Data Warehousing
T A

Data Cube Computation and
Data Generation

1001DWO05
MI4
Tue. 6,7 (13:10-15:00) B427

Min-Yuh Day
AT
Assistant Professor
R R E.
Dept. of Information Management, Tamkang University

CCRE R ITELY

http://mail.im.tku.edu.tw/~myday/
2011-10-11

http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/cindex.htm�
http://www.im.tku.edu.tw/en_index.html�
http://english.tku.edu.tw/index.asp�
http://www.tku.edu.tw/�
http://www.im.tku.edu.tw/�
http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/�

Syllabus

F=x piy m % (Subject/Topics)
1 100/09/06 Introduction to Data Warehousing

2 100/09/13 Data Warehousing, Data Mining,
and Business Intelligence

3 100/09/20 Data Preprocessing:
Integration and the ETL process

100/09/27 Data Warehouse and OLAP Technology
100/10/04 Data Warehouse and OLAP Technology
100/10/11 Data Cube Computation and Data Generation
100/10/18 Data Cube Computation and Data Generation
100/10/25 Project Proposal

100/11/01 # ¥® ¥ #&F

O 00 N OO U1 B

Syllabus

F=x piy m % (Subject/Topics)

10 100/11/08 Association Analysis

11 100/11/15 Classification and Prediction
12 100/11/22 Cluster Analysis

13 100/11/29 Sequence Data Mining

14 100/12/06 Social Network Analysis

15 100/12/13 Link Mining

16 100/12/20 Text Mining and Web Mining
17 100/12/27 Project Presentation

18 101/01/03 P % ¥ #3¥

Data Warehouse Development

e Data warehouse development approaches
— Inmon Model: EDW approach (top-down)
— Kimball Model: Data mart approach (bottom-up)
— Which model is best?

. There is no one-size-fits-all strategy to DW

— One alternative is the hosted warehouse

¢ Data warehouse structure:

— The Star Schema vs. Relational

e Real-time data warehousing?

DW Development Approaches

(Kimball Approach)

(Inmon Approach)

Effort

Data Mart Approach

EDW Approach

Scope

Development time

Development cost

Development difficulty

Data prerequisite for
sharing

Sources

Size

Time horizon

Data transformations
Update frequency

Technology
Hardware

Operating system
Databases

One subject area

Months

$10,000 to $100,000+

Low to medium

Common (within business area)

Only some operational and
external systems

Megahytes to several gigabytes

MNear-current and historical data

Low to medium

Hourly, daily, weekly

Workstations and departmental
Servers

Windows and Linux

Workaroup or standard
database servers

Several subject areas

Years

$£1,000,000+

High

Comrmon (across enterprise)

Many operational and
external systems

Gigabytes to petabytes

Historical data

High

Weekly, monthly

Enterprise servers and
mainframe computers

Unix, Z/05, O5/390

Enterprise database servers

DW Structure: Star Schema
(a.k.a. Dimensional Modeling)

Start Schema Example for an
Automobile Insurance Data Warehouse

Driver Automotive
. : - L V_ Facts:

Dimensions: Claim Information Central table that contains
How data will be sliced/ (usually summarized)
tc_hced (e:ga tiy Iocaft|on, information; also contains
IMe period, ype 0 foreign keys to access each
automobile or driver) dimension table

A A :

Location Time

Dimensional Modeling

Data cube

A two-dimensional,
three-dimensional, or
higher-dimensional
object in which each
dimension of the data
represents a measure |
of Interest

-Grain

-Drill-down

-Slicing

(v)=2006

East| 70O 180 | 110 | 140
Locations iL)
L) West| 20 a0 | 140 | 130
yd i i il Central | 120 | 100 | 160

Muts Screws Bolts Washers

East 50 40 20 (y)=2005
West| 60 | 70 | 120 | 10 2006 Z
Central | 100 | 80 | 140 | 20 2[:":'5&-..‘1‘ o East| &0 &) | 100 | 20
2004 v
Muts Screws Bolts Washers West| 70 130 20
Products (P) Centrall 119 | 90 | 150 | 40
Muts Screws Bolls Washers
(v)=2004
o
East| 50 40 20
(L)

