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Syllabus
週次 日期 內容（Subject/Topics）
1    100/09/06    Introduction to Data Warehousing
2    100/09/13    Data Warehousing, Data Mining,

and Business  Intelligence
3    100/09/20    Data Preprocessing: 

Integration and the ETL process
4    100/09/27    Data Warehouse and OLAP Technology
5    100/10/04    Data Warehouse and OLAP Technology
6    100/10/11    Data Cube Computation and Data Generation
7    100/10/18    Data Cube Computation and Data Generation
8    100/10/25    Project Proposal
9    100/11/01    期中考試週
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Syllabus
週次 日期 內容（Subject/Topics）
10    100/11/08    Association Analysis
11    100/11/15    Classification and Prediction
12    100/11/22    Cluster Analysis
13    100/11/29    Sequence Data Mining
14    100/12/06    Social Network Analysis 
15    100/12/13    Link Mining
16    100/12/20    Text Mining and Web Mining
17    100/12/27    Project Presentation
18    101/01/03    期末考試週
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Data Warehouse Development
• Data warehouse development approaches

– Inmon Model: EDW approach (top-down) 
– Kimball Model: Data mart approach  (bottom-up)
– Which model is best?

• There is no one-size-fits-all strategy to DW 

– One alternative is the hosted warehouse

• Data warehouse structure: 
– The Star Schema vs. Relational  

• Real-time data warehousing?

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 4



DW Development Approaches
(Kimball Approach) (Inmon Approach) 

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 5



DW Structure: Star Schema
(a.k.a. Dimensional Modeling)

Claim Information

Driver Automotive

TimeLocation

Start Schema Example for an
Automobile Insurance Data Warehouse

Dimensions:
How data will be sliced/
diced (e.g., by location, 
time period, type of 
automobile or driver)

Facts:
Central table that contains 
(usually summarized) 
information; also contains 
foreign keys to access each 
dimension table.

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 6



Dimensional Modeling

Data cube  
A two-dimensional, 
three-dimensional, or 
higher-dimensional 
object in which each 
dimension of the data 
represents a measure
of interest 
-Grain
-Drill-down
-Slicing

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 7



Best Practices for Implementing 
DW

• The project must fit with corporate strategy
• There must be complete buy-in to the project
• It is important to manage user expectations
• The data warehouse must be built incrementally
• Adaptability must be built in from the start
• The project must be managed by both IT and business 

professionals (a business–supplier relationship must be 
developed)

• Only load data that have been cleansed/high quality 
• Do not overlook training requirements
• Be politically aware.

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 8



Real-time DW
(a.k.a. Active Data Warehousing)

• Enabling real-time data updates for real-time 
analysis and real-time decision making is 
growing rapidly
– Push vs. Pull (of data)

• Concerns about real-time BI
– Not all data should be updated continuously
– Mismatch of reports generated minutes apart
– May be cost prohibitive
– May also be infeasible 

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 9



Evolution of DSS & DW

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 10



Active Data Warehousing
(by Teradata Corporation)

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 11



Comparing Traditional and 
Active DW

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 12



Data Warehouse Administration

• Due to its huge size and its intrinsic nature, a DW 
requires especially strong monitoring in order to 
sustain its efficiency, productivity and security.

• The successful administration and management of a 
data warehouse entails skills and proficiency that go 
past what is required of a traditional database 
administrator.
– Requires expertise in high-performance software, 

hardware, and networking technologies

Source:  Turban et al. (2011), Decision Support and Business Intelligence Systems 13



Data Cube Computation 
and Data Generalization

• Efficient Computation of Data Cubes
• Exploration and Discovery in Multidimensional 

Databases
• Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method

14Source: Han & Kamber (2006)



Efficient Computation of 
Data Cubes

• Preliminary cube computation tricks 
• Computing full/iceberg cubes: 3 methodologies 

– Top-Down: Multi-Way array aggregation
– Bottom-Up: 

• Bottom-up computation: BUC
• H-cubing technique
• Integrating Top-Down and Bottom-Up: 
• Star-cubing algorithm 
• High-dimensional OLAP: A Minimal Cubing Approach

• Computing alternative kinds of cubes: 
– Partial cube, closed cube, approximate cube, etc.

