

Generative AI and Large Language Models for Question Answering and Dialogue Systems

Time: 10:00-12:00; 14:00-16:00, Wednesday, July 26, 2023 Place: Taipei Research and Development Center, Asia University Address: 16-5, No. 77, Xintai 5th Road, Xizhi District, New Taipei City, Taiwan (FE World Center) Host: Prof. Wen-Lian Hsu

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-07-26

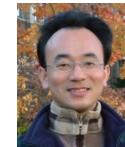
aws academy

Accredited

Educator

aws

certified


Solutions

Architect

Associate

aws 🤣

Cloud Practitioner

Min-Yuh Day, Ph.D.

Director, Intelligent Financial Innovation Technology, IFIT Lab, IM, NTPU

Associate Director, Fintech and Green Finance Center, NTPU

Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)

Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE 2012-)

Publications Chair, The IEEE International Conference on Information Reuse and Integration for Data Science (IEEE IRI 2007-)

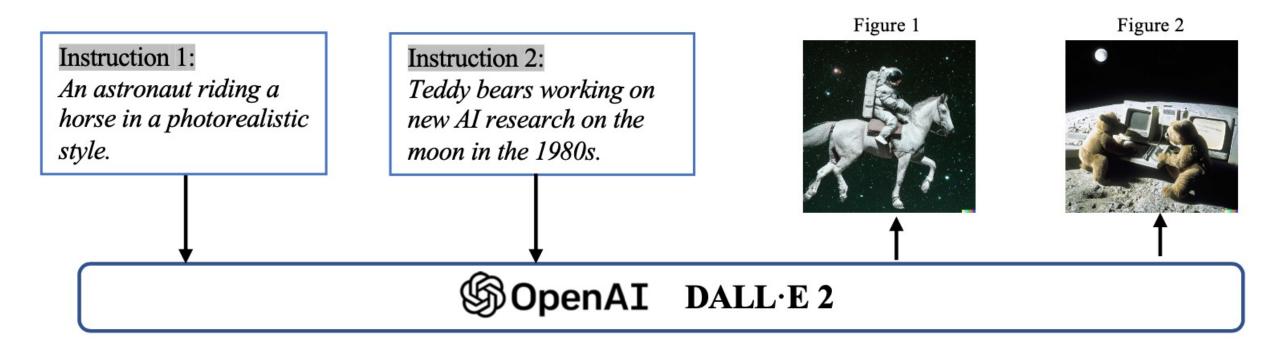
Outline

- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

Introduction

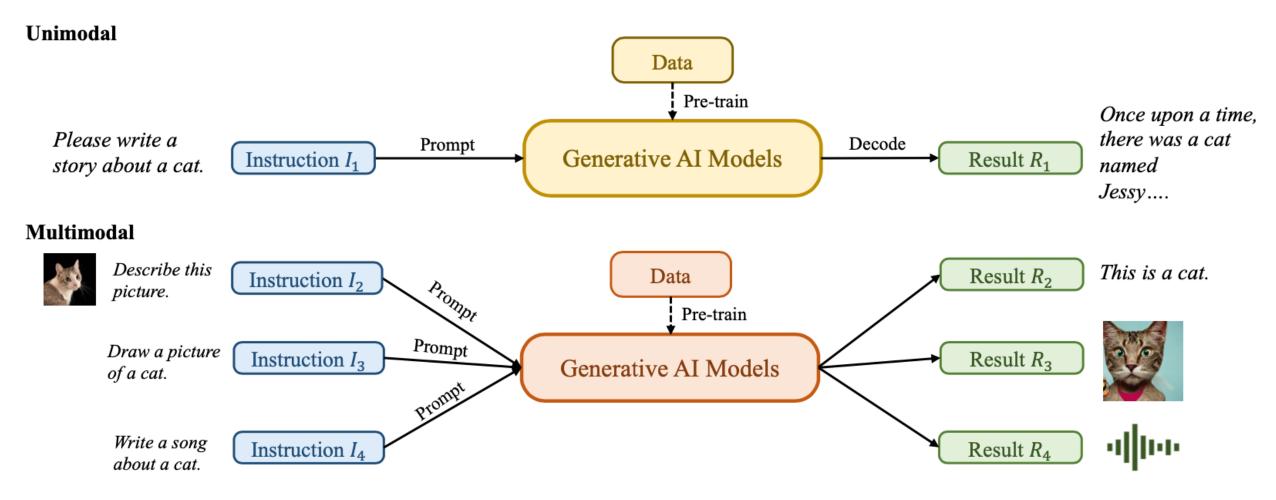
- In this talk, we're embarking on an exciting journey into the fascinating world of Generative AI and Large Language Models (LLMs) and their profound impact on modern NLP, with a special focus on question answering and dialogue systems.
- We're going to dive deep into the core of generative AI, pull back the curtain on the universe of LLMs, and delve into the beating heart of transformers by focusing on the attention mechanism.
- We'll also explore how to fine-tune an LLM for a question answering system, and for a dialogue system.
- Then, we'll tackle the challenges and limitations of using generative AI for QA and dialogue systems.
- Finally, we're going to wrap everything up with a lively Q&A session.

Outline

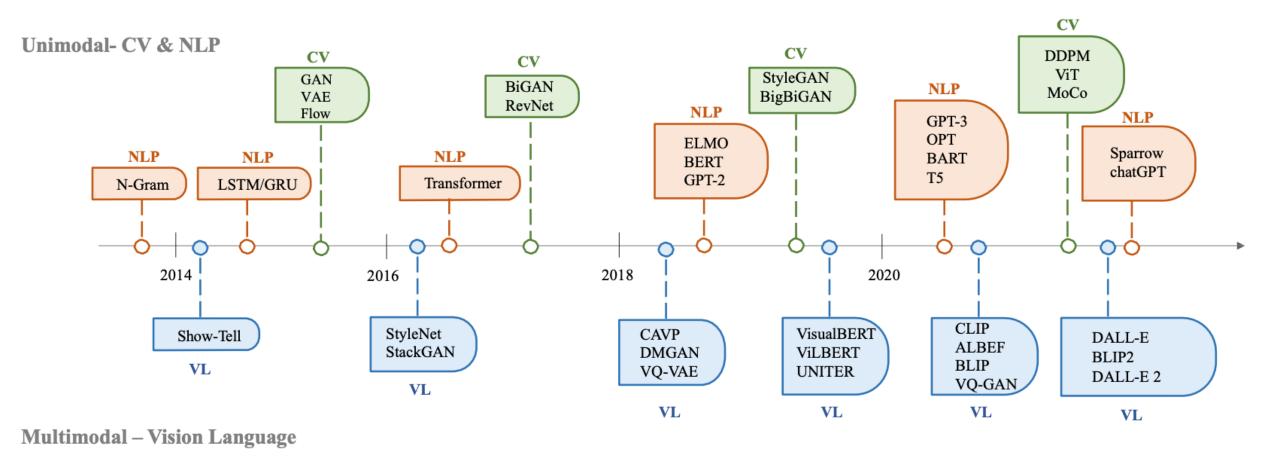


- Introduction
- Overview of Generative Al
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

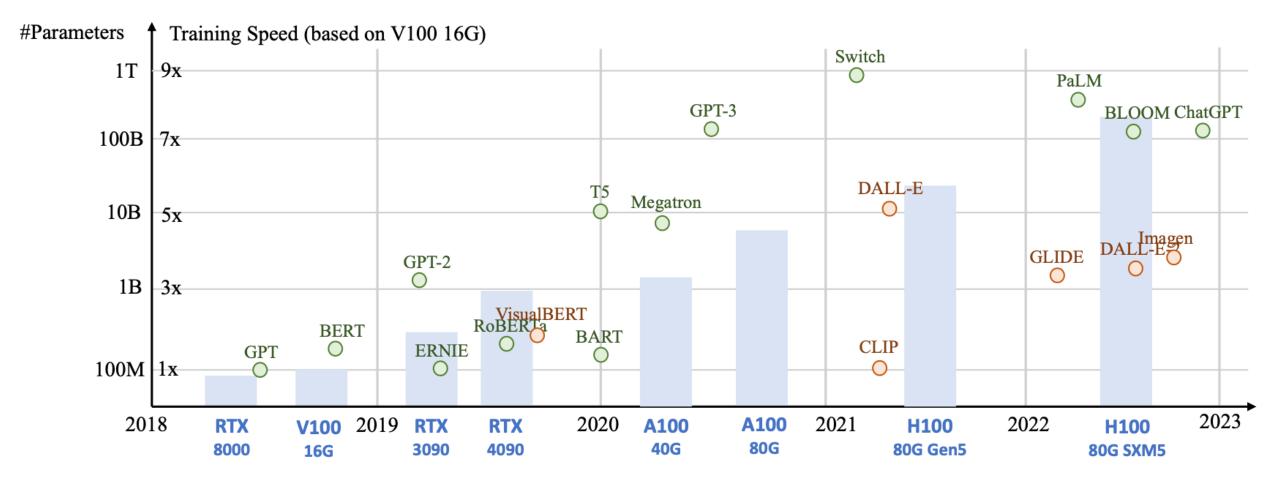
Overview of Generative AI


Generative Al (Gen AI) **Al Generated Content** (AIGC)

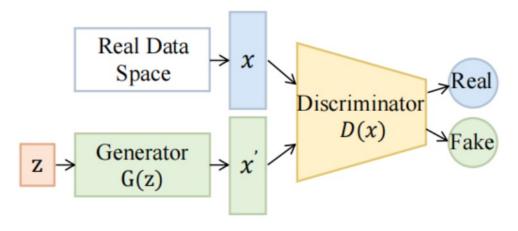
Generative Al (Gen Al) Al Generated Content (AIGC) Image Generation


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

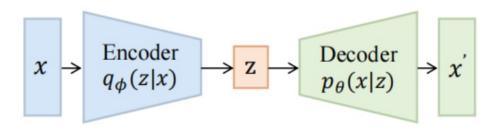
Generative Al (Gen Al) Al Generated Content (AIGC)


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

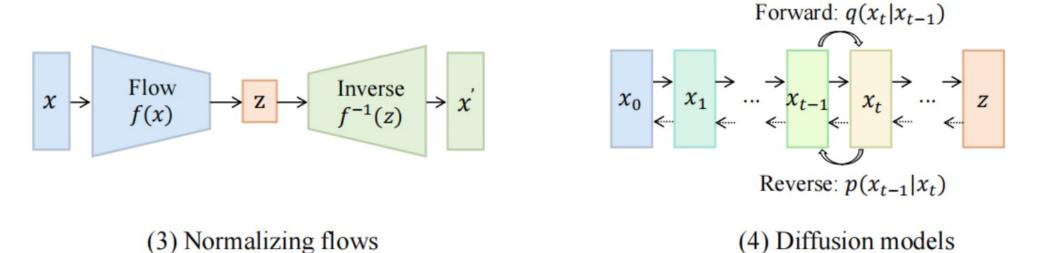
The history of Generative Al in CV, NLP and VL


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

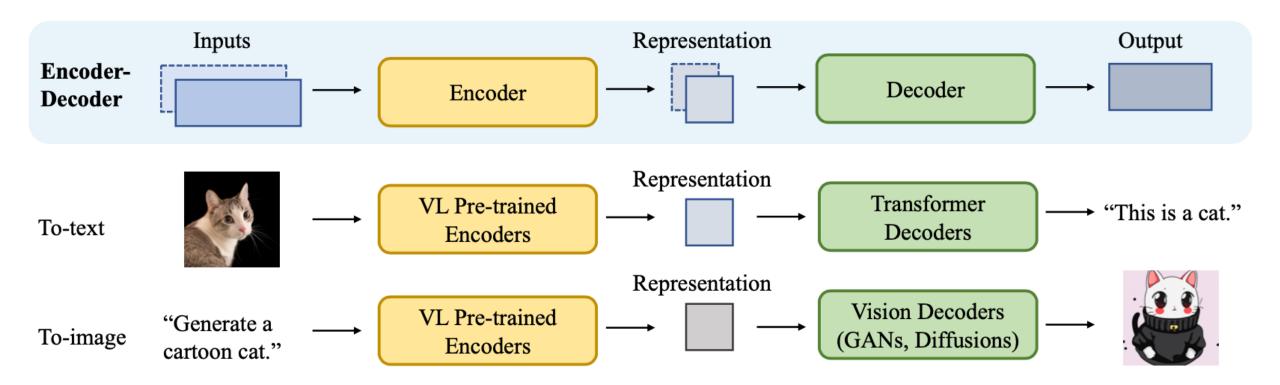
Generative Al Foundation Models



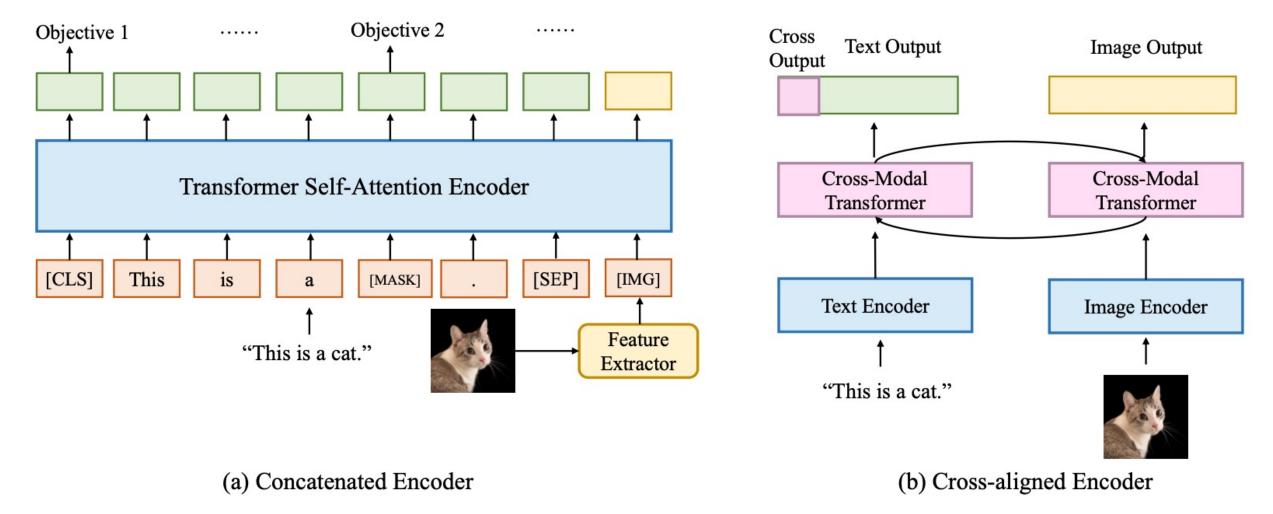
Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.


Categories of Vision Generative Models

(1) Generative adversarial networks

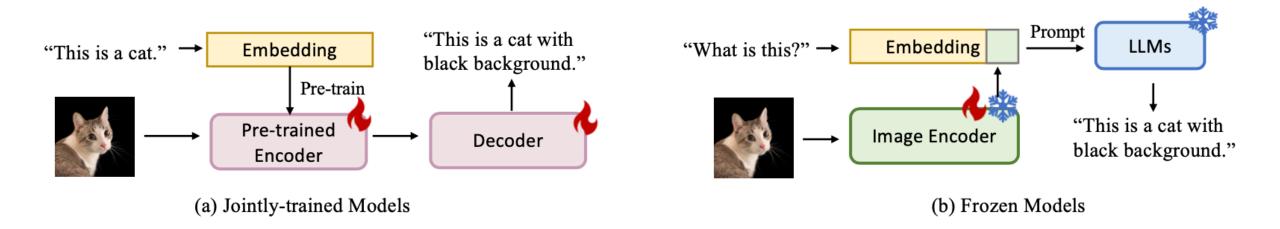


(2) Variational autoencoders

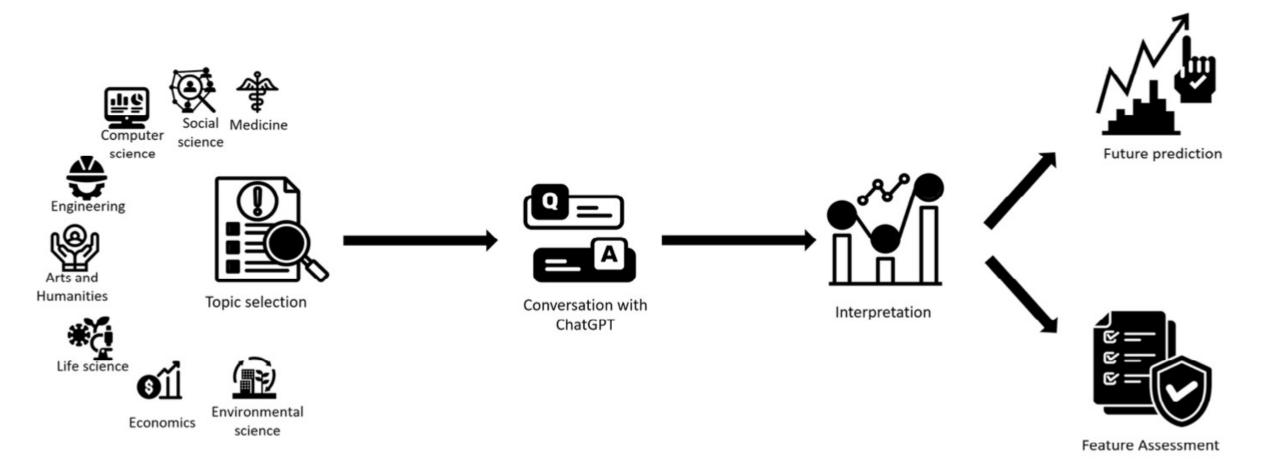


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

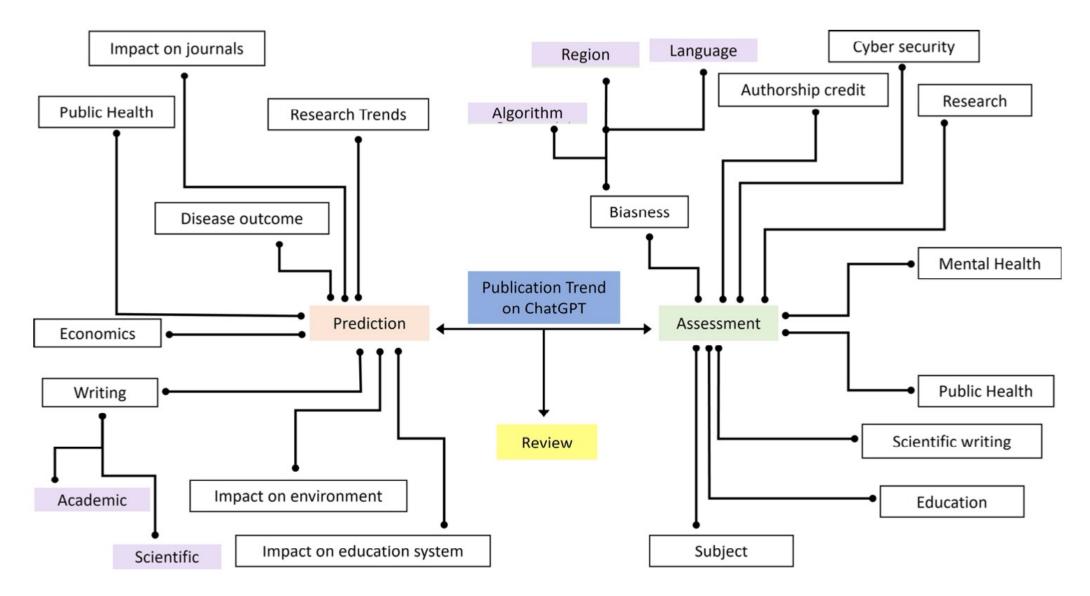
The General Structure of Generative Vision Language



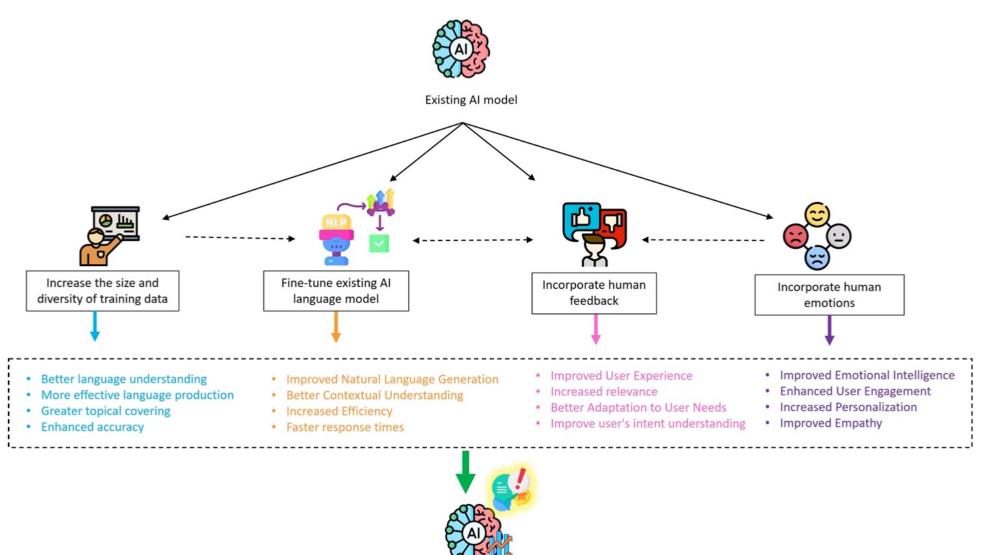
Two Types of Vision Language Encoders: Concatenated Encoders and Cross-aligned Encoders


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

Two Types of to-language Decoder Models: Jointly-trained Models and Frozen Models

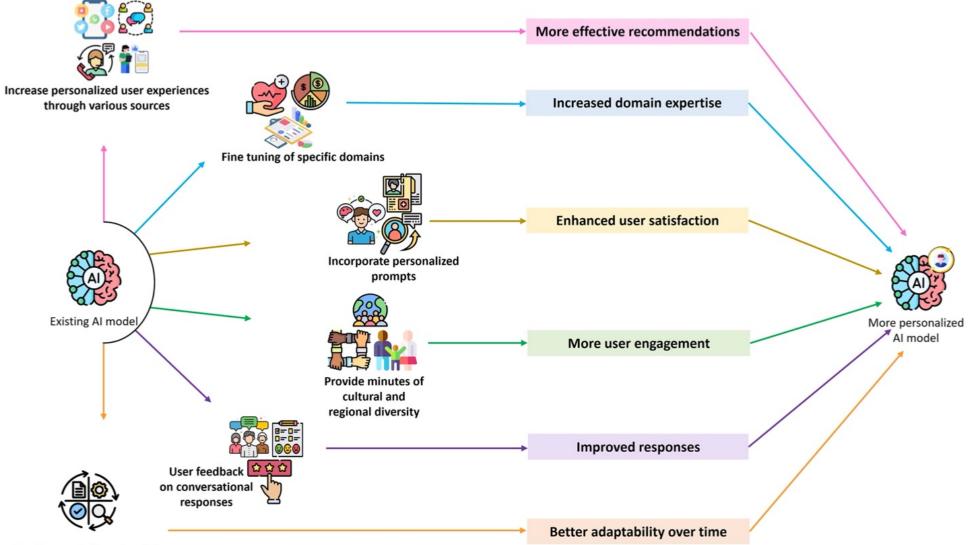

Generative Al Text, Image, Video, Audio **Applications**

ChatGPT Research

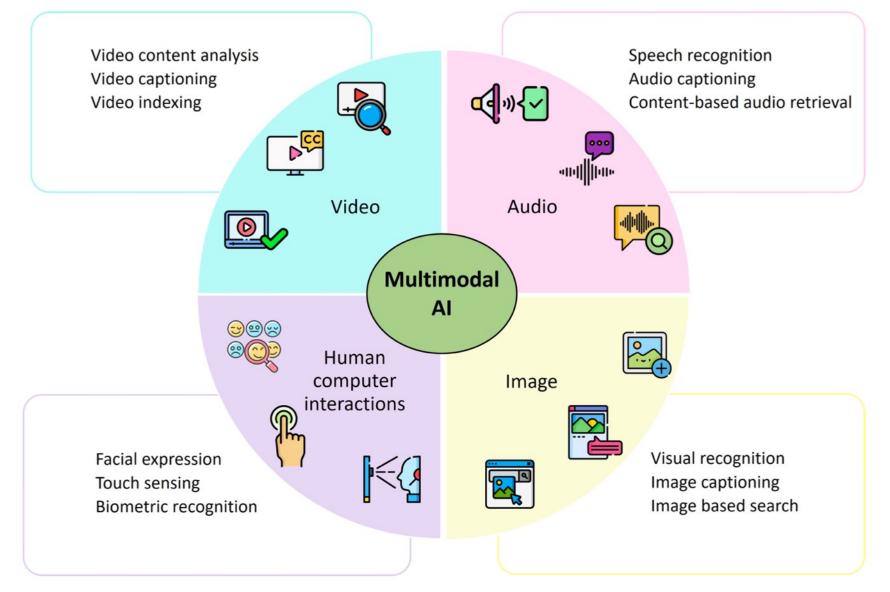


A common trend identified in the reported chatGPT research

Taxonomy of Literature on ChatGPT



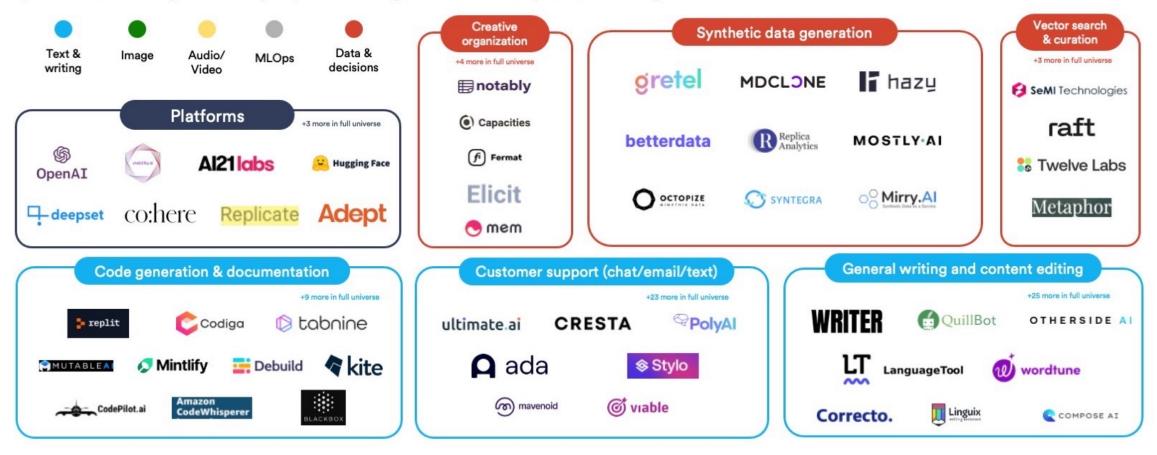
Enhancing the Conversational Ability of ChatGPT


Improvised futuristic AI model

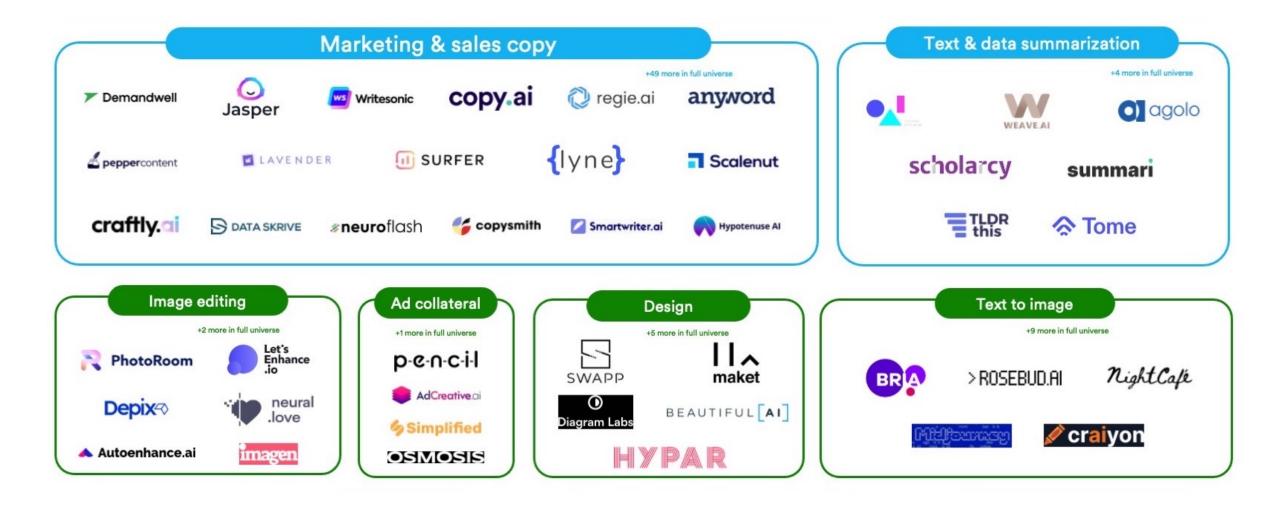
Domain/Person Specific Personalization of ChatGPT

Continuous train and update

Technological Integration for Multimodal AI


Trustworthy AI: Interplay of Various Factors

Generative Al


BASE10 TREND MAP: GENERATIVE AI

Companies are grouped based on medium produced and segmented by use case within each medium. Companies that offer products across segments are grouped in the segment of the core product offering.

Base¹⁰

Generative Al

Generative Al

DALL·E 2

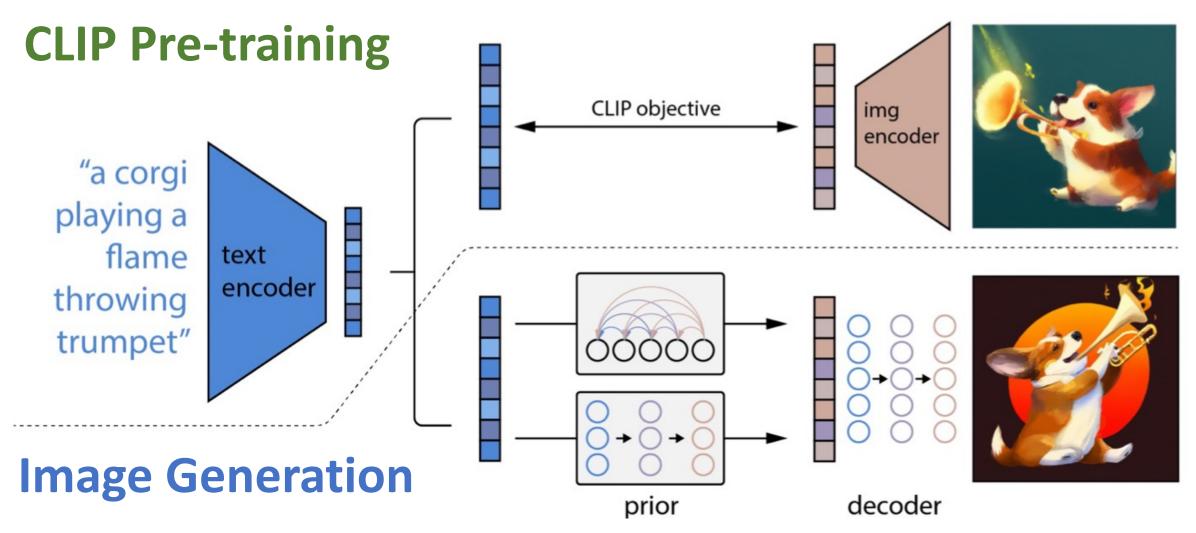
Create original, realistic images and art from a text description. It can combine concepts, attributes, and styles.

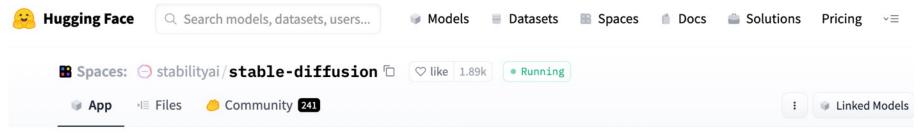
 \rightarrow

TEXT DESCRIPTION

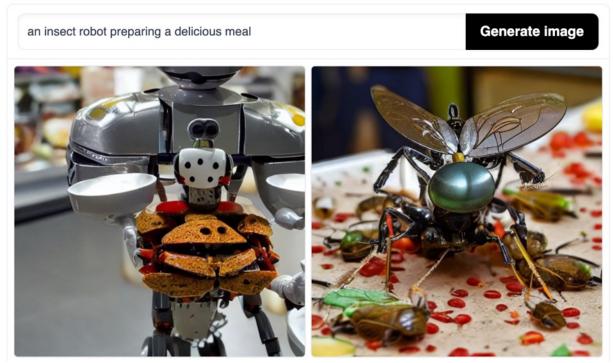
An astronaut Teddy bears A bowl of soup

riding a horse lounging in a tropical resort in space playing basketball with cats in space


in a photorealistic style in the style of Andy Warhol as a pencil drawing DALL·E 2


https://openai.com/dall-e-2/

The Model Structure of DALL-E-2


Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

Stable Diffusion

3 Stable Diffusion Demo

Stable Diffusion is a state of the art text-to-image model that generates images from text. For faster generation and forthcoming API access you can try <u>DreamStudio Beta</u>

https://huggingface.co/spaces/stabilityai/stable-diffusion

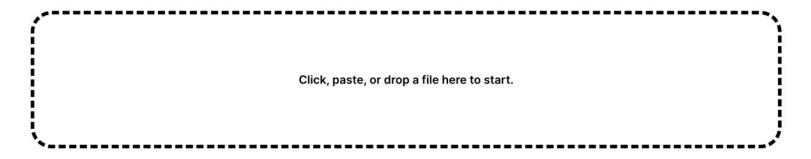
Stable Diffusion Colab

G woctezuma / stable-diffusion-cola	Public		⚠ Notifications 양 Fork 7 ☆ Star 31 -
<> Code Issues In Pull requests) Actions 🖽 Projects 🖽 Wiki 🔃 S	Security 🗠 Insights	
		Go to file Code -	
woctezuma README: add a reference for sampler schedules 37bc02d 24 days ago 🕚 18 commits			Colab notebook to run Stable Diffusion.
	Initial commit	27 days ago	deep-learning colab image-generation
README.md	README: add a reference for sampler scheo	dules 24 days ago	text-to-image diffusion text2image
🗅 stable_diffusion.ipynb	Allow to choose the scheduler	25 days ago	colaboratory google-colab
			colab-notebook google-colaboratory
i≡ README.md			google-colab-notebook
			text-to-image-synthesis huggingface
Stable-Diffusion-Colab			diffusion-models text-to-image-generation latent-diffusion
The goal of this repository is to provide a Colab notebook to run the text-to-image "Stable Diffusion" model [1].			stable-diffusion huggingface-diffusers diffusers stable-diffusion-diffusers
ି Usage			口 Readme MIT license
• Run stable_diffusion.ipynb. Open in Colab			☆ 31 stars⊙ 2 watching

https://github.com/woctezuma/stable-diffusion-colab

Stable Diffusion Reimagine

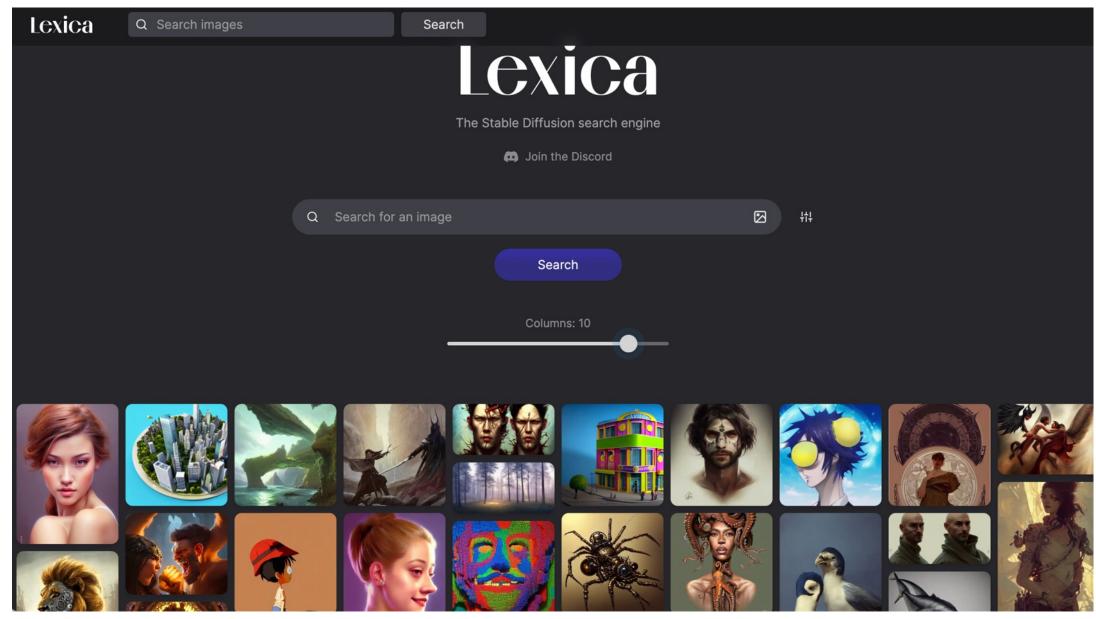
Apps 🗸 🛛 API 🛛 B


Blog Pricing

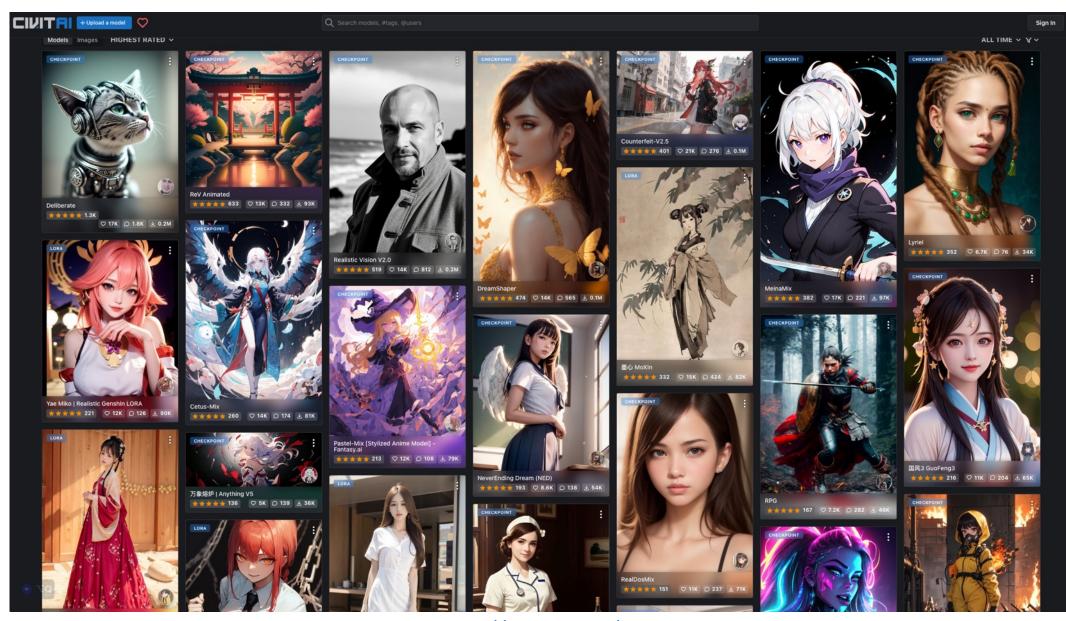
Sign-in / Sign-up

Stable diffusion reimagine

Create multiple variations from a single image.

