
Data Warehousing
資料倉儲

Min-Yuh Day
戴敏育

Assistant Professor
專任助理教授

Dept. of Information Management, Tamkang University
淡江大學資訊管理學系

http://mail.im.tku.edu.tw/~myday/
2011-10-11

1

1001DW05
MI4

Tue. 6,7 (13:10-15:00) B427

Data Cube Computation and
Data Generation

http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/cindex.htm�
http://www.im.tku.edu.tw/en_index.html�
http://english.tku.edu.tw/index.asp�
http://www.tku.edu.tw/�
http://www.im.tku.edu.tw/�
http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/�

Syllabus
週次 日期 內容（Subject/Topics）
1 100/09/06 Introduction to Data Warehousing
2 100/09/13 Data Warehousing, Data Mining,

and Business Intelligence
3 100/09/20 Data Preprocessing:

Integration and the ETL process
4 100/09/27 Data Warehouse and OLAP Technology
5 100/10/04 Data Warehouse and OLAP Technology
6 100/10/11 Data Cube Computation and Data Generation
7 100/10/18 Data Cube Computation and Data Generation
8 100/10/25 Project Proposal
9 100/11/01 期中考試週

2

Syllabus
週次 日期 內容（Subject/Topics）
10 100/11/08 Association Analysis
11 100/11/15 Classification and Prediction
12 100/11/22 Cluster Analysis
13 100/11/29 Sequence Data Mining
14 100/12/06 Social Network Analysis
15 100/12/13 Link Mining
16 100/12/20 Text Mining and Web Mining
17 100/12/27 Project Presentation
18 101/01/03 期末考試週

3

Data Warehouse Development
• Data warehouse development approaches

– Inmon Model: EDW approach (top-down)
– Kimball Model: Data mart approach (bottom-up)
– Which model is best?

• There is no one-size-fits-all strategy to DW

– One alternative is the hosted warehouse

• Data warehouse structure:
– The Star Schema vs. Relational

• Real-time data warehousing?

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 4

DW Development Approaches
(Kimball Approach) (Inmon Approach)

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 5

DW Structure: Star Schema
(a.k.a. Dimensional Modeling)

Claim Information

Driver Automotive

TimeLocation

Start Schema Example for an
Automobile Insurance Data Warehouse

Dimensions:
How data will be sliced/
diced (e.g., by location,
time period, type of
automobile or driver)

Facts:
Central table that contains
(usually summarized)
information; also contains
foreign keys to access each
dimension table.

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 6

Dimensional Modeling

Data cube
A two-dimensional,
three-dimensional, or
higher-dimensional
object in which each
dimension of the data
represents a measure
of interest
-Grain
-Drill-down
-Slicing

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 7

Best Practices for Implementing
DW

• The project must fit with corporate strategy
• There must be complete buy-in to the project
• It is important to manage user expectations
• The data warehouse must be built incrementally
• Adaptability must be built in from the start
• The project must be managed by both IT and business

professionals (a business–supplier relationship must be
developed)

• Only load data that have been cleansed/high quality
• Do not overlook training requirements
• Be politically aware.

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 8

Real-time DW
(a.k.a. Active Data Warehousing)

• Enabling real-time data updates for real-time
analysis and real-time decision making is
growing rapidly
– Push vs. Pull (of data)

• Concerns about real-time BI
– Not all data should be updated continuously
– Mismatch of reports generated minutes apart
– May be cost prohibitive
– May also be infeasible

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 9

Evolution of DSS & DW

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 10

Active Data Warehousing
(by Teradata Corporation)

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 11

Comparing Traditional and
Active DW

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 12

Data Warehouse Administration

• Due to its huge size and its intrinsic nature, a DW
requires especially strong monitoring in order to
sustain its efficiency, productivity and security.

• The successful administration and management of a
data warehouse entails skills and proficiency that go
past what is required of a traditional database
administrator.
– Requires expertise in high-performance software,

hardware, and networking technologies

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 13

Data Cube Computation
and Data Generalization

• Efficient Computation of Data Cubes
• Exploration and Discovery in Multidimensional

Databases
• Attribute-Oriented Induction ─ An Alternative

Data Generalization Method

14Source: Han & Kamber (2006)

Efficient Computation of
Data Cubes

• Preliminary cube computation tricks
• Computing full/iceberg cubes: 3 methodologies

– Top-Down: Multi-Way array aggregation
– Bottom-Up:

• Bottom-up computation: BUC
• H-cubing technique
• Integrating Top-Down and Bottom-Up:
• Star-cubing algorithm
• High-dimensional OLAP: A Minimal Cubing Approach

• Computing alternative kinds of cubes:
– Partial cube, closed cube, approximate cube, etc.