15Source: Han & Kamber (2006)



Preliminary Tricks (Agarwal et al. VLDB’96)

• Sorting, hashing, and grouping operations are applied to the dimension 
attributes in order to reorder and cluster related tuples

• Aggregates may be computed from previously computed aggregates, rather 
than from the base fact table
– Smallest-child: computing a cuboid from the smallest, previously 

computed cuboid
– Cache-results: caching results of a cuboid from which other cuboids are 

computed to reduce disk I/Os
– Amortize-scans: computing as many as possible cuboids at the same time 

to amortize disk reads
– Share-sorts: sharing sorting costs cross multiple cuboids when sort-based 

method is used
– Share-partitions: sharing the partitioning cost across multiple cuboids 

when hash-based algorithms are used

16Source: Han & Kamber (2006)



Multi-Way Array Aggregation

• Array-based “bottom-up” algorithm

• Using multi-dimensional chunks

• No direct tuple comparisons

• Simultaneous aggregation on multiple 
dimensions

• Intermediate aggregate values are re-
used for computing ancestor cuboids

• Cannot do Apriori pruning: No iceberg 
optimization

all

A B

AB

ABC

AC BC

C

17Source: Han & Kamber (2006)



Multi-way Array Aggregation for Cube 
Computation (MOLAP)

• Partition arrays into chunks (a small subcube which fits in memory). 
• Compressed sparse array addressing: (chunk_id, offset)
• Compute aggregates in “multiway” by visiting cube cells in the order which 

minimizes the # of times to visit each cell, and reduces memory access and 
storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?
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18Source: Han & Kamber (2006)



Multi-way Array Aggregation for Cube 
Computation
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19Source: Han & Kamber (2006)



Multi-way Array Aggregation for 
Cube Computation
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20Source: Han & Kamber (2006)



Multi-Way Array Aggregation for Cube 
Computation (Cont.)

• Method: the planes should be sorted and computed according 
to their size in ascending order

– Idea: keep the smallest plane in the main memory, fetch 
and compute only one chunk at a time for the largest plane

• Limitation of the method: computing well only for a small 
number of dimensions

– If there are a large number of dimensions, “top-down” 
computation and iceberg cube computation methods can 
be explored

21Source: Han & Kamber (2006)



Bottom-Up Computation (BUC)
• BUC (Beyer & Ramakrishnan, 

SIGMOD’99) 
• Bottom-up cube computation 

(Note: top-down in our view!)
• Divides dimensions into partitions 

and facilitates iceberg pruning
– If a partition does not satisfy 

min_sup, its descendants can be 
pruned

– If minsup = 1 ⇒ compute full 
CUBE!

• No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

22Source: Han & Kamber (2006)



BUC: Partitioning
• Usually, entire data set                                 can’t fit in 

main memory
• Sort distinct values, partition into blocks that fit
• Continue processing
• Optimizations

– Partitioning
• External Sorting, Hashing, Counting Sort

– Ordering dimensions to encourage pruning
• Cardinality, Skew, Correlation

– Collapsing duplicates
• Can’t do holistic aggregates anymore!

23Source: Han & Kamber (2006)



Star-Cubing: An Integrating 
Method

• Integrate the top-down and bottom-up methods
• Explore shared dimensions

– E.g., dimension A is the shared dimension of ACD and AD
– ABD/AB means cuboid ABD has shared dimensions AB

• Allows for shared computations
– e.g., cuboid AB is computed simultaneously as ABD

• Aggregate in a top-down manner but with the bottom-up sub-layer 
underneath which will allow Apriori pruning

• Shared dimensions grow in bottom-up fashion
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

24Source: Han & Kamber (2006)



Iceberg Pruning in Shared Dimensions

• Anti-monotonic property of shared dimensions
– If the measure is anti-monotonic, and if the aggregate 

value on a shared dimension does not satisfy the 
iceberg condition, then all the cells extended from this 
shared dimension cannot satisfy the condition either

• Intuition: if we can compute the shared dimensions before 
the actual cuboid, we can use them to do Apriori
pruning

• Problem: how to prune while still aggregate 
simultaneously on multiple dimensions?