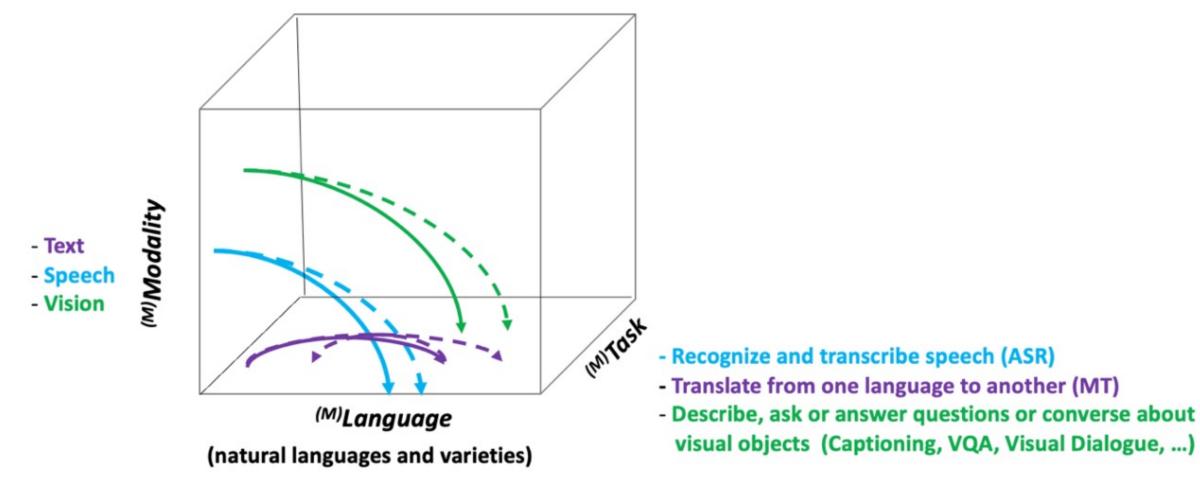


 \checkmark Or click on an example below


https://clipdrop.co/stable-diffusion-reimagine

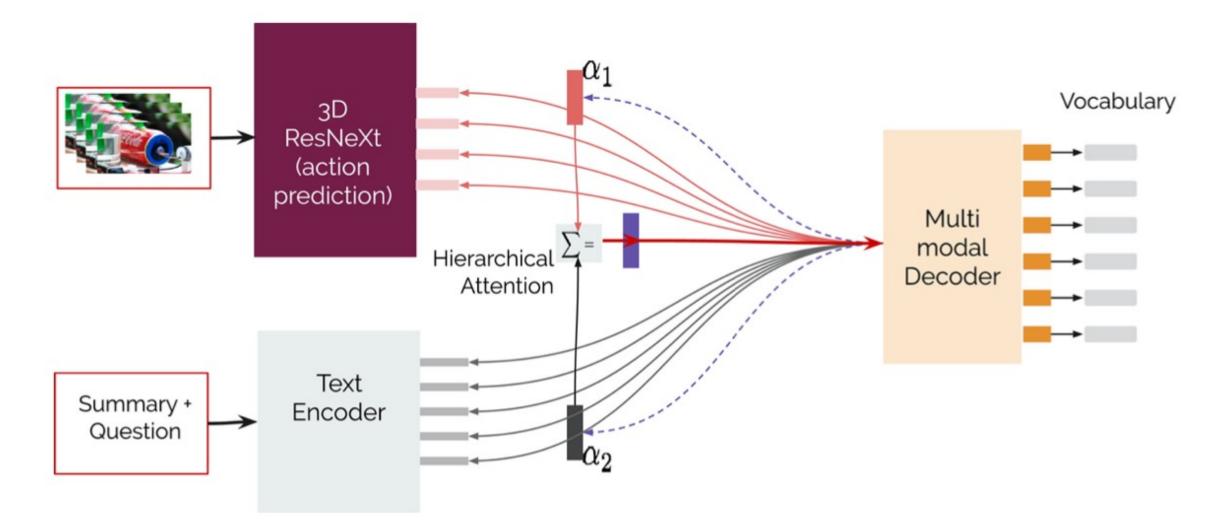
Lexica Art: Search Stable Diffusion images and prompts

https://lexica.art/


Civitai: Stable Diffusion AI Art Models

https://civitai.com/

NLG from a Multilingual, Multimodal and Multi-task perspective


Multi³(Natural Language) Generation

Source: Erdem, Erkut, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al.

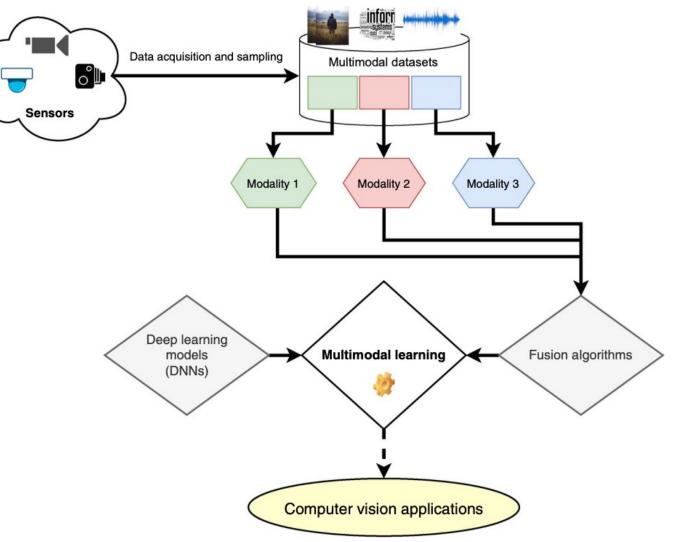
"Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

Text-and-Video Dialog Generation Models with Hierarchical Attention

Source: Erdem, Erkut, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al.

"Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

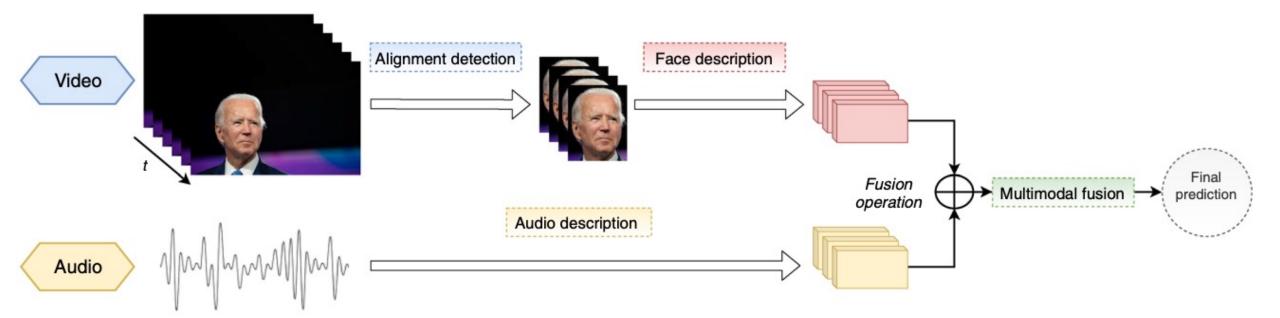
Multimodal Few-Shot Learning with Frozen Language Models



Curated samples with about five seeds required to get past well-known language model failure modes of either repeating text for the prompt or emitting text that does not pertain to the image. These samples demonstrate the ability to generate open-ended outputs that adapt to both images and text, and to make use of facts that it has learned during language-only pre-training.

> Source: Maria Tsimpoukelli, Jacob L. Menick, Serkan Cabi, S. M. Eslami, Oriol Vinyals, and Felix Hill (2021). "Multimodal few-shot learning with frozen language models." Advances in Neural Information Processing Systems 34 (2021): 200-212.

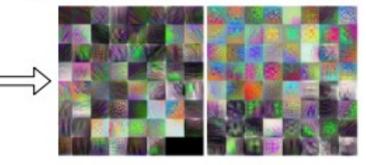
Multimodal Pipeline


that includes three different modalities (Image, Text. Audio)

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

"A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

Video and Audio Multimodal Fusion


Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022). "A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

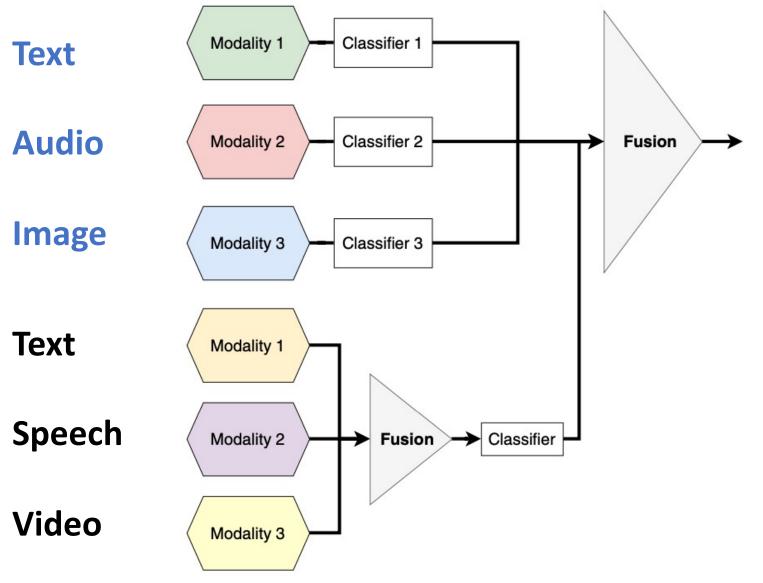
Visual and Textual Representation

Image

Visual representations (Dense)

Text

This is the oldest and most important defensive work to have been built along the North African coastline by the Arab conquerors in the early days of Islam. Founded in 796, this building underwent several modifications during the medieval period. Initially, it formed a quadrilateral and then was composed of four buildings giving onto two inner courtyards.

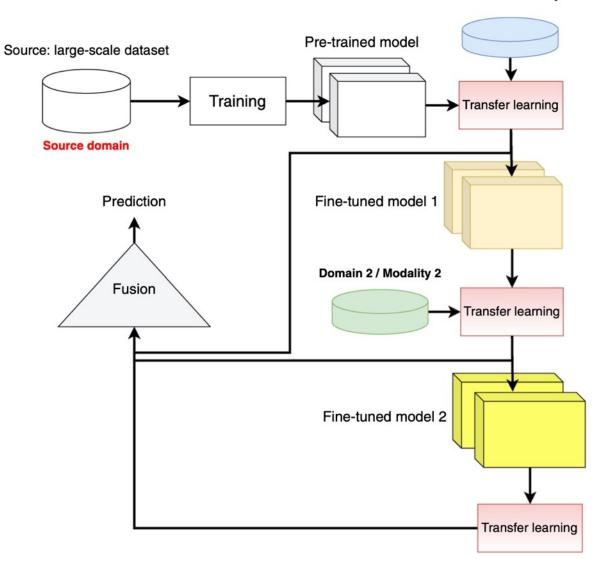

Textual representations (Sparse)

$ \longrightarrow $	-	_	_	_

Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

"A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

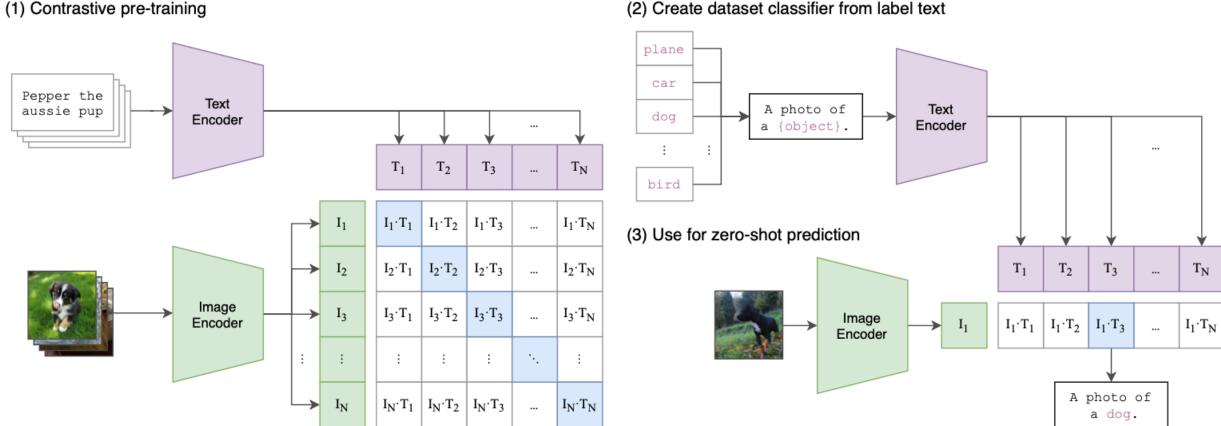
Hybrid Multimodal Data Fusion



Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

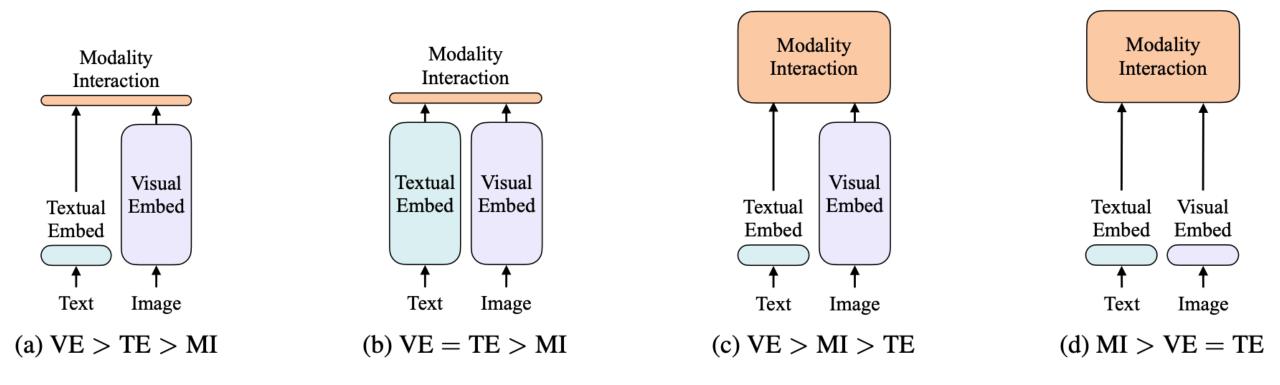
"A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.

Multimodal Transfer Learning


Domain 1 / Modality 1

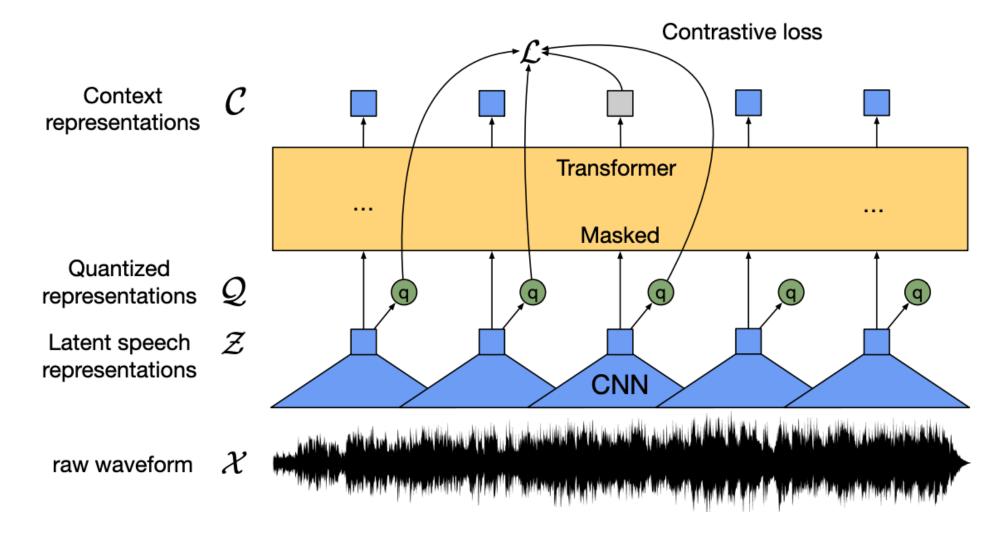
Source: Bayoudh, Khaled, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa (2022).

"A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets." The Visual Computer 38, no. 8: 2939-2970.


CLIP: Learning Transferable Visual Models From Natural Language Supervision

(2) Create dataset classifier from label text

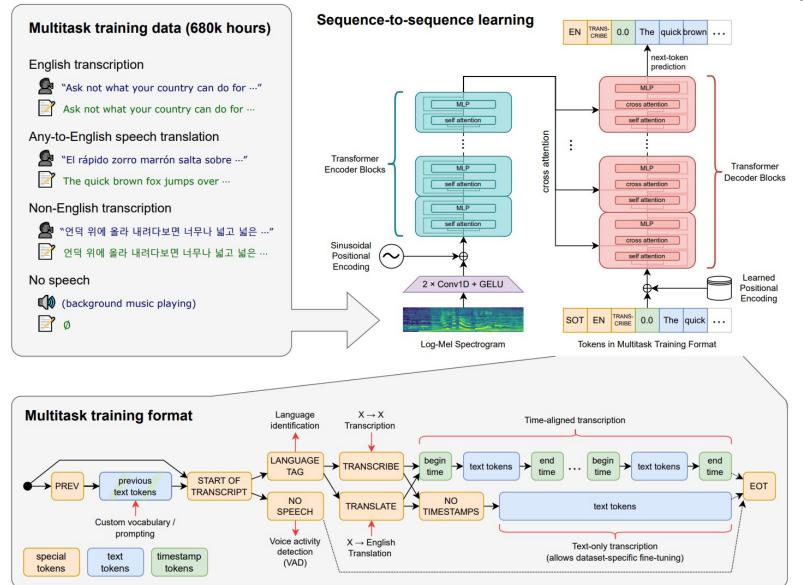
Source: Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. (2021) "Learning transferable visual models from natural language supervision." In International Conference on Machine Learning, pp. 8748-8763. PMLR.


ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

Source: Kim, Wonjae, Bokyung Son, and Ildoo Kim (2021). "Vilt: Vision-and-language transformer without convolution or region supervision." In International Conference on Machine Learning, pp. 5583-5594. PMLR.

wav2vec 2.0:

A framework for self-supervised learning of speech representations



Source: Baevski, Alexei, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.

"wav2vec 2.0: A framework for self-supervised learning of speech representations." Advances in Neural Information Processing Systems 33 (2020): 12449-12460.

Whisper:

Robust Speech Recognition via Large-Scale Weak Supervision

44

Microsoft Azure Text to Speech (TTS)

Text SSML

You can replace this text with any text you wish. You can either write in this text box or paste your own text here.

Try different languages and voices. Change the speed and the pitch of the voice. You can even tweak the SSML (Speech Synthesis Markup Language) to control how the different sections of the text sound. Click on SSML above to give it a try!

Enjoy using Text to Speech!

Language

English (United States)

Voice

Jenny (Neural)

Speaking style

General

Speaking speed: 1.00

Pitch: 0.00

Play

Source: <u>https://azure.microsoft.com/en-gb/products/cognitive-services/text-to-speech/</u>

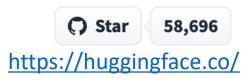
Hugging Face

Q Search models, datas

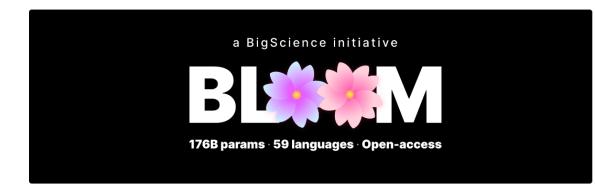
Models

sets 🛛 🖹 Spaces

📫 Docs 🛛 🚔 Solutions P


Pricing ∽≡

Log In Sign Up


The AI community building the future.

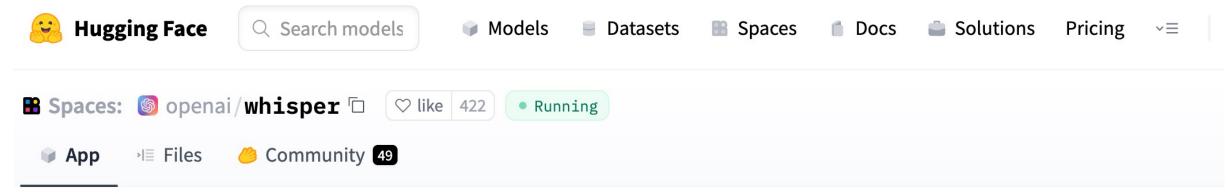
Build, train and deploy state of the art models powered by the reference open source in machine learning.

BLOOM

BigScience Large Open-science Open-access Multilingual Language Model

BigScience Large Open-science Open-access Multilingual Language Model

Version 1.3 / 6 July 2022


Current Checkpoint: Training Iteration 95000

Total seen tokens: 366B

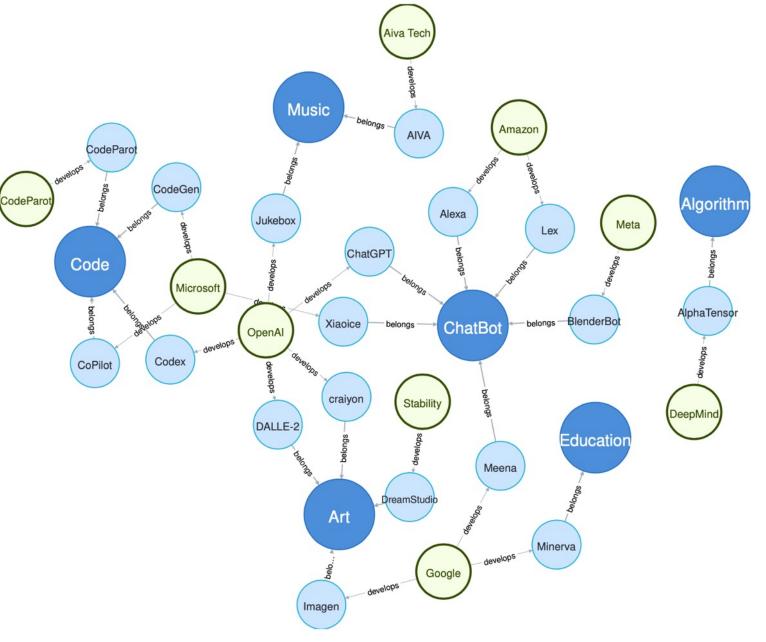
Downloads last mon 12,875	th	\sim	_~~	
Hosted inference Text Generation	ence API 🤅)		
	Groups	~	Examples	\sim
I love bloom. Su through a simila when <u>I</u>				• //
sampling 🛑 g	reedy	(i) <u>BLOOM promp</u>	oting tips
Switch to "greedy math/history/tra repetitive/less inv	nslations (b	accurate out which	e completion n may be	e.g.
Compute	+Enter			1.3

Source: https://huggingface.co/bigscience/bloom

OpenAl Whisper

Whisper

Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. This demo cuts audio after around 30 secs.


You can skip the queue by using google colab for the space:

	0 ×	Transcribe
▶ 0:05 / 0:05	■ :	

Source: https://huggingface.co/spaces/openai/whisper

Generative Al Research Areas, **Applications** and **Companies**

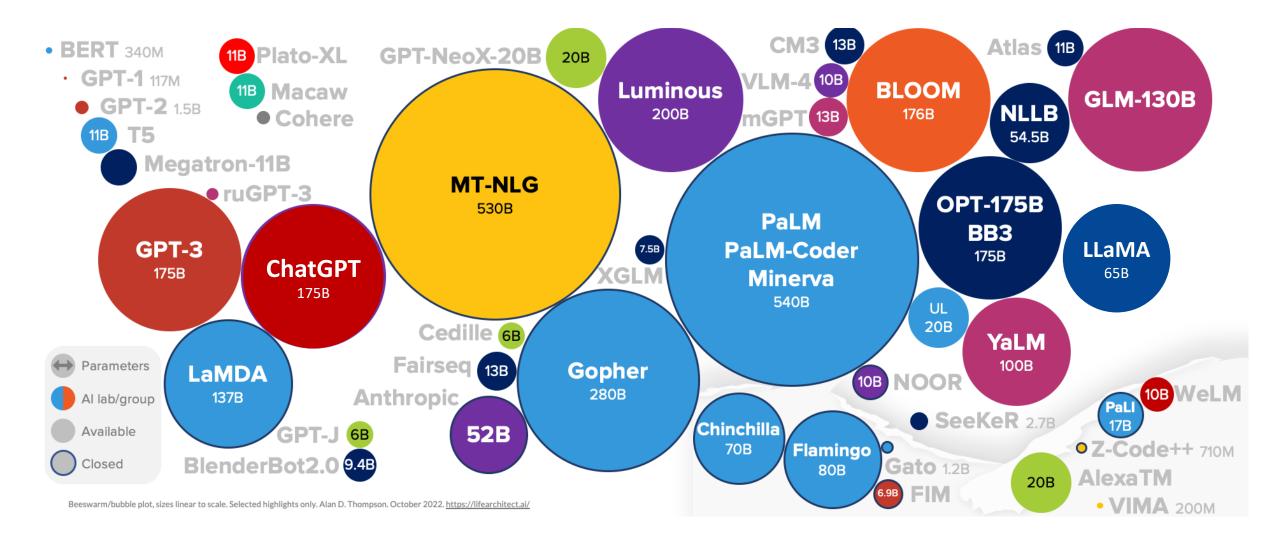
Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

Applications of Generative AI Models

Application	Platform/Software	Company	Year	Papaer	Link
ChatBot	Xiaoice	Microsoft	2018	[200]	Xiaoice
ChatBot	Meena	Google	2020	[201]	Meena Blog
ChatBot	BlenderBot	Meta	2022	[202]	Blenderbot
ChatBot	ChatGPT	OpenAI	2022	[10]	ChatGPT
ChatBot	Alexa	Amazon	2014	-	Amazon Alexa
ChatBot	Lex	Amazon	2017	-	Amazon Lex
Music	AIVA	Aiva Tech	2016	-	AIVA
Music	Jukebox	OpenAI	2020	[203]	Jukebox
Code	CodeGPT	Microsoft	2021	[204]	CodeGPT
Code	CodeParrot	CodeParrot	2022	[205]	CodeParrot
Code	Codex	OpenAI	2021	[206]	Codex blog
Code	CoPilot	Microsoft	2021	[206]	CoPilot
Art	DALL-E-2	OpenAI	2022	[5]	DALL-E-2 Blog
Art	DreamStudio	Stability	2022	[13]	Dreamstudio
Art	craiyon	OpenAI	2021	[1]	Craiyon
Art	Imagen	Google	2022	[152]	Imagen
Education	Minerva	Google	2022	[207]	Minerva Blog
Algorithm	AlphaTensor	DeepMind	2022	[208]	AlphaTensor

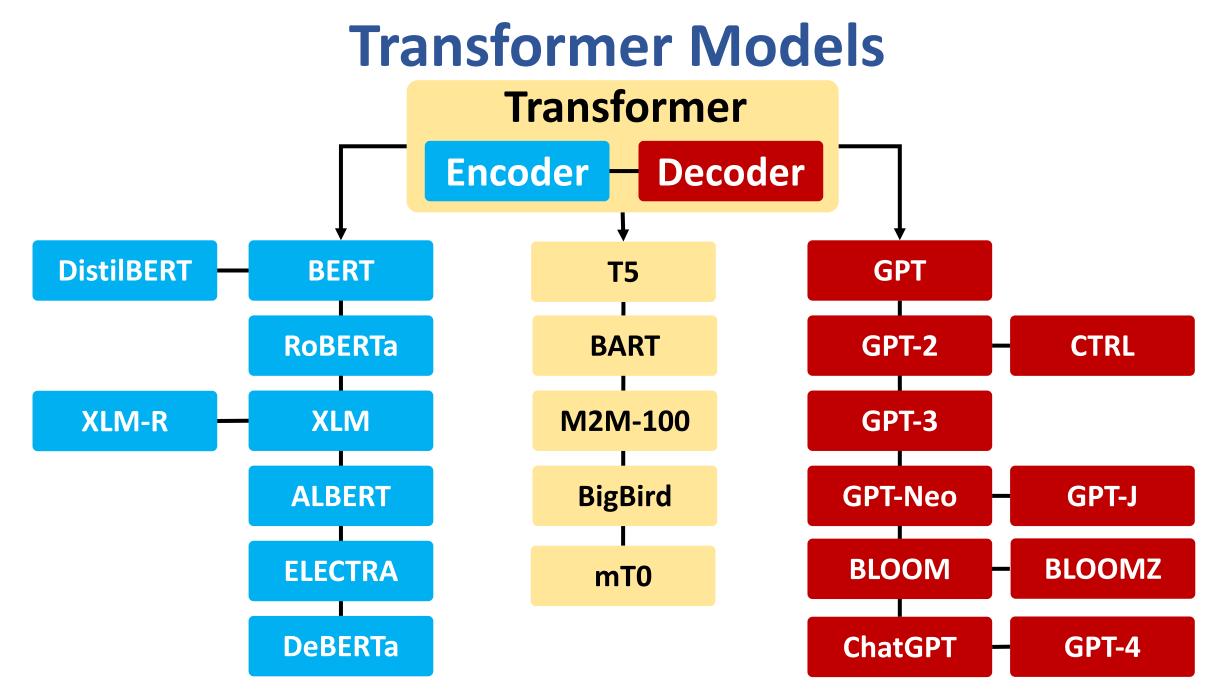
Source: Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of Al-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.