West| &0 70 120 | 10

Central | 100 | 80 140 | 320

Nuts Screws Bolis Washers
]

Best Practices for Implementing
DW

The project must fit with corporate strategy
There must be complete buy-in to the project

It is important to manage user expectations

The data warehouse must be built incrementally
Adaptability must be built in from the start

The project must be managed by both IT and business
professionals (a business—supplier relationship must be
developed)

Only load data that have been cleansed/high quality
Do not overlook training requirements
Be politically aware.

Real-time DW
(a.k.a. Active Data Warehousing)

 Enabling real-time data updates for real-time
analysis and real-time decision making is
growing rapidly
— Push vs. Pull (of data)

e Concerns about real-time BI

— Not all data should be updated continuously
— Mismatch of reports generated minutes apart
— May be cost prohibitive

— May also be infeasible

Evolution of DSS & DW

ANALYZING
WHY
did it happen?

REPORTING
WHAT
happened?

Increase in

Ad Hoc
Analysis
Primarily
Batch and
Some Ad Hoc
Reports

PREDICTING
WHAT WILL
happen?

Analytical
Modeling
Grows

SAS

WHAT IS
happening now?

Continuous
Update and Time-
sensitive Queries

Become

Important

ACTIVATING
MAKE it happen!

Event-Based
Triggering Takes Hold

B Batch
B Ad Hoc
Il Analytics
Continuous Update/Short Queries
B Event-Based Triggering

10

Active Data Warehousing
(by Teradata Corporation)

Active Access
Front-Line operational
decisions or services
supported by near-real-
time (NRT) access; Service
Level Agreements of 5
seconds or less

Active Load

Intra-day data acquisition;
Mini-batch to NRT trickle
data feeds measured in
minutes or seconds

Active Events

Proactive monitoring of
business activity initiating
intelligent actions based on
rules and context; to sys-
tems or users supporting an
operational business process

Integrate
Once

// Use
Many

Call Center Custumers Suppllers

Executive Product

\\

Marketlng

K

Active Workload

Management
Dynamically manage
system resources for
optimum performance
and resource utilization
supporting a mixed-
workload environment

Active Enterprise

Integration
Integration into the
Enterprise Architecture
for delivery of intelligent
decisioning services

Active Availability
Business Continuity to

support the requirements
of the business (up to 7X24)

11

Comparing Traditional and
Active DW

Traditional Data Warehouse Environment

Active Data Warehouse Environment

Strateaic decisions only
Results sometimes hard to measure

Daily, weekly, monthly data currency
acceptable; summaries often appropriate

Moderate user concurrency

Highly restrictive reporting used to
confirm or check existing processes

and patterns; often uses predeveloped
summary tables or data marts

Power users, knowledge workers, internal users

Strategic and tactical decisions
Results measured with operations

Only comprehensive detailed data
available within minutes is acceptable

High number (1,000 or more) of users

accessing and guerying the system
simultaneously

Flexible ad hoc reporting, as well as
machine-assisted modeling (e.q., data
mining) to discover new hypotheses
and relationships

Operational staffs, call centers, external users

Data Warehouse Administration

 Due to its huge size and its intrinsic nature, a DW
requires especially strong monitoring in order to
sustain its efficiency, productivity and security.

 The successful administration and management of a
data warehouse entails skills and proficiency that go
past what is required of a traditional database
administrator.

— Requires expertise in high-performance software,
hardware, and networking technologies

Data Cube Computation
and Data Generalization

e Efficient Computation of Data Cubes

 Exploration and Discovery in Multidimensional
Databases

e Attribute-Oriented Induction — An Alternative
Data Generalization Method

Efficient Computation of
Data Cubes

 Preliminary cube computation tricks
e Computing full/iceberg cubes: 3 methodologies
— Top-Down: Multi-Way array aggregation
— Bottom-Up:
* Bottom-up computation: BUC
e H-cubing technique
* |Integrating Top-Down and Bottom-Up:
e Star-cubing algorithm
e High-dimensional OLAP: A Minimal Cubing Approach
e Computing alternative kinds of cubes:

— Partial cube, closed cube, approximate cube, etc.