15Source: Han & Kamber (2006)

Preliminary Tricks (Agarwal et al. VLDB’96)

• Sorting, hashing, and grouping operations are applied to the dimension
attributes in order to reorder and cluster related tuples

• Aggregates may be computed from previously computed aggregates, rather
than from the base fact table
– Smallest-child: computing a cuboid from the smallest, previously

computed cuboid
– Cache-results: caching results of a cuboid from which other cuboids are

computed to reduce disk I/Os
– Amortize-scans: computing as many as possible cuboids at the same time

to amortize disk reads
– Share-sorts: sharing sorting costs cross multiple cuboids when sort-based

method is used
– Share-partitions: sharing the partitioning cost across multiple cuboids

when hash-based algorithms are used

16Source: Han & Kamber (2006)

Multi-Way Array Aggregation

• Array-based “bottom-up” algorithm

• Using multi-dimensional chunks

• No direct tuple comparisons

• Simultaneous aggregation on multiple
dimensions

• Intermediate aggregate values are re-
used for computing ancestor cuboids

• Cannot do Apriori pruning: No iceberg
optimization

all

A B

AB

ABC

AC BC

C

17Source: Han & Kamber (2006)

Multi-way Array Aggregation for Cube
Computation (MOLAP)

• Partition arrays into chunks (a small subcube which fits in memory).
• Compressed sparse array addressing: (chunk_id, offset)
• Compute aggregates in “multiway” by visiting cube cells in the order which

minimizes the # of times to visit each cell, and reduces memory access and
storage cost.

What is the best
traversing order
to do multi-way
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1c 0

b3

b2

b1

b0
a2 a3

C

B

44
28 56

4024 5236
20

60

18Source: Han & Kamber (2006)

Multi-way Array Aggregation for Cube
Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B

19Source: Han & Kamber (2006)

Multi-way Array Aggregation for
Cube Computation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B

20Source: Han & Kamber (2006)

Multi-Way Array Aggregation for Cube
Computation (Cont.)

• Method: the planes should be sorted and computed according
to their size in ascending order

– Idea: keep the smallest plane in the main memory, fetch
and compute only one chunk at a time for the largest plane

• Limitation of the method: computing well only for a small
number of dimensions

– If there are a large number of dimensions, “top-down”
computation and iceberg cube computation methods can
be explored

21Source: Han & Kamber (2006)

Bottom-Up Computation (BUC)
• BUC (Beyer & Ramakrishnan,

SIGMOD’99)
• Bottom-up cube computation

(Note: top-down in our view!)
• Divides dimensions into partitions

and facilitates iceberg pruning
– If a partition does not satisfy

min_sup, its descendants can be
pruned

– If minsup = 1 ⇒ compute full
CUBE!

• No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

22Source: Han & Kamber (2006)

BUC: Partitioning
• Usually, entire data set can’t fit in

main memory
• Sort distinct values, partition into blocks that fit
• Continue processing
• Optimizations

– Partitioning
• External Sorting, Hashing, Counting Sort

– Ordering dimensions to encourage pruning
• Cardinality, Skew, Correlation

– Collapsing duplicates
• Can’t do holistic aggregates anymore!

23Source: Han & Kamber (2006)

Star-Cubing: An Integrating
Method

• Integrate the top-down and bottom-up methods
• Explore shared dimensions

– E.g., dimension A is the shared dimension of ACD and AD
– ABD/AB means cuboid ABD has shared dimensions AB

• Allows for shared computations
– e.g., cuboid AB is computed simultaneously as ABD

• Aggregate in a top-down manner but with the bottom-up sub-layer
underneath which will allow Apriori pruning

• Shared dimensions grow in bottom-up fashion
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

24Source: Han & Kamber (2006)

Iceberg Pruning in Shared Dimensions

• Anti-monotonic property of shared dimensions
– If the measure is anti-monotonic, and if the aggregate

value on a shared dimension does not satisfy the
iceberg condition, then all the cells extended from this
shared dimension cannot satisfy the condition either

• Intuition: if we can compute the shared dimensions before
the actual cuboid, we can use them to do Apriori
pruning

• Problem: how to prune while still aggregate
simultaneously on multiple dimensions?