Outline



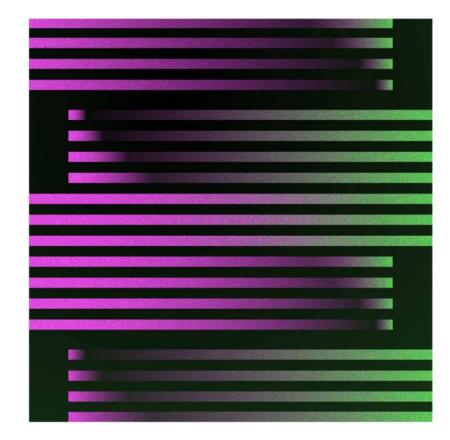
- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A


ChatGPT


Large Language Models (LLMs) Foundation Models

Large Language Models (LLM) (GPT-3, ChatGPT, PaLM, BLOOM, OPT-175B, LLaMA)

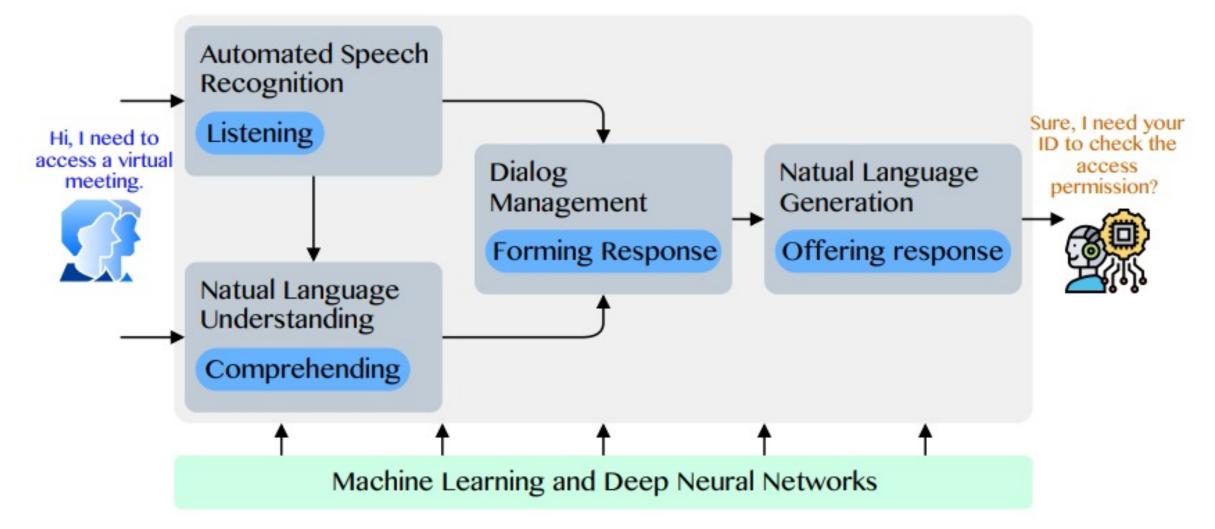
The Transformers Timeline


OpenAl ChatGPT

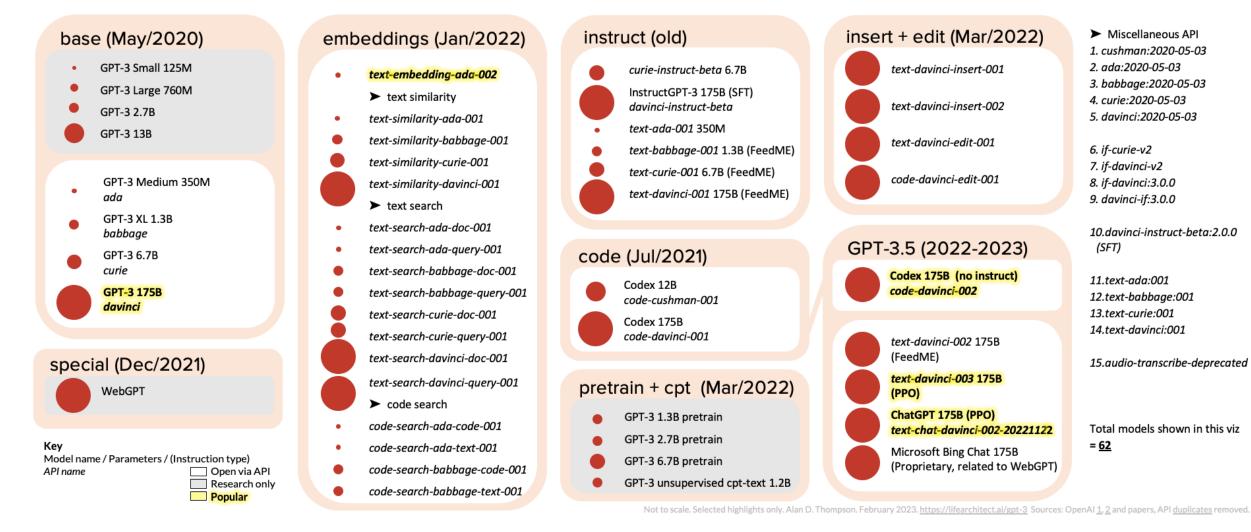
⑤OpenAI

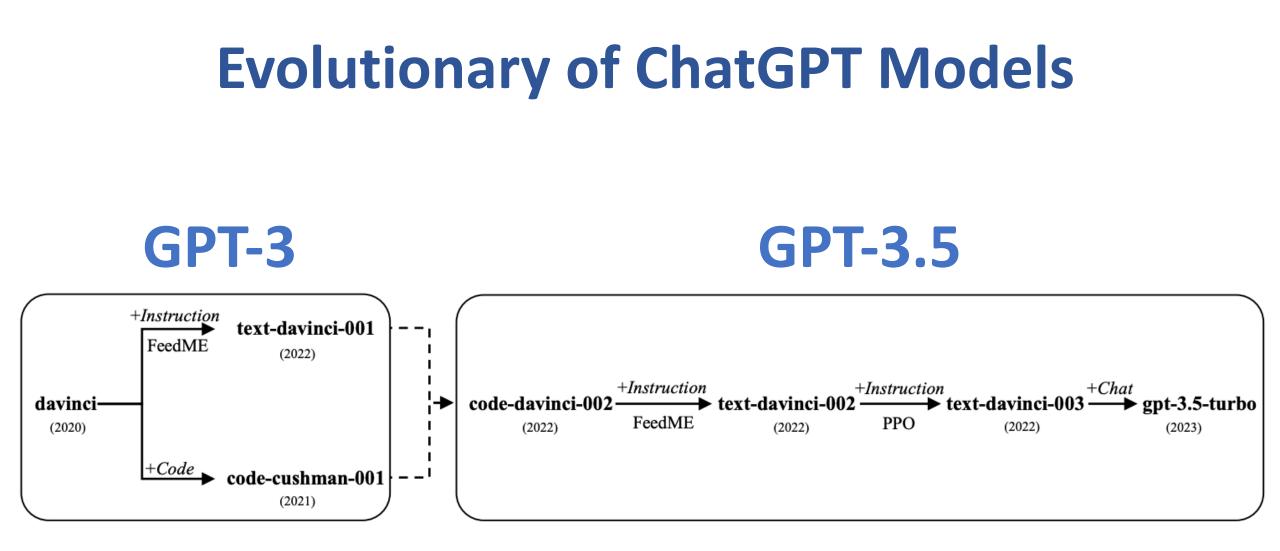
API RESEARCH BLOG ABOUT

ChatGPT: Optimizing Language Models for Dialogue


We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.

Source: https://openai.com/blog/chatgpt/


Conversational AI


to deliver contextual and personal experience to users

Source: Huynh-The, Thien, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.

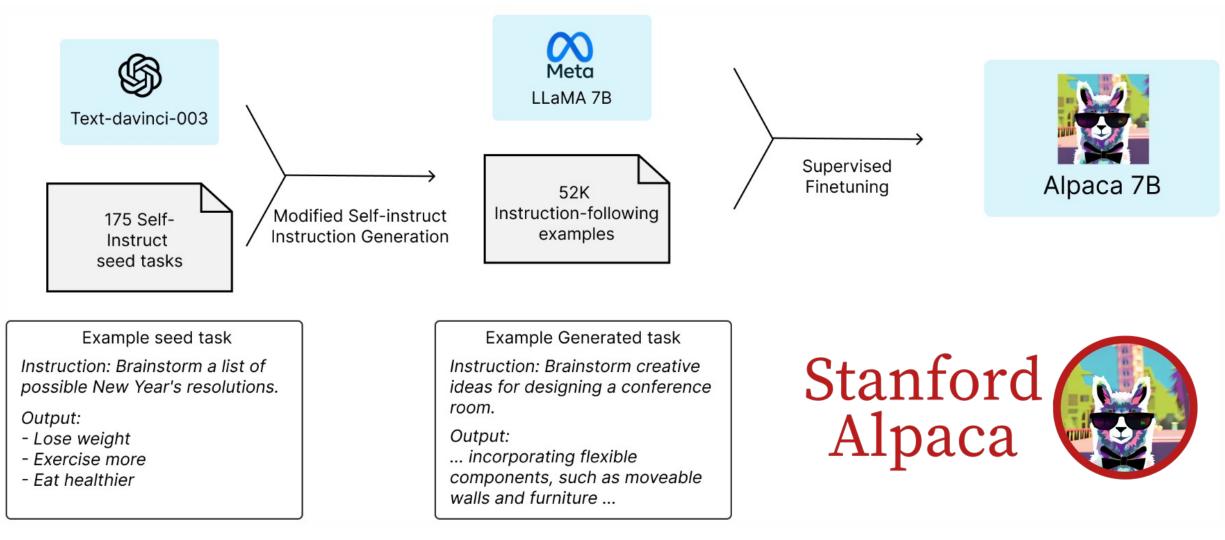
ChatGPT and GPT-3 Family (GPT-3, InstructGPT, GPT-3.5, ChatGPT)

OpenAl ChatGPT and Open LLM GPT-4, LLaMA, Alpaca, Dolly, Cerebras-GPT, GPT4All, Vicuna, ColossalChat, Koala, Phoenix

- OpenAl GPT-4
- Deepmind Chinchilla
- Meta OPT (LLaMA)
- Pythia
- Stanford Alpaca
- Databricks Dolly
- Cerebras-GPT
- GPT4All
- Vicuna
- ColossalChat
- BAIR Koala

Large Language Models (LLM) Openness and Training Philosophy

Model	Model architecture	Training data	Model weights	Checkpoints	Compute- optimal training	License
OpenAl GPT-4	Closed	Closed	No	No	Unknown	Not available
Deepmind Chinchilla	Open	Closed	No	No	Yes	Not available
Meta OPT	Open	Open	Researchers Only	Yes	No	Non- commercial
Pythia	Open	Open	Open	Yes	No	Apache 2.0
Cerebras-GPT	Open	Open	Open	Yes	Yes	Apache 2.0


Phoenix: Democratizing ChatGPT across Languages

Model	Backbone	#paras	Open-s	ource	Claimed language	instruc		raining conver	sation	Release date
			model	data	88-	data	lang	data	lang	
ChatGPT	unknown	unknown	X	X	multi					11/30/22
Wenxin ⁷	unknown	unknown	X	×	zh					03/16/23
ChatGLM ⁸	GLM	6B	✓ ¹	×	en/zh					03/16/23
Tongyi ⁹	unknown	unknown	X	×	zh					04/07/23
Shangliang ¹⁰	unknown	unknown	X	×	zh					04/10/23
Alpaca [12]	LLaMA	7B	X	1	en	52K	en	X	X	03/13/23
Dolly ¹¹ ²	GPT-J	6B	1	1	en	52k	en	X	X	03/24/23
BELLE [6]	BLOOMZ	7B	1	1	zh	1.5M	ch	X	X	03/26/23
Guanaco ¹²	LLaMA	7B	1	1	en/zh/ja/de	534K ³	4 ⁴	X	X	03/26/23
Chinese-alpaca [3]	LLaMA	7/13B	1	1	en/zh	2M/3M	en/zh	X	X	03/28/23
LuoTuo [7]	LLaMA	7B	1	1	zh	52k	cn	X	X	03/31/23
Vicuna [2]	LLaMA	7/13B	1	✓ ⁵	en	X	X	70K	multi ⁶	03/13/23
Koala ¹³	LLaMA	13B	1	1	en	355K	en	117K	en	04/03/23
BAIZE [17]	LLaMA	7/13/30B	1	1	en	X	X	111.5K	en	04/04/23
Phoenix	BLOOMZ	7B	1	1	multi	267K	40+	189K	40+	04/08/23
Latin Phoenix (Chimera)	LLaMA	7B/13B	1	1	Latin	267K	40+	189K	40+	04/08/23

Stanford Alpaca:

A Strong, Replicable Instruction-Following Model

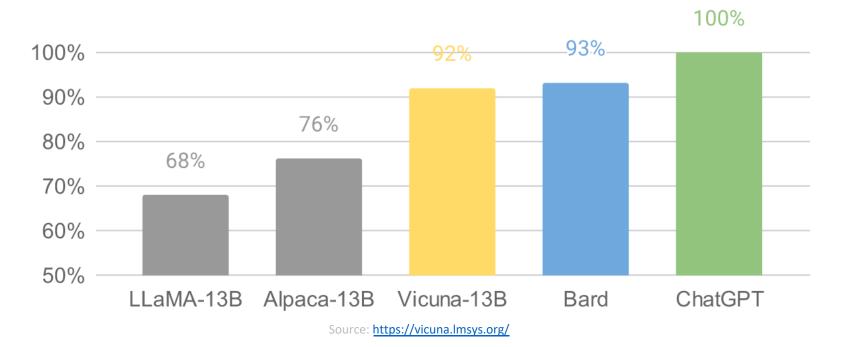
GPT4All:

Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo

- Demo, data and code to train an assistant-style large language model with ~800k GPT-3.5-Turbo Generations based on LLaMa
- Reproducibility
 - Trained LoRa Weights:
 - gpt4all-lora (four full epochs of training):
 - <u>https://huggingface.co/nomic-ai/gpt4all-lora</u>

GPT4AII-J

An Apache-2 Licensed Assistant-Style Chatbot


GPT4All-J (GPT4All v2) based on Open Source **GPT-J** model

Model	BoolQ	PIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT4All-J 6.7B	73.4	74.8	63.4	64.7	54.9	36.0	40.2
GPT4All-J Lora 6.7B	68.6	75.8	66.2	63.5	56.4	35.7	40.2
GPT4All LLaMa Lora 7B	73.1	77.6	72.1	67.8	51.1	40.4	40.2
Dolly 6B	68.8	77.3	67.6	63.9	62.9	38.7	41.2
Dolly 12B	56.7	75.4	71.0	62.2	64.6	38.5	40.4
Alpaca 7B	73.9	77.2	73.9	66.1	59.8	43.3	43.4
Alpaca Lora 7B	74.3	79.3	74.0	68.8	56.6	43.9	42.6
GPT-J 6.7B	65.4	76.2	66.2	64.1	62.2	36.6	38.2
LLaMa 7B	73.1	77.4	73.0	66.9	52.5	41.4	42.4
Pythia 6.7B	63.5	76.3	64.0	61.1	61.3	35.2	37.2
Pythia 12B	67.7	76.6	67.3	63.8	63.9	34.8	38

Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality

by the Team with members from UC Berkeley, CMU, Stanford, and UC San Diego

- Vicuna-13B: an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
- The cost of training Vicuna-13B is around \$300.

Chinese-Vicuna:

A Chinese Instruction-following LLaMA-based Model 一個中文低資源的 Ilama+lora方案

• Dataset Preview	Size: 409 MB API Go to dataset viewer	
instruction (string)	input (string)	output (string)
"用一句话描述地球为什么是独一无二的。 \n "		"地球上有适宜生命存在的条件和多样化的生命形 式。"
"给出一段对话,要求GPT模型使用合适的语 气和回答方式继续对话。 对话: A:你今	нп	"A:这太好了!你的新工作听起来很令人兴奋。你 对接下来的日子有什么期望吗? B: 是啊,我非
"基于以下提示填写以下句子的空格。 提 示: - 提供多种现实世界的场景 - 空格…		"多种形容词可填,以下是其中一些例子: - 愉快 的 - 惬意的 - 轻松的 - 安静的 - 美妙的"
"请生成一个新闻标题,描述一场正在发生 的大型自然灾害。\n "		""强烈飓风肆虐,数百万人疏散!""
"为指定的词汇创建一个关于该词汇的简短 解释。"人工智能""		"人工智能是一种科技,通过使用计算机程序和算法 实现类似于人类智能的能力,例如学习、推理和自
"在给定的文本中查找并替换特定的单词。 原始文本:"这个句子中有一个错误的单词	нн	"替换后的文本:"这个句子中有一个修改的单词""
"根据给定的年份,计算该年是否为闰年。 \n \n1996\n"		"是闰年。"

Chinese-Vicuna based on Guanaco Dataset and Belle Dataset

Source: https://huggingface.co/datasets/Chinese-Vicuna/guanaco belle merge v1.0

StableLM Stability AI Language Models

- StableLM-Alpha models are trained on the new dataset that build on The Pile, which contains 1.5 trillion tokens, roughly 3x the size of The Pile.
 - These models will be trained on up to 1.5 trillion tokens.
 - The context length for these models is 4096 tokens.
- Fine-tuned the model with Stanford Alpaca's procedure using a combination of five recent datasets for conversational agents: Stanford's Alpaca, Nomic-Al's gpt4all, RyokoAl's ShareGPT52K datasets, Databricks labs' Dolly, and Anthropic's HH.

RedPajama

a project to create leading open-source models,

starts by reproducing LLaMA training dataset of over 1.2 trillion tokens

Dataset	RedPajama	LLaMA*
CommonCrawl	878 billion	852 billion
C4	175 billion	190 billion
Github	59 billion	100 billion
Books	26 billion	25 billion
ArXiv	28 billion	33 billion
Wikipedia	24 billion	25 billion
StackExchange	20 billion	27 billion
Total Tokens	1.2 trillion	1.25 trillion

Chat with Open Large Language Models

Single Model

Chatbot Arena (battle)

Chatbot Arena (side-by-side)

chat.lmsys.org

A Chat with Open Large Language Models

- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [Blog post]
- [GitHub] [Twitter] [Discord]

Terms of use

By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service collects user dialogue data and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) license.

Leaderboard

Choose a model to chat with

Vicuna: a chat assistant fine-tuned from LLaMA on user- shared conversations by LMSYS	<u>WizardLM</u> : an instruction-following LLM using evol-instruct by Microsoft	<u>GPT4All-Snoozy</u> : A finetuned LLaMA model on assistant style data by Nomic AI
Guanaco: a model fine-tuned with QLoRA by UW	Koala: a dialogue model for academic research by BAIR	<u>RWKV-4-Raven</u> : an RNN with transformer-level LLM performance
Alpaca: a model fine-tuned from LLaMA on instruction- following demonstrations by Stanford	<u>ChatGLM</u> : an open bilingual dialogue language model by Tsinghua University	<u>OpenAssistant (oasst)</u> : an Open Assistant for everyone by LAION
LLaMA: open and efficient foundation language models by Meta	<u>Dolly</u> : an instruction-tuned open large language model by Databricks	StableLM: Stability AI language models
MPT-Chat: a chatbot fine-tuned from MPT-7B by MosaicML	<u>FastChat-T5</u> : a chat assistant fine-tuned from FLAN-T5 by LMSYS	

vicuna-13b

× •

Chat with Open Large Language **Models:** Chatbot Arena

vicuna-13b

🗊 Model A

Large Language Models for Data Science

Large Language Models (LLMs) are a type of artificial neural network that have been trained on a massive amount of text data to generate human-like language. These models have achieved state-of-the-art performance on a variety of natural language processing tasks, such as language translation, text generation, and question answering. In the field of data science, LLMs have been used to process and analyze unstructured text data, such as customer reviews, social media posts, and news articles, to extract insights and make predictions. mpt-7b-chat

× •

🗊 Model B

Large Language Models for Data Science

Large Language Models (LLMs) are a type of artificial intelligence (AI) model that are capable of processing and generating human-like natural language. They are based on deep neural networks that are trained on large amounts of text data, such as books, news articles, and social media posts. LLMs have shown promising results in a variety of data science applications, including language translation, text summarization, and sentiment analysis. One of the most popular LLMs is GPT-3 (Generative Pre-trained Transformer 3), developed by OpenAI. GPT-3 has 175 billion parameters, making it one of the largest language models ever created. It can perform a wide range of language tasks, such as text completion, question answering, and text generation. GPT-3 has been used in various industries, including healthcare, finance, and journalism, to automate

👈 A is better

👉 B is better

💙 Tie

👎 Both are bad

× •

Leaderboard

Chat

with

Open

Large

Language

Models:

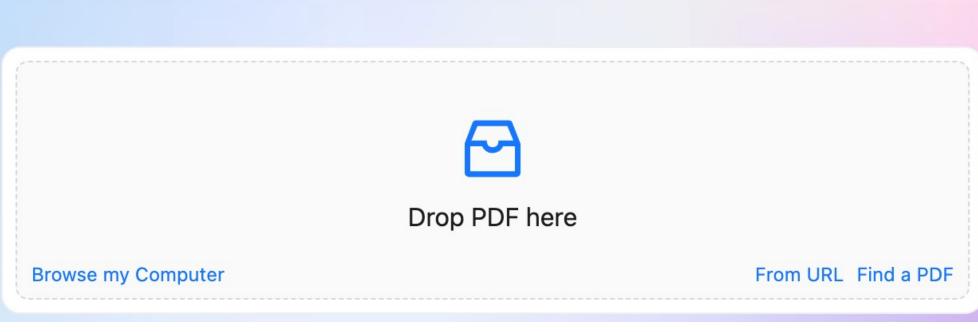
Leaderboard

[Blog] [GitHub] [Twitter] [Discord]

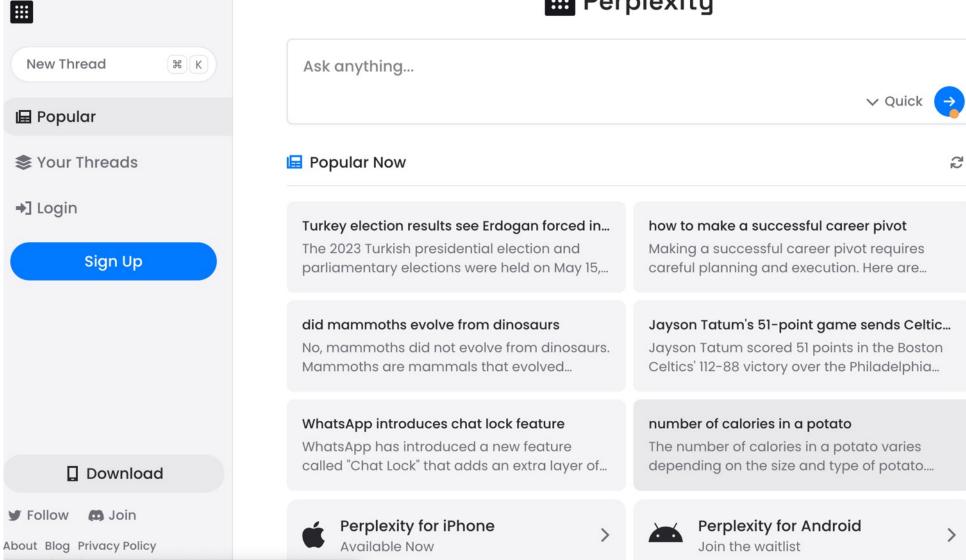
We use the Elo rating system to calculate the relative performance of the models. You can view the voting data, basic analyses, and calculation procedure in this <u>notebook</u>. We will periodically release new leaderboards. If you want to see more models, please help us <u>add them</u>. Last updated: 2023-05-22 09:35:17 PDT

Rank	Model	Elo Rating	Description
1	ogpt-4	1225	ChatGPT-4 by OpenAl
2	o claude-v1	1195	Claude by Anthropic
3	<u>claude-instant-v1</u>	1153	Claude Instant by Anthropic
4	gpt-3.5-turbo	1143	ChatGPT-3.5 by OpenAl
5	vicuna-13b	1054	a chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYS
6	palm-2	1042	PaLM 2 for Chat (chat-bison@001) by Google
7	vicuna-7b	1007	a chat assistant fine-tuned from LLaMA on user-shared conversations by LMSYS
8	koala-13b	980	a dialogue model for academic research by BAIR
9	mpt-7b-chat	952	a chatbot fine-tuned from MPT-7B by MosaicML
10	fastchat-t5-3b	941	a chat assistant fine-tuned from FLAN-T5 by LMSYS
11	alpaca-13b	937	a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford
12	RWKV-4-Raven-14B	928	an RNN with transformer-level LLM performance

https://chat.lmsys.org/


www.chatpdf.com

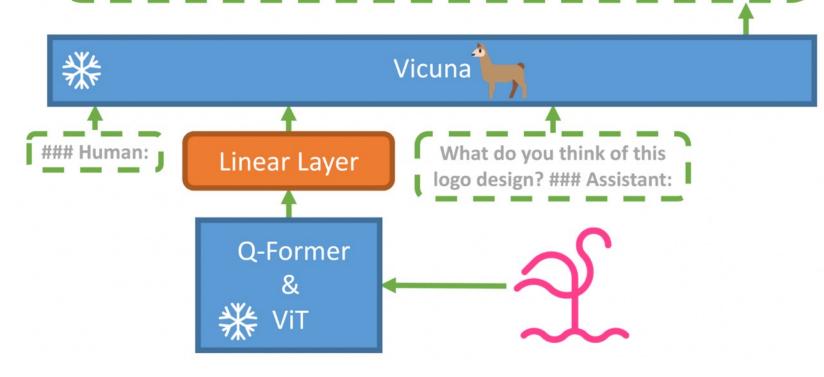
Post to Twitter


f Share on Facebook

https://www.chatpdf.com/

Perplexity.ai

III Perplexity

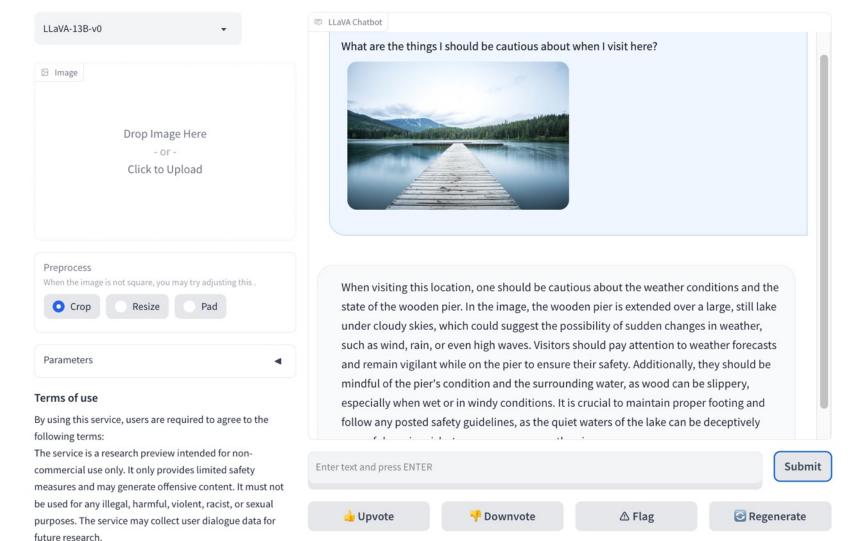


https://www.perplexity.ai/

MiniGPT-4:

Enhancing Vision-language Understanding with Advanced Large Language Models

The logo design is simple and minimalistic, with a pink line drawing of a flamingo standing on one leg in the water. The design is clean and easy to recognize, making it suitable for use in various contexts such as a logo for a beach resort or a flamingothemed event. The use of a flamingo as a symbol adds a touch of whimsy and fun to the design, making it memorable and eye-catching. Overall, it's a well-designed logo that effectively communicates the brand's message.



LLaVA: Large Language and Vision Assistant

llava-vl.github.io

🚴 LLaVA: Large Language and Vision Assistant

[Project Page] [Paper] [Code] [Model]

Visual Instruction Tuning LLaVA: Large Language and Vision Assistant

University of Wisconsin-Madison, Microsoft Research, Columbia University

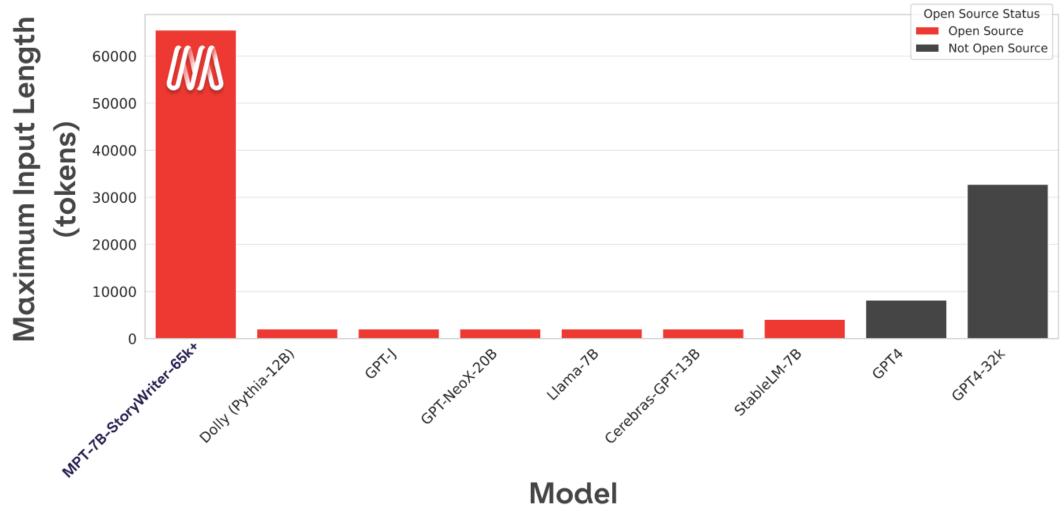
Science QA: New SoTA with the synergy of LLaVA with GPT-4

LLaVA represents a novel end-to-end trained large multimodal model that combines a vision encoder and Vicuna for general-purpose visual and language understanding, achieving impressive chat capabilities mimicking spirits of the multimodal GPT-4 and setting a new state-of-the-art accuracy on Science QA.

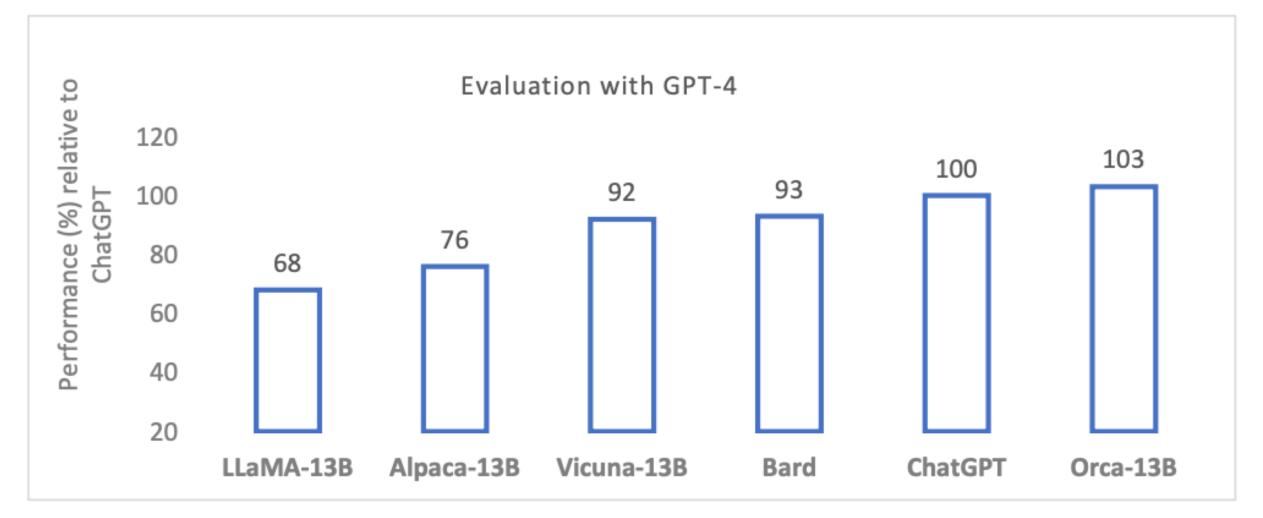
Source: https://llava-vl.github.io/

MPT-7B:

A New Standard for Open-Source, Commercially Usable LLMs

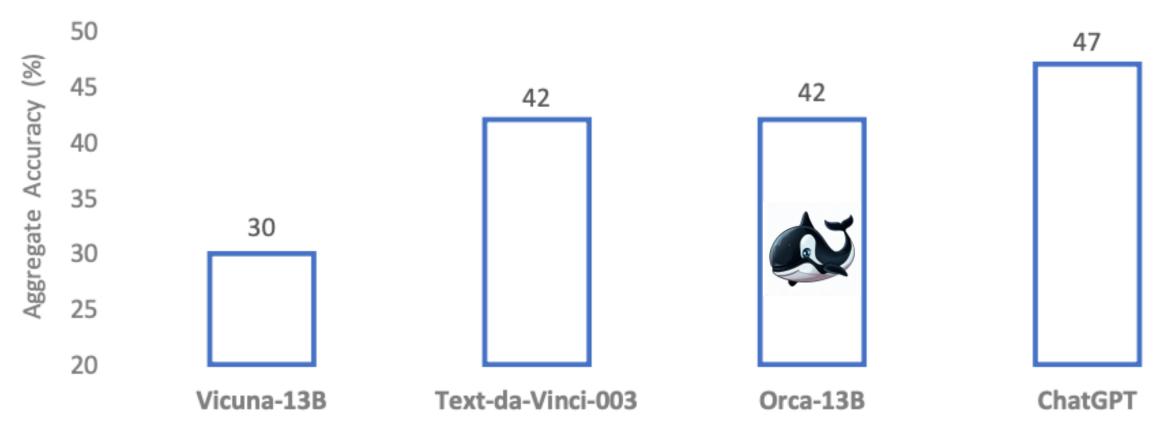


MPT-7B (MosaicML Pretrained Transformer)


vs. open source models on academic tasks

Model	LAMBADA (OpenAI)	HellaSwag	PIQA	ARC-Easy	ARC- Challenge	BoolQ	СОРА	Winograd	Winogrande	TriviaQA	Jeopardy	MMLU
₩ мрт-7в	0.703	0.761	0.799	0.673	0.394	0.750	0.813	0.878	0.683	0.343	0.308	0.296
LLaMA-7B	0.738	0.751	0.792	0.652	0.411	0.767	0.779	0.807	0.675	0.443	0.334	0.302
StableLM-7B (alpha)	0.533	0.411	0.666	0.435	0.259	0.606	0.672	0.646	0.513	0.049	0.000	0.251
Pythia-7B	0.667	0.636	0.761	0.581	0.325	0.634	0.769	0.786	0.607	0.198	0.022	0.265
Pythia-12B	0.704	0.672	0.768	0.605	0.351	0.675	0.781	0.847	0.627	0.233	0.026	0.253
GPTJ-6B	0.683	0.665	0.762	0.583	0.355	0.648	0.789	0.833	0.641	0.234	0.026	0.261
GPT-NeoX-20B	0.719	0.712	0.780	0.644	0.392	0.691	0.781	0.861	0.665	0.347	0.146	0.269
Cerebras-7B	0.636	0.582	0.744	0.564	0.311	0.625	0.734	0.779	0.603	0.141	0.012	0.259
Cerebras-13B	0.635	0.588	0.740	0.571	0.321	0.611	0.719	0.760	0.602	0.146	0.013	0.258
OPT-7B	0.677	0.676	0.773	0.579	0.329	0.665	0.719	0.840	0.656	0.227	0.020	0.251
OPT-13B	0.692	0.701	0.774	0.586	0.345	0.657	0.805	0.851	0.670	0.282	0.126	0.257

MPT-7B-StoryWriter-65k+ Maximum Input Lengths of Different LLMs



Orca-13B and ChatGPT for GRE and GMAT

Professional and Academic Exams (SAT, LSAT, GRE, GMAT) (Zero-shot, MCQ)

Meta Llama-2 70B: Best Open Source and Commercial LLM (Llama-2, Falcon, MPT)

🔿 Meta Al

Introducing Llama 2

The next generation of our open source large language model

Llama 2 is available for free for research and commercial use.

Download the Model

Source: https://ai.meta.com/llama/

Meta Llama-2 70B: Best Open Source and Commercial LLM (Llama-2, Falcon, MPT)

MODEL SIZE (PARAMETERS)	PRETRAINED	FINE-TUNED FOR CHAT USE CASES
7B	Model architecture:	Data collection for helpfulness and safety:
13B	Pretraining Tokens: 2 Trillion	Supervised fine-tuning: Over 100,000
70B	Context Length: 4096	Human Preferences: Over 1,000,000

Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations.

Benchmark (Higher is better)	МРТ (7В)	Falcon (7B)	Llama-2 (7B)	Llama-2 (13B)	МРТ (30В)	Falcon (40B)	Llama-1 (65B)	Llama-2 (70B)
MMLU	26.8	26.2	45.3	54.8	46.9	55.4	63.4	68.9
TriviaQA	59.6	56.8	68.9	77.2	71.3	78.6	84.5	85.0
Natural Questions	17.8	18.1	22.7	28.0	23.0	29.5	31.0	33.0
GSM8K	6.8	6.8	14.6	28.7	15.2	19.6	50.9	56.8
HumanEval	18.3	N/A	12.8	18.3	25.0	N/A	23.7	29.9
AGIEval (English tasks only)	23.5	21.2	29.3	39.1	33.8	37.0	47.6	54.2
BoolQ	75.0	67.5	77.4	81.7	79.0	83.1	85.3	85.0

Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests.

Source: https://ai.meta.com

Meta

Llama-2 70B:

Best

Open Source

and

Commercial

LLM

(Llama-2,

Falcon, MPT)

Llama-2: Comparison to closed-source models (GPT-3.5, GPT-4, PaLM) on academic benchmarks

Benchmark (shots)	GPT-3. 5	GPT-4	PaLM	PaLM-2-L	Llama 2
MMLU (5-shot)	70.0	86.4	69.3	78.3	68.9
TriviaQA (1-shot)	_	_	81.4	86.1	85.0
Natural Questions (1-shot)	_	_	29.3	37.5	33.0
GSM8K (8-shot)	5 7.1	92.0	5 6. 5	80.7	5 6.8
HumanEval (0-shot)	48.1	67.0	26.2	-	29.9
BIG-Bench Hard (3-shot)	_	_	5 2.3	65.7	5 1.2

Results for GPT-3.5 and GPT-4 are from OpenAI (2023). Results for the PaLM model are from Chowdhery et al. (2022). Results for the PaLM-2-L are from Anil et al. (2023).