Preliminary Tricks (Agarwal et al. VLDB’96)

Sorting, hashing, and grouping operations are applied to the dimension
attributes in order to reorder and cluster related tuples

Aggregates may be computed from previously computed aggregates, rather
than from the base fact table

— Smallest-child: computing a cuboid from the smallest, previously
computed cuboid

— Cache-results: caching results of a cuboid from which other cuboids are
computed to reduce disk 1/Os

— Amortize-scans: computing as many as possible cuboids at the same time
to amortize disk reads

— Share-sorts: sharing sorting costs cross multiple cuboids when sort-based
method is used

— Share-partitions: sharing the partitioning cost across multiple cuboids
when hash-based algorithms are used

Multi-Way Array Aggregation

Array-based “bottom-up” algorithm
Using multi-dimensional chunks
No direct tuple comparisons

Simultaneous aggregation on multiple

dimensions

Intermediate aggregate values are re-
used for computing ancestor cuboids

Cannot do Apriori pruning: No iceberg
optimization

all

\

A

B

C

NN

AB

N

AC

ABC

BC

/

Multi-way Array Aggregation for Cube

Computation (MOLAP)

Partition arrays into chunks (a small subcube which fits in memory).

Compressed sparse array addressing: (chunk_id, offset)

Compute aggregates in “multiway” by visiting cube cells in the order which
minimizes the # of times to visit each cell, and reduces memory access and
storage cost.

C cxd 61 7 62 7 63 7 64
C 7 47 7 A8

c Y 20 7~ 20 /21 /7

ba 13 | 14 | 15| 16

b2 9

bl 5

bg 1 2 3 4
a0 al a2 a3

A

What is the best
traversing order
to do multi-way
aggregation?

18

Multi-way Array Aggregation for Cube

Computation
b b b
C 6l 62 _/ 6 04
- N v - v e
A C
G
// b3l 13 14 15)6/
] //
P b2 9
T
yd bl| 5
A d
A 7 AR 3 4
1 a2 a

Multi-way Array Aggregation for
Cube Computation

A/k{* * K Kk KTk X

Source: Han & Kamber (2006)

C C bl /~ 62 / 63 04
e (’CCZéVA‘s/45/47/r4
G
// b3 14 15
d B
v
7 bl
// Lo
*
1 a2
* * * A
* * *
* * *

Multi-Way Array Aggregation for Cube
Computation (Cont.)

Method: the planes should be sorted and computed according
to their size in ascending order

— ldea: keep the smallest plane in the main memory, fetch
and compute only one chunk at a time for the largest plane

Limitation of the method: computing well only for a small

number of dimensions

— If there are a large number of dimensions, “top-down”
computation and iceberg cube computation methods can
be explored

Bottom-Up Computation (BUC)

all

BUC (Beyer & Ramakrishnan, /N
SIGMOD’99) m \\

Bottom-up cube computation co
(Note: top-down in our view!)]\ \ \
Divides dimensions into partitions \

ABCD

and facilitates iceberg pruning
1 all

— |If a partition does not satisfy /N‘

min_sup, its descendants can be

pruned PN

9AD 11BC 13BD 15CD

— If minsup = 1 = compute full
CUBE!]\ \ \

4 ABC 6 ABD 8 ACD 12 BCD

No simultaneous aggregation \

5 ABCD

BUC: Partitioning

C
ri
o =

Usually, entire data set can’t

main memory

Sort distinct values, partition into blocks that fji

Continue processing
Optimizations
— Partitioning
e External Sorting, Hashing, Counting Sort
— Ordering dimensions to encourage pruning
e Cardinality, Skew, Correlation
— Collapsing duplicates

e Can’t do holistic aggregates anymore!

