
Data Warehousing
資料倉儲

Min-Yuh Day
戴敏育

Assistant Professor
專任助理教授

Dept. of Information Management, Tamkang University
淡江大學資訊管理學系

http://mail.im.tku.edu.tw/~myday/
2011-09-27

1

1001DW04
MI4

Tue. 6,7 (13:10-15:00) B427

Data Warehouse and OLAP Technology

http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/cindex.htm�
http://www.im.tku.edu.tw/en_index.html�
http://english.tku.edu.tw/index.asp�
http://www.tku.edu.tw/�
http://www.im.tku.edu.tw/�
http://mail.im.tku.edu.tw/~myday/�
http://mail.im.tku.edu.tw/~myday/�


Syllabus
週次 日期 內容（Subject/Topics）
1    100/09/06    Introduction to Data Warehousing
2    100/09/13    Data Warehousing, Data Mining,

and Business  Intelligence
3    100/09/20    Data Preprocessing: 

Integration and the ETL process
4    100/09/27    Data Warehouse and OLAP Technology
5    100/10/04    Data Warehouse and OLAP Technology
6    100/10/11    Data Cube Computation and Data Generation
7    100/10/18    Data Cube Computation and Data Generation
8    100/10/25    Project Proposal
9    100/11/01    期中考試週
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Syllabus
週次 日期 內容（Subject/Topics）
10    100/11/08    Association Analysis
11    100/11/15    Classification and Prediction
12    100/11/22    Cluster Analysis
13    100/11/29    Sequence Data Mining
14    100/12/06    Social Network Analysis 
15    100/12/13    Link Mining
16    100/12/20    Text Mining and Web Mining
17    100/12/27    Project Presentation
18    101/01/03    期末考試週
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• What is a data warehouse? 

• A multi-dimensional data model

• Data warehouse architecture

• Data warehouse implementation

• From data warehousing to data mining

Data Warehouse and 
OLAP Technology

Source: Han & Kamber (2006)



What is Data Warehouse?
• Defined in many different ways, but not rigorously.

– A decision support database that is maintained separately 
from the organization’s operational database

– Support information processing by providing a solid 
platform of consolidated, historical data for analysis.

• “A data warehouse is a subject-oriented, integrated, 
time-variant, and nonvolatile collection of data in support of 
management’s decision-making process.”—W. H. Inmon

• Data warehousing:
– The process of constructing and using data warehouses

5Source: Han & Kamber (2006)



Data Warehouse

• Subject-oriented
• Integrated
• Time-variant
• Nonvolatile

6Source: Han & Kamber (2006)



Data Warehouse—
Subject-Oriented

• Organized around major subjects, 
such as customer, product, sales

• Focusing on the modeling and analysis of data for decision 
makers, not on daily operations or transaction processing

• Provide a simple and concise view around particular subject 
issues by excluding data that are not useful in the decision 
support process

7Source: Han & Kamber (2006)



Data Warehouse—
Integrated

• Constructed by integrating multiple, heterogeneous data 
sources
– relational databases, flat files, on-line transaction records

• Data cleaning and data integration techniques are applied.
– Ensure consistency in naming conventions, encoding 

structures, attribute measures, etc. among different data 
sources

• E.g., Hotel price: currency, tax, breakfast covered, etc.

– When data is moved to the warehouse, it is converted.  

8Source: Han & Kamber (2006)



Data Warehouse—
Time Variant

• The time horizon for the data warehouse is significantly longer 
than that of operational systems

– Operational database: current value data

– Data warehouse data: provide information from a historical 
perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not contain 
“time element”

9Source: Han & Kamber (2006)



Data Warehouse—
Nonvolatile

• A physically separate store of data transformed from the 
operational environment

• Operational update of data does not occur in the data 
warehouse environment

– Does not require transaction processing, recovery, and 
concurrency control mechanisms

– Requires only two operations in data accessing: 

• initial loading of data and access of data

10Source: Han & Kamber (2006)