25Source: Han & Kamber (2006)



Cell Trees

• Use a tree structure similar to 

H-tree to represent cuboids

• Collapses common prefixes to 

save memory

• Keep count at node

• Traverse the tree to retrieve a 

particular tuple

26Source: Han & Kamber (2006)



Star Attributes and Star Nodes

• Intuition: If a single-dimensional  
aggregate on an attribute value p does 
not satisfy the iceberg condition, it is 
useless to distinguish them during the 
iceberg computation
– E.g., b2, b3, b4, c1, c2, c4, d1, d2, d3 

• Solution: Replace such attributes by a *.  
Such attributes are star attributes, and 
the corresponding nodes in the cell tree 
are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

27Source: Han & Kamber (2006)



Example: Star Reduction

• Suppose minsup = 2
• Perform one-dimensional aggregation.  

Replace attribute values whose count < 
2 with *.  And collapse all *’s together

• Resulting table has all such attributes 
replaced with the star-attribute

• With regards to the iceberg 
computation, this new table is a loseless 
compression of the original table A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1

28Source: Han & Kamber (2006)



• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional 

Databases

• Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method

29Source: Han & Kamber (2006)



Computing Cubes with Non-Antimonotonic 
Iceberg Conditions

• Most cubing algorithms cannot compute cubes with non-
antimonotonic iceberg conditions efficiently

• Example
CREATE CUBE Sales_Iceberg AS

SELECT month, city, cust_grp,

AVG(price), COUNT(*)

FROM Sales_Infor

CUBEBY month, city, cust_grp

HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

• Needs to study how to push constraint into the cubing process

30Source: Han & Kamber (2006)



Non-Anti-Monotonic Iceberg 
Condition

• Anti-monotonic: if a process fails a condition, continue 
processing will still fail

• The cubing query with avg is non-anti-monotonic! 
– (Mar, *, *, 600, 1800) fails the HAVING clause
– (Mar, *, Bus, 1300, 360) passes the clause

CREATE CUBE Sales_Iceberg AS
SELECT month, city, cust_grp,

AVG(price), COUNT(*)
FROM Sales_Infor
CUBEBY month, city, cust_grp
HAVING AVG(price) >= 800 AND

COUNT(*) >= 50

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hld TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

31Source: Han & Kamber (2006)



From Average to Top-k Average
• Let (*, Van, *) cover 1,000 records

– Avg(price) is the average price of those 1000 sales

– Avg50(price) is the average price of the top-50 sales (top-50 
according to the sales price

• Top-k average is anti-monotonic

– The top 50 sales in Van. is with avg(price) <= 800  the top 
50 deals in Van. during Feb. must be with avg(price) <= 800

Month City Cust_grp Prod Cost Price

… … … … … …

32Source: Han & Kamber (2006)



Binning for Top-k Average

• Computing top-k avg is costly with large k
• Binning idea

– Avg50(c) >= 800
– Large value collapsing: use a sum and a count to summarize 

records with measure >= 800
• If count>=800, no need to check “small” records

– Small value binning: a group of bins
• One bin covers a range, e.g., 600~800, 400~600, etc.
• Register a sum and a count for each bin

33Source: Han & Kamber (2006)



Computing Approximate top-k average

Range Sum Count
Over 800 28000 20

600~800 10600 15

400~600 15200 30

… … …

Top 50

Approximate avg50()=
(28000+10600+600*15)/50=952

Suppose for (*, Van, *), we have

Month City Cust_grp Prod Cost Price

… … … … … …

The cell may pass the HAVING clause

34Source: Han & Kamber (2006)