Star-Cubing: An Integrating
Method

Integrate the top-down and bottom-up methods

Explore shared dimensions

— E.g., dimension A is the shared dimension of ACD and AD

— ABD/AB means cuboid ABD has shared dimensions AB
Allows for shared computations

— e.g., cuboid AB is computed simultaneously as ABD

Aggregate in a top-down manner but with the bottom-up sub-layer

underneath which will allow Apriori pruning clc 5

Shared dimensions grow in bottom-up fashion N
AC/AC AD/A BC/BC BD/B CD

\\

ABC/ABC ABD/AB ACD/A BCD

\\//

ABCD/all

Iceberg Pruning in Shared Dimensions

 Anti-monotonic property of shared dimensions

— If the measure is anti-monotonic, and if the aggregate
value on a shared dimension does not satisfy the
iceberg condition, then all the cells extended from this
shared dimension cannot satisfy the condition either

e Intuition: if we can compute the shared dimensions before
the actual cuboid, we can use them to do Apriori
pruning

 Problem: how to prune while still aggregate
simultaneously on multiple dimensions?

Cell Trees

root: 100

Use a tree structure similar to al30 4220 23: 20

H-tree to represent cuboids

bl:10 b2:10 b3: 10

Collapses common prefixes to /\

save memory cl:5 25
Keep count at node /\

Traverse the tree to retrieve a

particular tuple

Star Attributes and Star Nodes

Intuition: If a single-dimensional
aggregate on an attribute value p does
not satisfy the iceberg condition, it is
useless to distinguish them during the
iceberg computation

- E.g., bz, b3, b4, Cl’ Cz, C4, dl’ dz, d3

Solution: Replace such attributes by a *.
Such attributes are star attributes, and
the corresponding nodes in the cell tree
are star nodes

Count

al

bl

cl

dl

al

bl

c4

d3

al

b2

c2

d2

a2

b3

c3

d4

a2

b4

c3

d4

Rl |R|F

Example: Star Reduction

Suppose minsup = 2

Perform one-dimensional aggregation.
Replace attribute values whose count <
2 with *. And collapse all *’s together

Resulting table has all such attributes
replaced with the star-attribute

With regards to the iceberg
computation, this new table is a loseless
compression of the original table

A B C D Count
al (bl [* * 1
al (bl [* * 1
al |* * * 1
a2 | * c3 (d4 |1
a2 | * c3 (d4 |1
A B C D Count
al | bl * 2
al * * *x 1
a2 |* c3 |d4 |2

e Efficient Computation of Data Cubes

 Exploration and Discovery in Multidimensional

Databases

e Attribute-Oriented Induction — An Alternative

Data Generalization Method

Computing Cubes with Non-Antimonotonic
Iceberg Conditions

 Most cubing algorithms cannot compute cubes with non-
antimonotonic iceberg conditions efficiently

e Example

CREATE CUBE Sales_Iceberg AS

SELECT montbh, city, cust_grp,
AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND
COUNT(*) >=50

 Needs to study how to push constraint into the cubing process

Non-Anti-Monotonic Iceberg
Condition

 Anti-monotonic: if a process fails a condition, continue
processing will still fail

e The cubing query with avg is non-anti-monotonic!
— (Mar, *, *, 600, 1800) fails the HAVING clause
— (Mar, *, Bus, 1300, 360) passes the clause

Month | City | Cust_grp Prod Cost Price CREATE CUBE SaleS_lcebe g AS

Jan | Tor Edu | Printer | 500 485 SELECT month, city, cust_grp,

Jan | Tor Hid v 800 1200 AVG(price), COUNT(*)
Jan Tor Edu Camera | 1160 1280 FROM Sales_lnfor
Feb Mon Bus Laptop 1500 2500

Mar | Van | Edu HD | 540 520 CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

From Average to Top-k Average

e Let(* Van, *) cover 1,000 records
— Avg(price) is the average price of those 1000 sales

— Avg9(price) is the average price of the top-50 sales (top-50
according to the sales price

e Top-k average is anti-monotonic

— The top 50 sales in Van. is with avg(price) <= 800 = the top
50 deals in Van. during Feb. must be with avg(price) <= 800