Data Warehouse vs. Heterogeneous DBMS

• Traditional heterogeneous DB integration: A query driven approach

– Build wrappers/mediators on top of heterogeneous databases 

– When a query is posed to a client site, a meta-dictionary is used to 

translate the query into queries appropriate for individual 

heterogeneous sites involved, and the results are integrated into a 

global answer set

– Complex information filtering, compete for resources

• Data warehouse: update-driven, high performance

– Information from heterogeneous sources is integrated in advance and 

stored in warehouses for direct query and analysis

11Source: Han & Kamber (2006)



Data Warehouse vs. Operational DBMS

• OLTP (on-line transaction processing)
– Major task of traditional relational DBMS
– Day-to-day operations: purchasing, inventory, banking, manufacturing, 

payroll, registration, accounting, etc.
• OLAP (on-line analytical processing)

– Major task of data warehouse system
– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):
– User and system orientation: customer vs. market
– Data contents: current, detailed vs. historical, consolidated
– Database design: ER + application vs. star + subject
– View: current, local vs. evolutionary, integrated
– Access patterns: update vs. read-only but complex queries

12Source: Han & Kamber (2006)



OLTP vs. OLAP
 OLTP OLAP 
users clerk, IT professional knowledge worker 
function day to day operations decision support 
DB design application-oriented subject-oriented 
data current, up-to-date 

detailed, flat relational 
isolated 

historical,  
summarized, multidimensional 
integrated, consolidated 

usage repetitive ad-hoc 
access read/write 

index/hash on prim. key 
lots of scans 

unit of work short, simple transaction complex query 
# records accessed tens millions 
#users thousands hundreds 
DB size 100MB-GB 100GB-TB 
metric transaction throughput query throughput, response 
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Why Separate Data Warehouse?
• High performance for both systems

– DBMS— tuned for OLTP: access methods, indexing, concurrency control, 
recovery

– Warehouse—tuned for OLAP: complex OLAP queries, multidimensional 
view, consolidation

• Different functions and different data:
– missing data: Decision support requires historical data which 

operational DBs do not typically maintain
– data consolidation:  DS requires consolidation (aggregation, 

summarization) of data from heterogeneous sources
– data quality: different sources typically use inconsistent data 

representations, codes and formats which have to be reconciled
• Note: There are more and more systems which perform OLAP analysis 

directly on relational databases

14Source: Han & Kamber (2006)



From Tables and Spreadsheets to Data Cubes

• A data warehouse is based on a multidimensional data model which views 
data in the form of a data cube

• A data cube, such as sales, allows data to be modeled and viewed in 
multiple dimensions

– Dimension tables, such as item (item_name, brand, type), or time(day, 
week, month, quarter, year) 

– Fact table contains measures (such as dollars_sold) and keys to each of 
the related dimension tables

• In data warehousing literature, an n-D base cube is called a base cuboid. 
The top most 0-D cuboid, which holds the highest-level of summarization, 
is called the apex cuboid.  The lattice of cuboids forms a data cube.

15Source: Han & Kamber (2006)



Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
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Conceptual Modeling of Data Warehouses

• Modeling data warehouses: dimensions & measures

– Star schema: A fact table in the middle connected to a set of 
dimension tables 

– Snowflake schema:  A refinement of star schema where 
some dimensional hierarchy is normalized into a set of 
smaller dimension tables, forming a shape similar to 
snowflake

– Fact constellations:  Multiple fact tables share dimension 
tables, viewed as a collection of stars, therefore called 

galaxy schema or fact constellation

17Source: Han & Kamber (2006)



Example of Star Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
state_or_province
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales
Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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Example of Snowflake Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key
item_name
brand
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supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
state_or_province
country

city
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Example of Fact 
Constellation

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_state
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales
Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key
shipper_name
location_key
shipper_type

shipper

Source: Han & Kamber (2006)



Cube Definition Syntax (BNF) in 
DMQL

• Cube Definition (Fact Table)
define cube <cube_name> [<dimension_list>]:         

<measure_list>
• Dimension Definition (Dimension Table)

define dimension <dimension_name> as
(<attribute_or_subdimension_list>)

• Special Case (Shared Dimension Tables)
– First time as “cube definition”
– define dimension <dimension_name> as

