. Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
 - 3. Assign each object to the cluster with the nearest seed point
 - 4. Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example

Source: Han & Kamber (2006)

K-Means Clustering

K-Means Clustering

Step 1: K=2, Arbitrarily choose K object as initial cluster center

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

Point	Р	P(x,y)	m1 distance	m2 distance	Cluster
p01	а	(3, 4)	0.00	5.10	Cluster1
p02	b	(3, 6)	2.00	5.10	Cluster1
p03	С	(3, 8)	4.00	5.83	Cluster1
p04	d	(4, 5)	1.41	4.00	Cluster1
p05	е	(4, 7)	3.16	4.47	Cluster1
p06	f	(5, 1)	3.61	5.00	Cluster1
p07	g	(5, 5)	2.24	3.00	Cluster1
p08	h	(7, 3)	4.12	2.24	Cluster2
p09	i	(7, 5)	4.12	1.00	Cluster2
p10	j	(8, 5)	5.10	0.00	Cluster2

K-Means Clustering

Initial m1 (3, 4)

Initial m2 (8, 5)

Step 2: Compute seed points as the centroids of the clusters of the current partition

Step 3: Assign each objects to most similar center

Point	Р	P(x,y)	m1 distance	m2 distance	Cluster	
p01	а	(3, 4)	0.00	5.10	Cluster1	
p02	b	(3, 6)	2.00	5.10	Cluster1	
p03	С	(3, 8)	4.00	5.83	Cluster1	
p(<u>14</u>	Д	(4 5)	1 41	4 00	Cluster1	
Euclidean distance						
Euclidean distance b(3,6) $\leftarrow \rightarrow$ m2(8,5) = ((8-3) ² + (5-6) ²) ^{1/2} = (5 ² + (-1) ²) ^{1/2}						
$ \mathbf{p} = ((8-3)^2 + (5-6)^2)^{1/2}$						
$ = (5^2 + (-1)^2)^{1/2}$ p((25 4) 1/2						
$p(1) = (25 + 1)^{1/2}$ $p(25 + 1)^{1/2}$ $p(26)^{1/2}$						
1	(Z 5.	•			er2	
' 💆	J .	10				

Initial m1 (3, 4)

Initial m2 (8, 5)

Step 4: Update the cluster means, m2 m1 Repeat Step 2, 3, **Point** P(x,y)Cluster distance distance stop when no more new assignment 10 p01 1.43 4.34 Cluster1 (3, 4)9 p02 (3, 6)1.22 4.64 Cluster1 8 (3, 8)p03 2.99 5.68 Cluster1 7 p04 3.40 Cluster1 d (4, 5)0.20 6 $m_1 = (3.86, 5.1)$ 5 p05 (4, 7)1.87 4.27 Cluster1 4 $M_2 = (7.33, A.33)$ (5, 1)p06 4.06 Cluster2 4.29 3 Cluster1 p07 (5, 5)1.15 2.42 2 p08 (7, 3)3.80 1.37 Cluster2 1 p09 (7, 5)3.14 0.75 Cluster2 0 p10 (8, 5)4.14 0.95 Cluster2 3 5 8 9 10 0 6 m1 (3.86, 5.14) **K-Means** Clustering

m2 (7.33, 4.33)

34

Step 4: Update the cluster means, Repeat Step 2, 3, stop when no more new assignment

Point	Р	P(x,y)	m1 distance	m2 distance	Cluster
p01	а	(3, 4)	1.95	3.78	Cluster1
p02	b	(3, 6)	0.69	4.51	Cluster1
p03	С	(3, 8)	2.27	5.86	Cluster1
p04	d	(4, 5)	0.89	3.13	Cluster1
p05	е	(4, 7)	1.22	4.45	Cluster1
p06	f	(5, 1)	5.01	3.05	Cluster2
p07	g	(5, 5)	1.57	2.30	Cluster1
p08	h	(7, 3)	4.37	0.56	Cluster2
p09	i	(7, 5)	3.43	1.52	Cluster2
p10	j	(8, 5)	4.41	1.95	Cluster2

K-Means Clustering

m1 (3.67, 5.83)

m2 (6.75, 3.50)

Self-Organizing Feature Map (SOM)

- SOMs, also called topological ordered maps, or Kohonen Self-Organizing Feature Map (KSOMs)
- It maps all the points in a high-dimensional source space into a 2 to 3-d target space, s.t., the distance and proximity relationship (i.e., topology) are preserved as much as possible
- Similar to k-means: cluster centers tend to lie in a low-dimensional manifold in the feature space
- Clustering is performed by having several units competing for the current object
 - The unit whose weight vector is closest to the current object wins
 - The winner and its neighbors learn by having their weights adjusted
- SOMs are believed to resemble processing that can occur in the brain
- Useful for visualizing high-dimensional data in 2- or 3-D space

Web Document Clustering Using SOM

- The result of SOM clustering of
 12088 Web articles
- The picture on the right: drilling down on the keyword "mining"
- Based on websom.hut.fiWeb page

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Outlier Discovery: Statistical Approaches

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

Cluster Analysis

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, gridbased methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distancebased or deviation-based approaches
- There are still lots of research issues on cluster analysis

Summary

- Cluster Analysis
- K-Means Clustering

References

- Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Second Edition, 2006, Elsevier
- Efraim Turban, Ramesh Sharda, Dursun Delen, Decision
 Support and Business Intelligence Systems, Ninth Edition,
 2011, Pearson.