Month City Cust_grp Prod Cost Price

Binning for Top-k Average

e Computing top-k avg is costly with large k
 Binningidea
— Avg9(c) >= 800

— Large value collapsing: use a sum and a count to summarize
records with measure >= 800

e If count>=800, no need to check “small” records

— Small value binning: a group of bins
 One bin covers a range, e.g., 600~800, 400~600, etc.
e Register a sum and a count for each bin

Computing Approximate top-k average

Suppose for (*, Van, *), we have

Range | Sum | Count
Over 800 | 28000 20
600~800 | 10600 15
400~600 | 15200 30

Approximate avg>®()=

(28000+10600+600*15)/50=952

Top 50

The cell may pass the HAVING clause

Month

City

Cust_grp

Prod

Cost

Price

Weakened Conditions Facilitate
Pushing

 Accumulate quant-info for cells to compute average iceberg
cubes efficiently

— Three pieces: sum, count, top-k bins
— Use top-k bins to estimate/prune descendants

— Use sum and count to consolidate current cell

; strongest
Approximate avg>°() real avg®°®() avg()
Anti-monotonic, can Anti-monotonic, but Not anti-
be computed computationally monotonic

efficiently costly

Computing Iceberg Cubes with Other Complex
Measures

e Computing other complex measures

— Key point: find a function which is weaker but ensures certain

anti-monotonicity
e Examples
— Avg() <v: avg,(c) < v (bottom-k avg)
— Avg() = v only (no count): max(price) > v

— Sum(profit) (profit can be negative):

e p_sum(c) > vif p_count(c) > k; or otherwise, sumk(c) > v

— Others: conjunctions of multiple conditions

e Efficient Computation of Data Cubes

 Exploration and Discovery in Multidimensional

Databases

e Attribute-Oriented Induction — An Alternative

Data Generalization Method

Discovery-Driven Exploration of Data Cubes

 Hypothesis-driven
— exploration by user, huge search space
e Discovery-driven (Sarawagi, et al.’98)
— Effective navigation of large OLAP data cubes

— pre-compute measures indicating exceptions, guide user in
the data analysis, at all levels of aggregation

— Exception: significantly different from the value anticipated,
based on a statistical model

— Visual cues such as background color are used to reflect the
degree of exception of each cell

Kinds of Exceptions and their Computation

Parameters

— SelfExp: surprise of cell relative to other cells at same level
of aggregation

— InExp: surprise beneath the cell
— PathExp: surprise beneath cell for each drill-down path

Computation of exception indicator (modeling fitting and
computing SelfExp, InExp, and PathExp values) can be
overlapped with cube construction

Exception themselves can be stored, indexed and retrieved like
precomputed aggregates

Examples: Discovery-Driven Data Cubes

item
region | all

Sum of sales month
Jan | Feb |Ma|: Apc May | Jun | Ju] ‘ Aug | Sep ‘ Orct ‘ MNow ‘ Dec
Total 1% 1% 0% 1% 3% I -1 I -0 I -1% I 2% -4 3%
Awg sales month
itern Jan| Feb Mar | Apr | May | Jun Jul Aug | Sep Ot MNov | Dec
Sony bfw printer 9o B | 2o Se | 14% | 4% | 0% |[EEEN -13% | -15% [11%
Sony color printer 0% 0% 1o L E L 109 | -13%: | 0% 4% 6% E Lo
HP b/w printer 2% 1% Qo 3% B9 0% -128%: | -0 3% -39 0%
HP color printer 0% 0% P 1% 0% -1%) 2% 1% St 1%
TBM home computer 1% 2% 1% le | 3% 3% -10% | 4% 1% A% -1%
IBM laptop computer 0% 0% _16 O A% 29 -10%: | 2% 0% -9 3%
Toshiba home compurer -2 5% 1% 1% -1% 1% S5 3% 50 -1% -1%
Taoshiba laptop computer 1% 0% IO 0% 2% 2% 5% 3% 2% -1t O
Logitech mouse 3% 2% 1% 0% 405 6% -11% | 2% 1% A% 0%
Ecgo-way mouse 0% 0% Lo Lo 1% -2% -2 -5% 0% S5 2%
itermn IBM home computer
Avg sales month
cegion Jan| Feb Mar | Aprc May | Jun Jul Aug | Sep Oct MNov | Dec
MNorcth -1%: -3% -19% 0% 3% 4% -G 19 0% 3% | 3%
South -1%: 1% -9% 6% -1% QL 349 | 4% 1% T
East -1%: - 2% 2% -3 % 1% 18%: | 2% 11%: S 10 2% | -1%:
West 4% 0% -1% 3% 5% 1 -1B% | B% S B | 1%