<dimension_name_first_time> in cube
<cube_name_first_time>

21Source: Han & Kamber (2006)



Defining Star Schema in DMQL

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, 

quarter, year)
define dimension item as (item_key, item_name, brand, type, 

supplier_type)
define dimension branch as (branch_key, branch_name, 

branch_type)
define dimension location as (location_key, street, city, 

province_or_state, country)

22Source: Han & Kamber (2006)



Defining Snowflake Schema in 
DMQL

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, 

supplier(supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city(city_key, 

province_or_state, country))

23Source: Han & Kamber (2006)



Defining Fact Constellation in 
DMQL

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), 

units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)
define cube shipping [time, item, shipper, from_location, to_location]:

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location in cube

sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales

24Source: Han & Kamber (2006)



Measures of Data Cube: Three Categories

• Distributive: if the result derived by applying the function to n 
aggregate values is the same as that derived by applying the 
function on all the data without partitioning

• E.g., count(), sum(), min(), max()

• Algebraic: if it can be computed by an algebraic function with M
arguments (where M is a bounded integer), each of which is 
obtained by applying a distributive aggregate function

• E.g., avg(), min_N(), standard_deviation()

• Holistic: if there is no constant bound on the storage size needed 
to describe a subaggregate.

• E.g., median(), mode(), rank()

25Source: Han & Kamber (2006)



A Concept Hierarchy: Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

26Source: Han & Kamber (2006)



View of Warehouses and Hierarchies

Specification of hierarchies
• Schema hierarchy

day < {month < quarter; 
week} < year

• Set_grouping hierarchy
{1..10} < inexpensive

27Source: Han & Kamber (2006)



Multidimensional Data

• Sales volume as a function of product, month, 
and region

Pr
od

uc
t

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day
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A Sample Data Cube
Total annual sales
of  TV in U.S.A.Date

C
ou

nt
rysum

sumTV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr
U.S.A

Canada

Mexico
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Cuboids Corresponding to the 
Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Browsing a Data Cube

• Visualization
• OLAP capabilities
• Interactive 

manipulation

31Source: Han & Kamber (2006)



Typical OLAP Operations

• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction
• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed 
data, or introducing new dimensions

• Slice and dice: project and select
• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes
• Other operations

– drill across: involving (across) more than one fact table
– drill through: through the bottom level of the cube to its back-

end relational tables (using SQL)

32Source: Han & Kamber (2006)



Fig. 3.10 Typical 
OLAP Operations

33Source: Han & Kamber (2006)



A Star-Net Query Model
Shipping Method

AIR-EXPRESS

TRUCK
ORDER

Customer Orders

CONTRACTS

Customer

Product

PRODUCT GROUP

PRODUCT LINE

PRODUCT ITEM

SALES PERSON

DISTRICT

DIVISION

OrganizationPromotion
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COUNTRY

REGION

Location

DAILYQTRLYANNUALY
Time

Each circle is 
called a footprint
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Design of Data Warehouse: 
A Business Analysis Framework

• Four views regarding the design of a data warehouse 
– Top-down view

• allows selection of the relevant information necessary for the data 
warehouse

– Data source view
• exposes the information being captured, stored, and managed by 

operational systems

– Data warehouse view
• consists of fact tables and dimension tables

– Business query view
• sees the perspectives of data in the warehouse from the view of 

end-user

35Source: Han & Kamber (2006)



Data Warehouse Design 
Process 

• Top-down, bottom-up approaches or a combination of both
– Top-down: Starts with overall design and planning (mature)
– Bottom-up: Starts with experiments and prototypes (rapid)

• From software engineering point of view
– Waterfall: structured and systematic analysis at each step before 

proceeding to the next
– Spiral:  rapid generation of increasingly functional systems, short turn 

around time, quick turn around
• Typical data warehouse design process

– Choose a business process to model, e.g., orders, invoices, etc.
– Choose the grain (atomic level of data) of the business process
– Choose the dimensions that will apply to each fact table record
– Choose the measure that will populate each fact table record

