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Syllabus
週次 日期 內容（Subject/Topics）
1    100/09/06    Introduction to Data Warehousing
2    100/09/13    Data Warehousing, Data Mining,

and Business  Intelligence
3    100/09/20    Data Preprocessing: 

Integration and the ETL process
4    100/09/27    Data Warehouse and OLAP Technology
5    100/10/04    Data Warehouse and OLAP Technology
6    100/10/11    Data Cube Computation and Data Generation
7    100/10/18    Data Cube Computation and Data Generation
8    100/10/25    Project Proposal
9    100/11/01    期中考試週
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Syllabus
週次 日期 內容（Subject/Topics）
10    100/11/08    Association Analysis
11    100/11/15    Classification and Prediction
12    100/11/22    Cluster Analysis
13    100/11/29    Sequence Data Mining
14    100/12/06    Social Network Analysis 
15    100/12/13    Link Mining
16    100/12/20    Text Mining and Web Mining
17    100/12/27    Project Presentation
18    101/01/03    期末考試週
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Association Analysis: 
Mining Frequent Patterns, 

Association and Correlations
• Association Analysis
• Mining Frequent Patterns
• Association and Correlations
• Apriori Algorithm
• Mining Multilevel Association Rules

Source: Han & Kamber (2006)
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Market  Basket Analysis

Source: Han & Kamber (2006)



Association Rule Mining

• Apriori Algorithm
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What Is Frequent Pattern Analysis?
• Frequent pattern: a pattern (a set of items, subsequences, 

substructures, etc.) that occurs frequently in a data set 
• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the 

context of frequent itemsets and association rule mining
• Motivation: Finding inherent regularities in data

– What products were often purchased together?
— Beer and diapers?!

– What are the subsequent purchases after buying a PC?
– What kinds of DNA are sensitive to this new drug?
– Can we automatically classify web documents?

• Applications
– Basket data analysis, cross-marketing, catalog design, sale 

campaign analysis, Web log (click stream) analysis, and DNA 
sequence analysis.

Source: Han & Kamber (2006)
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Why Is Freq. Pattern Mining Important?

• Discloses an intrinsic and important property of data sets
• Forms the foundation for many essential data mining tasks

– Association, correlation, and causality analysis
– Sequential, structural (e.g., sub-graph) patterns
– Pattern analysis in spatiotemporal, multimedia, time-series, 

and stream data 
– Classification: associative classification
– Cluster analysis: frequent pattern-based clustering
– Data warehousing: iceberg cube and cube-gradient 
– Semantic data compression: fascicles
– Broad applications

Source: Han & Kamber (2006)



9

Basic Concepts: Frequent Patterns and 
Association Rules

• Itemset X = {x1, …, xk}

• Find all the rules X  Y with minimum 
support and confidence

– support, s, probability that a 
transaction contains X ∪ Y

– confidence, c, conditional 
probability that a transaction 
having X also contains Y

Let  supmin = 50%,  confmin = 50%
Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
Association rules:

A  D  (60%, 100%)
D  A  (60%, 75%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

Transaction-id Items bought

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F

A  D  (support  = 3/5 = 60%, confidence = 3/3 =100%)
D  A  (support  = 3/5 = 60%, confidence = 3/4  = 75%)

Source: Han & Kamber (2006)



Market basket analysis
• Example

– Which groups or sets of items are customers likely 
to purchase on a given trip to the store?

• Association Rule
– Computer  antivirus_software

[support = 2%; confidence = 60%]
• A support of 2% means that 2% of all the transactions 

under analysis show that computer and antivirus 
software are purchased together.

• A confidence of 60% means that 60% of the customers 
who purchased a computer also bought the software.

10Source: Han & Kamber (2006)



Association rules

• Association rules are considered interesting if 
they satisfy both 
– a minimum support  threshold and 
– a minimum confidence threshold.

11Source: Han & Kamber (2006)



Frequent Itemsets, 
Closed Itemsets, and 

Association Rules
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Support (A B)       = P(A ∪ B)
Confidence (A B) = P(B|A)

Source: Han & Kamber (2006)



Support (A B) = P(A ∪ B)
Confidence (A B) = P(B|A)

• The notation P(A ∪ B) indicates the probability 
that a transaction contains the union of set A 
and set B 
– (i.e., it contains every item in A and in B). 