25Source: Han & Kamber (2006)

Cell Trees

• Use a tree structure similar to

H-tree to represent cuboids

• Collapses common prefixes to

save memory

• Keep count at node

• Traverse the tree to retrieve a

particular tuple

26Source: Han & Kamber (2006)

Star Attributes and Star Nodes

• Intuition: If a single-dimensional
aggregate on an attribute value p does
not satisfy the iceberg condition, it is
useless to distinguish them during the
iceberg computation
– E.g., b2, b3, b4, c1, c2, c4, d1, d2, d3

• Solution: Replace such attributes by a *.
Such attributes are star attributes, and
the corresponding nodes in the cell tree
are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

27Source: Han & Kamber (2006)

Example: Star Reduction

• Suppose minsup = 2
• Perform one-dimensional aggregation.

Replace attribute values whose count <
2 with *. And collapse all *’s together

• Resulting table has all such attributes
replaced with the star-attribute

• With regards to the iceberg
computation, this new table is a loseless
compression of the original table A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1

28Source: Han & Kamber (2006)

• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional

Databases

• Attribute-Oriented Induction ─ An Alternative

Data Generalization Method

29Source: Han & Kamber (2006)

Computing Cubes with Non-Antimonotonic
Iceberg Conditions

• Most cubing algorithms cannot compute cubes with non-
antimonotonic iceberg conditions efficiently

• Example
CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,

AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

• Needs to study how to push constraint into the cubing process

30Source: Han & Kamber (2006)

Non-Anti-Monotonic Iceberg
Condition

• Anti-monotonic: if a process fails a condition, continue
processing will still fail

• The cubing query with avg is non-anti-monotonic!
– (Mar, *, *, 600, 1800) fails the HAVING clause
– (Mar, *, Bus, 1300, 360) passes the clause

CREATE CUBE Sales_Iceberg AS
SELECT month, city, cust_grp,

AVG(price), COUNT(*)
FROM Sales_Infor
CUBEBY month, city, cust_grp
HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hld TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

31Source: Han & Kamber (2006)

From Average to Top-k Average
• Let (*, Van, *) cover 1,000 records

– Avg(price) is the average price of those 1000 sales

– Avg50(price) is the average price of the top-50 sales (top-50
according to the sales price

• Top-k average is anti-monotonic

– The top 50 sales in Van. is with avg(price) <= 800 the top
50 deals in Van. during Feb. must be with avg(price) <= 800

Month City Cust_grp Prod Cost Price

… … … … … …

32Source: Han & Kamber (2006)

Binning for Top-k Average

• Computing top-k avg is costly with large k
• Binning idea

– Avg50(c) >= 800
– Large value collapsing: use a sum and a count to summarize

records with measure >= 800
• If count>=800, no need to check “small” records

– Small value binning: a group of bins
• One bin covers a range, e.g., 600~800, 400~600, etc.
• Register a sum and a count for each bin

33Source: Han & Kamber (2006)

Computing Approximate top-k average

Range Sum Count
Over 800 28000 20

600~800 10600 15

400~600 15200 30

… … …

Top 50

Approximate avg50()=
(28000+10600+600*15)/50=952

Suppose for (*, Van, *), we have

Month City Cust_grp Prod Cost Price

… … … … … …

The cell may pass the HAVING clause

34Source: Han & Kamber (2006)

Weakened Conditions Facilitate
Pushing

• Accumulate quant-info for cells to compute average iceberg
cubes efficiently
– Three pieces: sum, count, top-k bins
– Use top-k bins to estimate/prune descendants
– Use sum and count to consolidate current cell

Approximate avg50()

Anti-monotonic, can
be computed

efficiently

real avg50()

Anti-monotonic, but
computationally

costly

avg()

Not anti-
monotonic

strongestweakest

35Source: Han & Kamber (2006)

Computing Iceberg Cubes with Other Complex
Measures

• Computing other complex measures

– Key point: find a function which is weaker but ensures certain
anti-monotonicity

• Examples

– Avg() ≤ v: avgk(c) ≤ v (bottom-k avg)

– Avg() ≥ v only (no count): max(price) ≥ v

– Sum(profit) (profit can be negative):
• p_sum(c) ≥ v if p_count(c) ≥ k; or otherwise, sumk(c) ≥ v

– Others: conjunctions of multiple conditions

36Source: Han & Kamber (2006)

• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional

Databases

• Attribute-Oriented Induction ─ An Alternative

Data Generalization Method

37Source: Han & Kamber (2006)

Discovery-Driven Exploration of Data Cubes

• Hypothesis-driven

– exploration by user, huge search space

• Discovery-driven (Sarawagi, et al.’98)

– Effective navigation of large OLAP data cubes

– pre-compute measures indicating exceptions, guide user in
the data analysis, at all levels of aggregation

– Exception: significantly different from the value anticipated,
based on a statistical model

– Visual cues such as background color are used to reflect the
degree of exception of each cell

38Source: Han & Kamber (2006)

Kinds of Exceptions and their Computation

• Parameters
– SelfExp: surprise of cell relative to other cells at same level

of aggregation
– InExp: surprise beneath the cell
– PathExp: surprise beneath cell for each drill-down path

• Computation of exception indicator (modeling fitting and
computing SelfExp, InExp, and PathExp values) can be
overlapped with cube construction

• Exception themselves can be stored, indexed and retrieved like
precomputed aggregates

39Source: Han & Kamber (2006)

Examples: Discovery-Driven Data Cubes

40Source: Han & Kamber (2006)

Complex Aggregation at Multiple Granularities:
Multi-Feature Cubes

• Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving
multiple dependent aggregates at multiple granularities

• Ex. Grouping by all subsets of {item, region, month}, find the maximum
price in 1997 for each group, and the total sales among all maximum price
tuples

select item, region, month, max(price), sum(R.sales)
from purchases
where year = 1997
cube by item, region, month: R
such that R.price = max(price)

• Continuing the last example, among the max price tuples, find the min and
max shelf live, and find the fraction of the total sales due to tuple that have
min shelf life within the set of all max price tuples

41Source: Han & Kamber (2006)

Cube-Gradient (Cubegrade)

• Analysis of changes of sophisticated measures in multi-
dimensional spaces
– Query: changes of average house price in Vancouver in ‘00

comparing against ’99
– Answer: Apts in West went down 20%, houses in

Metrotown went up 10%
• Cubegrade problem by Imielinski et al.

– Changes in dimensions changes in measures
– Drill-down, roll-up, and mutation

42Source: Han & Kamber (2006)

From Cubegrade to Multi-dimensional
Constrained Gradients in Data Cubes

• Significantly more expressive than association rules

– Capture trends in user-specified measures

• Serious challenges

– Many trivial cells in a cube “significance constraint” to
prune trivial cells

– Numerate pairs of cells “probe constraint” to select a
subset of cells to examine

– Only interesting changes wanted “gradient constraint” to
capture significant changes

43Source: Han & Kamber (2006)

MD Constrained Gradient Mining
• Significance constraint Csig: (cnt≥100)
• Probe constraint Cprb: (city=“Van”, cust_grp=“busi”,

prod_grp=“*”)
• Gradient constraint Cgrad(cg, cp):

(avg_price(cg)/avg_price(cp)≥1.3)

Dimensions Measures

cid Yr City Cst_grp Prd_grp Cnt Avg_price

c1 00 Van Busi PC 300 2100

c2 * Van Busi PC 2800 1800

c3 * Tor Busi PC 7900 2350

c4 * * busi PC 58600 2250

Base cell

Aggregated cell

Siblings

Ancestor

Probe cell: satisfied Cprb (c4, c2) satisfies Cgrad!

44Source: Han & Kamber (2006)

Efficient Computing Cube-
gradients

• Compute probe cells using Csig and Cprb

– The set of probe cells P is often very small

• Use probe P and constraints to find gradients
– Pushing selection deeply

– Set-oriented processing for probe cells

– Iceberg growing from low to high dimensionalities

– Dynamic pruning probe cells during growth

– Incorporating efficient iceberg cubing method

45Source: Han & Kamber (2006)

• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional

Databases

• Attribute-Oriented Induction ─ An Alternative

Data Generalization Method

46Source: Han & Kamber (2006)

Data Generalization and
Summarization-based Characterization

• Data generalization
– A process which abstracts a large set of task-relevant data in

a database from a low conceptual levels to higher ones.

– Approaches:
• Data cube approach(OLAP approach)
• Attribute-oriented induction approach

1

2

3

4

5 Conceptual levels

47Source: Han & Kamber (2006)

Lower level:
18 , 70 in Age

Higher level:
Young, Old

What is Concept Description?