36Source: Han & Kamber (2006)



Data Warehouse: A Multi-Tiered Architecture

Data
Warehouse

Extract
Transform
Load
Refresh

OLAP Engine

Analysis
Query
Reports
Data mining

Monitor
&

Integrator
Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational 
DBs

Other
sources

Data Storage

OLAP Server

37Source: Han & Kamber (2006)



Three Data Warehouse 
Models

• Enterprise warehouse
– collects all of the information about subjects spanning the 

entire organization
• Data Mart

– a subset of corporate-wide data that is of value to a specific 
groups of users.  Its scope is confined to specific, selected 
groups, such as marketing data mart

• Independent vs. dependent (directly from warehouse) data mart

• Virtual warehouse
– A set of views over operational databases
– Only some of the possible summary views may be 

materialized
38Source: Han & Kamber (2006)



Data Warehouse Development: 
A Recommended Approach

Define a high-level corporate data model

Data 
Mart

Data 
Mart

Distributed 
Data Marts

Multi-Tier Data 
Warehouse

Enterprise 
Data 
Warehouse

Model refinementModel refinement

39Source: Han & Kamber (2006)



Data Warehouse Back-End Tools and Utilities

• Data extraction
– get data from multiple, heterogeneous, and external sources

• Data cleaning
– detect errors in the data and rectify them when possible

• Data transformation
– convert data from legacy or host format to warehouse format

• Load
– sort, summarize, consolidate, compute views, check integrity, 

and build indicies and partitions
• Refresh

– propagate the updates from the data sources to the 
warehouse

40Source: Han & Kamber (2006)



Metadata Repository
• Meta data is the data defining warehouse objects.  It stores:
• Description of the structure of the data warehouse

– schema, view, dimensions, hierarchies, derived data defn, data mart 
locations and contents

• Operational meta-data
– data lineage (history of migrated data and transformation path), currency 

of data (active, archived, or purged), monitoring information (warehouse 
usage statistics, error reports, audit trails)

• The algorithms used for summarization
• The mapping from operational environment to the data warehouse
• Data related to system performance

– warehouse schema, view and derived data definitions
• Business data

– business terms and definitions, ownership of data, charging policies
41Source: Han & Kamber (2006)



OLAP Server Architectures
• Relational OLAP (ROLAP)

– Use relational or extended-relational DBMS to store and manage 
warehouse data and OLAP middle ware

– Include optimization of DBMS backend, implementation of aggregation 
navigation logic, and additional tools and services

– Greater scalability
• Multidimensional OLAP (MOLAP)

– Sparse array-based multidimensional storage engine 
– Fast indexing to pre-computed summarized data

• Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)
– Flexibility, e.g., low level: relational, high-level: array

• Specialized SQL servers (e.g., Redbricks) 
– Specialized support for SQL queries over star/snowflake schemas

42Source: Han & Kamber (2006)



Efficient Data Cube 
Computation

• Data cube can be viewed as a lattice of cuboids  
– The bottom-most cuboid is the base cuboid
– The top-most cuboid (apex) contains only one cell
– How many cuboids in an n-dimensional cube with L levels?

• Materialization of data cube
– Materialize every (cuboid) (full materialization), none (no 

materialization), or some (partial materialization)
– Selection of which cuboids to materialize

• Based on size, sharing, access frequency, etc.

)1
1
( +∏

=
=

n

i iLT

43Source: Han & Kamber (2006)



Cube Operation
• Cube definition and computation in DMQL

define cube sales[item, city, year]: sum(sales_in_dollars)

compute cube sales

• Transform it into a SQL-like language (with a new operator cube by,
introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year
• Need compute the following Group-Bys

(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
()

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)

44Source: Han & Kamber (2006)



Iceberg Cube
• Computing only the cuboid cells whose count or 

other aggregates satisfying the condition like
HAVING COUNT(*) >= minsup

 Motivation
 Only a small portion of cube cells may be “above the 

water’’ in a sparse cube
 Only calculate “interesting” cells—data above certain 

threshold
 Avoid explosive growth of the cube

 Suppose 100 dimensions, only 1 base cell.  How many 
aggregate cells if count >= 1?  What about count >= 2?