• This should not be confused with P(A or B), 
which indicates the probability that a 
transaction contains either A or B.

13Source: Han & Kamber (2006)



• Rules that satisfy both a minimum support 
threshold (min_sup) and a minimum 
confidence threshold (min_conf) are called 
strong. 

• By convention, we write support and 
confidence values so as to occur between 0% 
and 100%, rather than 0 to 1.0.

14Source: Han & Kamber (2006)



• itemset
– A set of items is referred to as an itemset.

• K-itemset
– An itemset that contains k items is a k-itemset.

• Example:
– The set {computer, antivirus software} is a 2-itemset.

15Source: Han & Kamber (2006)



Absolute Support and
Relative Support

• Absolute Support 
– The occurrence frequency of an itemset is the 

number of transactions that contain the itemset
• frequency, support count, or count of the itemset

– Ex: 3

• Relative support 
– Ex: 60%

16Source: Han & Kamber (2006)



• If the relative support of an itemset I satisfies 
a prespecified minimum support threshold, 
then I is a frequent itemset.
– i.e., the absolute support of I satisfies the 

corresponding minimum support count threshold 

• The set of frequent k-itemsets is commonly 
denoted by LK

17Source: Han & Kamber (2006)



• the confidence of rule A B can be easily derived 
from the support counts of A and A ∪ B.

• once the support counts of A, B, and A ∪ B are 
found, it is straightforward to derive the 
corresponding association rules AB and BA and 
check whether they are strong. 

• Thus the problem of mining association rules can be 
reduced to that of mining frequent itemsets.

18Source: Han & Kamber (2006)



Association rule mining:
Two-step process

1. Find all frequent itemsets
– By definition, each of these itemsets will occur at 

least as frequently as a predetermined minimum 
support count, min_sup.

2. Generate strong association rules from the 
frequent itemsets
– By definition, these rules must satisfy minimum 

support and minimum confidence.

19Source: Han & Kamber (2006)



Closed frequent itemsets and 
maximal frequent itemsets

• Suppose that a transaction database has only two 
transactions: 
– {(a1, a2, …, a100); (a1, a2,… , a50)}

• Let the minimum support count threshold be min_sup=1.
• We find two closed frequent itemsets and their support 

counts, that is, 
– C = {{a1, a2, …, a100}:1; {a1, a2,… , a50}: 2}

• There is one maximal frequent itemset:
– M =  {{a1, a2, …, a100}:1}

• (We cannot include {a1, a2,… , a50} as a maximal 
frequent itemset because it has a frequent super-set, 
{a1, a2, …, a100})

20Source: Han & Kamber (2006)



Frequent Pattern Mining
• Based on the completeness of patterns to be 

mined
• Based on the levels of abstraction involved in the 

rule set
• Based on the number of data dimensions 

involved in the rule
• Based on the types of values handled in the rule
• Based on the kinds of rules to be mined
• Based on the kinds of patterns to be mined

21Source: Han & Kamber (2006)



Based on the levels of abstraction 
involved in the rule set

• buys(X, “computer”)) buys(X, “HP printer”)
• buys(X, “laptop computer”))  buys(X, “HP printer”)

22Source: Han & Kamber (2006)



Based on the number of data 
dimensions involved in the rule

• Single-dimensional association rule
– buys(X, “computer”))  buys(X, “antivirus software”)

• Multidimensional association rule
– age(X, “30,…,39”) ^ income (X, “42K,…,48K”)) 

buys (X, “high resolution TV”)

23Source: Han & Kamber (2006)



Efficient and Scalable 
Frequent Itemset Mining Methods
• The Apriori Algorithm

– Finding Frequent Itemsets Using Candidate 
Generation

24Source: Han & Kamber (2006)



Apriori Algorithm

• Apriori is a seminal algorithm proposed by R. 
Agrawal and R. Srikant in 1994 for mining 
frequent itemsets for Boolean association 
rules.

• The name of the algorithm is based on the 
fact that the algorithm uses prior knowledge 
of frequent itemset properties, as we shall see 
following.

25Source: Han & Kamber (2006)



Apriori Algorithm

• Apriori employs an iterative approach known as a level-wise 
search, where k-itemsets are used to explore (k+1)-itemsets. 

