

Question Classification in English-Chinese Cross-Language Question Answering: An Integrated Genetic Algorithm and Machine Learning Approach

### Min-Yuh Day <sup>1, 2</sup>, Chorng-Shyong Ong <sup>2</sup>, and Wen-Lian Hsu <sup>1,\*</sup>, *Fellow, IEEE*

<sup>1</sup> Institute of Information Science, Academia Sinica, Taiwan <sup>2</sup> Department of Information Management, National Taiwan University, Taiwan

*{myday, hsu}@iis.sinica.edu.tw; ongcs@im.ntu.edu.tw* 

IEEE IRI 2007, Las Vegas, Nevada, USA, Aug 13-15, 2007.



## Outline

- Introduction
- Research Background
- Methods
  - Hybrid GA-CRF-SVM Architecture
- Experimental Design
- Experimental Results and Discussion
- Conclusions



### Introduction

- Question classification (QC) plays an important role in cross-language question answering (CLQA)
  - QC: Accurately classify a question in to a question type and then map it to an expected answer type
  - "What is the biggest city in the United States?"
  - Question Type: "Q\_LOCATION\_CITY"
  - Extract and filter answers in order to improve the overall accuracy of a cross-language question answering system



## **Introduction (cont.)**

- Question informers (QI) play a key role in enhancing question classification for factual question answering
  - QI: Choosing a minimal, appropriate contiguous span of a question token, or tokens, as the informer span of a question, which is adequate for question classification.
  - "What is the biggest city in the United States?"
  - Question informer: "city"
  - "city" is the most important clue in the question for question classification.



## **Introduction (cont.)**

- Feature Selection in Machine Learning
  - Optimization problem that involves choosing an appropriate feature subset.
  - Hybrid approach that integrates Genetic Algorithm (GA) and Conditional Random Fields (CRF) improves the accuracy of question informer prediction in traditional CRF models (Day et al., 2006)
- We propose an integrated Genetic Algorithm (GA) and Machine Learning (ML) approach for question classification in cross-language question answering.



# **Research Background**

- Cross Language Question Answering
  - International Question Answering (QA) contests
    - TREC QA: 1999~
      - Monolingual QA in English
    - QA@CLEF: 2003~
      - European languages in both non-English monolingual and cross-language
    - NTCIR CLQA: 2005~
      - Asian languages in both monolingual and cross-language
- Question Classification
  - Rule-based method
  - Machine Learning based method



# **Research Background (cont.)**

- Two strategies for question classification in English-Chinese cross-language question answering
  - 1) Chinese QC (CQC) for both English and Chinese queries.
    - English source language has to be translated into the Chinese target language in advance.
  - 2) English QC (EQC) for English queries and Chinese QC (CQC) for Chinese queries.
- We focus on question classification in English-Chinese cross-language question answering
  - Bilingual QA system for English source language queries and Chinese target document collections.



### Methods

### Hybrid GA-CRF-SVM Architecture

- GA for CRF Feature Selection
- GA-CRF Question Informer Prediction
- SVM-based Question Classification using GA-CRF Question Informer

#### Hybrid GA-CRF-SVM Architecture







# **Experiment Design**

- Data set for English Question Classification
  - Training dataset (5288E)
    - 4,204 questions from UIUC QC dataset (E)
    - + 500 questions from the NTCIR-5 CLQA development set (E)
    - + 200 questions from the NTCIR-5 CLQA test set (E)
    - + 384 questions from TREC2002 questions (E)
  - Test dataset (CLQA2T150E)
    - 150 English questions from NTCIR-6 CLQA's formal run
- Data set for Chinese Question Classification
  - Training dataset (2322C)
    - 1238 question from IASL (C)
    - + 500 questions from the NTCIR-5 CLQA development set (C)
    - + 200 questions from the NTCIR-5 CLQA test set (C)
    - + 384 questions from TREC2002 questions (translated) (C)
  - Test dataset (CLQA2T150C)
    - 150 Chinese questions from NTCIR-6 CLQA's formal run



# **Experiment Design (cont.)**

- Features for English Question Classification
  - Syntactic features
    - Word-based bi-grams of the question (WB)
    - First word of the question (F1)
    - First two words of the question (F2)
    - Wh-word of the question (WH)
      - i.e., 6W1H1O: who, what, when, where, which, why, how, and other
  - Semantic features
    - Question informers predicted by the GA-CRF model (QIF)
    - Question informer bi-grams predicted by the GA-CRF model (QIFB)



# **Experiment Design (cont.)**

- Features for Chinese Question Classification
  - Syntactic features
    - Bag-of-Words
      - character-based bi-grams (CB)
      - word-based bi-grams (WB).
    - Part-of-Speech (POS)
  - Semantic Features
    - HowNet Senses
      - HowNet Main Definition (HNMD)
      - HowNet Definition (HND).
    - TongYiCi CiLin (TYC)



# **Experiment Design (cont.)**

### Performance Metrics

Accuracy

 $Accuracy = \frac{Number of \ corrected \ question \ types}{Total \ number \ of \ questions}$ 

MRR (mean reciprocal rank)

$$MRR = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{rank_i}$$

where  $rank_i$  is the rank of the first *corrected* question type of the  $i^{th}$  question, and M is total number of questions.