LLAMA 2: Open Foundation and Fine-Tuned Chat Models

Hugo Touvron* Louis Martin[†] Kevin Stone[†]

Peter Albert Amjad Almahairi Yasmine Babaei Nikolay Bashlykov Soumya Batra Prajjwal Bhargava Shruti Bhosale Dan Bikel Lukas Blecher Cristian Canton Ferrer Moya Chen Guillem Cucurull David Esiobu Jude Fernandes Jeremy Fu Wenyin Fu Brian Fuller Cynthia Gao Vedanuj Goswami Naman Goyal Anthony Hartshorn Saghar Hosseini Rui Hou Hakan Inan Marcin Kardas Viktor Kerkez Madian Khabsa Isabel Kloumann Artem Korenev Punit Singh Koura Marie-Anne Lachaux Thibaut Lavril Jenya Lee Diana Liskovich Yinghai Lu Yuning Mao Xavier Martinet Todor Mihaylov Pushkar Mishra Igor Molybog Yixin Nie Andrew Poulton Jeremy Reizenstein Rashi Rungta Kalyan Saladi Alan Schelten Ruan Silva Eric Michael Smith Ranjan Subramanian Xiaoqing Ellen Tan Binh Tang Ross Taylor Adina Williams Jian Xiang Kuan Puxin Xu Zheng Yan Iliyan Zarov Yuchen Zhang Angela Fan Melanie Kambadur Sharan Narang Aurelien Rodriguez Robert Stojnic Sergey Edunov Thomas Scialom*

GenAI, Meta

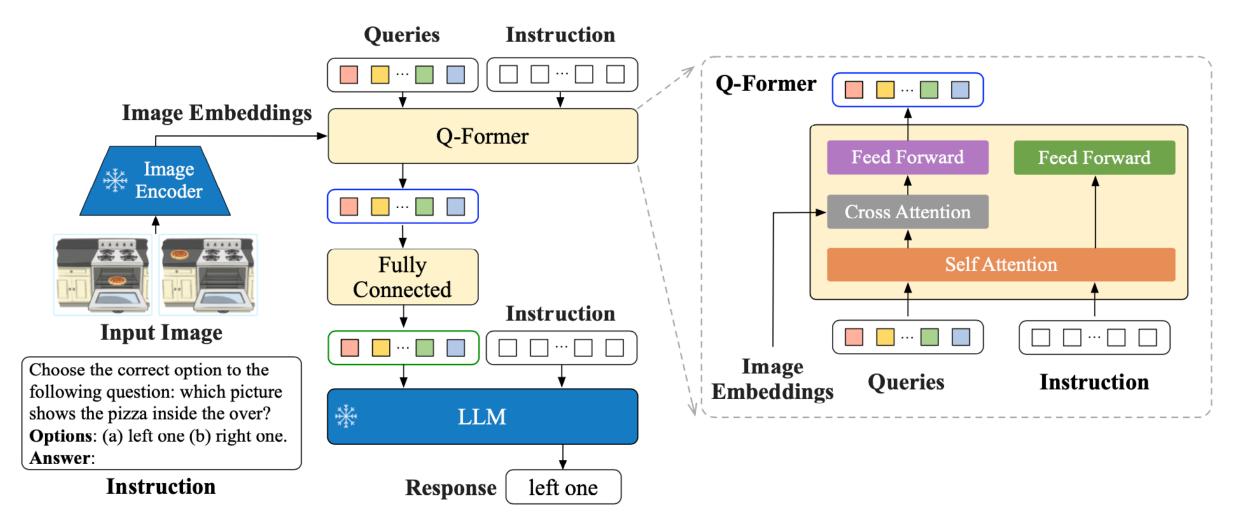
Abstract

In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called LLAMA 2-CHAT, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of LLAMA 2-CHAT in order to enable the community to build on our work and contribute to the responsible development of LLMs.

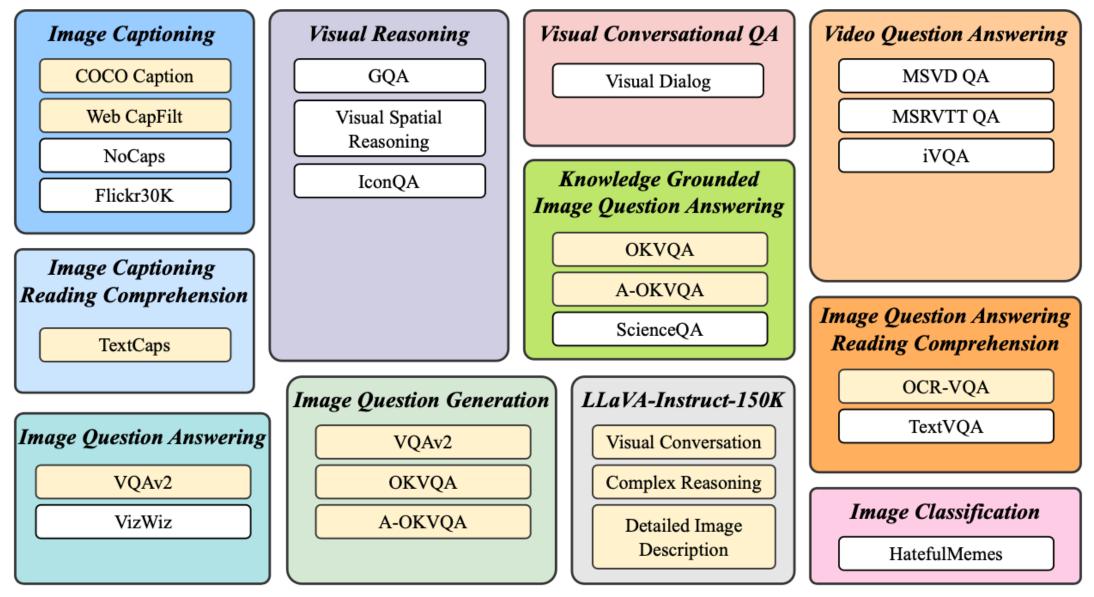
Llama 2: Open Foundation and Fine-Tuned Chat Models

19 Jul 2023 [cs.CL] 2307.09288v2

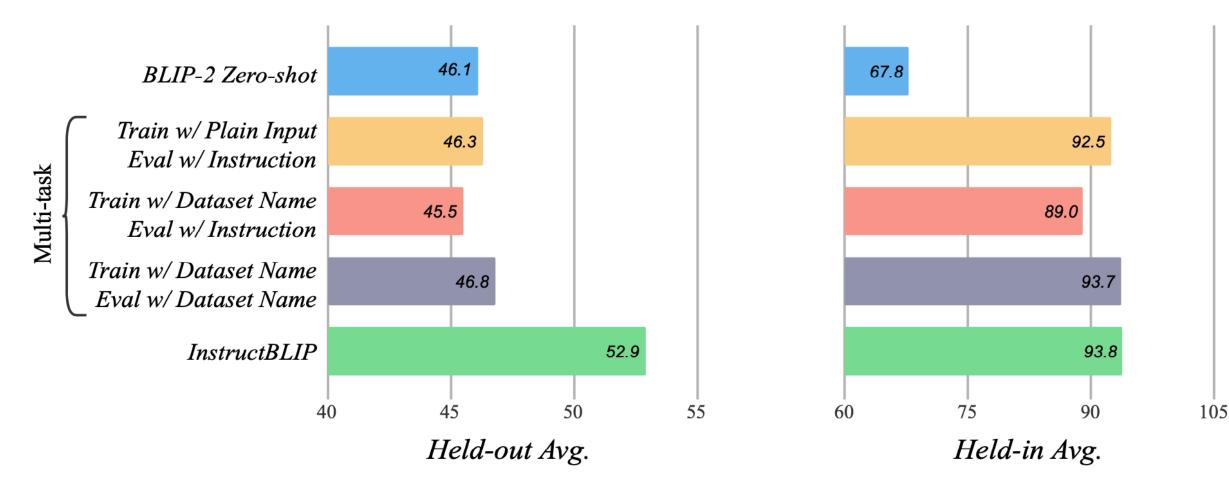
InstructBLIP Vision-Language Models with Instruction Tuning



Introduce me this painting in detail.



The painting depicts a young girl with a pearl earring, also known as "The Girl with the Pearl Earring" or "Girl with a Pearl Earring". She is wearing a blue dress and has a pearl earring on her left ear. Her hair is pulled back into a bun, and she is looking directly at the viewer. This painting is a famous work of art by Dutch painter Johannes Vermeer, created in 1665. It is considered one of his masterpieces and is widely recognized for its intricate details and realistic portrayal of the young girl's facial expression.


Model Architecture of InstructBLIP Vision-Language Models with Instruction Tuning

Vision-Language Instruction Tuning: Datasets

Instruction Tuning vs. Multitask Learning based on BLIP-2 FlanT5XL

Finetuning BLIP-2 and InstructBLIP on downstream datasets

	ScienceOA			A-OKVQA				
	ScienceQA IMG	OCR-VQA	OKVQA	Direct Val	Answer Test	Multi-choice Val Test		
				Val	1051	Vai	1051	
Previous SOTA	LLaVA [25] 89.0	GIT [<mark>42</mark>] 70.3	PaLM-E(562B) [9] 66.1	[15] 56.3	[<mark>36</mark>] 61.6	[15] 73.2	[<mark>36</mark>] 73.6	
BLIP-2 (FlanT5 _{XXL})	89.5	72.7	54.7	57.6	53.7	80.2	76.2	
InstructBLIP (FlanT5 _{XXL})	90.7	73.3	55.5	57.1	54.8	81.0	76.7	
BLIP-2 (Vicuna-7B)	77.3	69.1	59.3	60.0	58.7	72.1	69.0	
InstructBLIP (Vicuna-7B)	79.5	72.8	62.1	64.0	62.1	75.7	73.4	

InstructBLIP **Vision-Language Models with Instruction Tuning** LLaVA Large Language and **Vision Assistant**

MiniGPT-4

[Input Image]

[Input Instruction] Do you know who drew this painting?

Leonardo da Vinci.

[Model Response]

InstructBLIP 🦝

LLaVA

MiniGPT-4

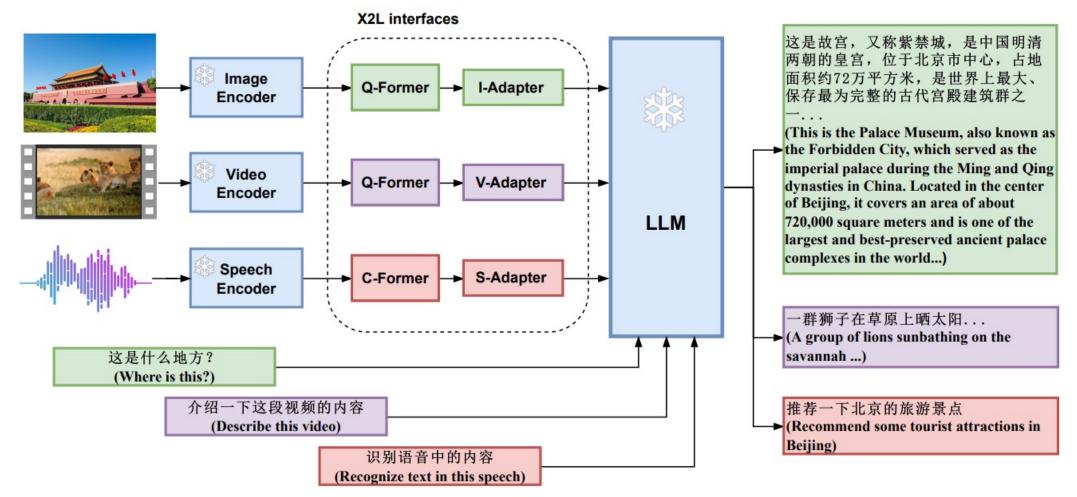
The painting depicts a woman, commonly believed to be Mona Lisa, the famous artwork by Leonardo da Vinci. It is a portrait painting that showcases the woman's enigmatic smile and has become one of the most famous and iconic art pieces in the world. The original work is displayed in the Louvre Museum in Paris, and it is known for its intricate details, use of oil paint, and the artist's innovative techniques that contributed to its enduring appeal and mystery.

The painting is the Mona Lisa, also known as the Mona Lisa, by Leonardo da Vinci. It is one of the most famous paintings in the world and is known for its enigmatic smile and the mysterious identity of the sitter. The painting is housed in the Louvre Museum in Paris, France.

Instruction Tuning Datasets

Dataset Name	Held-out	Dataset Description
COCO Caption [23]	×	We use the large-scale COCO dataset for the image captioning task. Specifically, Karpathy split [17] is used, which divides the data into 82K/5K/5K images for the train/val/test sets.
Web CapFilt	×	14M image-text pairs collected from the web with additional BLIP-generated synthetic captions, used in BLIP [21] and BLIP-2 [20].
NoCaps [3]	✓ (val)	NoCaps contains 15,100 images with 166,100 human-written captions for novel object image captioning.
Flickr30K [50]	✓ (test)	The Flickr30k dataset consists of 31K images collected from Flickr, each image has five ground truth captions. We use the test split as the held-out which contains 1K images.
TextCaps [37]	× (TextCaps is an image captioning dataset that requires the model to comprehend and reason the text in images. Its train/val/test sets contain 21K/3K/3K images, respectively.
VQAv2 [11]	×	VQAv2 is dataset for open-ended image question answering. It is split into 82K/40K/81K for train/val/test.
VizWiz [12]	✓ (test-dev)	A dataset contains visual questions asked by people who are blind. 8K images are used for the held-out evaluation.
GQA [16]	✓ (test-dev)	GQA contains image questions for scene understanding and reasoning. We use the bal- anced test-dev set as held-out.
Visual Spatial Reasoning	✓ (test)	VSR is a collection of image-text pairs, in which the text describes the spatial relation of two objects in the image. Models are required to classify true/false for the description. We use the zero-shot data split given in its official github repository.
IconQA [28]	✓ (test)	IconQA measures the abstract diagram understanding and comprehensive cognitive reasoning abilities of models. We use the test set of its multi-text-choice task for held-out evaluation.
OKVQA [29]	×	OKVQA contains visual questions that require outside knowledge to answer. It has been split into 9K/5K for train and test.
A-OKVQA [35]	×	A-OKVQA is a successor of OKVQA with more challenging and diverse questions. It has 17K/1K/6K questions for train/val/test.

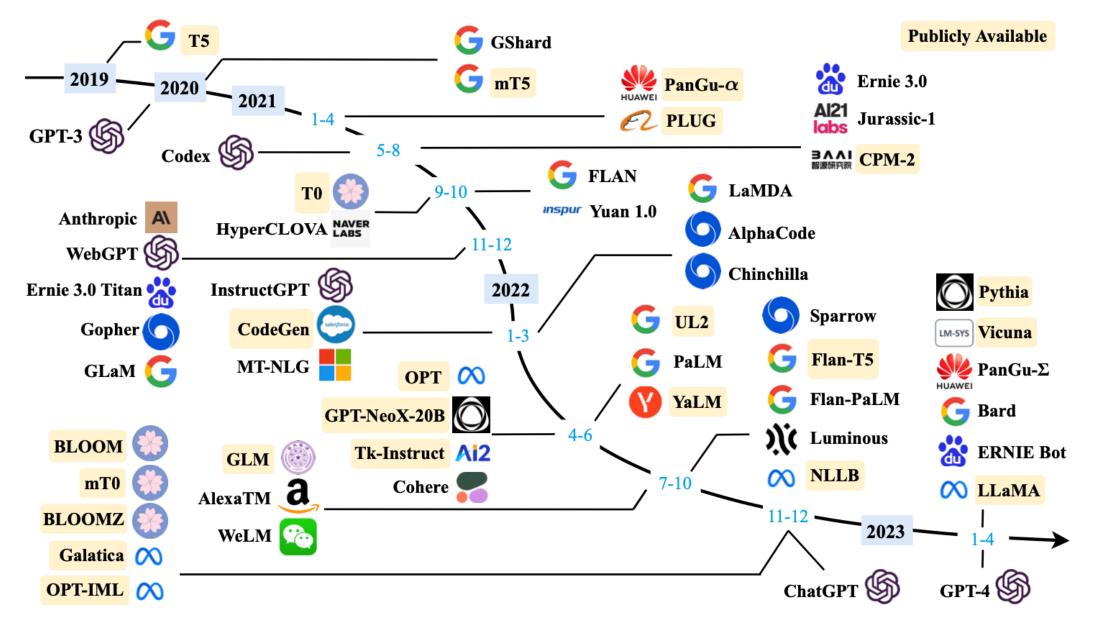
Instruction Tuning Datasets


Dataset Name	Held-out	Dataset Description
ScienceQA [27]	✓ (test)	ScienceQA covers diverse science topics with corresponding lectures and explanations. In out settings, we only use the part with image context (IMG).
Visual Dialog [8]	✓ (val)	Visual dialog is a conversational question answering dataset. We use the val split as the held-out, which contains 2,064 images and each has 10 rounds.
OCR-VQA [30]	×	OCR-VQA contains visual questions that require models to read text in the image. It has 800K/100K/100K for train/val/test, respectively.
TextVQA [38]	🖌 (val)	TextVQA requires models to comprehend visual text to answer questions.
HatefulMemes [18]	🗸 (val)	A binary classification dataset to justify whether a meme contains hateful content.
LLaVA-Instruct-150K [25]	×	An instruction tuning dataset which has three parts: detailed caption (23K), reasoning (77K), conversation (58K).
MSVD-QA [46]	🖌 (test)	We use the test set (13K video QA pairs) of MSVD-QA for held-out testing.
MSRVTT-QA [46]	✓ (test)	MSRVTT-QA has more complex scenes than MSVD, with 72K video QA pairs as the test set.
iVQA [48]	✔ (test)	iVQA is a video QA dataset with mitigated language biases. It has 6K/2K/2K samples for train/val/test.

Instruction Templates

	Task	Instruction Template
Image Captioning	Image Captioning	<image/> A short image caption: <image/> A short image description: <image/> A photo of <image/> An image that shows <image/> Write a short description for the image. <image/> Write a description for the photo. <image/> Provide a description of what is presented in the photo. <image/> Briefly describe the content of the image. <image/> Can you briefly explain what you see in the image? <image/> Could you use a few words to describe what you perceive in the photo? <image/> Using language, provide a short account of the image. <image/> Use a few words to illustrate what is happening in the picture.
VQA Vision Question Answering	VQA	<pre><image/>{Question} <image/>Question: {Question} <image/>Question: {Question} <image/>Question} A short answer to the question is <image/>Question} A: <image/>Question: {Question} Short answer: <image/>Given the image, answer the following question with no more than three words. {Question} <image/>Based on the image, respond to this question with a short answer: {Question}. Answer: <image/>Use the provided image to answer the question: {Question} Provide your answer as short as possible: <image/>What is the answer to the following question? "{Question}" <image/>The question "{Question}" can be answered using the image. A short answer is</pre>
VQG Vision Question Generation	VQG	<image/> Given the image, generate a question whose answer is: {Answer}. Question: <image/> Based on the image, provide a question with the answer: {Answer}. Question: <image/> Given the visual representation, create a question for which the answer is "{Answer}". <image/> From the image provided, craft a question that leads to the reply: {Answer}. Question: <image/> Considering the picture, come up with a question where the answer is: {Answer}. <image/> Taking the image into account, generate an question that has the answer: {Answer}. Question:

X-LLM:


Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages

Source: Chen, Feilong, Minglun Han, Haozhi Zhao, Qingyang Zhang, Jing Shi, Shuang Xu, and Bo Xu. "X-LLM: Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages." arXiv preprint arXiv:2305.04160 (2023).

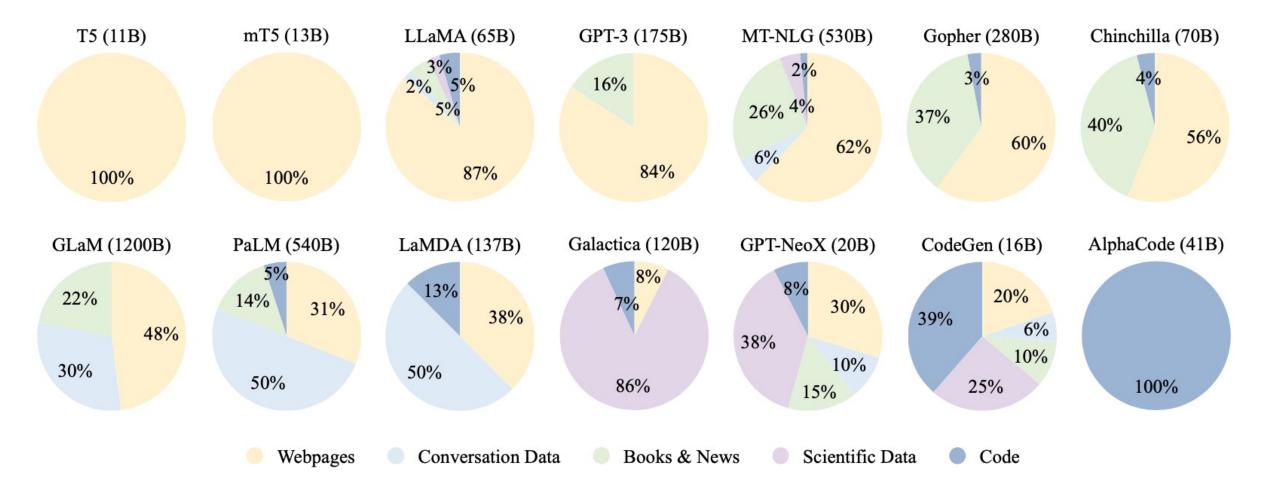
Large Language Models (LLMs) Foundation Models

Large Language Models (LLMs) (larger than 10B)

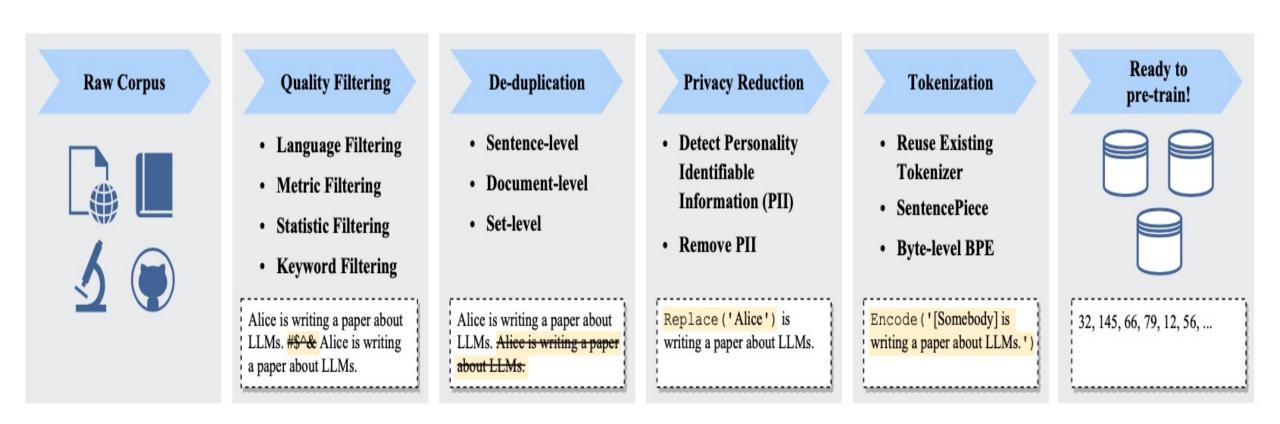
Large Language Models (LLMs) (larger than 10B)

	Model		Size (B)	Base Model		aptation RLHF	Pre-train Data Scale	Latest Data Timestamp	Hardware (GPUs / TPUs)	Training Time		uation CoT
	T5 [72]	Oct-2019	11	-	-	-	1T tokens	Apr-2019	1024 TPU v3	-	\checkmark	-
	mT5 [73]	Oct-2020	13	-	-	-	1T tokens	-	-	-	\checkmark	-
	PanGu- α [74]	Apr-2021	13*	-	-	-	1.1TB	-	2048 Ascend 910	-	\checkmark	-
	CPM-2 [75]	Jun-2021	198	-	-	-	2.6TB	-	-	-	-	-
	T0 [28]	Oct-2021	11	T5	\checkmark	-	-	-	512 TPU v3	27 h	\checkmark	-
	CodeGen [76]	Mar-2022	16	-	-	-	577B tokens	-	-	-	\checkmark	-
	GPT-NeoX-20B [77]	Apr-2022	20	-	-	-	825GB	-	96 40G A100	-	\checkmark	-
	Tk-Instruct [78]	Apr-2022	11	T5	\checkmark	-	-	-	256 TPU v3	4 h	\checkmark	-
	UL2 [79]	May-2022	20	-	-	-	1T tokens	Apr-2019	512 TPU v4	-	\checkmark	\checkmark
	OPT [80]	May-2022	175	-	-	-	180B tokens	-	992 80G A100	-	\checkmark	-
Publicly	NLLB [81]	Jul-2022	54.5	-	-	-	-	-	-	-	\checkmark	-
Available	GLM [82]	Oct-2022	130	-	-	-	400B tokens	-	768 40G A100	60 d	\checkmark	-
	Flan-T5 [83]	Oct-2022	11	T5	\checkmark	-	-	-	-	-	\checkmark	\checkmark
	BLOOM [68]	Nov-2022	176	-	-	-	366B tokens	-	384 80G A100	105 d	\checkmark	-
	mT0 [84]	Nov-2022	13	mT5	\checkmark	-	-	-	-	-	\checkmark	-
	Galactica [35]	Nov-2022	120	-	-	-	106B tokens	-	-	-	\checkmark	\checkmark
	BLOOMZ [84]	Nov-2022	176	BLOOM	\checkmark	-	-	-	-	-	\checkmark	-
	OPT-IML [85]	Dec-2022	175	OPT	\checkmark	-	-	-	128 40G A100	-	\checkmark	\checkmark
	LLaMA [57]	Feb-2023	65	-	-	-	1.4T tokens	-	2048 80G A100	21 d	\checkmark	-
	Pythia [86]	Apr-2023	12	-	-	-	300B tokens	-	256 40G A100	-	\checkmark	-

Large Language Models (LLMs) (larger than 10B)


	Model	Release Time	Size (B)	Base Model		aptation RLHF	Pre-train Data Scale	Latest Data Timestamp	Hardware (GPUs / TPUs)	Training Time		uation CoT
	GPT-3 [55]	May-2020	175	-	-	-	300B tokens	-	-	-	\checkmark	-
	GShard [87]	Jun-2020	600	-	-	-	1T tokens	-	2048 TPU v3	4 d	-	-
	Codex [88]	Jul-2021	12	GPT-3	-	-	100B tokens	May-2020	-	-	\checkmark	-
	ERNIE 3.0 [89]	Jul-2021	10	-	-	-	375B tokens	-	384 V100	-	\checkmark	-
	Jurassic-1 [90]	Aug-2021	178	-	-	-	300B tokens	- 800 GPU		-	\checkmark	-
	HyperCLOVA [91]	Sep-2021	82	-	-	-	300B tokens	-	1024 A100	13.4 d	\checkmark	-
	FLAN [62]	Sep-2021	137	LaMDA	\checkmark	-	-	-	128 TPU v3	60 h	\checkmark	-
	Yuan 1.0 [92]	Oct-2021	245	-	-	-	180B tokens	-	2128 GPU	-	\checkmark	-
	Anthropic [93]	Dec-2021	52	-	-	-	400B tokens	-	-	-	\checkmark	-
	WebGPT [71]	Dec-2021	175	GPT-3	-	\checkmark	-	-	-	-	\checkmark	-
	Gopher [59]	Dec-2021	280	-	-	-	300B tokens	-	4096 TPU v3	920 h	\checkmark	-
	ERNIE 3.0 Titan [94]	Dec-2021	260	-	-	-	300B tokens	-	2048 V100	28 d	\checkmark	-
	GLaM [95]	Dec-2021	1200	-	-	-	280B tokens	-	1024 TPU v4	574 h	\checkmark	-
Closed	LaMDA [<u>96]</u>	Jan-2022	137	-	-	-	2.81T tokens	-	1024 TPU v3	57.7 d	-	-
Source	MT-NLG [97]	Jan-2022	530	-	-	-	270B tokens	-	4480 80G A100	-	\checkmark	-
bource	AlphaCode [98]	Feb-2022	41	-	-	-	967B tokens	Jul-2021	-	-	-	-
	InstructGPT [61]	Mar-2022	175	GPT-3	\checkmark	\checkmark	-	-	-	-	\checkmark	-
	Chinchilla [34]	Mar-2022	70	-	-	-	1.4T tokens	-	-	-	\checkmark	-
	PaLM [56]	Apr-2022	540	-	-	-	780B tokens	-	6144 TPU v4	-	\checkmark	\checkmark
	AlexaTM [99]	Aug-2022	20	-	-	-	1.3T tokens	-	128 A100	120 d	\checkmark	\checkmark
	Sparrow [100]	Sep-2022	70	-	-	\checkmark	-	-	64 TPU v3	-	\checkmark	-
	WeLM [101]	Sep-2022	10	-	-	-	300B tokens	-	128 A100 40G	24 d	\checkmark	-
	U-PaLM [102]	Oct-2022	540	PaLM	-	-	-	-	512 TPU v4	5 d	\checkmark	\checkmark
	Flan-PaLM [<u>83]</u>	Oct-2022	540	PaLM	\checkmark	-	-	-	512 TPU v4	37 h	\checkmark	\checkmark
	Flan-U-PaLM [83]	Oct-2022	540	U-PaLM	\checkmark	-	-	-	-	-	\checkmark	\checkmark
	GPT-4 [46]	Mar-2023	-	-	\checkmark	\checkmark	-	-	-	-	\checkmark	\checkmark
	PanGu-Σ [103]	Mar-2023	1085	PanGu- α	-	-	329B tokens	-	512 Ascend 910	100 d	\checkmark	-

Source: Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv preprint arXiv:2303.18223.


Statistics of Commonly-used Data Sources for LLMs

Corpora	Size	Source	Latest Update Time
BookCorpus [109]	5GB	Books	Dec-2015
Gutenberg [110]	-	Books	Dec-2021
C4 [72]	800GB	CommonCrawl	Apr-2019
CC-Stories-R [111]	31GB	CommonCrawl	Sep-2019
CC-NEWS [27]	78GB	CommonCrawl	Feb-2019
REALNEWs [112]	120GB	CommonCrawl	Apr-2019
OpenWebText [113]	38GB	Reddit links	Mar-2023
Pushift.io [114]	-	Reddit links	Mar-2023
Wikipedia [115]	-	Wikipedia	Mar-2023
BigQuery [116]	-	Codes	Mar-2023
the Pile [117]	800GB	Other	Dec-2020
ROOTS [118]	1.6TB	Other	Jun-2022

Ratios of various data sources in the pre-training data for existing LLMs

Typical Data Preprocessing Pipeline for Pre-training Large Language Models (LLMs)

LLMs with Public Configuration Details

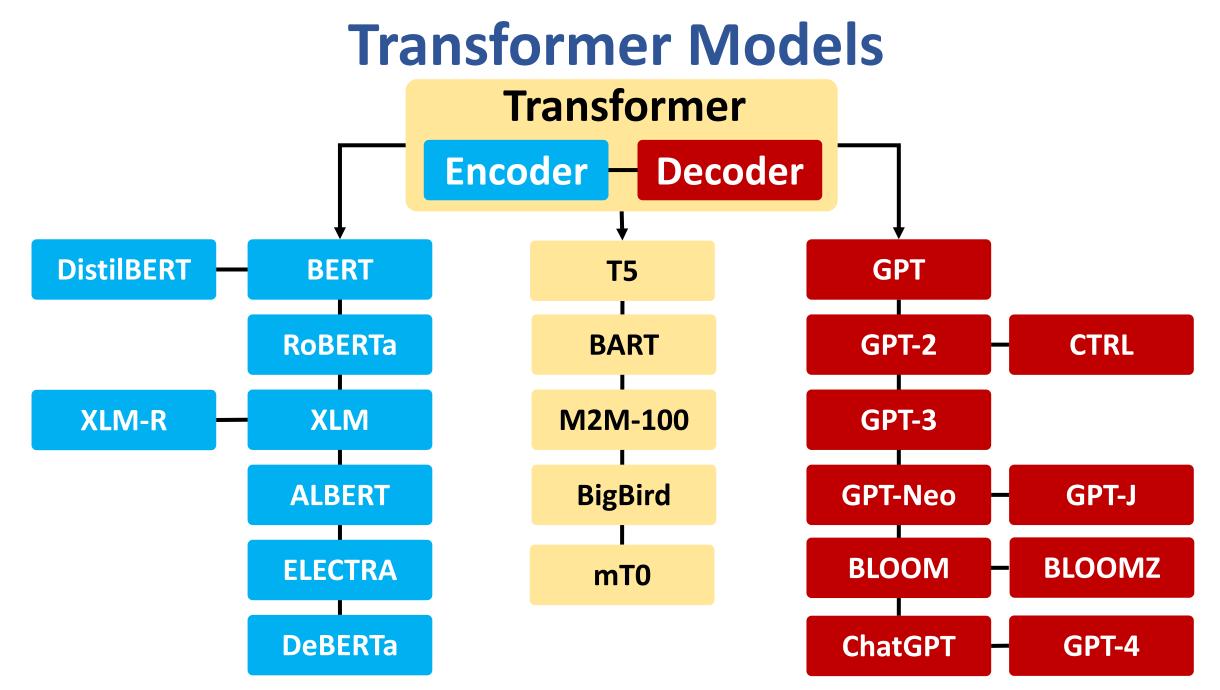
Model	Category	Size	Normalization	PE	Activation	Bias	#L	#H	d_{model}	MCL
GPT3 [55]	Causal decoder	175B	Pre Layer Norm	Learned	GeLU	\checkmark	96	96	12288	2048
PanGU- α [74]	Causal decoder	207B	Pre Layer Norm	Learned	GeLU	\checkmark	64	128	16384	1024
OPT [80]	Causal decoder	175B	Pre Layer Norm	Learned	ReLU	\checkmark	96	96	12288	2048
PaLM [56]	Causal decoder	540B	Pre Layer Norm	RoPE	SwiGLU	×	118	48	18432	2048
BLOOM [68]	Causal decoder	176B	Pre Layer Norm	ALiBi	GeLU	\checkmark	70	112	14336	2048
MT-NLG [97]	Causal decoder	530B	-	-	-	-	105	128	20480	2048
Gopher [59]	Causal decoder	280B	Pre RMS Norm	Relative	- 1	-	80	128	16384	2048
Chinchilla [34]	Causal decoder	70B	Pre RMS Norm	Relative	-	-	80	64	8192	-
Galactica [35]	Causal decoder	120B	Pre Layer Norm	Learned	GeLU	×	96	80	10240	2048
LaMDA [96]	Causal decoder	137B	-	Relative	GeGLU	-	64	128	8192	-
Jurassic-1 [90]	Causal decoder	178B	Pre Layer Norm	Learned	GeLU	\checkmark	76	96	13824	2048
LLaMA [57]	Causal decoder	65B	Pre RMS Norm	RoPE	SwiGLU	\checkmark	80	64	8192	2048
GLM-130B [82]	Prefix decoder	130B	Post Deep Norm	RoPE	GeGLU	\checkmark	70	96	12288	2048
T5 [72]	Encoder-decoder	11B	Pre RMS Norm	Relative	ReLU	×	24	128	1024	512

Note: PE denotes position embedding, #L denotes the number of layers, #H denotes the number of attention heads, d_{model} denotes the size of hidden states, and MCL denotes the maximum context length during training.