Weakened Conditions Facilitate 
Pushing

• Accumulate quant-info for cells to compute average iceberg 
cubes efficiently
– Three pieces: sum, count, top-k bins
– Use top-k bins to estimate/prune descendants
– Use sum and count to consolidate current cell

Approximate avg50()

Anti-monotonic, can 
be computed 

efficiently

real avg50()

Anti-monotonic, but 
computationally 

costly

avg()

Not anti-
monotonic

strongestweakest

35Source: Han & Kamber (2006)



Computing Iceberg Cubes with Other Complex 
Measures

• Computing other complex measures

– Key point: find a function which is weaker but ensures certain 
anti-monotonicity

• Examples

– Avg() ≤ v:  avgk(c) ≤ v (bottom-k avg)

– Avg() ≥ v only (no count): max(price) ≥ v 

– Sum(profit) (profit can be negative): 
• p_sum(c) ≥ v if p_count(c) ≥ k; or otherwise, sumk(c) ≥ v 

– Others: conjunctions of multiple conditions

36Source: Han & Kamber (2006)



• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional 

Databases

• Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method

37Source: Han & Kamber (2006)



Discovery-Driven Exploration of Data Cubes

• Hypothesis-driven

– exploration by user, huge search space

• Discovery-driven (Sarawagi, et al.’98)

– Effective navigation of large OLAP data cubes

– pre-compute measures indicating exceptions, guide user in 
the data analysis, at all levels of aggregation

– Exception: significantly different from the value anticipated, 
based on a statistical model

– Visual cues such as background color are used to reflect the 
degree of exception of each cell

38Source: Han & Kamber (2006)



Kinds of Exceptions and their Computation

• Parameters 
– SelfExp: surprise of cell relative to other cells at same level 

of aggregation
– InExp: surprise beneath the cell
– PathExp: surprise beneath cell for each drill-down path

• Computation of exception indicator (modeling fitting and 
computing SelfExp, InExp, and PathExp values) can be 
overlapped with cube construction

• Exception themselves can be stored, indexed and retrieved like 
precomputed aggregates

39Source: Han & Kamber (2006)



Examples: Discovery-Driven Data Cubes

40Source: Han & Kamber (2006)



Complex Aggregation at Multiple Granularities: 
Multi-Feature Cubes

• Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving 
multiple dependent aggregates at multiple granularities

• Ex. Grouping by all subsets of {item, region, month}, find the maximum 
price in 1997 for each group, and the total sales among all maximum price 
tuples

select item, region, month, max(price), sum(R.sales)
from purchases
where year = 1997
cube by item, region, month: R
such that R.price = max(price)

• Continuing the last example, among the max price tuples, find the  min and 
max shelf live, and find the fraction of the total sales due to tuple that have 
min shelf life within the set of all max price tuples

41Source: Han & Kamber (2006)



Cube-Gradient (Cubegrade)

• Analysis of changes of sophisticated measures in multi-
dimensional spaces
– Query: changes of average house price in Vancouver in ‘00 

comparing against ’99
– Answer: Apts in West went down 20%, houses in 

Metrotown went up 10%
• Cubegrade problem by Imielinski et al.

– Changes in dimensions  changes in measures
– Drill-down, roll-up, and mutation

42Source: Han & Kamber (2006)



From Cubegrade to Multi-dimensional 
Constrained Gradients in Data Cubes

• Significantly more expressive than association rules

– Capture trends in user-specified measures

• Serious challenges

– Many trivial cells in a cube  “significance constraint” to 
prune trivial cells

– Numerate pairs of cells  “probe constraint” to select a 
subset of cells to examine

– Only interesting changes wanted “gradient constraint” to 
capture significant changes

43Source: Han & Kamber (2006)



MD Constrained Gradient Mining
• Significance constraint Csig: (cnt≥100)
• Probe constraint Cprb: (city=“Van”, cust_grp=“busi”, 

prod_grp=“*”)
• Gradient constraint Cgrad(cg, cp): 

(avg_price(cg)/avg_price(cp)≥1.3)

Dimensions Measures

cid Yr City Cst_grp Prd_grp Cnt Avg_price

c1 00 Van Busi PC 300 2100

c2 * Van Busi PC 2800 1800

c3 * Tor Busi PC 7900 2350

c4 * * busi PC 58600 2250

Base cell

Aggregated cell

Siblings

Ancestor

Probe cell: satisfied Cprb (c4, c2) satisfies Cgrad!