Complex Aggregation at Multiple Granularities:
Multi-Feature Cubes

e Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving
multiple dependent aggregates at multiple granularities

* Ex. Grouping by all subsets of {item, region, month}, find the maximum
price in 1997 for each group, and the total sales among all maximum price
tuples

select item, region, month, max(price), sum(R.sales)
from purchases

where year = 1997

cube by item, region, month: R

such that R.price = max(price)

e Continuing the last example, among the max price tuples, find the min and
max shelf live, and find the fraction of the total sales due to tuple that have
min shelf life within the set of all max price tuples

Cube-Gradient (Cubegrade)

* Analysis of changes of sophisticated measures in multi-
dimensional spaces

— Query: changes of average house price in Vancouver in ‘00
comparing against ‘99

— Answer: Apts in West went down 20%, houses in
Metrotown went up 10%

e Cubegrade problem by Imielinski et al.
— Changes in dimensions = changes in measures

— Drill-down, roll-up, and mutation

From Cubegrade to Multi-dimensional
Constrained Gradients in Data Cubes

e Significantly more expressive than association rules
— Capture trends in user-specified measures
e Serious challenges

— Many trivial cells in a cube = “significance constraint” to

prune trivial cells

— Numerate pairs of cells =2 “probe constraint” to select a
subset of cells to examine

— Only interesting changes wanted—> “gradient constraint” to
capture significant changes

MD Constrained Gradient Mining

* Significance constraint Cg,: (cnt>100)
* Probe constraint C . (city="Van”, cust_grp="busi”,
prod_grp="*")

* Gradient constraint C,,.4(c,, C,):
(avg_price(c,)/avg_price(c,)>1.3)

Probe cell: satisfied C,,, (c4, c2) satisfies Cgrad

Dimensions Measures

Base cell \ cid | Yr | cCity | Cst.grp | Prd_grp | Cnt | Avg_price

v B 300 2100
Aggregated cell al -

Siblings

Ancestor

44

Efficient Computing Cube-
gradients

* Compute probe cells using C;;, and C,

— The set of probe cells P is often very small

* Use probe P and constraints to find gradients

— Pushing selection deeply

— Set-oriented processing for probe cells

— lceberg growing from low to high dimensionalities
— Dynamic pruning probe cells during growth

— Incorporating efficient iceberg cubing method

e Efficient Computation of Data Cubes

* Exploration and Discovery in Multidimensional

Databases

e Attribute-Oriented Induction — An Alternative

Data Generalization Method

Data Generalization and
Summarization-based Characterization

e Data generalization

— A process which abstracts a large set of task-relevant data in
a database from a low conceptual levels to higher ones.

Higher level: A;
Young, Old /

3
Lower level: / 4
18,70inAge / 5

Conceptual levels

— Approaches:
e Data cube approach(OLAP approach)

e Attribute-oriented induction approach

What is Concept Description?

e Descriptive vs. predictive data mining

— Descriptive mining: describes concepts or task-relevant data
sets in concise, summarative, informative, discriminative
forms

— Predictive mining: Based on data and analysis, constructs
models for the database, and predicts the trend and
properties of unknown data

e Concept description:

— Characterization: provides a concise and succinct
summarization of the given collection of data

— Comparison: provides descriptions comparing two or more
collections of data

Concept Description vs. OLAP

« Similarity:
— Data generalization

— Presentation of data summarization at multiple levels of
abstraction.