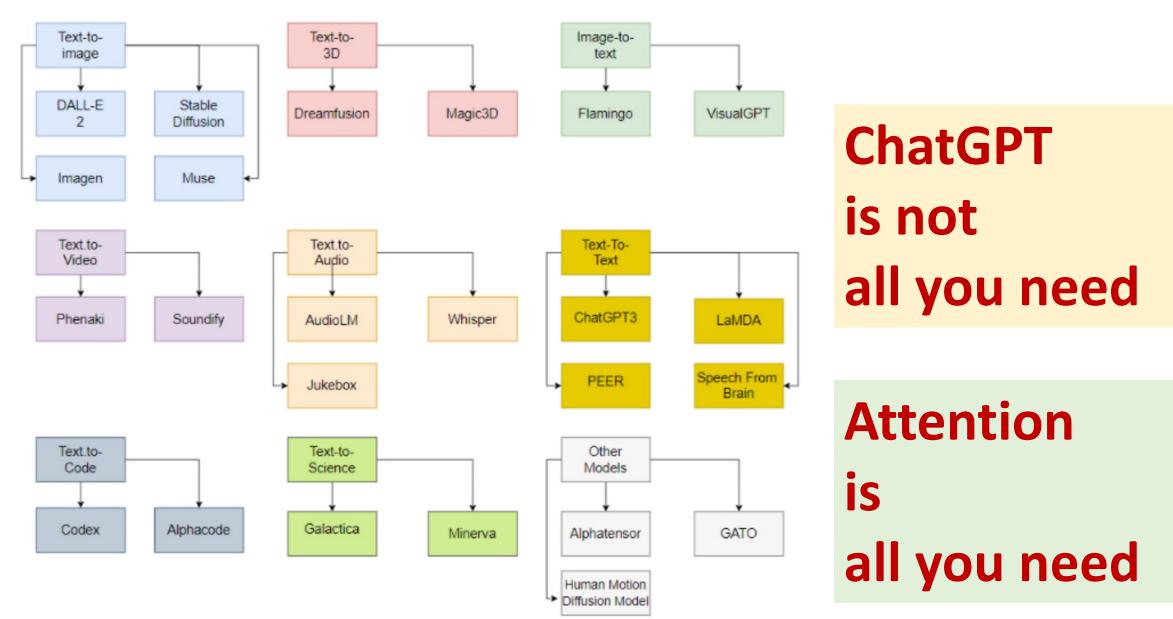
Detailed Optimization Settings of LLMs

Model	Batch Size (#tokens)	Learning Rate	Warmup	Decay Method	Optimizer	Precision Type	Weight Decay	Grad Clip	Dropout
GPT3 (175B)	32K→3.2M	6×10^{-5}	yes	cosine decay to 10%	Adam	FP16	0.1	1.0	-
PanGu- α (200B)	-	2×10^{-5}	-	-	Adam	-	0.1	-	-
OPT (175B)	2M	$1.2 imes 10^{-4}$	yes	manual decay	AdamW	FP16	0.1	-	0.1
PaLM (540B)	$1M \rightarrow 4M$	1×10^{-2}	no	inverse square root	Adafactor	BF16	lr^2	1.0	0.1
BLOOM (176B)	4M	$6 imes 10^{-5}$	yes	cosine decay to 10%	Adam	BF16	0.1	1.0	0.0
MT-NLG (530B)	64 K→3.75M	5×10^{-5}	yes	cosine decay to 10%	Adam	BF16	0.1	1.0	-
Gopher (280B)	3M→6M	4×10^{-5}	yes	cosine decay to 10%	Adam	BF16	-	1.0	-
Chinchilla (70B)	1.5M→3M	1×10^{-4}	yes	cosine decay to 10%	AdamW	BF16	-	-	-
Galactica (120B)	2M	$7 imes 10^{-6}$	yes	linear decay to 10%	AdamW	-	0.1	1.0	0.1
LaMDA (137B)	256K	-	-	-	-	BF16	-	-	-
Jurassic-1 (178B)	32 K→3.2M	$6 imes 10^{-5}$	yes	-	-	-	-	-	-
LLaMA (65B)	4M	$1.5 imes 10^{-4}$	yes	cosine decay to 10%	AdamW	-	0.1	1.0	-
GLM (130B)	0.4M→8.25M	8×10^{-5}	yes	cosine decay to 10%	AdamW	FP16	0.1	1.0	0.1
T5 (11B)	64K	1×10^{-2}	no	inverse square root	AdaFactor	-	-	-	0.1
ERNIE 3.0 Titan (260B)	-	1×10^{-4}	-	-	Adam	FP16	0.1	1.0	-
PanGu- Σ (1.085T)	0.5M	2×10^{-5}	yes	-	Adam	FP16	-	-	-

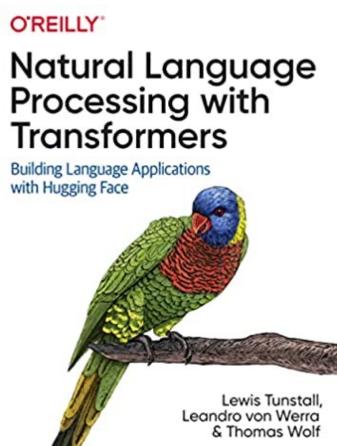

Outline



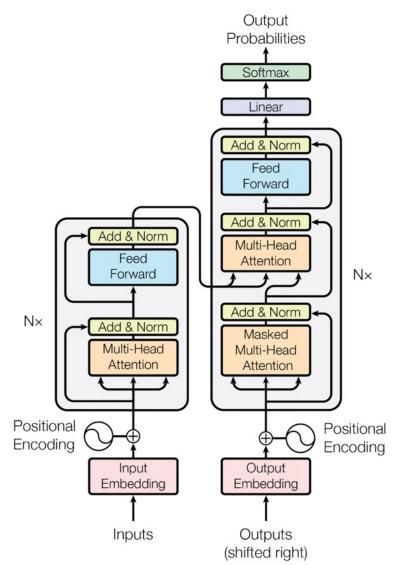
- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A


Foundation of Transformers: Attention Mechanism

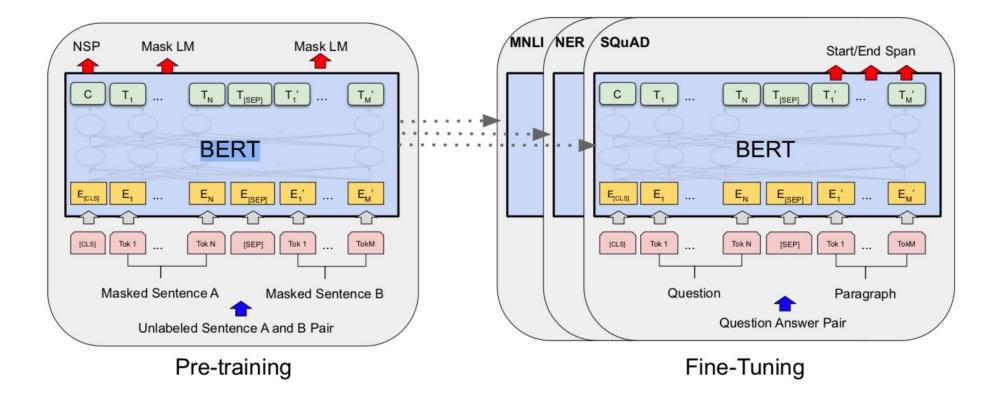
The Transformers Timeline


Generative AI Models

Natural Language Processing with Transformers


Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face,

O'Reilly Media.



Transformer (Attention is All You Need)

(Vaswani et al., 2017)

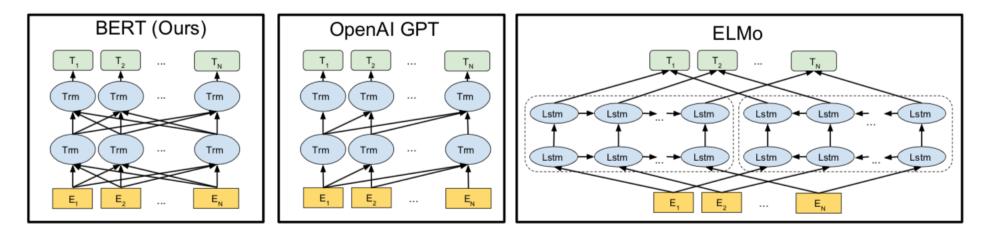
Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding


BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

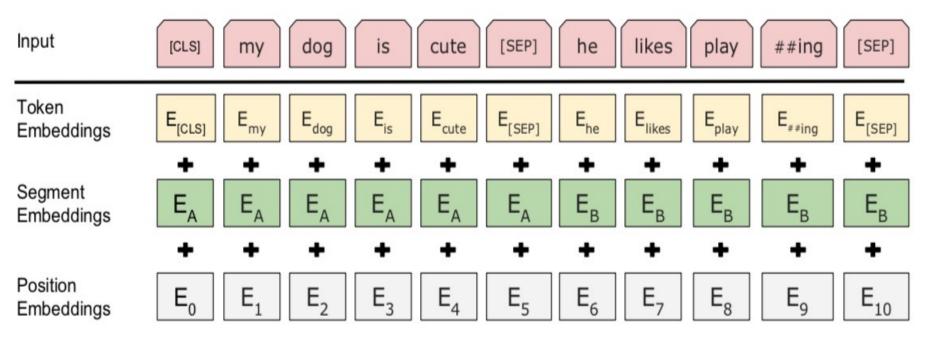
Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Bidirectional Encoder Representations from Transformers

Pre-training model architectures

BERT uses a bidirectional Transformer.

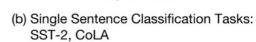

OpenAl GPT uses a left-to-right Transformer.

ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM to generate features for downstream tasks.

Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers)


BERT input representation


The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

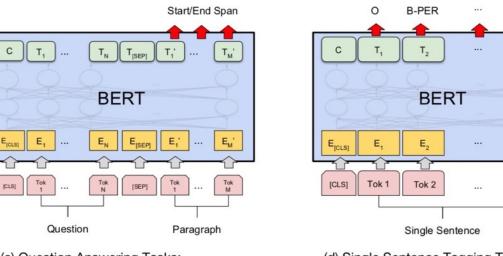
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on NLP Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

TN

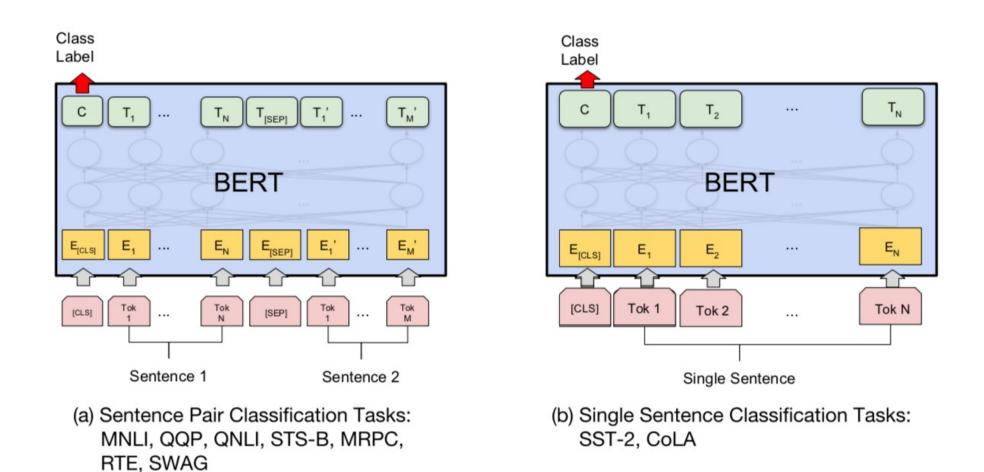
EN

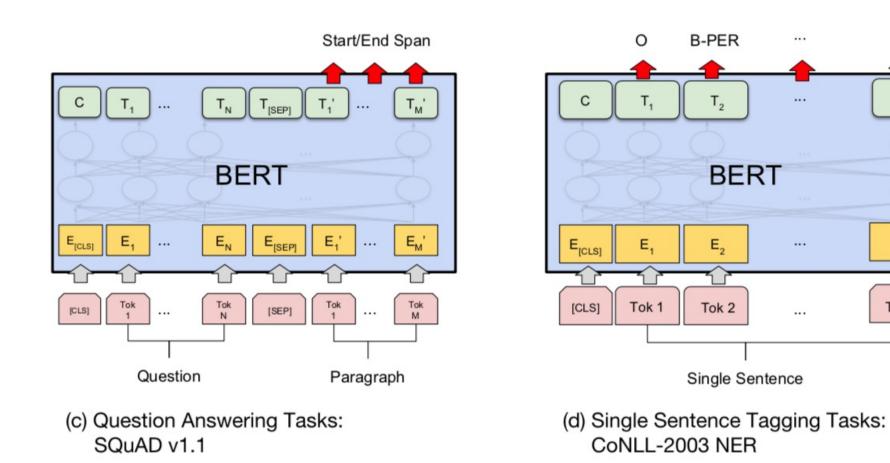

Tok N

0

TN

 E_{N}

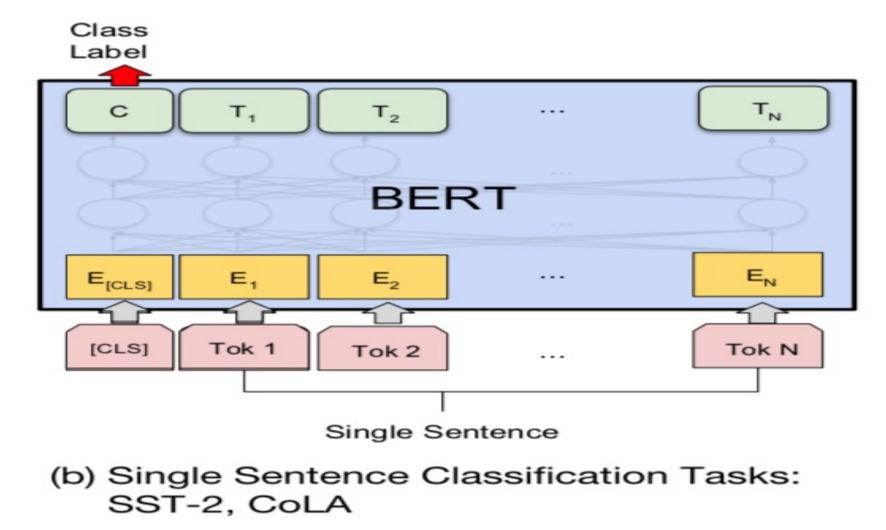

Tok N


(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

BERT Sequence-level tasks

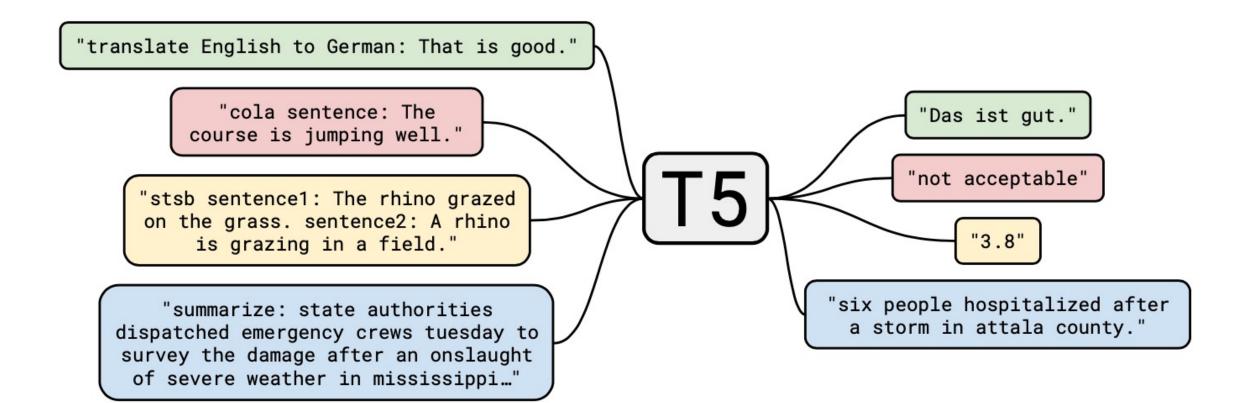
BERT Token-level tasks


0

TN

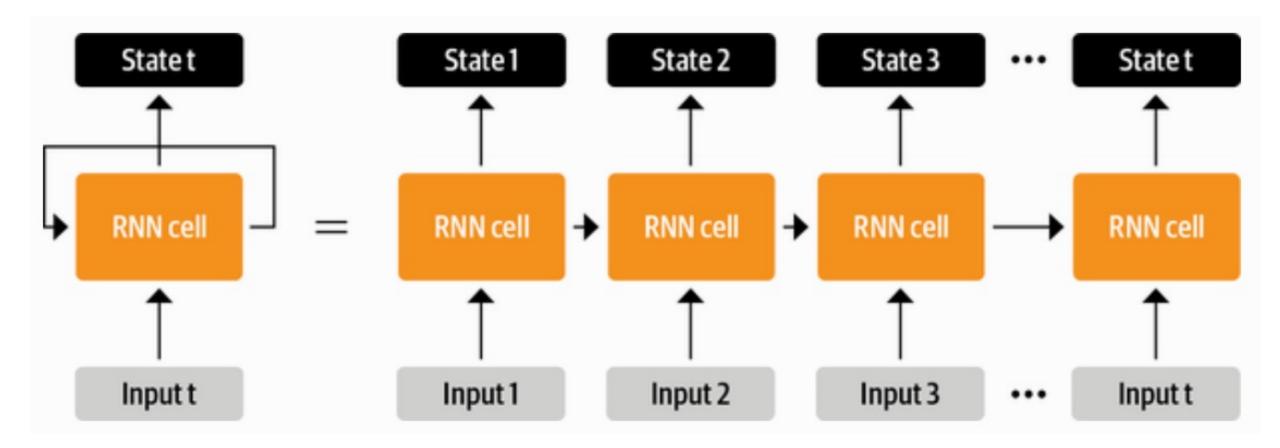
EN

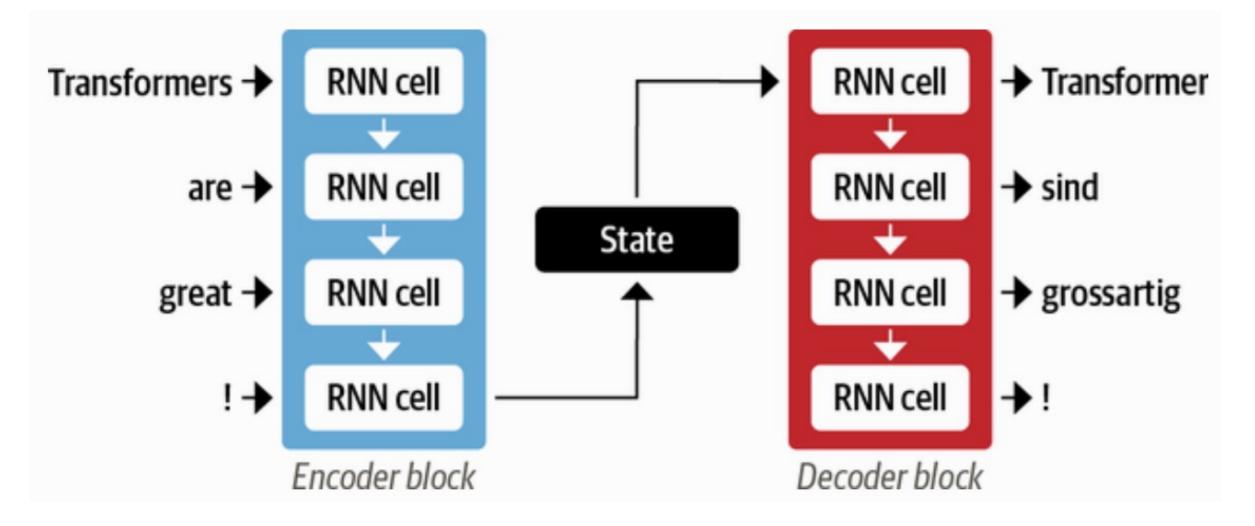
Tok N


Sentiment Analysis: Single Sentence Classification

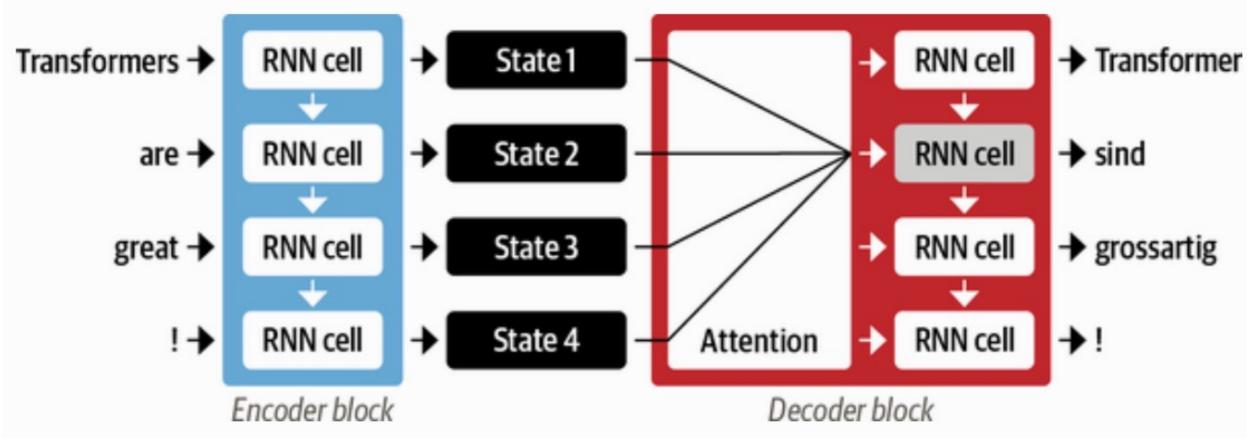
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

T5

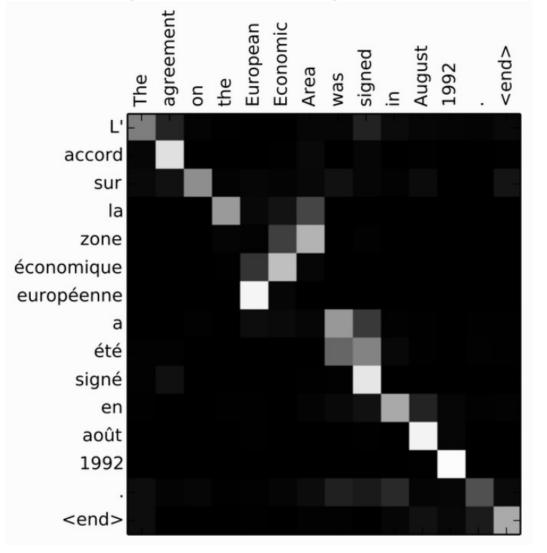

Text-to-Text Transfer Transformer

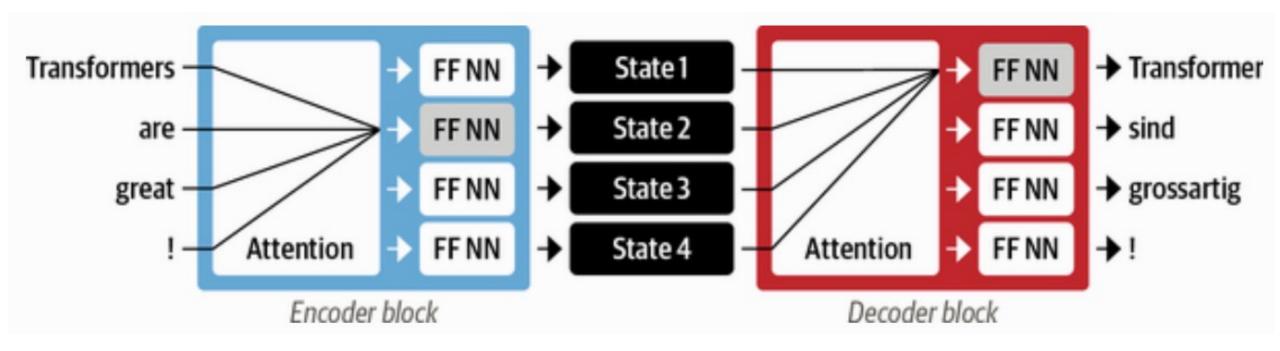

The Encoder-Decoder Framework

- The encoder-decoder framework
- Attention Mechanisms
- Transfer Learning in NLP

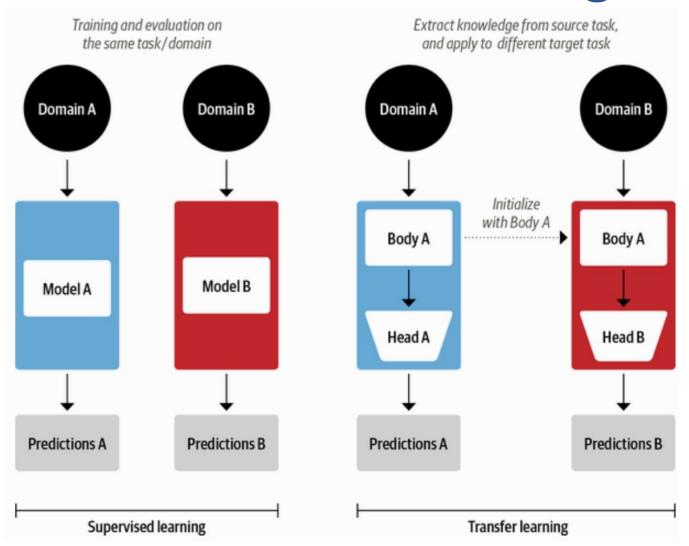

RNN

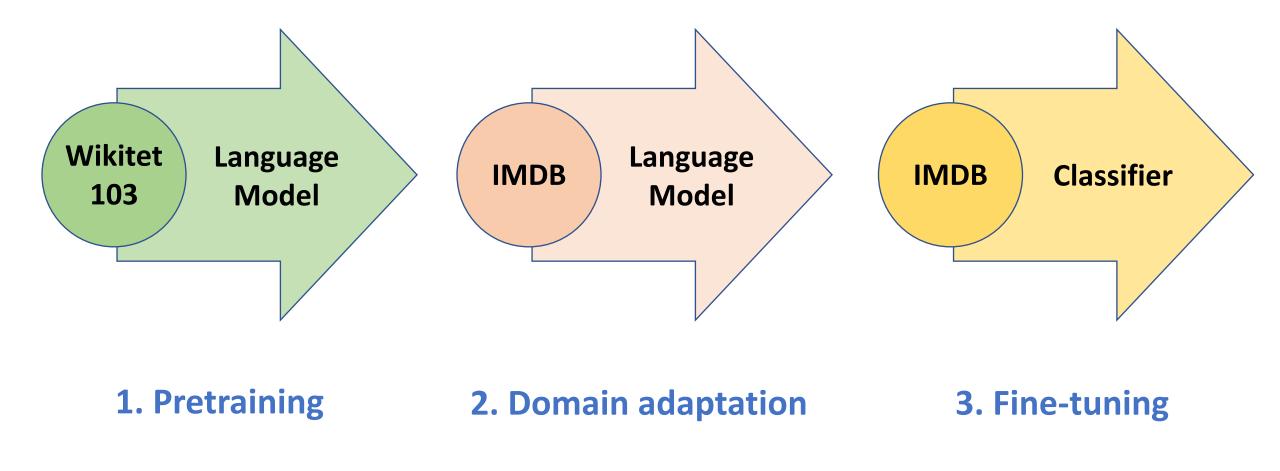
An encoder-decoder architecture with a pair of RNN

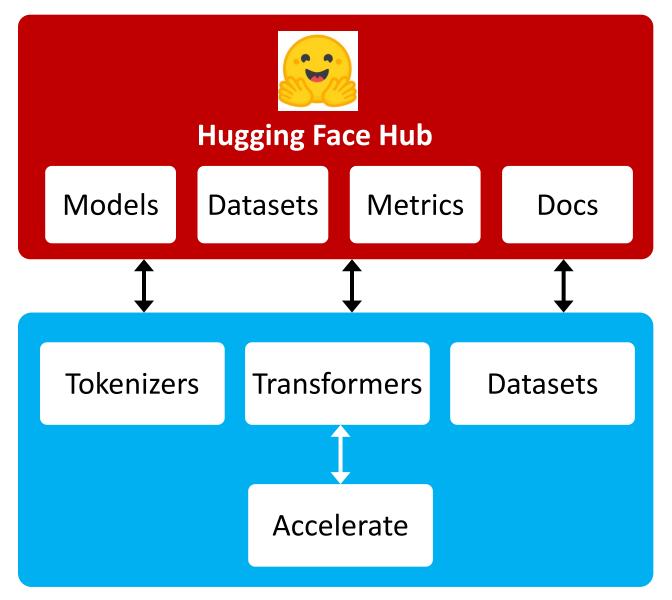

Attention Mechanisms

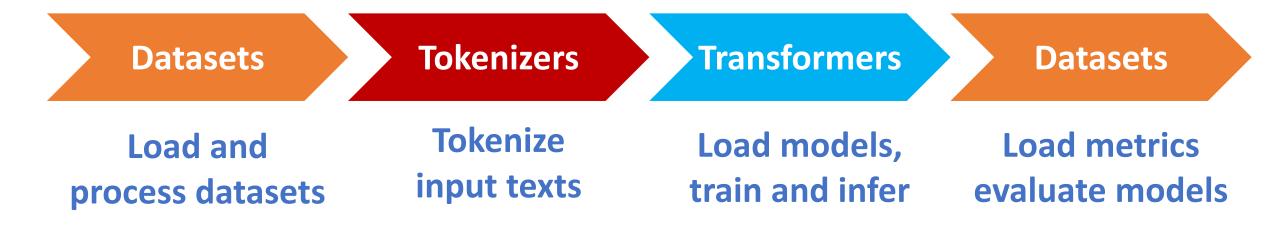

An encoder-decoder architecture with an attention mechanism

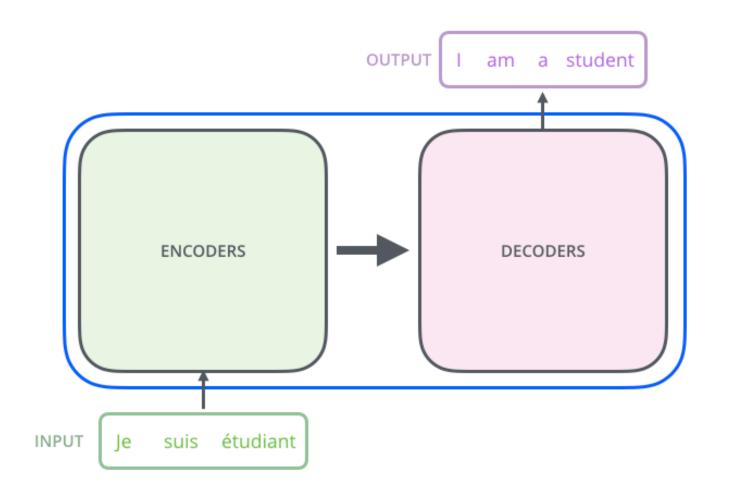
RNN Encoder-Decoder

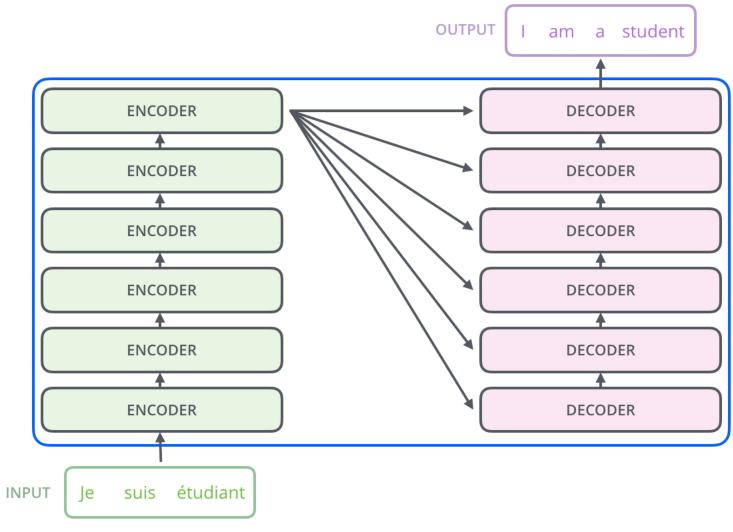

alignment of words in English and the generated translation in French

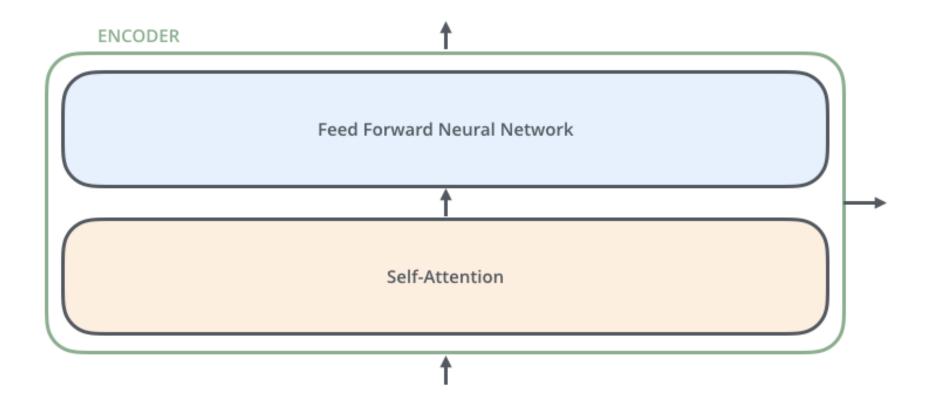

Encoder-Decoder Architecture of the Original Transformer

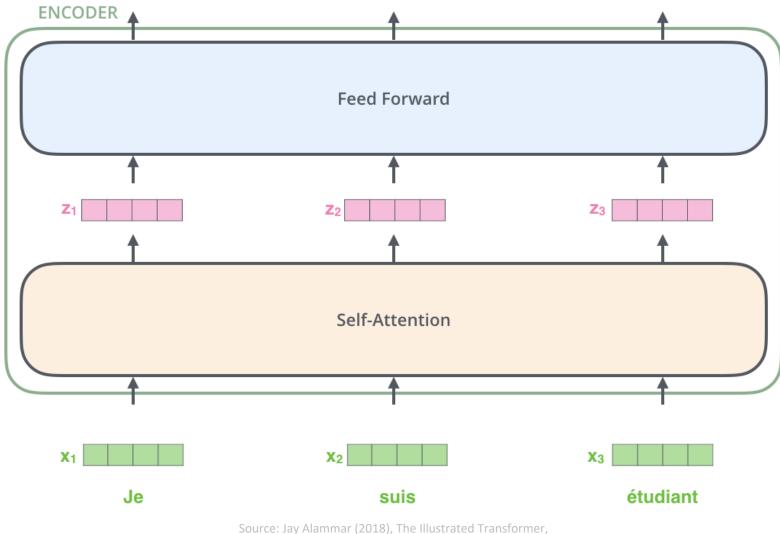

Comparison of Traditional Supervised Learning and Transfer Learning

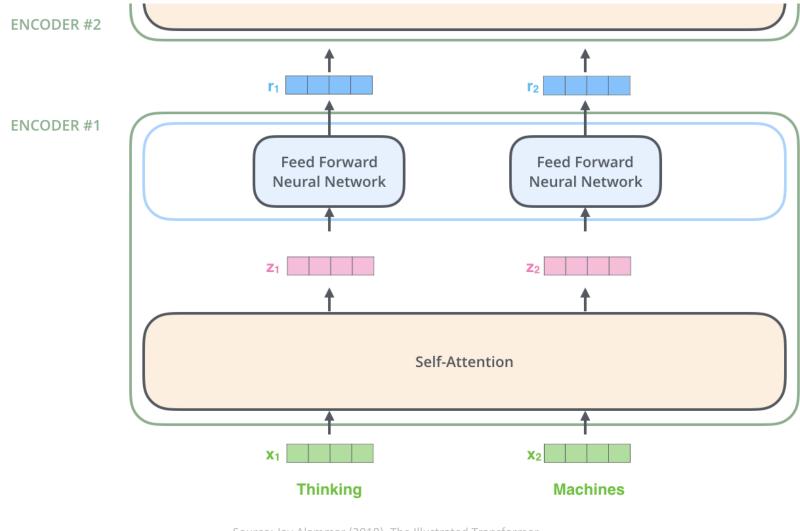

ULMFiT: 3 Steps Transfer Learning in NLP


An overview of the Hugging Face Ecosystem



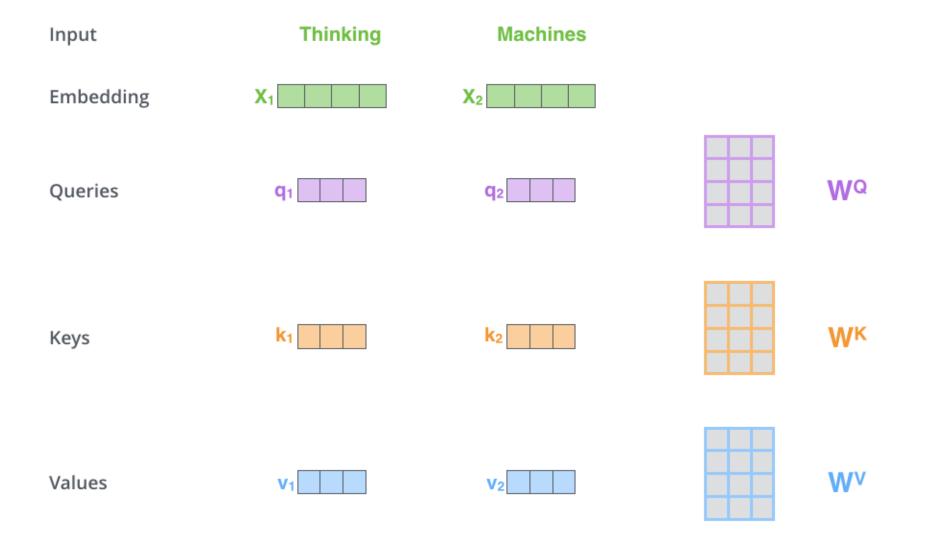

A typical pipeline for training transformer models with the Datasets, Tokenizers, and Transformers libraries

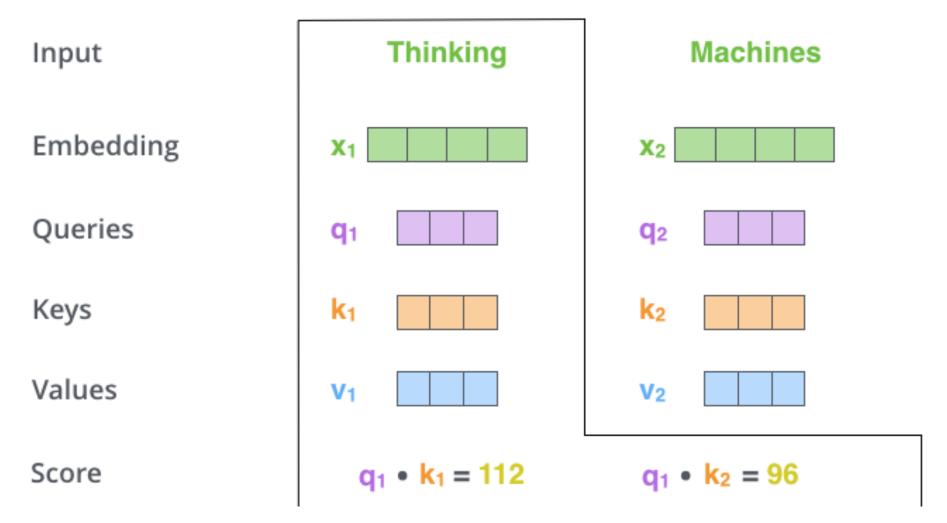




Jay Alammar (2018)

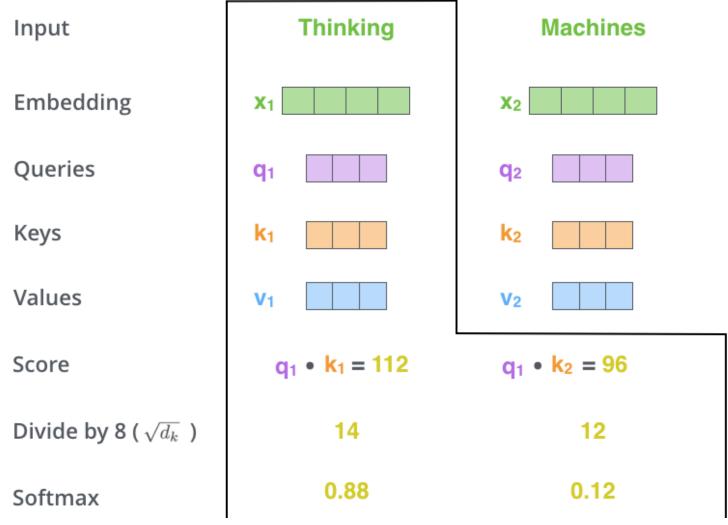
Each word is embedded into a vector of size 512.