## **Experimental Results**

- Question informer prediction
  - Using GA to optimize the selection of the feature subset in CRF-based question informer prediction improves the F-score from 88.9% to 93.87%, and reduces the number of features from 105 to 40.
    - Training dataset (UIUC Q5500)
    - Test dataset (UIUC Q500)
  - The accuracy of our proposed GA-CRF model for the UIUC dataset is 95.58% compared to 87% for the traditional CRF model reported by Krishnan et al.(2005)
    - The proposed hybrid GA-CRF model for question informer prediction significantly outperforms the traditional CRF model.



## **Experimental Results**

#### English Question Classification (EQC) using SVM



Min-Yuh Day (NTU; SINICA)



#### **Experimental Results of Chinese Question Classification** (CQC) using SVM with different features

| Feature<br>Used | Top 1<br>Accuracy<br>(Fine) | Top 1<br>Accuracy<br>(Coarse) | Top 5<br>MRR<br>(Fine) | Top 5<br>MRR<br>(Coarse) |
|-----------------|-----------------------------|-------------------------------|------------------------|--------------------------|
| POS             | 53.33%                      | 65.33%                        | 0.5732                 | 0.7533                   |
| POSB            | 60.00%                      | 74.00%                        | 0.6469                 | 0.7970                   |
| HNMD            | 71.33%                      | 81.33%                        | 0.7480                 | 0.8832                   |
| СВ              | 74.00%                      | 84.67%                        | 0.7934                 | 0.9130                   |
| HNMDB           | 74.00%                      | 86.00%                        | 0.7916                 | 0.9117                   |
| С               | 74.67%                      | 84.67%                        | 0.7979                 | 0.9152                   |
| ТҮСВ            | 74.67%                      | 86.00%                        | 0.7880                 | 0.9062                   |
| HND             | 74.67%                      | 86.67%                        | 0.7860                 | 0.9102                   |
| W               | 76.00%                      | 88.00%                        | 0.7901                 | 0.9208                   |
| HNDB            | 76.67%                      | 88.00%                        | 0.8000                 | 0.9162                   |
| WB              | 77.33%                      | 88.00%                        | 0.8067                 | 0.9162                   |
| ТҮС             | 77.33%                      | 88.67%                        | 0.8019                 | 0.9240                   |



# **Experimental Results (cont.)**

#### Chinese Question Classification (CQC) using SVM



Min-Yuh Day (NTU; SINICA)



### Conclusions

- We have proposed a hybrid genetic algorithm and machine learning approach for cross-language question classification.
- The major contribution of this paper is that the proposed approach enhances cross-language question classification by using the GA-CRF question informer feature with Support Vector Machines (SVM).
- The results of experiments on NTCIR-6 CLQA question sets demonstrate the efficacy of the approach in improving the accuracy of question classification in English-Chinese cross-language question answering.



#### http://asqa.iis.sinica.edu.tw

# **Applications:**

**ASQA** (Academia Sinica Question Answering System)

### ASQA (IASL-IIS-SINICA-TAIWAN)

- ASQA is the best performing Chinese question answering system.
- The first place in the English-Chinese (E-C) subtask of the NTCIR-6 Cross-Lingual Question Answering (CLQA) task.(2007)
- The first place in the Chinese-Chinese (C-C) subtask of the NTCIR-6 Cross-Lingual Question Answering (CLQA) task.(2007)
- The first place in the Chinese-Chinese (C-C) subtask of the NTCIR-5 Cross-Lingual Question Answering (CLQA) task.(2005)



## Q & A

### Question Classification in English-Chinese Cross-Language Question Answering: An Integrated Genetic Algorithm and Machine Learning Approach

Min-Yuh Day <sup>1, 2</sup>, Chorng-Shyong Ong <sup>2</sup>, and Wen-Lian Hsu <sup>1,\*</sup>, *Fellow, IEEE* 

<sup>1</sup> Institute of Information Science, Academia Sinica, Taiwan <sup>2</sup> Department of Information Management, National Taiwan University, Taiwan

{myday, hsu}@iis.sinica.edu.tw; ongcs@im.ntu.edu.tw

Min-Yuh Day (NTU; SINICA) IEEE IRI 2007, Las Vegas, Nevada, USA, Aug 13-15, 2007.