— Interactive drilling, pivoting, slicing and dicing.
- Differences:

— Can handle complex data types of the attributes and their
aggregations

— Automated desired level allocation.

— Dimension relevance analysis and ranking when there are
many relevant dimensions.

— Sophisticated typing on dimensions and measures.
— Analytical characterization: data dispersion analysis

Attribute-Oriented Induction

Collect the task-relevant data (initial relation)
using a relational database query

Perform generalization by attribute removal or
attribute generalization

Apply aggregation by merging identical,
generalized tuples and accumulating their
respective counts

Interactive presentation with users

Example

e DMQL: Describe general characteristics of graduate students
in the Big-University database

use Big_University DB
mine characteristics as “Science Students”

In relevance toname, gender, major, birth_place,
birth_date, residence, phone#, gpa

Trom student
where status in “graduate”
 Corresponding SQL statement:

Select name, gender, major, birth_place, birth_date,
residence, phone#, gpa

from student
where statusin {“Msc”, “MBA”, “PhD” }

51

Name Gender | Major | Birth-Place Birth_date| Residence Phone# | GPA
Initial Jim M CS Vancouver,BC,| 8-12-76 3511 Main St., | 687-4598 | 3.67
Relation Woodman Canada Richmond
Scott M CS Montreal, Que,| 28-7-75 345 1st Ave., 253-9106 | 3.70
Lachance Canada Richmond
Lauralee | F Physics | Seattle, WA, USA| 25-8-70 125 Austin Ave., | 420-5232 | 3.83
Burnaby
Removed Retained | Sci,Eng, | Country Age range é.ity Removed| Excl,
Bus VG,..
Gender | Major | Birth_region | Age range | Residence | GPA Count
Prime _ M | Science| Canada 20-25 Richmond | Very-good 16
Generalized F Science| Foreign 25-30 Burnaby | Excellent 22
Relation
Birth_Region
Canada Foreign Total
Gender
M 16 14 30
F 10 22 32
Total 26 36 62

Class Characterization: An Example

52

Presentation of Generalized Results

e Generalized relation:

— Relations where some or all attributes are generalized, with counts or
other aggregation values accumulated.

* Cross tabulation:

— Mapping results into cross tabulation form (similar to contingency tables).

— Visualization techniques:

— Pie charts, bar charts, curves, cubes, and other visual forms.

e (Quantitative characteristic rules:

— Mapping generalized result into characteristic rules with quantitative
information associated with it, e.g.,

grad(x) Amale(x)=
birth _region(x)="Canada'[t:53%]\vbirth _region(x)="foreign"[t:47%].

Mining Class Comparisons

« Comparison: Comparing two or more classes
« Method:

— Partition the set of relevant data into the target class and the contrasting
class(es)

— Generalize both classes to the same high level concepts
— Compare tuples with the same high level descriptions
— Present for every tuple its description and two measures
« support - distribution within single class
« comparison - distribution between classes
— Highlight the tuples with strong discriminant features

« Relevance Analysis:

— Find attributes (features) which best distinguish different classes

Quantitative Discriminant Rules

Cj = target class
q, = a generalized tuple covers some tuples of class

— but can also cover some tuples of contrasting class
d-weight

d— weight = mCOUﬂt(C]a eCj)

> count(ga e Ci)
i=1

— range: [0, 1]

guantitative discriminant rule form

Vv X, target class(X) < condition(X) [d :d_weight]

Example: Quantitative Discriminant Rule

Status Birth_country |Age range |Gpa |Count
Graduate Canada 25-30 Good |90
Undergraduate | Canada 25-30 Good | 210

Count distribution between graduate and undergraduate students for a generalized tuple

e (Quantitative discriminant rule

VX, graduate _student(X) <
birth _country(X) ="Canada"Aage _range(X)="25-30"Agpa(X)="good" [d :30%)]