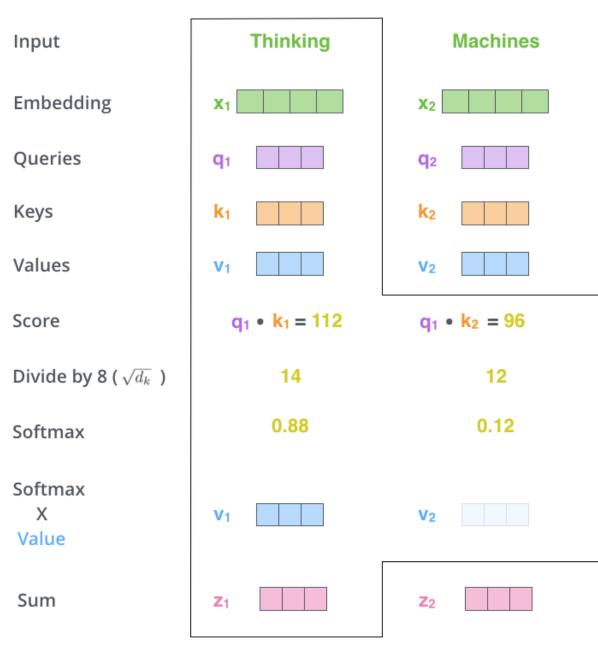




Layer: 5 \$ Attention: Input - Input \$	
The_	The_
animal_	animal_
didn_	didn_
'_	
t_	
cross_	cross_
the_	the_
street_	street_
because_	because_
it_	it_
was_	was_
too_	too_
tire	tire
d_	d_

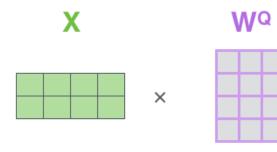
Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word.

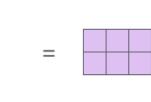

We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.



The Illustrated Transformer

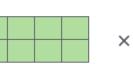
Jay Alammar (2018)

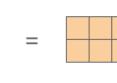



Source: Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/

Matrix Calculation of Self-Attention

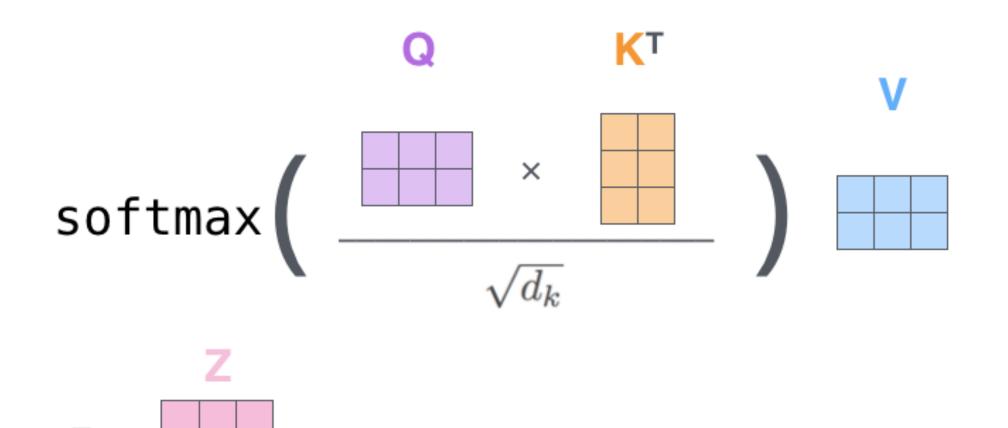
Wĸ

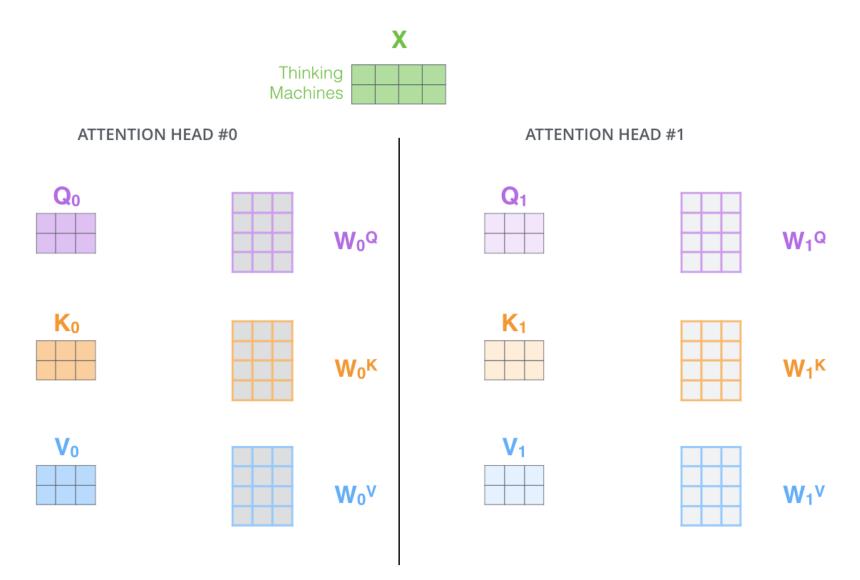


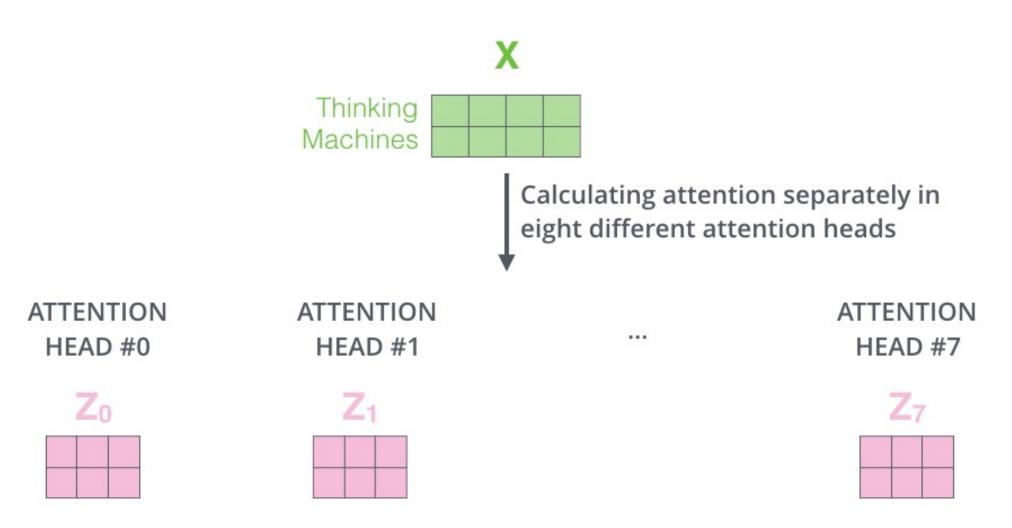


0

Κ

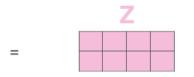


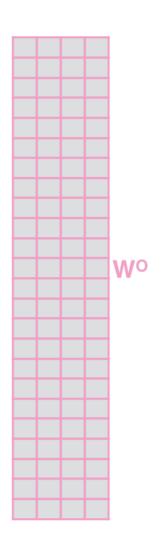


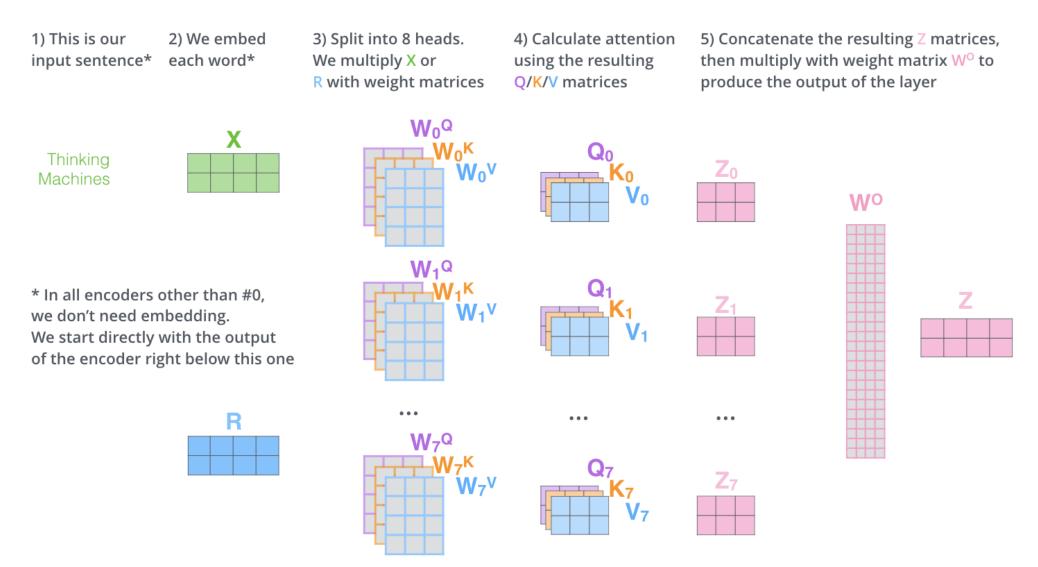


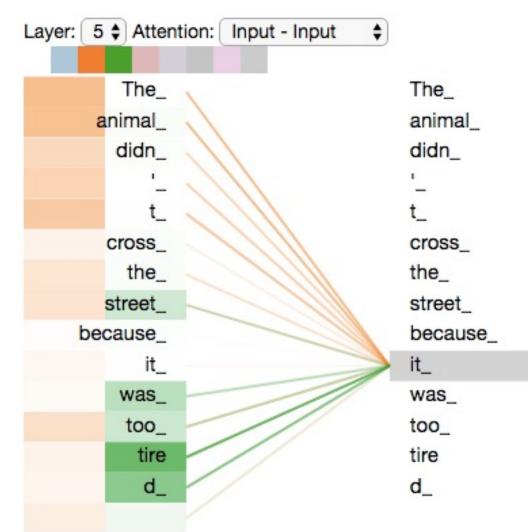
Source: Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/

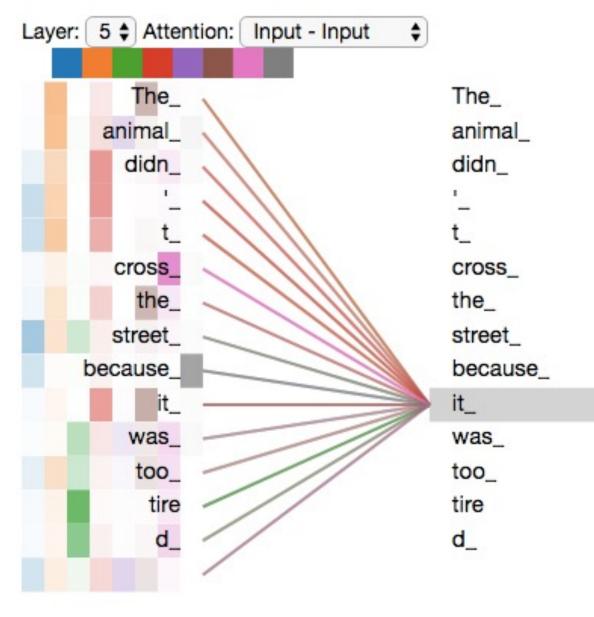
The self-attention calculation in matrix form

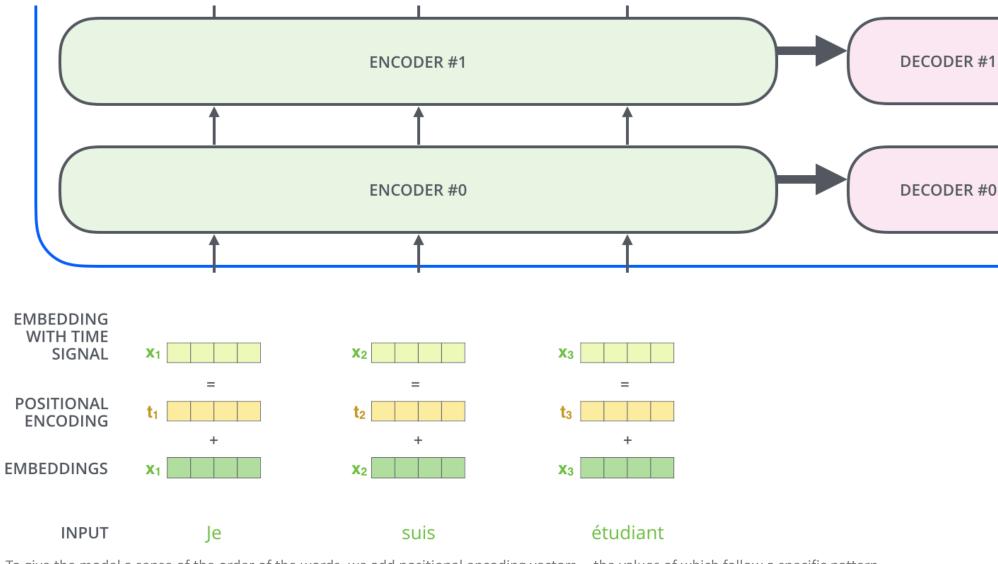

1) Concatenate all the attention heads


Z ₀	Z 1	Z 2	Z 3	Z 4	Z 5	Z 6	Z 7

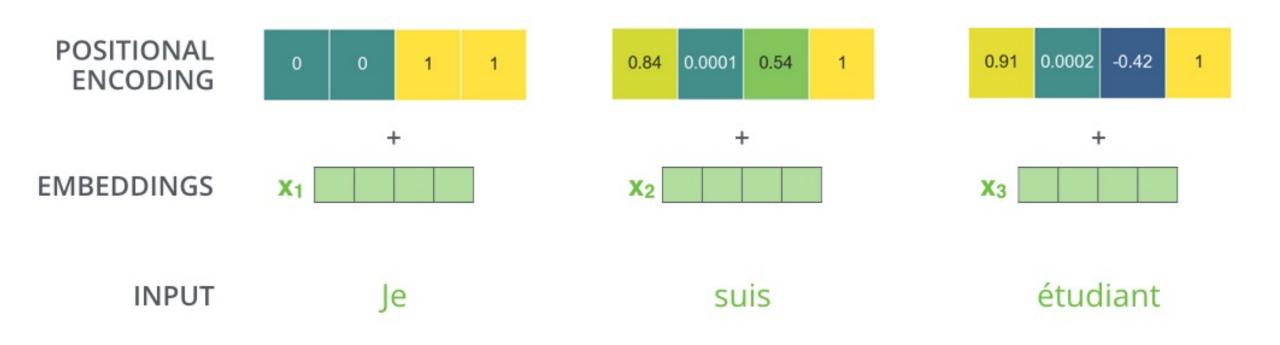

2) Multiply with a weight matrix W^o that was trained jointly with the model


3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

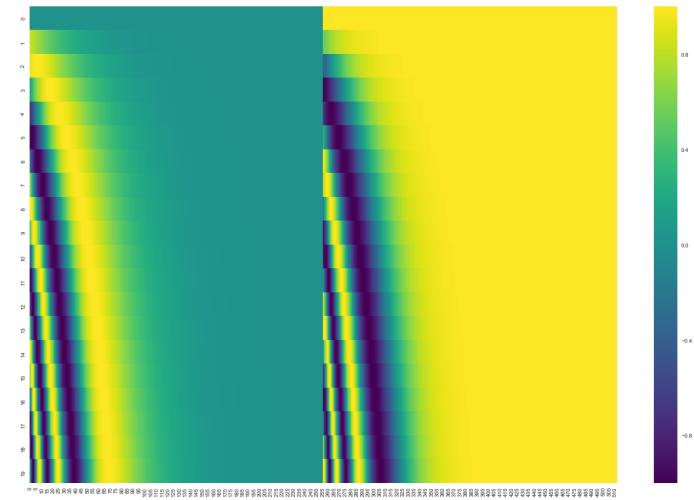



As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

Add all the attention heads

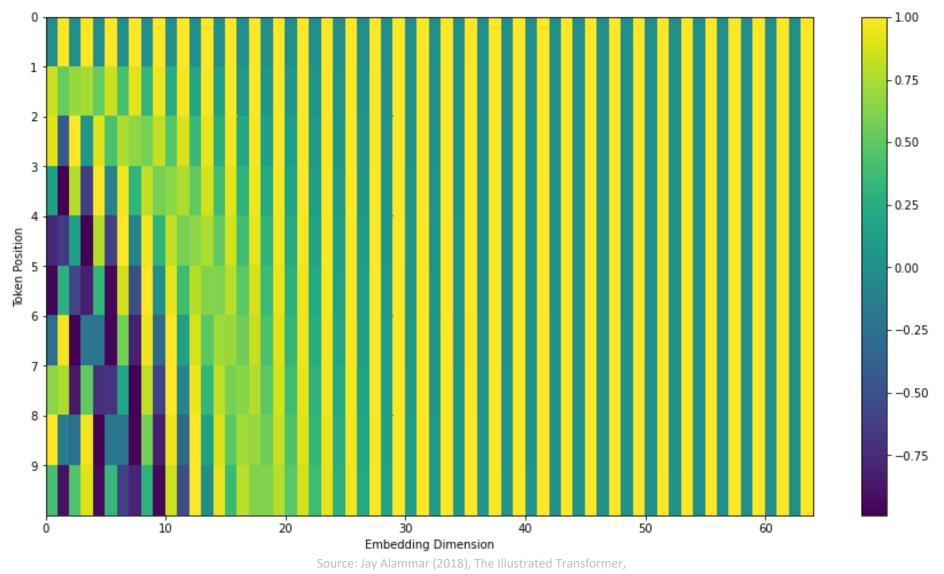

Positional Encoding

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern. Source: Jay Alammar (2018), The Illustrated Transformer,

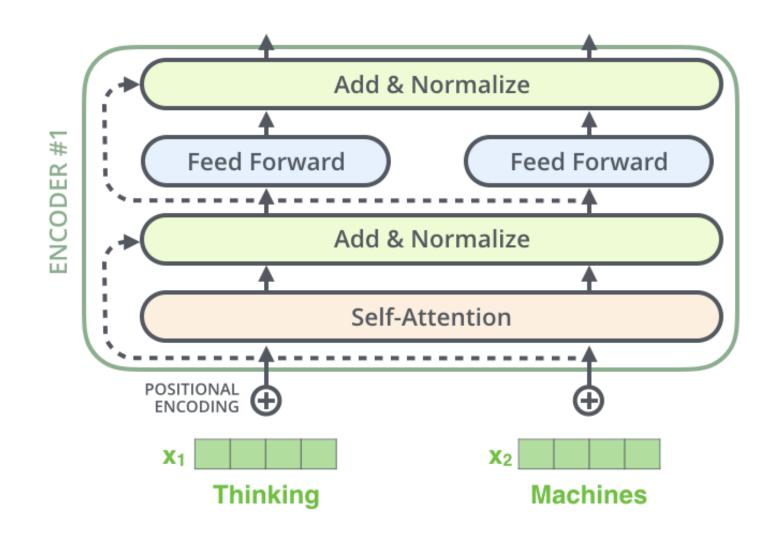

http://jalammar.github.io/illustrated-transformer/

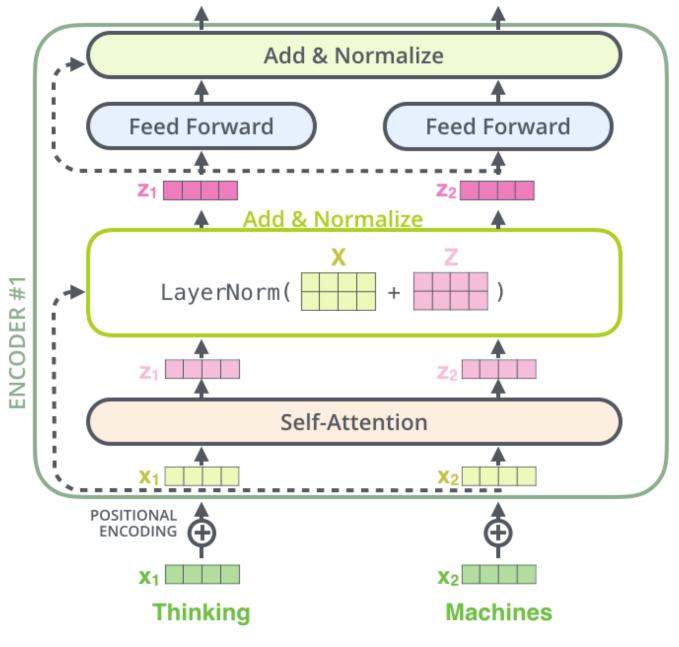
Positional Encoding

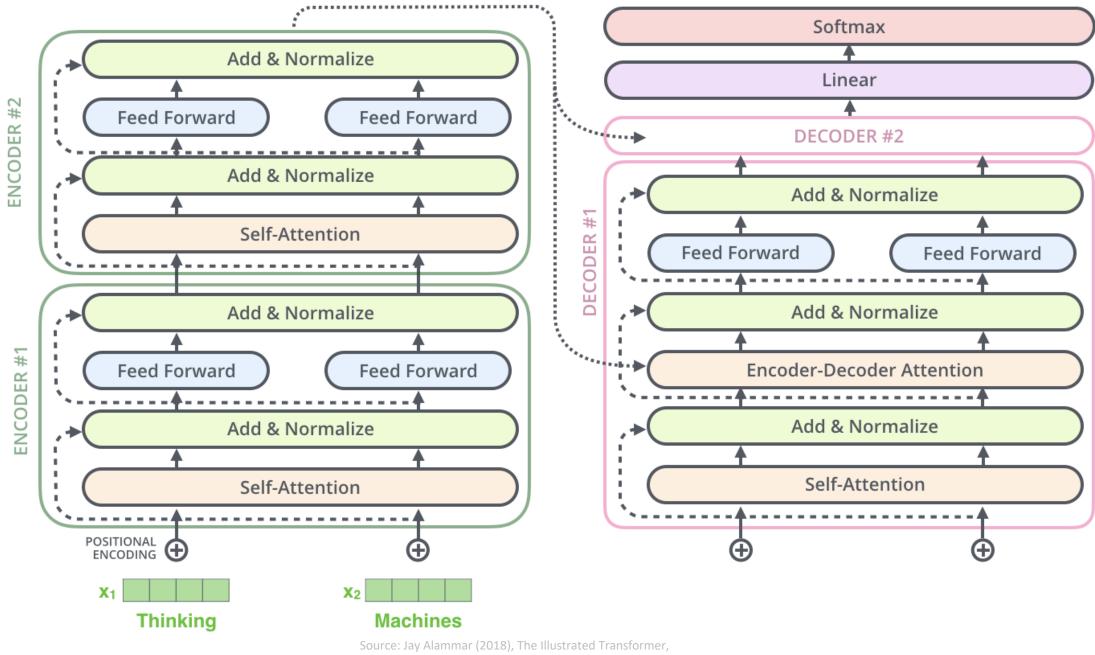
Positional encoding with a toy embedding size of 4


Positional encoding for 20 words (rows) with an embedding size of 512 (columns)

You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors. Source: Jay Alammar (2018), The Illustrated Transformer,

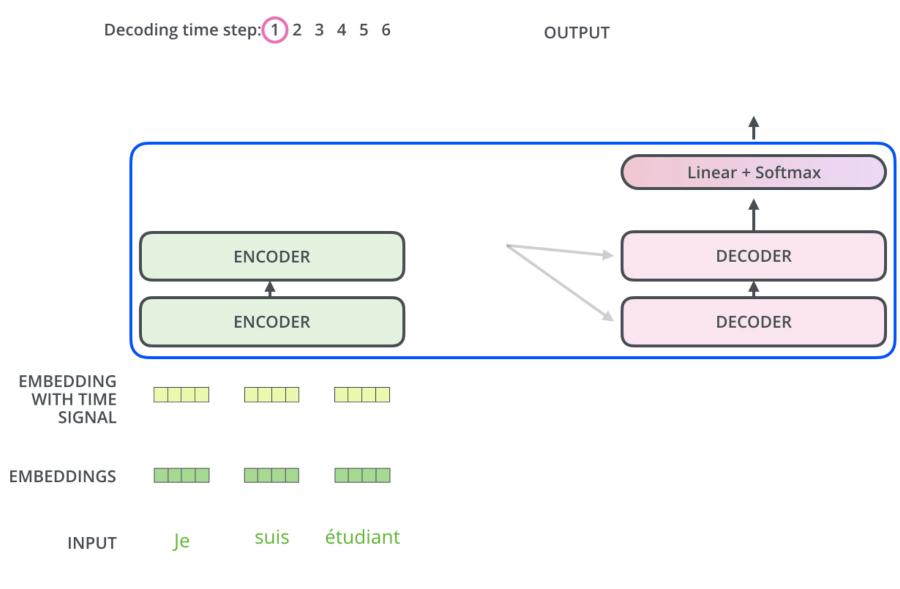

http://jalammar.github.io/illustrated-transformer/


Transformers Positional Encoding



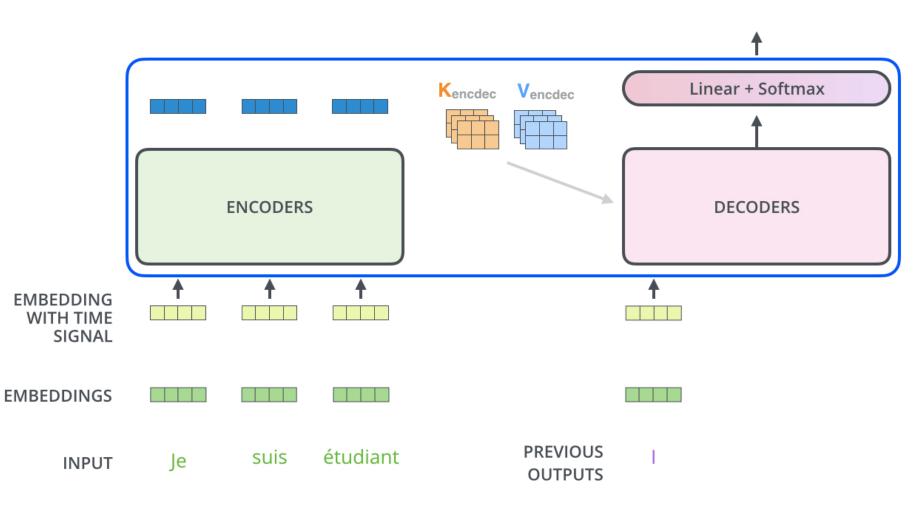
http://jalammar.github.io/illustrated-transformer/

The Residuals

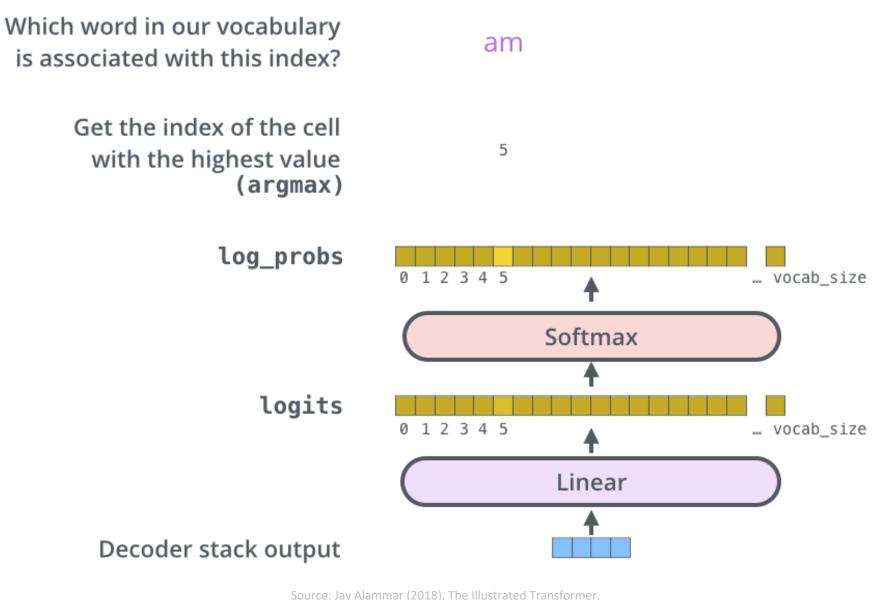


http://jalammar.github.io/illustrated-transformer/

The Decoder Side



The Decoder Side


Decoding time step: 1 2 3 4 5 6

OUTPUT

- 1

The Final Linear and Softmax Layer

The output vocabulary

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

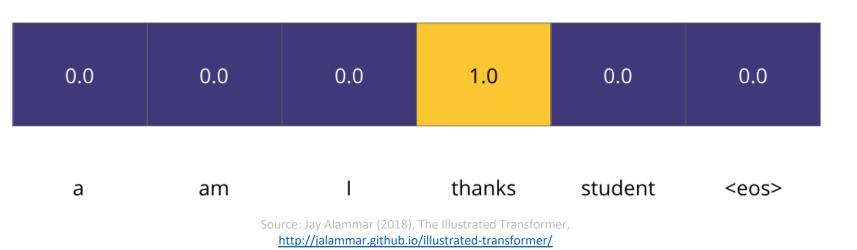
The output vocabulary of our model is created in the preprocessing phase before we even begin training.

Example: one-hot encoding of output vocabulary

Output Vocabulary

WORD	а	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"


0.0 1.0	0.0	0.0	0.0	0.0
---------	-----	-----	-----	-----

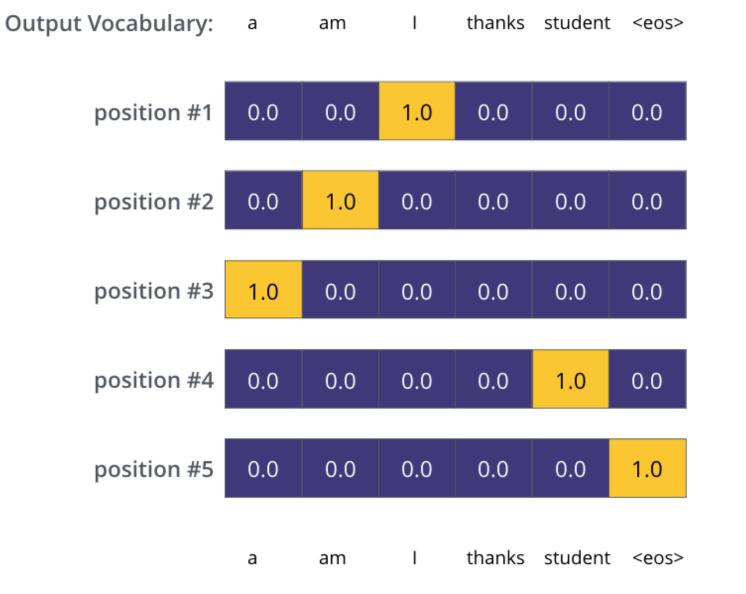
The Loss Function

Untrained Model Output

0.2	0.2 0.1	0.2	0.2	0.1
-----	---------	-----	-----	-----

Correct and desired output

0.8


0.4

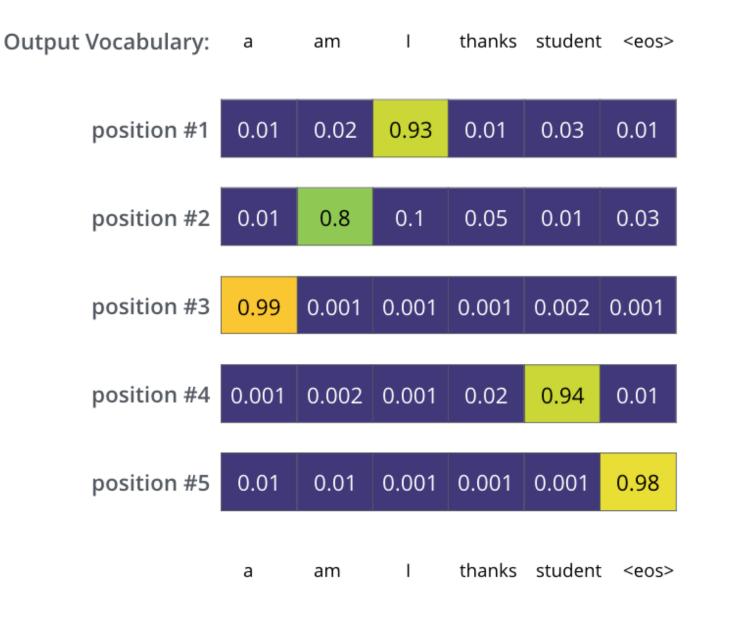
0.0

-0.4

-0.8

Target Model Outputs

Source: Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/ 0.8


0.4

0.0

-0.4

-0.8

Trained Model Outputs

0.8

0.4

0.0

-0.4

-0.8

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

- Transformers
 - pytorch-transformers
 - pytorch-pretrained-bert
- provides state-of-the-art general-purpose architectures
 - (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
 - for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Hugging Face

😣 Hugging Face

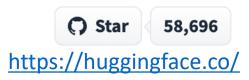
Q Search models, datas

💚 Models 🛛 🗏 Datasets

sets 🛛 🖹 Spaces

🚔 Solutions 🛛 Pi

Docs


Pricing ∽≡

Log In Sign Up

The AI community building the future.