44Source: Han & Kamber (2006)



Efficient Computing Cube-
gradients

• Compute probe cells using Csig and Cprb

– The set of probe cells P is often very small

• Use probe P and constraints to find gradients
– Pushing selection deeply

– Set-oriented processing for probe cells

– Iceberg growing from low to high dimensionalities

– Dynamic pruning probe cells during growth

– Incorporating efficient iceberg cubing method

45Source: Han & Kamber (2006)



• Efficient Computation of Data Cubes

• Exploration and Discovery in Multidimensional 

Databases

• Attribute-Oriented Induction ─ An Alternative 

Data Generalization Method

46Source: Han & Kamber (2006)



Data Generalization and 
Summarization-based Characterization

• Data generalization
– A process which abstracts a large set of task-relevant data in 

a database from a low conceptual levels to higher ones.

– Approaches:
• Data cube approach(OLAP approach)
• Attribute-oriented induction approach

1

2

3

4

5 Conceptual levels

47Source: Han & Kamber (2006)

Lower level: 
18 , 70 in Age

Higher level: 
Young,  Old



What is Concept Description?

• Descriptive vs. predictive data mining
– Descriptive mining: describes concepts or task-relevant data 

sets in concise, summarative, informative, discriminative 
forms

– Predictive mining: Based on data and analysis, constructs 
models for the database, and predicts the trend and 
properties of unknown data

• Concept description: 
– Characterization: provides a concise and succinct 

summarization of the given collection of data
– Comparison: provides descriptions comparing two or more 

collections of data

48Source: Han & Kamber (2006)



Concept Description vs. OLAP
• Similarity: 

– Data generalization
– Presentation of data summarization at multiple levels of 

abstraction.
– Interactive drilling, pivoting, slicing and dicing.

• Differences:
– Can handle complex data types of the attributes and their 

aggregations
– Automated desired level allocation.
– Dimension relevance analysis and ranking when there are 

many relevant dimensions.
– Sophisticated typing on dimensions and measures.
– Analytical characterization: data dispersion analysis

49Source: Han & Kamber (2006)



Attribute-Oriented Induction

• Collect the task-relevant data (initial relation) 
using a relational database query

• Perform generalization by attribute removal or 
attribute generalization

• Apply aggregation by merging identical, 
generalized tuples and accumulating their 
respective counts

• Interactive presentation with users

50Source: Han & Kamber (2006)



Example
• DMQL: Describe general characteristics of graduate students 

in the Big-University database
use Big_University_DB
mine characteristics as “Science_Students”
in relevance to name, gender, major, birth_place, 

birth_date, residence, phone#, gpa
from student
where status in “graduate”

• Corresponding SQL statement:
Select name, gender, major, birth_place, birth_date, 

residence, phone#, gpa
from student
where status in {“Msc”, “MBA”, “PhD” }

51Source: Han & Kamber (2006)



Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA
Jim
Woodman

  M   CS Vancouver,BC,
Canada

  8-12-76 3511 Main St.,
Richmond

687-4598 3.67

Scott
Lachance

  M   CS Montreal, Que,
Canada

28-7-75 345 1st Ave.,
Richmond

253-9106 3.70

Laura Lee
…

  F
…

Physics
…

Seattle, WA, USA
…

25-8-70
…

125 Austin Ave.,
Burnaby
…

420-5232
…

3.83
…

Removed Retained Sci,Eng,
Bus

Country Age range City Removed Excl,
VG,..