— where 90/(90 + 210) = 30%

Class Description

e (Quantitative characteristic rule
Vv X, target_class(X) = condition(X) [t :t weight]
— necessary
e (Quantitative discriminant rule
Vv X, target_class(X) < condition(X) [d :d_weight]
— sufficient
e Quantitative description rule
Vv X, target_class(X) <
conditiony(X)[t: w1, d:w'1]v....v conditionn(X) [t : Wn,d : W'n]
— necessary and sufficient

Example: Quantitative Description
Rule

Location/item TV Computer Both_items

Count | t-wt d-wt | Count |t-wt d-wt | Count |t-wt d-wt
Europe 80 25% 40% | 240 75% 30% | 320 100% 32%
N_Am 120 17.65% |60% | 560 82.35% 70% | 680 100% 68%
Bot_h_ 200 20% 100% | 800 80% 100% | 1000 | 100% 100%
regions

Crosstab showing associated t-weight, d-weight values and total number
(in thousands) of TVs and computers sold at AllElectronics in 1998

e (Quantitative description rule for target class Europe

Vv X,Europe(X) &
(item(X)="TV")[t:25%,d : 40%] v (item(X) =" computer")[t: 75%, d : 30%]

Summary

e Efficient algorithms for computing data cubes
 Further development of data cube technology
— Discovery-drive cube
— Multi-feature cubes
— Cube-gradient analysis

e Alternative Data Generalization Method :
Attribute-Oriented Induction

References

e Jiawei Han and Micheline Kamber, Data Mining: Concepts and
Techniques, Second Edition, 2006, Elsevier

e Efraim Turban, Ramesh Sharda, Dursun Delen, Decision

Support and Business Intelligence Systems, Ninth Edition, 2011,
Pearson.

	Data Warehousing�資料倉儲
	Syllabus
	Syllabus
	Data Warehouse Development
	DW Development Approaches
	DW Structure: Star Schema�(a.k.a. Dimensional Modeling)
	Dimensional Modeling
	Best Practices for Implementing DW
	Real-time DW�(a.k.a. Active Data Warehousing)
	Evolution of DSS & DW
	Slide Number 11
	Comparing Traditional and �Active DW
	Data Warehouse Administration
	Data Cube Computation �and Data Generalization
	Efficient Computation of �Data Cubes
	Preliminary Tricks (Agarwal et al. VLDB’96)
	Multi-Way Array Aggregation
	Multi-way Array Aggregation for Cube Computation (MOLAP)
	Multi-way Array Aggregation for Cube Computation
	Multi-way Array Aggregation for Cube Computation
	Multi-Way Array Aggregation for Cube Computation (Cont.)
	Bottom-Up Computation (BUC)
	BUC: Partitioning
	Star-Cubing: An Integrating Method
	Iceberg Pruning in Shared Dimensions
	Cell Trees
	Star Attributes and Star Nodes
	Example: Star Reduction
	Slide Number 29
	Computing Cubes with Non-Antimonotonic Iceberg Conditions
	Non-Anti-Monotonic Iceberg Condition
	From Average to Top-k Average
	Binning for Top-k Average
	Computing Approximate top-k average
	Weakened Conditions Facilitate Pushing
	Computing Iceberg Cubes with Other Complex Measures
	Slide Number 37
	Discovery-Driven Exploration of Data Cubes
	Kinds of Exceptions and their Computation
	Examples: Discovery-Driven Data Cubes
	Complex Aggregation at Multiple Granularities: Multi-Feature Cubes
	Cube-Gradient (Cubegrade)
	From Cubegrade to Multi-dimensional Constrained Gradients in Data Cubes
	MD Constrained Gradient Mining
	Efficient Computing Cube-gradients
	Slide Number 46
	Data Generalization and �Summarization-based Characterization
	What is Concept Description?
	Concept Description vs. OLAP
	Attribute-Oriented Induction
	Example
	Class Characterization: An Example
	Presentation of Generalized Results
	Mining Class Comparisons
	Quantitative Discriminant Rules
	Example: Quantitative Discriminant Rule
	Class Description
	Example: Quantitative Description Rule
	Summary
	References