• First, the set of frequent 1-itemsets is found by scanning the 
database to accumulate the count for each item, and 
collecting those items that satisfy minimum support. The 
resulting set is denoted L1. 

• Next, L1 is used to find L2, the set of frequent 2-itemsets, 
which is used to find L3, and so on, until no more frequent k-
itemsets can be found. 

• The finding of each Lk requires one full scan of the database.

26Source: Han & Kamber (2006)



Apriori Algorithm

• To improve the efficiency of the level-wise 
generation of frequent itemsets, an important 
property called the Apriori property.

• Apriori property
– All nonempty subsets of a frequent itemset must 

also be frequent.

27Source: Han & Kamber (2006)



• How is the Apriori property used in the 
algorithm?
– How Lk-1 is used to find Lk for k >= 2.
– A two-step process is followed, consisting of join

and prune actions.

28Source: Han & Kamber (2006)



Apriori property used in algorithm
1. The join step

29Source: Han & Kamber (2006)



Apriori property used in algorithm
2. The prune step

30Source: Han & Kamber (2006)



Transactional data for an 
AllElectronics branch

31Source: Han & Kamber (2006)



Example: Apriori

• Let’s look at a concrete example, based on the 
AllElectronics transaction database, D.

• There are nine transactions in this database, 
that is, |D| = 9. 

• Apriori algorithm for finding frequent itemsets 
in D

32Source: Han & Kamber (2006)



Example: Apriori Algorithm
Generation of candidate itemsets and frequent itemsets, 

where the minimum support count is 2.

33Source: Han & Kamber (2006)
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Example: Apriori Algorithm
C1  L1

Source: Han & Kamber (2006)
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Example: Apriori Algorithm
C2  L2

Source: Han & Kamber (2006)
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Example: Apriori Algorithm
C3  L3

Source: Han & Kamber (2006)



The Apriori algorithm for discovering frequent itemsets for 
mining Boolean association rules.

37Source: Han & Kamber (2006)
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The Apriori Algorithm—An Example 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

Source: Han & Kamber (2006)
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The Apriori Algorithm

• Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;

Source: Han & Kamber (2006)
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Important Details of Apriori
• How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning
• How to count supports of candidates?
• Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}
– Self-joining: L3*L3

• abcd from abc and abd
• acde from acd and ace

– Pruning:
• acde is removed because ade is not in L3

– C4={abcd}

Source: Han & Kamber (2006)
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How to Generate Candidates?
• Suppose the items in Lk-1 are listed in an order
• Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q
where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < 

q.itemk-1

• Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do
if (s is not in Lk-1) then delete c from Ck

Source: Han & Kamber (2006)



Generating Association Rules from 
Frequent Itemsets

42Source: Han & Kamber (2006)



Example:
Generating association rules

• frequent itemset l = {I1, I2, I5}

43

• If the minimum confidence threshold is, say, 70%, then only 
the second, third, and last rules above are output, because 
these are the only ones generated that are strong.

Source: Han & Kamber (2006)



Improving the Efficiency of Apriori
• Hash-based technique

– Hashing itemsets into corresponding buckets
• Transaction reduction 

– reducing the number of transactions scanned in future 
iterations

• Partitioning 
– partitioning the data to find candidate itemsets

• Sampling 
– mining on a subset of the given data

• Dynamic itemset counting
– adding candidate itemsets at different points during a scan

44Source: Han & Kamber (2006)



Mining by partitioning the data

45Source: Han & Kamber (2006)



Mining Various Kinds of 
Association Rules

• Mining Multilevel Association Rules

46Source: Han & Kamber (2006)



Task-relevant data, D

47Source: Han & Kamber (2006)



A concept hierarchy for 
AllElectronics computer items

48Source: Han & Kamber (2006)



Multilevel mining with 
uniform support

49Source: Han & Kamber (2006)



Multilevel mining with 
reduced support

50Source: Han & Kamber (2006)



51Source: Han & Kamber (2006)



Mining Multidimensional Association Rules
from Relational Databases and 

DataWarehouses
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Hybrid-dimensional association rules

Multidimensional association rules

Sigle-dimensional association rules

Source: Han & Kamber (2006)



Summary

• Association Analysis
• Mining Frequent Patterns
• Association and Correlations
• Apriori Algorithm
• Mining Multilevel Association Rules

53Source: Han & Kamber (2006)
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