Gender Major Birth_region Age_range Residence GPA Count
    M Science    Canada     20-25 Richmond Very-good     16
    F Science    Foreign     25-30 Burnaby Excellent     22
   …      …        …        …      …        …     …

        Birth_Region

Gender
Canada Foreign Total

              M     16       14    30
              F     10       22    32

           Total     26       36    62

Prime 
Generalized 
Relation

Initial 
Relation

52Source: Han & Kamber (2006)



Presentation of Generalized Results

• Generalized relation: 

– Relations where some or all attributes are generalized, with counts or 
other aggregation values accumulated.

• Cross tabulation:

– Mapping results into cross tabulation form (similar to contingency tables). 

– Visualization techniques:

– Pie charts, bar charts, curves, cubes, and other visual forms.

• Quantitative characteristic rules:

– Mapping generalized result into characteristic rules with quantitative 
information associated with it, e.g.,

.%]47:["")(_%]53:["")(_
)()(

tforeignxregionbirthtCanadaxregionbirth
xmalexgrad

=∨=
⇒∧

53Source: Han & Kamber (2006)



Mining Class Comparisons

• Comparison: Comparing two or more classes
• Method:

– Partition the set of relevant data into the target class and the contrasting 
class(es) 

– Generalize both classes to the same high level concepts
– Compare tuples with the same high level descriptions
– Present for every tuple its description and two measures

• support - distribution within single class
• comparison - distribution between classes

– Highlight the tuples with strong discriminant features 
• Relevance Analysis:

– Find attributes (features) which best distinguish different classes

54Source: Han & Kamber (2006)



Quantitative Discriminant Rules

• Cj = target class
• qa = a generalized tuple covers some tuples of class

– but can also cover some tuples of contrasting class
• d-weight

– range: [0, 1]

• quantitative discriminant rule form

∑
=

∈

∈
=− m

i
ia

ja

)Ccount(q

)Ccount(qweightd

1

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀

55Source: Han & Kamber (2006)



Example: Quantitative Discriminant Rule

• Quantitative discriminant rule

– where 90/(90 + 210) = 30%

Status Birth_country Age_range Gpa Count

Graduate Canada 25-30 Good 90

Undergraduate Canada 25-30 Good 210

Count distribution between graduate and undergraduate students for a generalized tuple

%]30:["")("3025")(_"")(_
)(_,

dgoodXgpaXrangeageCanadaXcountrybirth
XstudentgraduateX

=∧−=∧=
⇐∀

56Source: Han & Kamber (2006)



Class Description 

• Quantitative characteristic rule

– necessary
• Quantitative discriminant rule

– sufficient
• Quantitative description rule

– necessary and sufficient
]w:d,w:[t...]w:d,w:[t nn111 ′∨∨′

⇔∀
(X)condition(X)condition

ss(X)target_claX,
n

d_weight]:[dX)condition(ss(X)target_claX, ⇐∀

t_weight]:[tX)condition(ss(X)target_claX, ⇒∀

57Source: Han & Kamber (2006)



Example: Quantitative Description 
Rule

• Quantitative description rule for target class Europe

Location/item  TV   Computer   Both_items  

 Count t-wt d-wt Count t-wt d-wt Count t-wt d-wt 

Europe 80 25% 40% 240 75% 30% 320 100% 32% 

N_Am 120 17.65% 60% 560 82.35% 70% 680 100% 68% 

Both_ 
regions 

200 20% 100% 800 80% 100% 1000 100% 100% 
 

 

Crosstab showing associated t-weight, d-weight values and total number 
(in thousands) of TVs and computers sold at AllElectronics in 1998

30%]:d75%,:[t40%]:d25%,:[t )computer""(item(X))TV""(item(X)
Europe(X)X,

=∨=
⇔∀

58Source: Han & Kamber (2006)



Summary
• Efficient algorithms for computing data cubes
• Further development of data cube technology

– Discovery-drive cube
– Multi-feature cubes
– Cube-gradient analysis

• Alternative Data Generalization Method : 
Attribute-Oriented Induction

59Source: Han & Kamber (2006)
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