• Descriptive vs. predictive data mining
– Descriptive mining: describes concepts or task-relevant data

sets in concise, summarative, informative, discriminative
forms

– Predictive mining: Based on data and analysis, constructs
models for the database, and predicts the trend and
properties of unknown data

• Concept description:
– Characterization: provides a concise and succinct

summarization of the given collection of data
– Comparison: provides descriptions comparing two or more

collections of data

48Source: Han & Kamber (2006)

Concept Description vs. OLAP
• Similarity:

– Data generalization
– Presentation of data summarization at multiple levels of

abstraction.
– Interactive drilling, pivoting, slicing and dicing.

• Differences:
– Can handle complex data types of the attributes and their

aggregations
– Automated desired level allocation.
– Dimension relevance analysis and ranking when there are

many relevant dimensions.
– Sophisticated typing on dimensions and measures.
– Analytical characterization: data dispersion analysis

49Source: Han & Kamber (2006)

Attribute-Oriented Induction

• Collect the task-relevant data (initial relation)
using a relational database query

• Perform generalization by attribute removal or
attribute generalization

• Apply aggregation by merging identical,
generalized tuples and accumulating their
respective counts

• Interactive presentation with users

50Source: Han & Kamber (2006)

Example
• DMQL: Describe general characteristics of graduate students

in the Big-University database
use Big_University_DB
mine characteristics as “Science_Students”
in relevance to name, gender, major, birth_place,

birth_date, residence, phone#, gpa
from student
where status in “graduate”

• Corresponding SQL statement:
Select name, gender, major, birth_place, birth_date,

residence, phone#, gpa
from student
where status in {“Msc”, “MBA”, “PhD” }

51Source: Han & Kamber (2006)

Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA
Jim
Woodman

 M CS Vancouver,BC,
Canada

 8-12-76 3511 Main St.,
Richmond

687-4598 3.67

Scott
Lachance

 M CS Montreal, Que,
Canada

28-7-75 345 1st Ave.,
Richmond

253-9106 3.70

Laura Lee
…

 F
…

Physics
…

Seattle, WA, USA
…

25-8-70
…

125 Austin Ave.,
Burnaby
…

420-5232
…

3.83
…

Removed Retained Sci,Eng,
Bus

Country Age range City Removed Excl,
VG,..

Gender Major Birth_region Age_range Residence GPA Count
 M Science Canada 20-25 Richmond Very-good 16
 F Science Foreign 25-30 Burnaby Excellent 22
 … … … … … … …

 Birth_Region

Gender
Canada Foreign Total

 M 16 14 30
 F 10 22 32

 Total 26 36 62

Prime
Generalized
Relation

Initial
Relation

52Source: Han & Kamber (2006)

Presentation of Generalized Results

• Generalized relation:

– Relations where some or all attributes are generalized, with counts or
other aggregation values accumulated.

• Cross tabulation:

– Mapping results into cross tabulation form (similar to contingency tables).

– Visualization techniques:

– Pie charts, bar charts, curves, cubes, and other visual forms.

• Quantitative characteristic rules:

– Mapping generalized result into characteristic rules with quantitative
information associated with it, e.g.,

.%]47:["")(_%]53:["")(_
)()(

tforeignxregionbirthtCanadaxregionbirth
xmalexgrad

=∨=
⇒∧

53Source: Han & Kamber (2006)

Mining Class Comparisons

• Comparison: Comparing two or more classes
• Method:

– Partition the set of relevant data into the target class and the contrasting
class(es)

– Generalize both classes to the same high level concepts
– Compare tuples with the same high level descriptions
– Present for every tuple its description and two measures

• support - distribution within single class
• comparison - distribution between classes

– Highlight the tuples with strong discriminant features
• Relevance Analysis:

– Find attributes (features) which best distinguish different classes

54Source: Han & Kamber (2006)

Quantitative Discriminant Rules

• Cj = target class
• qa = a generalized tuple covers some tuples of class

– but can also cover some tuples of contrasting class
• d-weight

– range: [0, 1]

• quantitative discriminant rule form

∑
=

∈

∈
=− m

i
ia

ja

)Ccount(q

)Ccount(qweightd

1

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀

55Source: Han & Kamber (2006)

Example: Quantitative Discriminant Rule

• Quantitative discriminant rule

– where 90/(90 + 210) = 30%

Status Birth_country Age_range Gpa Count

Graduate Canada 25-30 Good 90

Undergraduate Canada 25-30 Good 210

Count distribution between graduate and undergraduate students for a generalized tuple