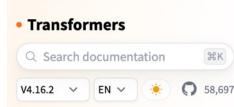
Build, train and deploy state of the art models powered by the reference open source in machine learning.

Hugging Face Transformers

😣 Hugging Face

Q Search models, datasets, users...

💚 Models 🛛 🗏


🗧 Datasets 🛛 🖺 🤅

ets 🖹 Spaces

📫 Docs 🛛 🚔 Solutions

s Pricing ~≡

Log In Sign Up

GET STARTED

- 🤗 Transformers
- Quick tour Installation
- Philosophy
- Glossary

USING 🤐 TRANSFORMERS

Summary of the tasks Summary of the models Preprocessing data Fine-tuning a pretrained model Distributed training with Accelerate 🤐 Transformers

State-of-the-art Machine Learning for Jax, Pytorch and TensorFlow

Reference in the second second

These models can applied on:

- Zext, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
- Images, for tasks like image classification, object detection, and segmentation.
- **\$** Audio, for tasks like speech recognition and audio classification.

Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents. video classification. and visual question answering.

https://huggingface.co/docs/transformers/index

If you are looking for custom

Cartansformers

support from the Hugging Face team Features

Contents

Supported models

Supported frameworks

Hugging Face Tasks Natural Language Processing

Text Classification3345 models	Token Classification 1492 models	ES Question Answering 1140 models	ズ _A Translation 1467 models
E Summarization 323 models	Text Generation 3959 models	Fill-Mask 2453 models	Sentence Similarity 352 models

https://huggingface.co/tasks

NLP with Transformers Github

♥ Why GitHub? ✓ Team Enterpris	se Explore \vee Marketplace Pricing \vee	Search	C Sigr	n in Sign up
Inp-with-transformers / notes <> Code ⊙ Issues îî Pull reque		C Notification	ns 양 Fork 170 ☆ Star	1.1k -
Image: Provide with the second sec		to file Code - go ① 71 commits 25 days ago	About Jupyter notebooks for the N Language Processing with T book	
 data images scripts 	Move dataset to data directory Add README Update issue templates	4 months ago last month 25 days ago	 <i>c</i>² transformersbook.com/ □ Readme □ Apache-2.0 License □ 1.1k stars ○ 33 watching 	O'REILLY' Natural Language Processing with Transformers
 .gitignore 01_introduction.ipynb 02_classification.ipynb 03_transformer-anatomy.ipynb 	Initial commit Remove Colab badges & fastdoc refs Merge pull request #8 from nlp-with-transformers/remove-display-d [Transformers Anatomy] Remove cells with figure references	4 months ago 27 days ago f 26 days ago 22 days ago	ኇ 170 forks Releases	Building Language Applications with Hugging Face
 04_multilingual-ner.ipynb 05_text-generation.ipynb 	Merge pull request #8 from nlp-with-transformers/remove-display-d Merge pull request #8 from nlp-with-transformers/remove-display-d		No releases published Packages	Lewis Tunstal Leandro von Werro & Thomas Wol

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers Github Notebooks

O'REILLY'

Natural Language Processing with Transformers

Building Language Applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf

Running on a cloud platform

To run these notebooks on a cloud platform, just click on one of the badges in the table below:

Chapter	Colab	Kaggle	Gradient	Studio Lab
Introduction	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Text Classification	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Transformer Anatomy	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Multilingual Named Entity Recognition	CO Open in Colab	k Open in Kaggle	Run on Gradient	ද්‍රී Open Studio Lab
Text Generation	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Summarization	CO Open in Colab	k Open in Kaggle	Run on Gradient	C Open Studio Lab
Question Answering	CO Open in Colab	k Open in Kaggle	Run on Gradient	C Open Studio Lab
Making Transformers Efficient in Production	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Dealing with Few to No Labels	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Training Transformers from Scratch	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Future Directions	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab

Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle, Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for free!

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers

!git clone https://github.com/nlp-with-transformers/notebooks.git
%cd notebooks
from install import *
install_requirements()

from utils import *
setup chapter()

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Decepticons, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

from transformers import pipeline classifier = pipeline("text-classification")

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

0

labelscoreNEGATIVE0.901546

Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Text Classification

```
from transformers import pipeline
classifier = pipeline("text-classification")
```

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

0

labelscoreNEGATIVE0.901546

Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.

https://github.com/nlp-with-transformers/notebooks

Named Entity Recognition

ner_tagger = pipeline("ner", aggregation_strategy="simple")
outputs = ner_tagger(text)
pd.DataFrame(outputs)

	entity_group	score	word	start	end
0	ORG	0.879010	Amazon	5	11
1	MISC	0.990859	Optimus Prime	36	49
2	LOC	0.999755	Germany	90	97
3	MISC	0.556570	Mega	208	212
4	PER	0.590256	##tron	212	216
5	ORG	0.669692	Decept	253	259
6	MISC	0.498349	##icons	259	264
7	MISC	0.775362	Megatron	350	358
8	MISC	0.987854	Optimus Prime	367	380
9	PER	0.812096	Bumblebee	502	511

Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media. <u>https://github.com/nlp-with-transformers/notebooks</u>

```
reader = pipeline("question-answering")
question = "What does the customer want?"
outputs = reader(question=question, context=text)
pd.DataFrame([outputs])
```


Summarization

summarizer = pipeline("summarization")
outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)
print(outputs[0]['summary_text'])

Bumblebee ordered an Optimus Prime action figure from your online store in Germany. Unfortunately, when I opened the package, I discovered to my horror that I had been sent an action figure of Megatron instead.

Translation

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket öffnete, entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich hoffe, Sie können mein Dilemma verstehen. Um das Problem zu lösen, Ich fordere einen Austausch von Megatron für die Optimus Prime Figur habe ich bestellt. Anbei sind Kopien meiner Aufzeichnungen über diesen Kauf. Ich erwarte, bald von Ihnen zu hören. Aufrichtig, Bumblebee.

Text Generation

from transformers import set_seed
set seed(42) # Set the seed to get reproducible results

generator = pipeline("text-generation")
response = "Dear Bumblebee, I am sorry to hear that your order was mixed up."
prompt = text + "\n\nCustomer service response:\n" + response
outputs = generator(prompt, max_length=200)
print(outputs[0]['generated text'])

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was completely mislabeled, which is very common in our online store, but I can appreciate it because it was my understanding from this site and our customer service of the previous day that your order was not made correct in our mind and that we are in a process of resolving this matter. We can assure you that your order

Text Generation

Dear Amazon, last week I ordered an Optimus Prime action figure from your online store in Germany. Unfortunately, when I opened the package, I discovered to my horror that I had been sent an action figure of Megatron instead! As a lifelong enemy of the Decepticons, I hope you can understand my dilemma. To resolve the issue, I demand an exchange of Megatron for the Optimus Prime figure I ordered. Enclosed are copies of my records concerning this purchase. I expect to hear from you soon. Sincerely, Bumblebee.

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was completely mislabeled, which is very common in our online store, but I can appreciate it because it was my understanding from this site and our customer service of the previous day that your order was not made correct in our mind and that we are in a process of resolving this matter. We can assure you that your order

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

File Edit View Insert Ru	time Tools Help <u>All changes saved</u>	🔲 Comment 🛛 🚢 Share 🌣
Table of contents	× + Code + Text	V RAM Disk V Fditing
Natural Language Processing with Transformers Text Clssification Named Entity Recognition Question Answering	 Natural Language Processing with Transformers Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transform Applications with Hugging Face, O'Reilly Media. Github: <u>https://github.com/nlp-with-transformers/notebooks</u> 	← ↓ ⇔ 🔲 🖌 🗊 🖬
Summarization Translation Text Generation	<pre>/ [1] 1 !git clone <u>https://github.com/nlp-with-transformers/notebooks.git</u> 2 %cd notebooks 3 from install import * 4 install_requirements()</pre>	
Al in Finance Normative Finance and Financial Theories	<pre>/ [3] 1 from utils import * 2 setup_chapter()</pre>	
Uncertainty and Risk Expected Utility Theory (EUT) Mean-Variance Portfolic Theory (MVPT) Capital Asset Pricing Model (CAPM)	[12] 1 text = """Dear Amazon, last week I ordered an Optimus Prime action figure \ 2 from your online store in Germany. Unfortunately, when I opened the package, \ 3 I discovered to my horror that I had been sent an action figure of Megatron \ 4 instead! As a lifelong enemy of the Decepticons, I hope you can understand my \ 5 dilemma. To resolve the issue, I demand an exchange of Megatron for the \ 6 Optimus Prime figure I ordered. Enclosed are copies of my records concerning \ 7 this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""	
Arbitrage Pricing Theory (APT) Data Driven Finance	- Text Clssification	
Financial Econometrics and Regression Data Availability	<pre>/ [13] 1 from transformers import pipeline 2 classifier = pipeline("text-classification")</pre>	
Normative Theories Revisite Mean-Variance Portfolio Theory	[14] 1 import pandas as pd	

Outline

- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

Inputs

Question

Which name is also used to describe the Amazon rainforest in English?

Context

The Amazon rainforest, also known in English as Amazonia or the Amazon Jungle Question Answering Model Output

Answer Amazonia

https://huggingface.co/tasks/question-answering

+ Question Answering demo

using <u>deepset/roberta-base</u>	e-squad2	
월 Question Answering	Example 2	~
Where do I live?		Compute
Context		
My name is Michael and I l	ive in Taipei.	11
Computation time on cpu: 0.0492 s		
Таіреі		0.920
> JSON Output		Maximize

https://huggingface.co/tasks/question-answering

```
!pip install transformers
from transformers import pipeline
qamodel = pipeline("question-answering")
question = "Where do I live?"
context = "My name is Michael and I live in Taipei."
qamodel(question = question, context = context)
```

{'answer': 'Taipei', 'end': 39, 'score': 0.9730741381645203, 'start': 33}

```
from transformers import pipeline
qamodel = pipeline("question-answering", model ='deepset/roberta-base-squad2')
question = "Where do I live?"
context = "My name is Michael and I live in Taipei."
output = qamodel(question = question, context = context)
print(output['answer'])
```

Taipei

Tamkang University 淡紅大學

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

Department of Information Management Tamkang University, Taiwan

myday@mail.tku.edu.tw

NTCIR-9 Workshop, December 6-9, 2011, Tokyo, Japan


Tamkang University 淡紅大學

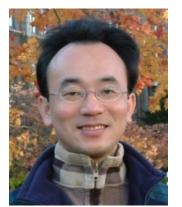
IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE-2

Department of Information Management Tamkang University, Taiwan

Min-Yuh Day

Chun Tu

Hou-Cheng Vong myday@mail.tku.edu.tw


Shih-Jhen Huang

NTCIR-10 Conference, June 18-21, 2013, Tokyo, Japan

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

Tamkang University 淡江大學 2014

Min-Yuh Day

Ya-Jung Wang

Che-Wei Hsu

En-Chun Tu

Huai-Wen Hsu

Yu-An Lin

Shang-Yu Wu

Yu-Hsuan Tai

Cheng-Chia Tsai

NTCIR-11 Conference, December 8-12, 2014, Tokyo, Japan

IMTKU Question Answering System for World History Exams at NTCIR-12 QA Lab2

Department of Information Management

Tamkang University, Taiwan

Sagacity Technology

- Min-Yuh Day Cheng-Chia Tsai Wei-Chun Chung Hsiu-Yuan Chang
- Tzu-Jui Sun Yuan-Jie Tsai

Cheng-Hung Lee

Yu-Ming Guo

Wei-Ming Chen Yue-Da Lin

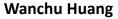
Cheng-Jhih Han Yun-Da Tsai

Yi-Jing Lin Yi-Heng Chiang Ching-Yuan Chien

myday@mail.tku.edu.tw

NTCIR-12 Conference, June 7-10, 2016, Tokyo, Japan

IMTKU Question Answering System for World History Exams at NTCIR-13 QALab-3


Department of Information Management

Tamkang University, Taiwan



ing Shi-Ya Zheng

I-Hsuan Huang

Tz-Rung Chen Min-Chun Kuo

Yue-Da Lin

Yi-Jing Lin

myday@mail.tku.edu.tw

NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan

IMTKU Emotional Dialogue System for Short Text Conversation at NTCIR-14 STC-3 (CECG) Task

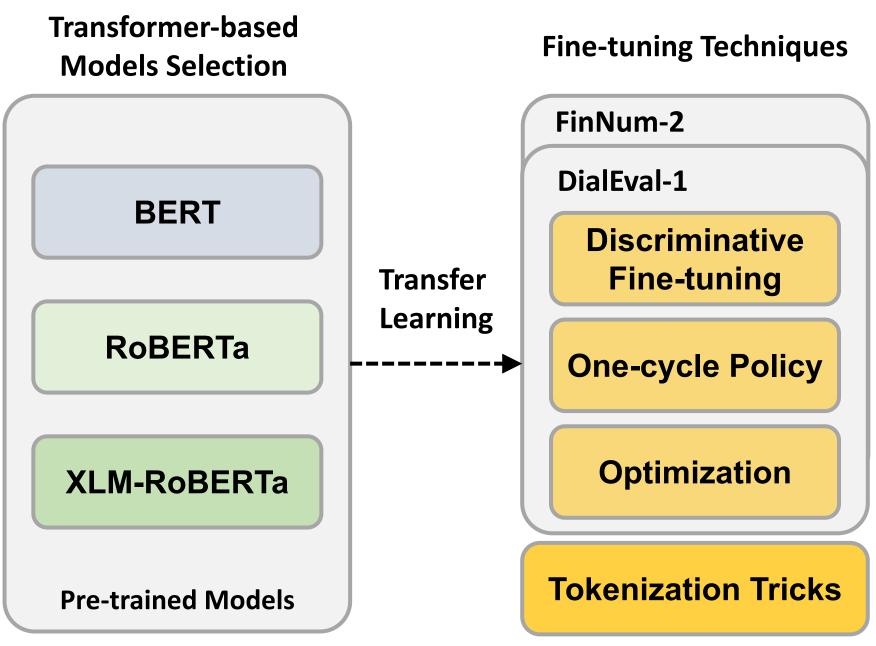
Department of Information Management Tamkang University, Taiwan

Min-Yuh Day

myday@mail.tku.edu.tw NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan

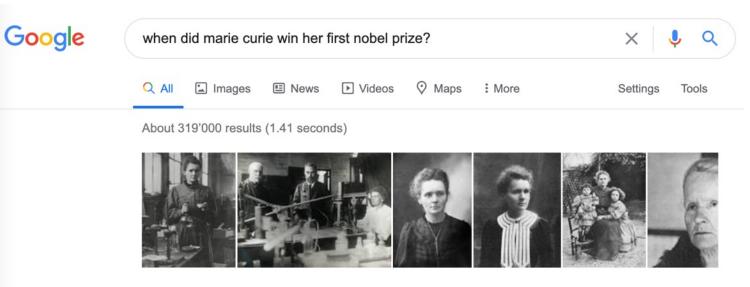
IMTKU Multi-Turn Dialogue System Evaluation at the NTCIR-15 DialEval-1 Dialogue Quality and Nugget Detection

¹ Zeals Co., Ltd. Tokyo, Japan ² Information Management, Tamkang University, Taiwan ³ Information Management, National Taipei University, Taiwan



Mike Tian-Jian Jiang¹ Zhao-Xian Gu² Cheng-Jhe Chiang² Yueh-Chia Wu² Yu-Chen Huang² Cheng-Han Chiu² Sheng-Ru Shaw² Min-Yuh Day³

NTCIR-15 Conference, December 8-11, 2020, Tokyo, Japan

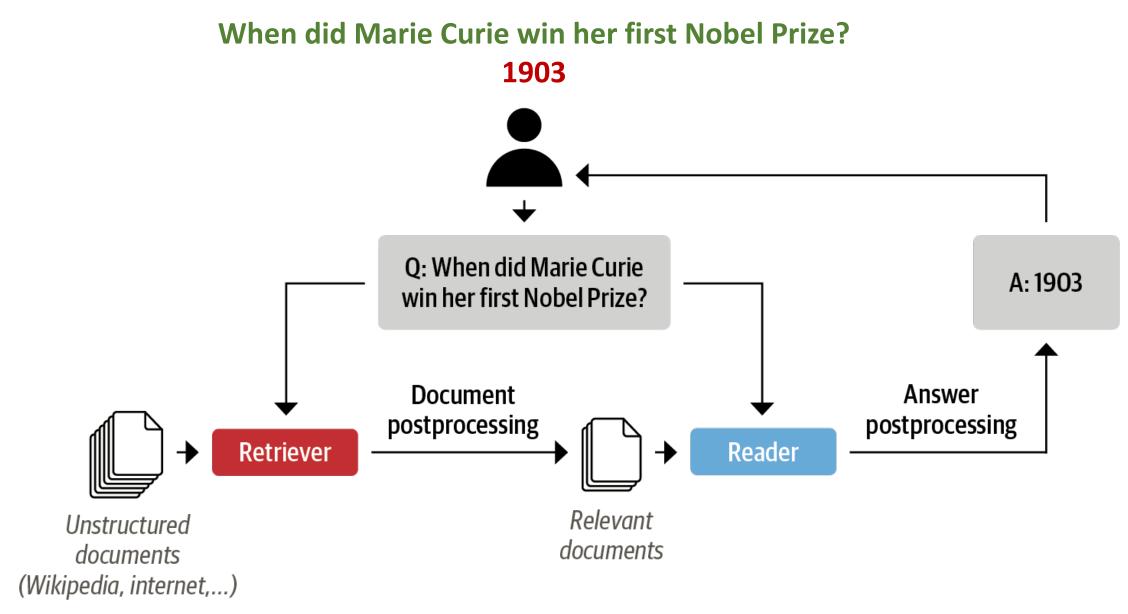

2020 NTCIR-15 Dialogue Evaluation (DialEval-1) Task Dialogue Quality (DQ) and Nugget Detection (ND) Chinese Dialogue Quality (S-score) Results (Zeng et al., 2020)

Run	Mean RSNOD	Run	Mean NMD
IMTKU-run2	0.1918	IMTKU-run2	0.1254
IMTKU-run1	0.1964	IMTKU-run0	0.1284
IMTKU-run0	0.1977	IMTKU-run1	0.1290
TUA1-run2	0.2024	TUA1-run2	0.1310
TUA1-run0	0.2053	TUA1-run0	0.1322
NKUST-run1	0.2057	NKUST-run1	0.1363
BL-lstm	0.2088	TUA1-run1	0.1397
WUST-run0	0.2131	BL-popularity	0.1442
RSLNV-run0	0.2141	BL-lstm	0.1455
BL-popularity	0.2288	RSLNV-run0	0.1483
TUA1-run1	0.2302	WUST-run0	0.1540
NKUST-run0	0.2653	NKUST-run0	0.2289
BL-uniform	0.2811	BL-uniform	0.2497
		-	

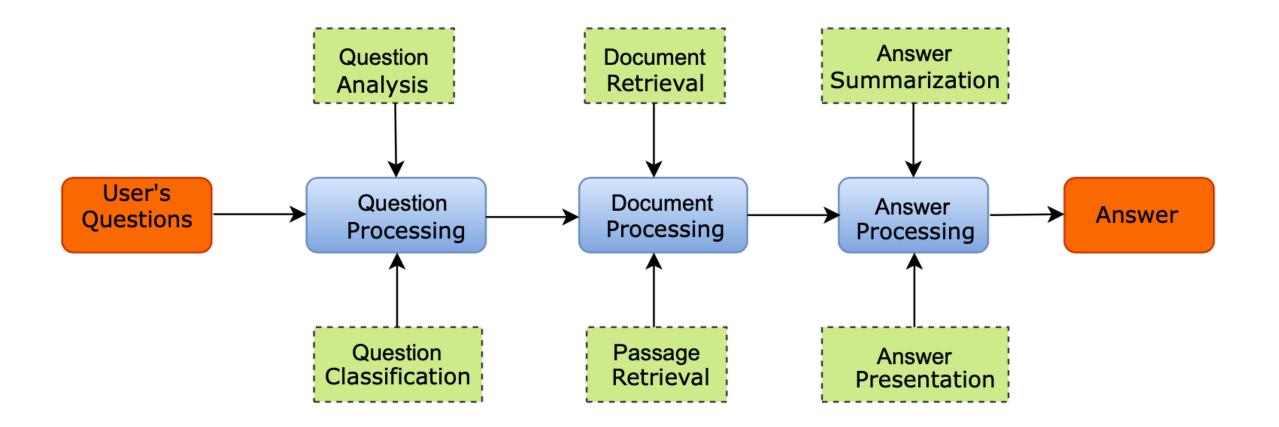
Source: Jiang, Mike Tian-Jian, Shih-Hung Wu, Yi-Kun Chen, Zhao-Xian Gu, Cheng-Jhe Chiang, Yueh-Chia Wu, Yu-Chen Huang, Cheng-Han Chiu, Sheng-Ru Shaw, and Min-Yuh Day (2020). "Fine-tuning techniques and data augmentation on transformer-based models for conversational texts and noisy user-generated content." In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 919-925. IEEE, 2020.

When did Marie Curie win her first Nobel Prize? 1903

1903

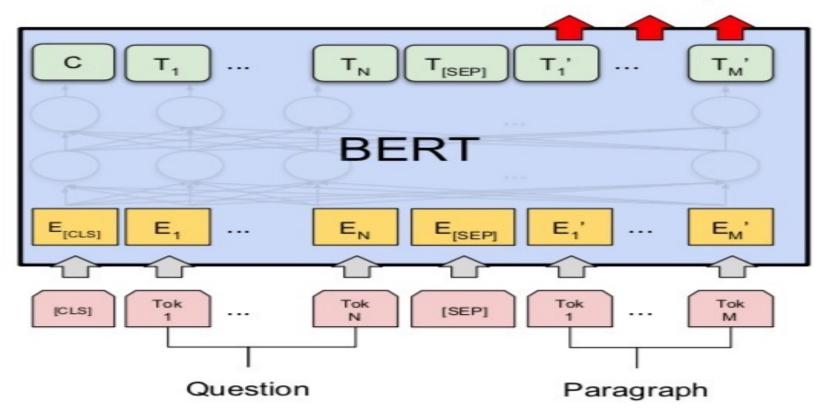

With Henri Becquerel and her husband, Pierre Curie, Marie Curie was awarded the 1903 Nobel Prize for Physics. She was the sole winner of the 1911 Nobel Prize for Chemistry. She was the first woman to win a Nobel Prize and the only woman to win the award in two different fields.

https://www.britannica.com > Science > Physics > Physicists


Marie Curie | Biography & Facts | Britannica

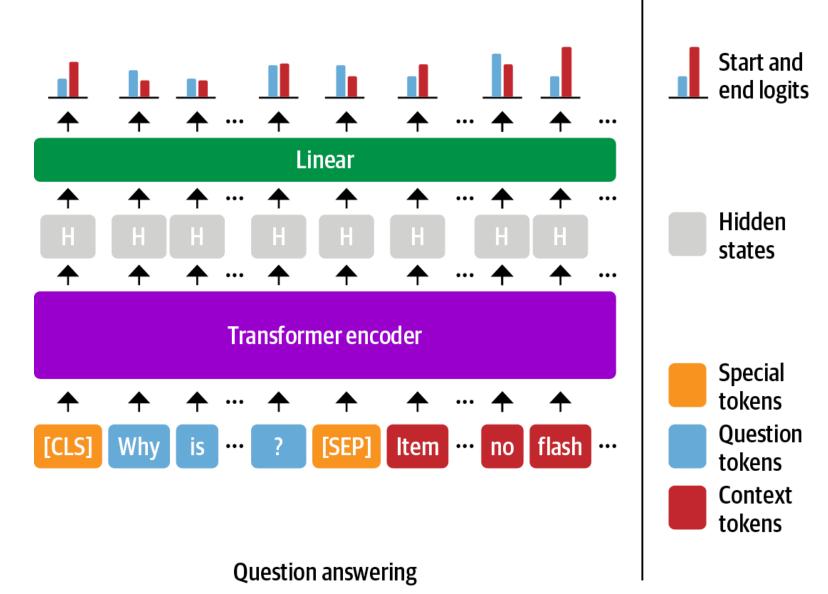
About featured snippets • Feedback

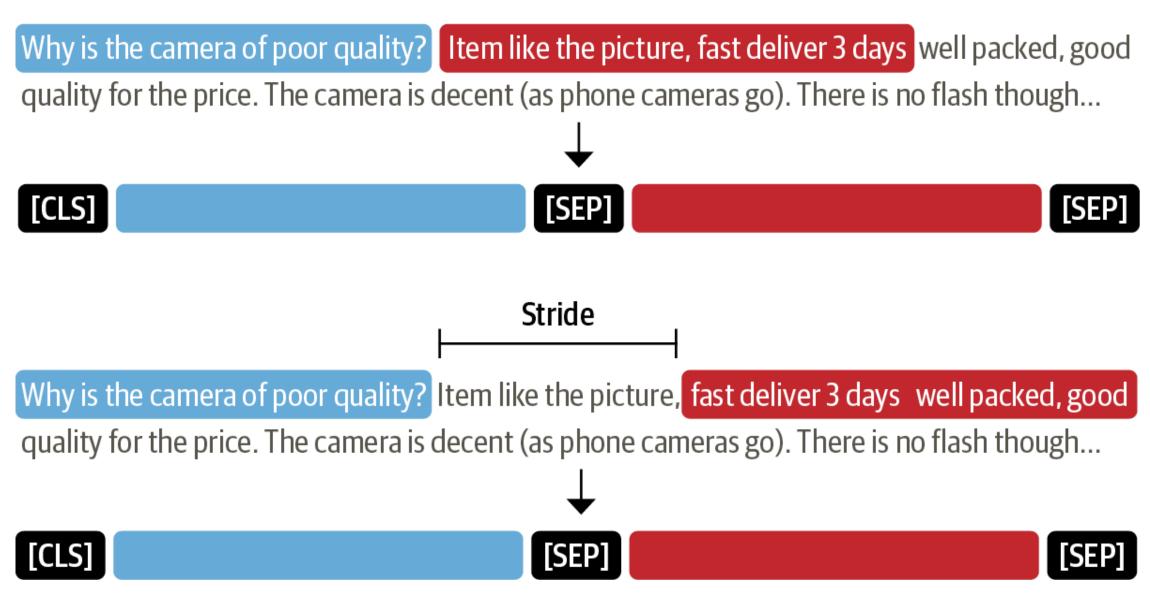
The Retriever-Reader Architecture for Modern QA Systems


Question Answering System (QAS)

Source: Mutabazi, Emmanuel, Jianjun Ni, Guangyi Tang, and Weidong Cao (2021) "A review on medical textual question answering systems based on deep learning approaches." Applied Sciences 11, no. 12 (2021): 5456. 204

Fine-tuning BERT on Question Answering (QA)

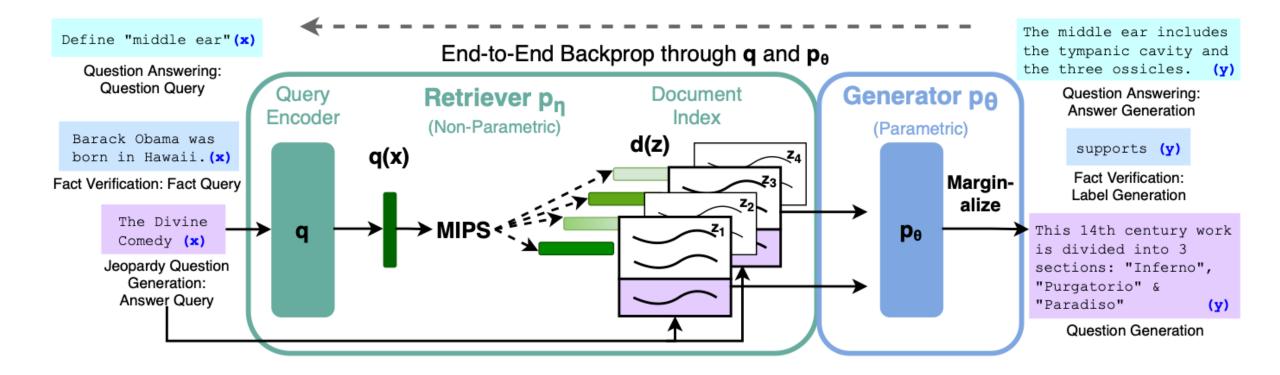

Start/End Span


(c) Question Answering Tasks: SQuAD v1.1

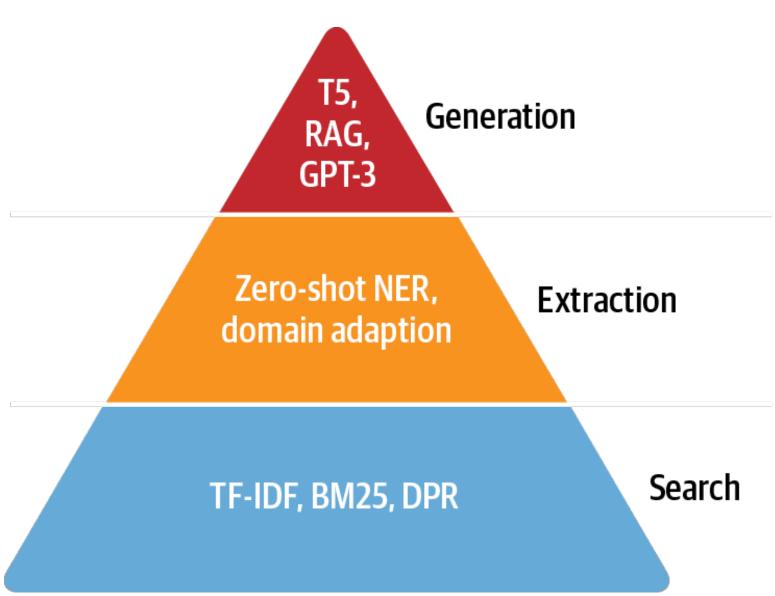
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

The span classification head for QA tasks

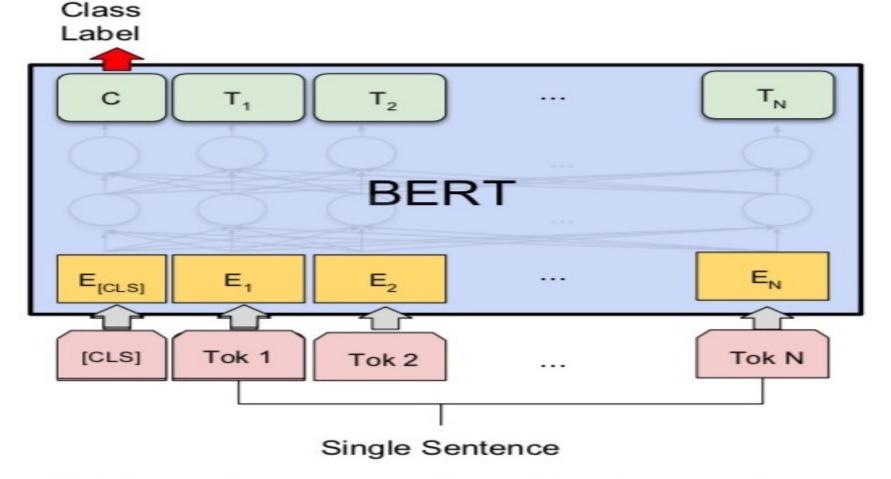
Multiple question-context pairs



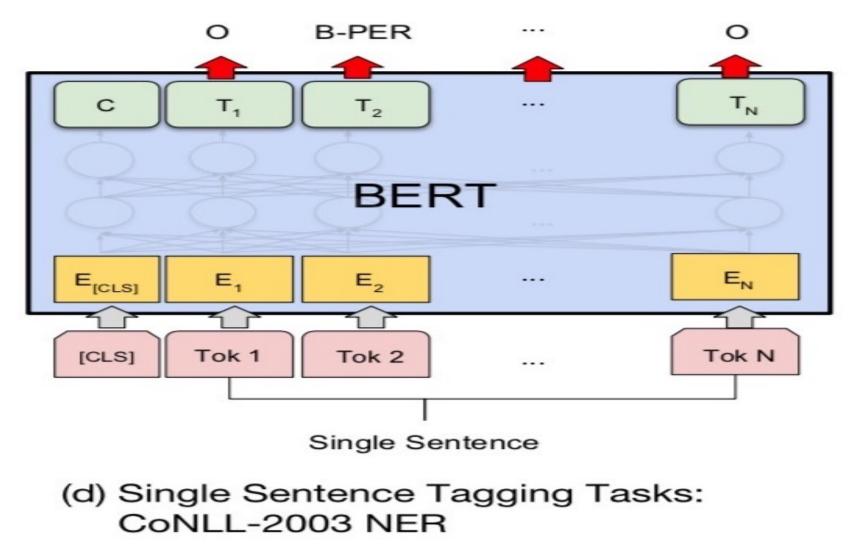
Dense Passage Retrieval (DPR)



Going Beyond Extractive QA Retrieval-Augmented Generation (RAG)


The RAG architecture for fine-tuning a retriever and generator end-to-end

The QA Hierarchy of Needs


Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)

(b) Single Sentence Classification Tasks: SST-2, CoLA

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue Slot Filling (SF)

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Question Answering (QA) SQuAD

Stanford Question Answering Dataset

SQuAD

SQuAD

Home Explore 2.0 Explore 1.1

SQUAD2.0 The Stanford Question Answering Dataset

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or *span*, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	SA-Net on Albert (ensemble)	90.724	93.011
Apr 06, 2020	QIANXIN		
2	SA-Net-V2 (ensemble)	90.679	92.948
May 05, 2020	QIANXIN		
2	Retro-Reader (ensemble)	90.578	92.978

https://rajpurkar.github.io/SQuAD-explorer/

SQuAD

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang

{pranavsr, zjian, klopyrev, pliang}@cs.stanford.edu Computer Science Department Stanford University

Abstract

We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-ga.com.

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Figure 1: Question-answer pairs for a sample passage in the

Source: Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. "Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).

SQuAD (Question Answering) Q: What causes precipitation to fall? Precipitation

From Wikipedia, the free encyclopedia

For other uses, see Precipitation (disambiguation).

In meteorology, **precipitation** is any product of the condensation of atmospheric water vapor that falls under gravity from clouds.^[2] The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity), so that the water condenses and "precipitates". Thus, fog and mist are not precipitation but suspensions, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers."^[3]

https://en.wikipedia.org/wiki/Precipitation

Paragraph

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

A: gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?

A: graupel

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: Where do water droplets collide with ice crystals to form precipitation?