45Source: Han & Kamber (2006)



Indexing OLAP Data: Bitmap Index
• Index on a particular column
• Each value in the column has a bit vector: bit-op is fast
• The length of the bit vector: # of records in the base table
• The i-th bit is set if the i-th row of the base table has the value for the 

indexed column
• not suitable for high cardinality domains

RecIDAsia Europe America
1 1 0 0
2 0 1 0
3 1 0 0
4 0 0 1
5 0 1 0

Base table Index on Region Index on Type

46Source: Han & Kamber (2006)



Indexing OLAP Data: Join Indices
• Join index: JI(R-id, S-id) where R (R-id, …)  S (S-id, 

…)
• Traditional indices map the values to a list of record 

ids
– It materializes relational join in JI file and speeds 

up relational join 
• In data warehouses, join index relates the values of 

the dimensions of a start schema to rows in the fact 
table.
– E.g. fact table: Sales and two dimensions city and 

product
• A join index on city maintains for each distinct 

city a list of R-IDs of the tuples recording the 
Sales in the city 

– Join indices can span multiple dimensions

47Source: Han & Kamber (2006)



Efficient Processing OLAP Queries
• Determine which operations should be performed on the available cuboids

– Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice 

= selection + projection

• Determine which materialized cuboid(s) should be selected for OLAP op.

– Let the query to be processed be on {brand, province_or_state} with the condition 

“year = 2004”, and there are 4 materialized cuboids available:

1) {year, item_name, city}  

2) {year, brand, country}

3) {year, brand, province_or_state}

4) {item_name, province_or_state}  where year = 2004

Which should be selected to process the query?

• Explore indexing structures and compressed vs. dense array structs in MOLAP

48Source: Han & Kamber (2006)



From data warehousing 
to data mining

49Source: Han & Kamber (2006)



Data Warehouse Usage
• Three kinds of data warehouse applications

– Information processing
• supports querying, basic statistical analysis, and 

reporting using crosstabs, tables, charts and graphs
– Analytical processing

• multidimensional analysis of data warehouse data
• supports basic OLAP operations, slice-dice, drilling, 

pivoting
– Data mining

• knowledge discovery from hidden patterns 
• supports associations, constructing analytical models, 

performing classification and prediction, and presenting 
the mining results using visualization tools

50Source: Han & Kamber (2006)



From On-Line Analytical Processing (OLAP) 
to On Line Analytical Mining (OLAM)

• Why online analytical mining?
– High quality of data in data warehouses

• DW contains integrated, consistent, cleaned data
– Available information processing structure surrounding 

data warehouses
• ODBC, OLEDB, Web accessing, service facilities, 

reporting and OLAP tools
– OLAP-based exploratory data analysis

• Mining with drilling, dicing, pivoting, etc.
– On-line selection of data mining functions

• Integration and swapping of multiple mining functions, 
algorithms, and tasks

51Source: Han & Kamber (2006)
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An OLAM System Architecture

Data 
Warehouse

Meta Data

MDDB

OLAM
Engine

OLAP
Engine

User GUI API

Data Cube API

Database API

Data cleaning

Data integration

Layer3

OLAP/OLAM

Layer2

MDDB

Layer1

Data 
Repository

Layer4

User Interface

Filtering&Integration Filtering

Databases

Mining query Mining result

Source: Han & Kamber (2006)



Summary: 
Data Warehouse and OLAP Technology

• Why data warehousing?
• A multi-dimensional model of a data warehouse

– Star schema, snowflake schema, fact constellations
– A data cube consists of dimensions & measures

• OLAP operations: drilling, rolling, slicing, dicing and pivoting
• Data warehouse architecture
• OLAP servers: ROLAP, MOLAP, HOLAP
• Efficient computation of data cubes

– Partial vs. full vs. no materialization
– Indexing OALP data: Bitmap index and join index
– OLAP query processing 

• From OLAP to OLAM (on-line analytical mining)

Source: Han & Kamber (2006) 53
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