%]30:["")("3025")(_"")(_
)(_,

dgoodXgpaXrangeageCanadaXcountrybirth
XstudentgraduateX

=∧−=∧=
⇐∀

56Source: Han & Kamber (2006)

Class Description

• Quantitative characteristic rule

– necessary
• Quantitative discriminant rule

– sufficient
• Quantitative description rule

– necessary and sufficient
]w:d,w:[t...]w:d,w:[t nn111 ′∨∨′

⇔∀
(X)condition(X)condition

ss(X)target_claX,
n

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀

t_weight]:[tX)condition(ss(X)target_claX, ⇒∀

57Source: Han & Kamber (2006)

Example: Quantitative Description
Rule

• Quantitative description rule for target class Europe

Location/item TV Computer Both_items

 Count t-wt d-wt Count t-wt d-wt Count t-wt d-wt

Europe 80 25% 40% 240 75% 30% 320 100% 32%

N_Am 120 17.65% 60% 560 82.35% 70% 680 100% 68%

Both_
regions

200 20% 100% 800 80% 100% 1000 100% 100%

Crosstab showing associated t-weight, d-weight values and total number
(in thousands) of TVs and computers sold at AllElectronics in 1998

30%]:d75%,:[t40%]:d25%,:[t)computer""(item(X))TV""(item(X)
Europe(X)X,

=∨=
⇔∀

58Source: Han & Kamber (2006)

Summary
• Efficient algorithms for computing data cubes
• Further development of data cube technology

– Discovery-drive cube
– Multi-feature cubes
– Cube-gradient analysis

• Alternative Data Generalization Method :
Attribute-Oriented Induction

59Source: Han & Kamber (2006)

References
• Jiawei Han and Micheline Kamber, Data Mining: Concepts and

Techniques, Second Edition, 2006, Elsevier
• Efraim Turban, Ramesh Sharda, Dursun Delen, Decision

Support and Business Intelligence Systems, Ninth Edition, 2011,
Pearson.

60

	Data Warehousing�資料倉儲
	Syllabus
	Syllabus
	Data Warehouse Development
	DW Development Approaches
	DW Structure: Star Schema�(a.k.a. Dimensional Modeling)
	Dimensional Modeling
	Best Practices for Implementing DW
	Real-time DW�(a.k.a. Active Data Warehousing)
	Evolution of DSS & DW
	Slide Number 11
	Comparing Traditional and �Active DW
	Data Warehouse Administration
	Data Cube Computation �and Data Generalization
	Efficient Computation of �Data Cubes
	Preliminary Tricks (Agarwal et al. VLDB’96)
	Multi-Way Array Aggregation
	Multi-way Array Aggregation for Cube Computation (MOLAP)
	Multi-way Array Aggregation for Cube Computation
	Multi-way Array Aggregation for Cube Computation
	Multi-Way Array Aggregation for Cube Computation (Cont.)
	Bottom-Up Computation (BUC)
	BUC: Partitioning
	Star-Cubing: An Integrating Method
	Iceberg Pruning in Shared Dimensions
	Cell Trees
	Star Attributes and Star Nodes
	Example: Star Reduction
	Slide Number 29
	Computing Cubes with Non-Antimonotonic Iceberg Conditions
	Non-Anti-Monotonic Iceberg Condition
	From Average to Top-k Average
	Binning for Top-k Average
	Computing Approximate top-k average
	Weakened Conditions Facilitate Pushing
	Computing Iceberg Cubes with Other Complex Measures
	Slide Number 37
	Discovery-Driven Exploration of Data Cubes
	Kinds of Exceptions and their Computation
	Examples: Discovery-Driven Data Cubes
	Complex Aggregation at Multiple Granularities: Multi-Feature Cubes
	Cube-Gradient (Cubegrade)
	From Cubegrade to Multi-dimensional Constrained Gradients in Data Cubes
	MD Constrained Gradient Mining
	Efficient Computing Cube-gradients
	Slide Number 46
	Data Generalization and �Summarization-based Characterization
	What is Concept Description?
	Concept Description vs. OLAP
	Attribute-Oriented Induction
	Example
	Class Characterization: An Example
	Presentation of Generalized Results
	Mining Class Comparisons
	Quantitative Discriminant Rules
	Example: Quantitative Discriminant Rule
	Class Description
	Example: Quantitative Description Rule
	Summary
	References