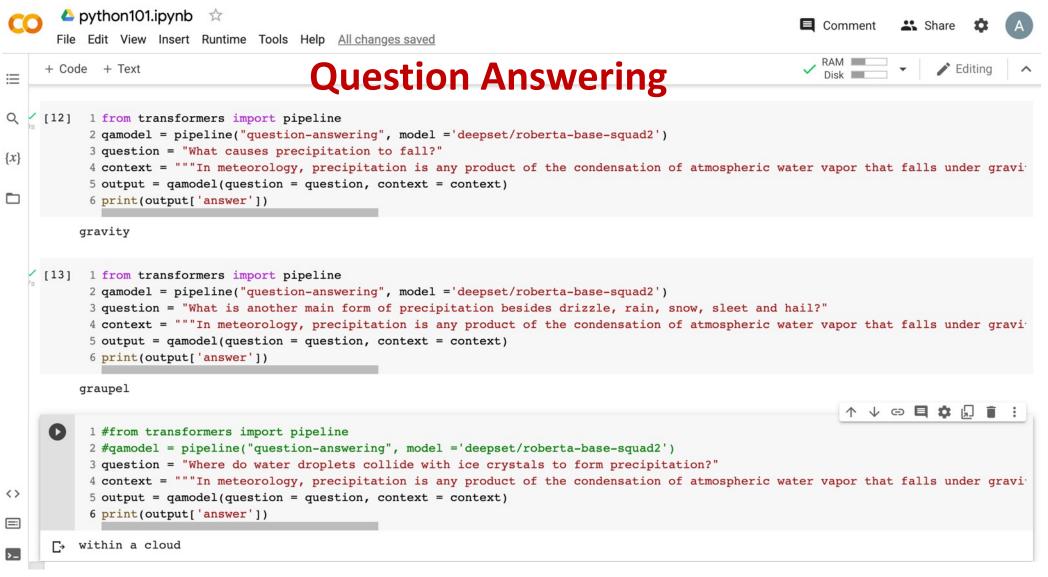
A: within a cloud

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q: What causes precipitation to fall?

A: gravity

Q: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?

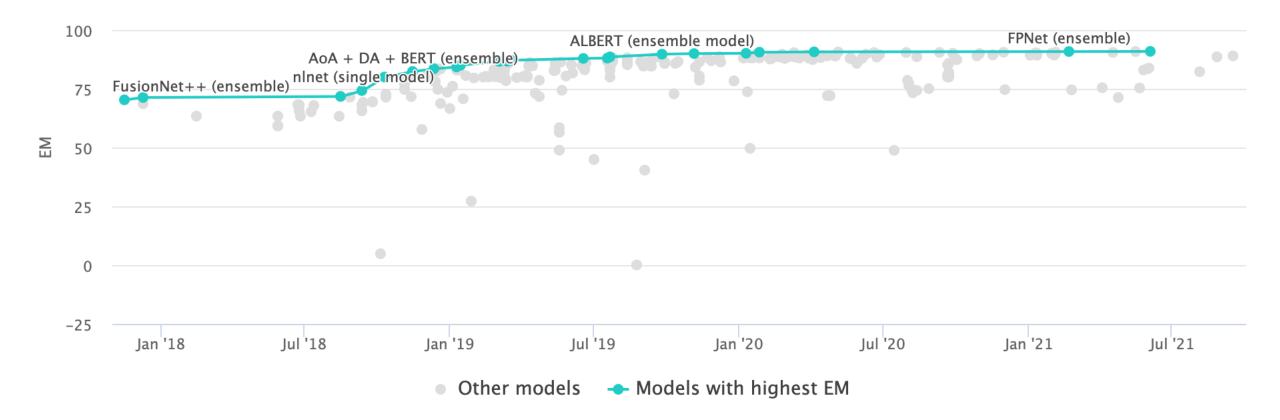

A: graupel

Q: Where do water droplets collide with ice crystals to form precipitation?

A: within a cloud

Python in Google Colab (Python101)

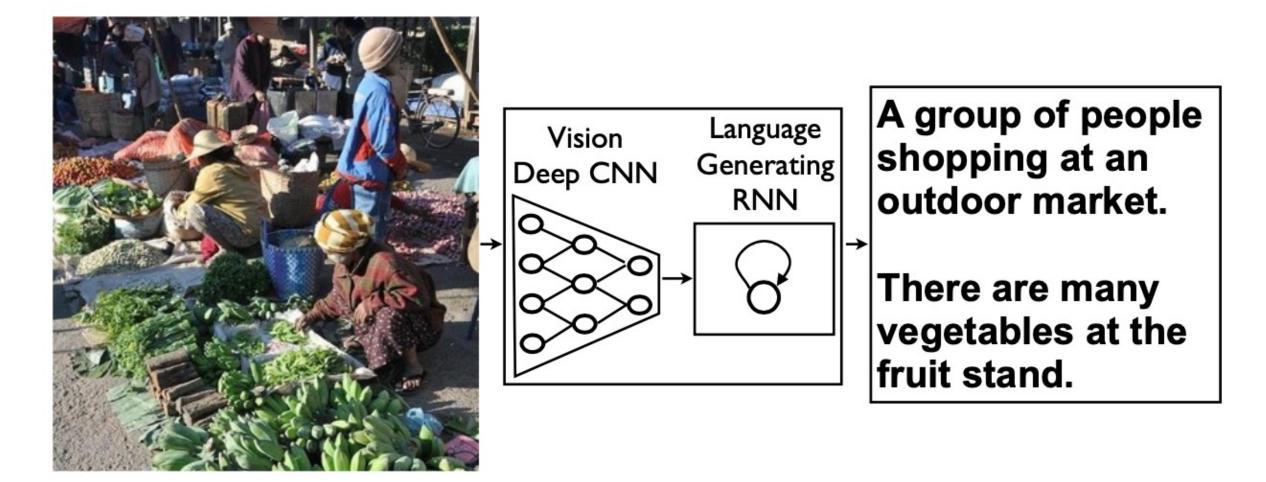
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT


Question Answering

from transformers import pipeline qamodel = pipeline("question-answering", model ='deepset/roberta-base-squad2') question = "What causes precipitation to fall?" context = """In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".""" output = qamodel(question = question, context = context) print(output['answer'])

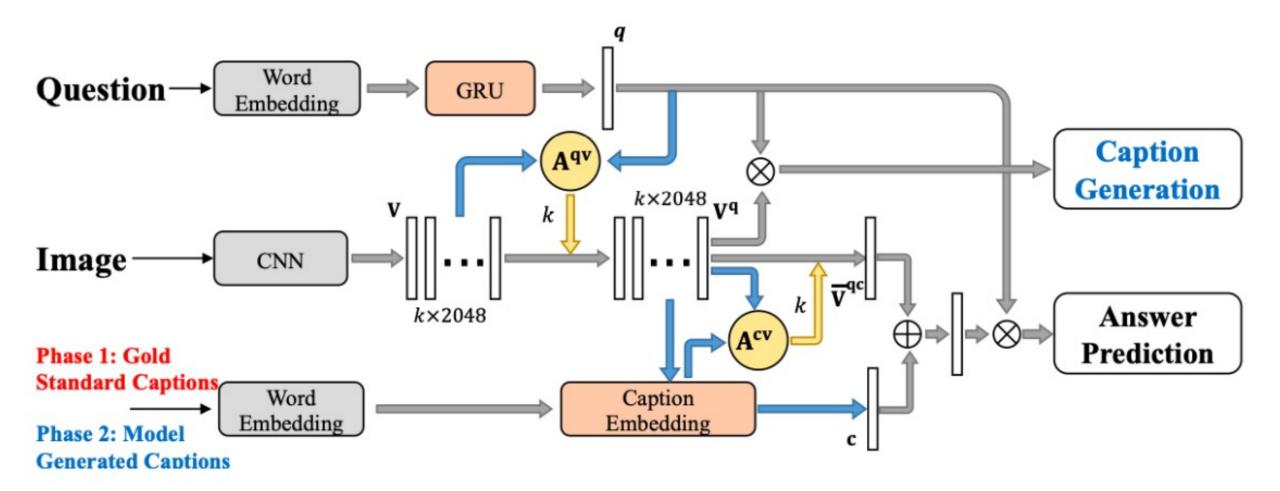
gravity

Question Answering on SQuAD2.0


SQuAD 2.0 benchmark (Papers with Code)

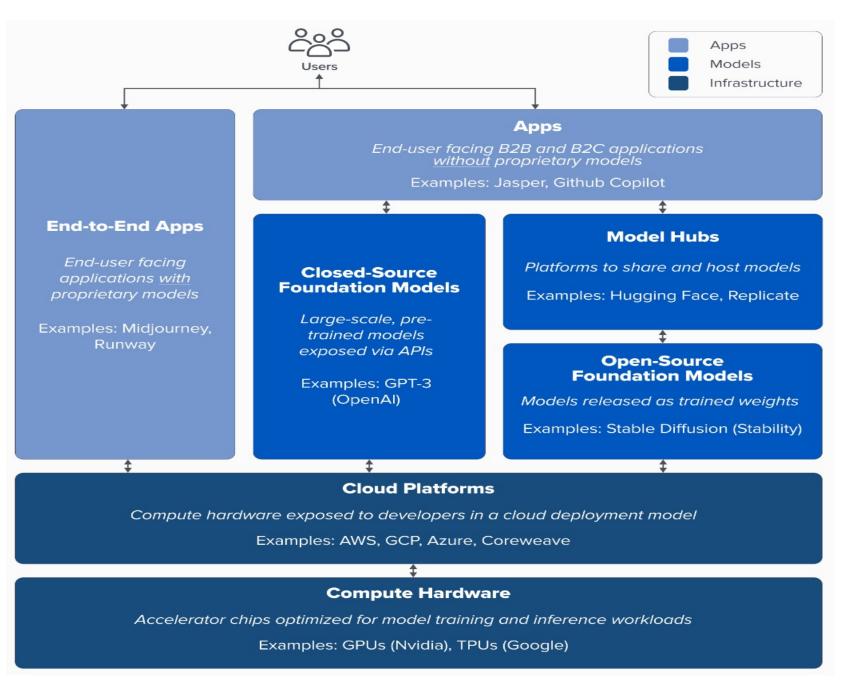
https://paperswithcode.com/sota/question-answering-on-squad20

224


Neural Image Captioning (NIC) image-to-text description generation

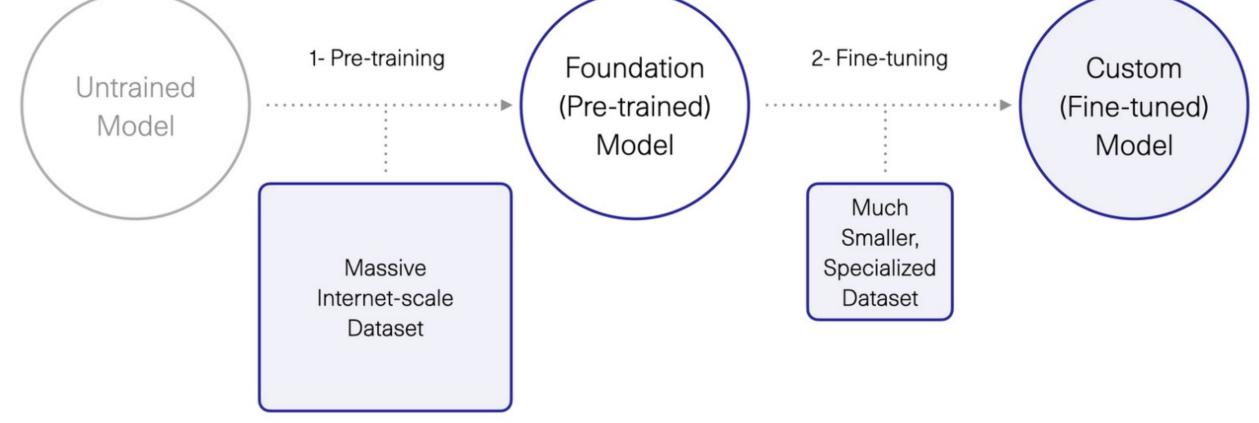
Source: Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al (2022). "Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

Visual Question Answering

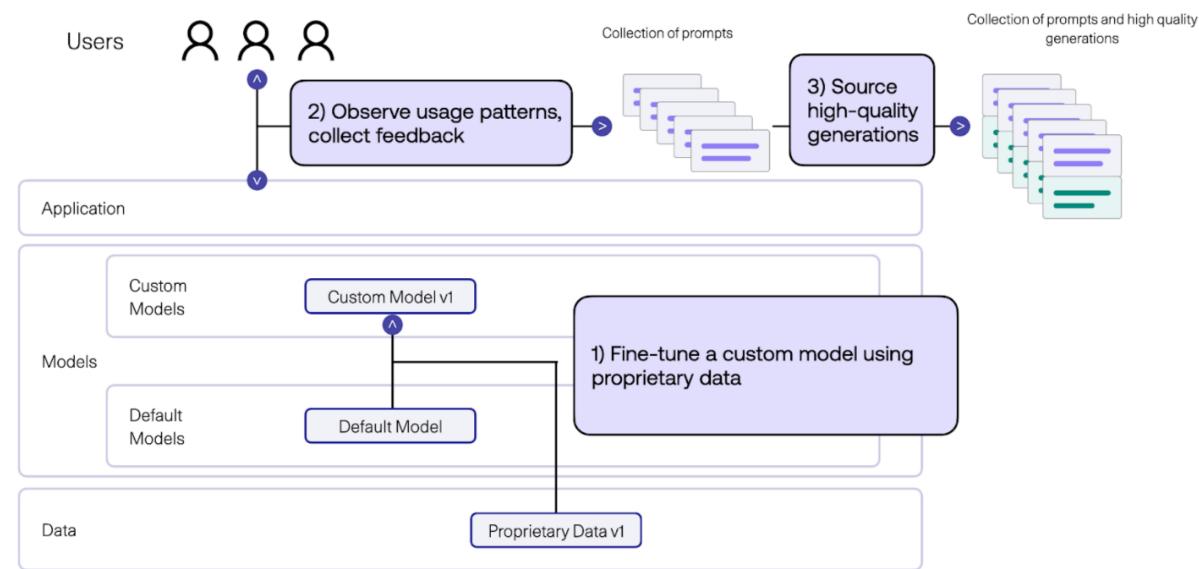

Neural caption generation is employed to aid answer prediction

Source: Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara Plank, Andrii Babii et al (2022). "Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning." Journal of Artificial Intelligence Research 73 (2022): 1131-1207.

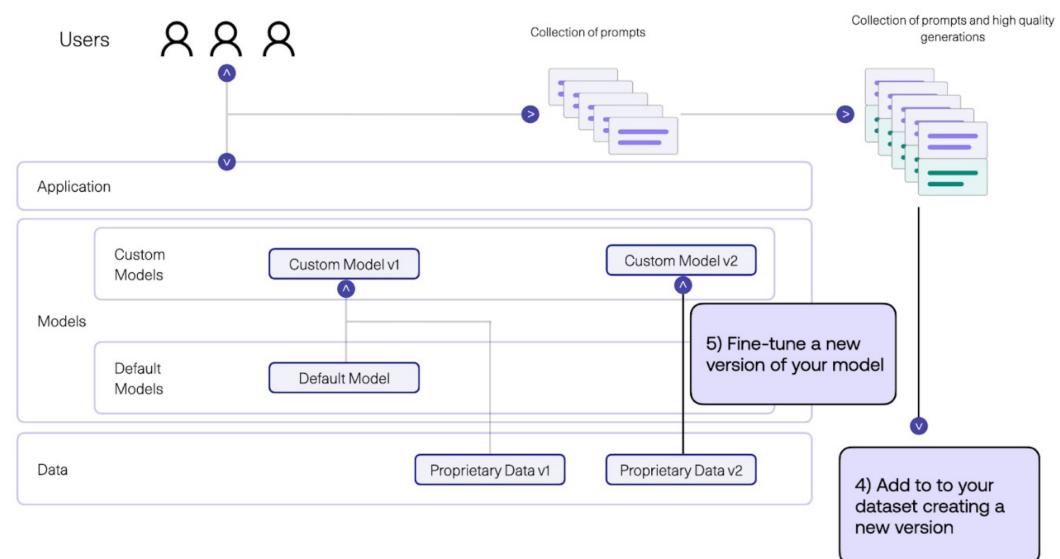
226


Generative Al Tech Stack

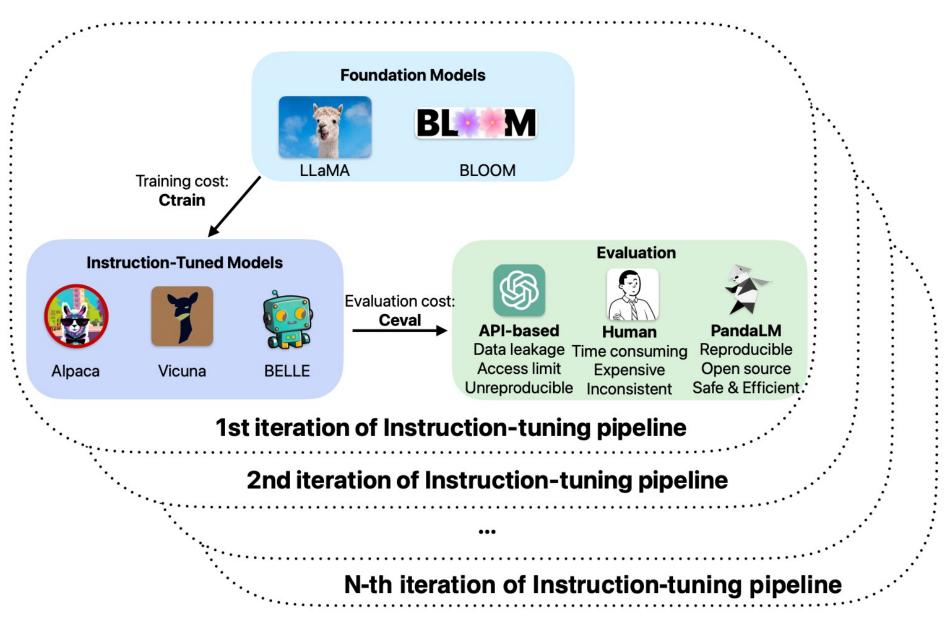
Generative AI Software and Business Factors


Business Proprietary Data Domain Expertise Distribution Factors Application A product utilizing and managing model inputs and outputs Models Large language models, image generation, or other ML models Software MLOps Model management, tracking Data Labeling, evaluation Cloud Platform Hosting, compute, model deployment and monitoring

Generative Al 1. Pre-training Foundation (Pre-trained) Model 2. Fine-turning Custom (Fine-tuned) Model

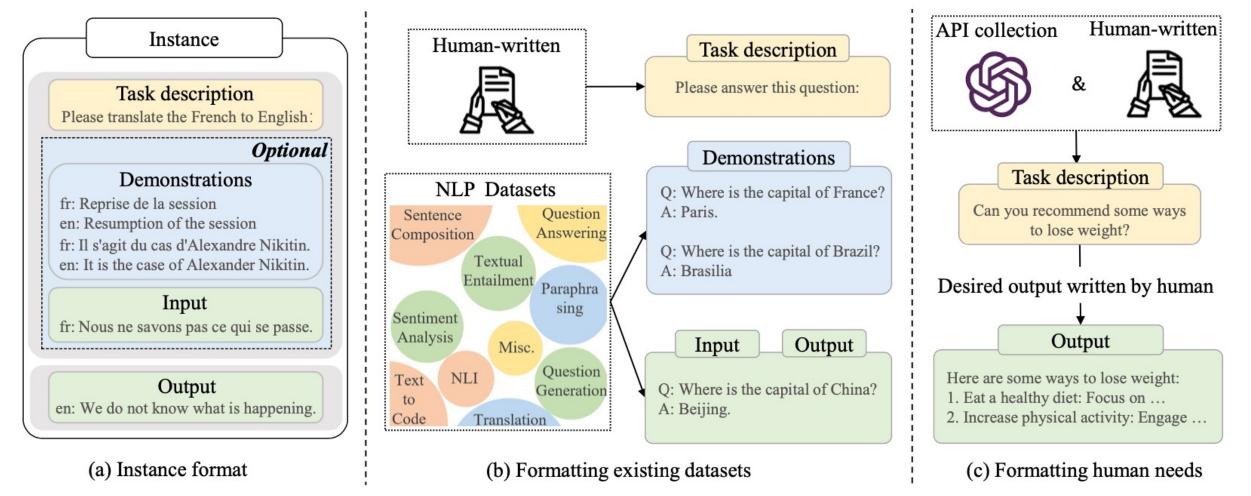

Generative Al

Fine-tune Custom Models using Proprietary Data



Generative Al

Fine-tune Custom Models using Proprietary Data


Pipeline of Instruction Tuning LLMs.

Available Task Collections for Instruction Tuning

Collections	Time	#Task types	#Tasks	#Examples
Nat. Inst. [193]	Apr-2021	6	61	193K
CrossFit [194]	Apr-2021	13	160	7.1M
FLAN [62]	Sep-2021	12	62	4.4M
P3 [195]	Oct-2021	13	267	12.1M
ExMix [196]	Nov-2021	11	107	18M
UnifiedSKG [197]	Jan-2022	6	21	812K
Super Nat. Inst. [78]	Apr-2022	76	1616	5M
MVPCorpus [198]	Jun-2022	11	77	41M
xP3 [84]	Nov-2022	17	85	81M
OIG ¹⁴	Mar-2023	-	-	43M

Instance Formatting and Two Different Methods for Constructing the Instruction-formatted Instances

In-context Learning (ICL) and Chain-of-thought (CoT) Prompting

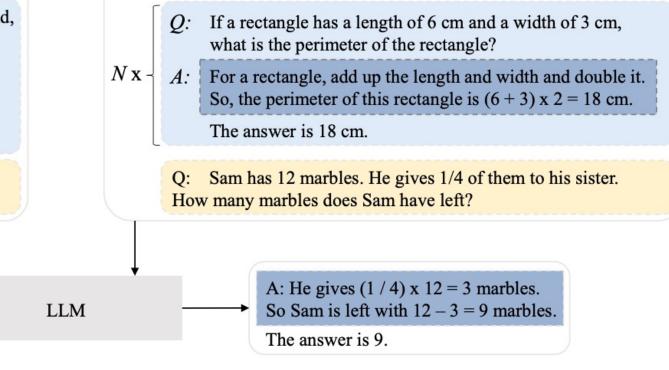
In-Context Learning

Answer the following mathematical reasoning questions:

- Q: If you have 12 candies and you give 4 candies to your friend, how many candies do you have left?
- 1: The answer is 8.

Nx

- Q: If a rectangle has a length of 6 cm and a width of 3 cm, what is the perimeter of the rectangle?
- A: The answer is 18 cm.


Q: Sam has 12 marbles. He gives 1/4 of them to his sister. How many marbles does Sam have left?

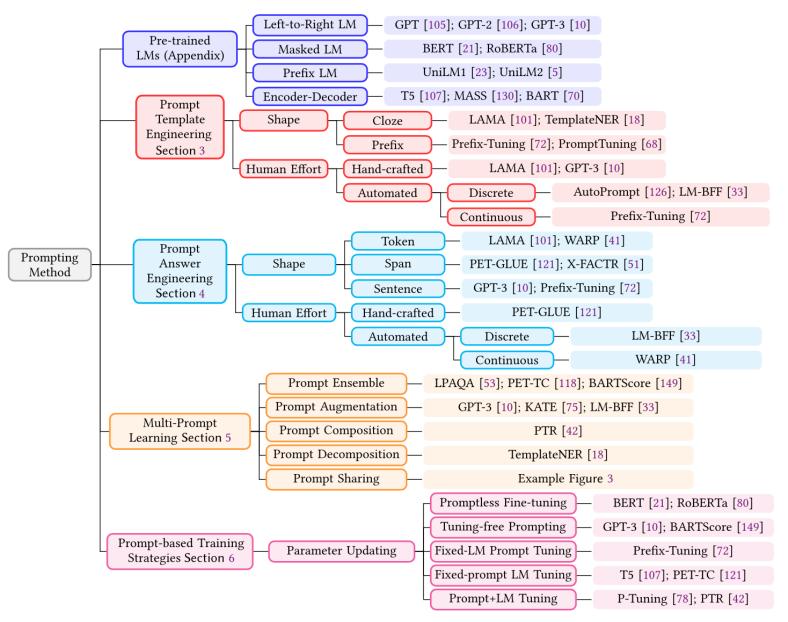
: Task description

Chain-of-Thought Prompting

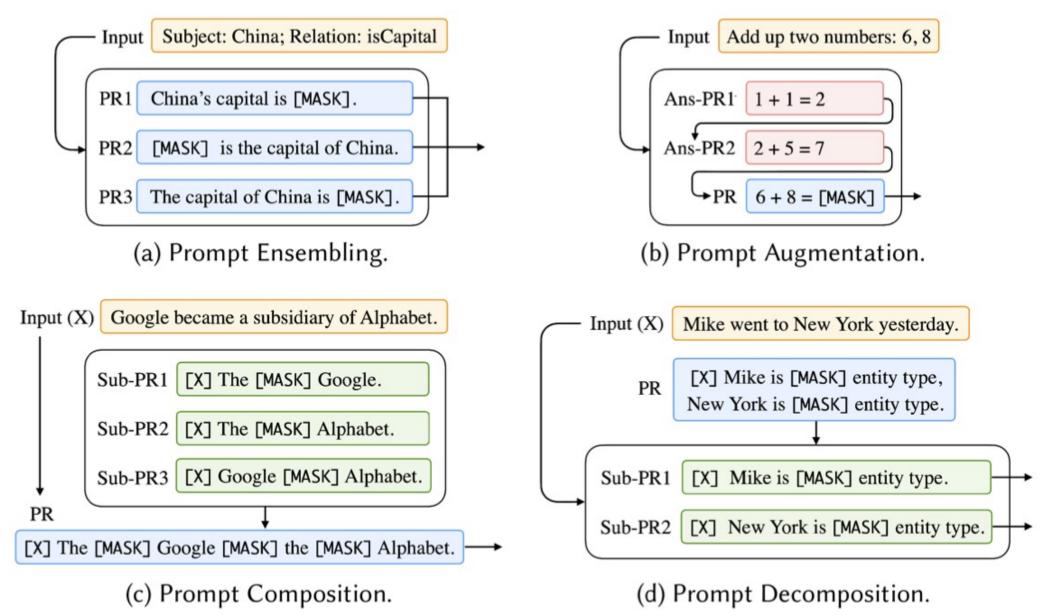
: Query

Answer the following mathematical reasoning questions:

: Chain-of-Thought


A: The answer is 9.

Pre-train, **Prompt, and Predict: Prompting Methods** in Natural Language Processing (LLMs)

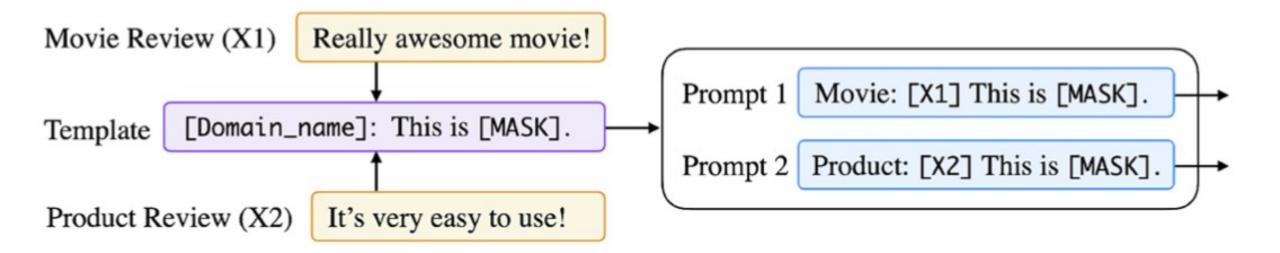

Four Paradigms in NLP

Paradigm	Engineering	Task Relation
a. Fully Supervised Learning (Non-Neural Network)	Feature (e.g. word identity, part-of-speech, sentence length)	CLS TAG
b. Fully Supervised Learning (Neural Network)	Architecture (e.g. convolutional, recurrent, self-attentional)	CLS TAG
c. Pre-train, Fine-tune	Objective (e.g. masked language modeling, next sentence prediction)	CLS TAG
d. Pre-train, Prompt, Predict	Prompt (e.g. cloze, prefix)	CLS LM GEN

Typology of Prompting Methods

Different Multi-Prompt Learning Strategies

Examples of Input, Template, and Answer for Different Tasks


Туре	Task Example	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text Classification	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span Classification	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair Classification	Natural Language Inference	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	Named Entity Recognition	[X1]: Mike went to Paris. [X2]: Paris	[X1][X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.
Regression	Textual Similarity	[X1]: A man is smoking. [X2]: A man is skating.	[X1] [Z], [X2]	Yes No

...

Characteristics of Different Tuning Strategies

Strategy	LM Params	Prompt Params		Example	
5614665		Additional	Tuned	Zhumpre	
Promptless Fine-tuning	Tuned	_		ELMo [97], BERT [20], BART [69]	
Tuning-free Prompting	Frozen	X	X	GPT-3 [9], AutoPrompt [125], LAMA [100]	
Fixed-LM Prompt Tuning	Frozen	✓	Tuned	Prefix-Tuning [71], Prompt-Tuning [67]	
Fixed-prompt LM Tuning	Tuned	X	X	PET-TC [117], PET-Gen [118], LM-BFF [32]	
Prompt+LM Fine-tuning	Tuned	✓	Tuned	PADA [5], P-Tuning [77], PTR [41]	

Multi-prompt Learning for Multi-task, Multi-domain, or Multi-lingual Learning

GPT-3.5 Prompt Engineering for Question Answering

- Find the answer to the question from the given context.
- When the question cannot be answered with the given context, say "unanswerable".
- Just say the answer without repeating the question.
- Context: {context}
- Question:{question}
- Answer:

Prompts and QA Inference For FLAN T5 Question Answering

- Prompts and QA Inference For FLAN T5, we follow [41] and use the following prompt:
- Context: {context}\nQuestion: {question}\nAnswer:

- Context: {context}
- Question: {question}
- Answer:

Prompt Engineering

• Prompts For FLAN models

 Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., ... & Roberts, A. (2023). The flan collection: Designing data and methods for effective instruction tuning. *arXiv preprint arXiv:2301.13688*.

• MNLI, NLI-FEVER, VitaminC:

- "Premise: {premise}\n\nHypothesis: {hypothesis}\n\nDoes the premise entail the hypothesis?\n\nA yes\nB it is not possible to tell\nC no"
- ANLI:
 - "{context}\n\nBased on the paragraph above can we conclude that\"{hypothesis}\"?\n\nA Yes\nB It's impossible to say\nC No"
- SNLI:
 - "If \"{premise}\", does this mean that \"{hypothesis}\"?\n\nA yes\nB it is not possible to tell\nC no"

Outline

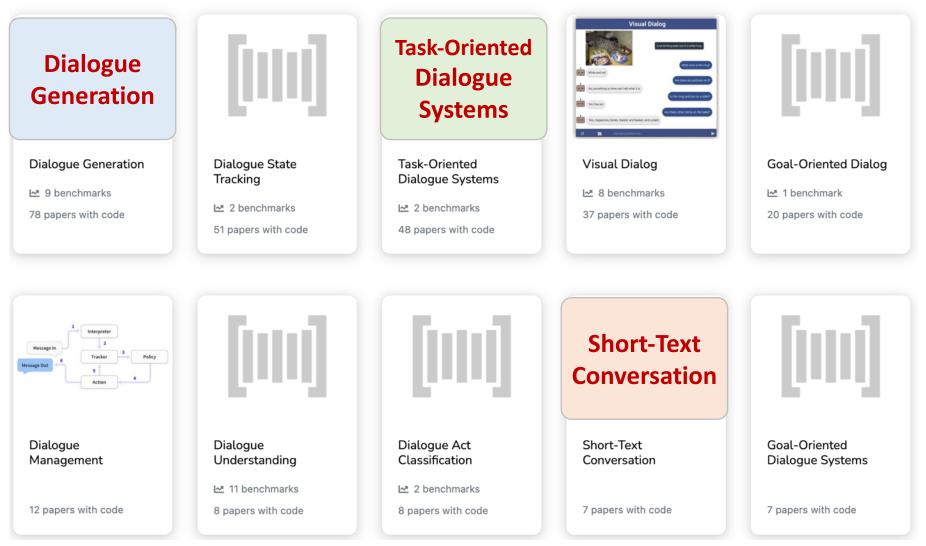
- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

Fine-tuning LLM for Dialogue System

Reinforcement Learning from Human Feedback (RLHF)

ChatGPT: Optimizing Language Models for Dialogue

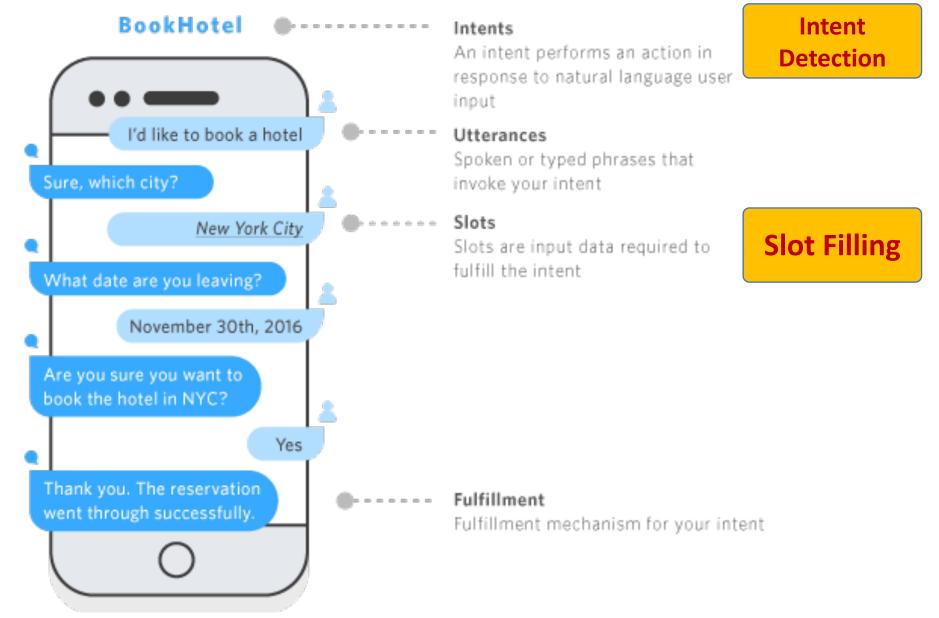
Dialogue Systems

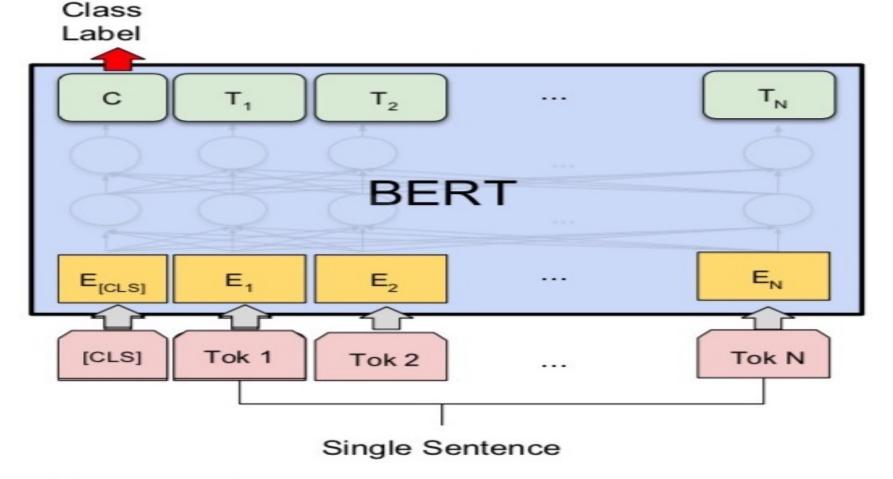

Chatbot

Dialogue System Intelligent Agent

Dialogue Subtasks

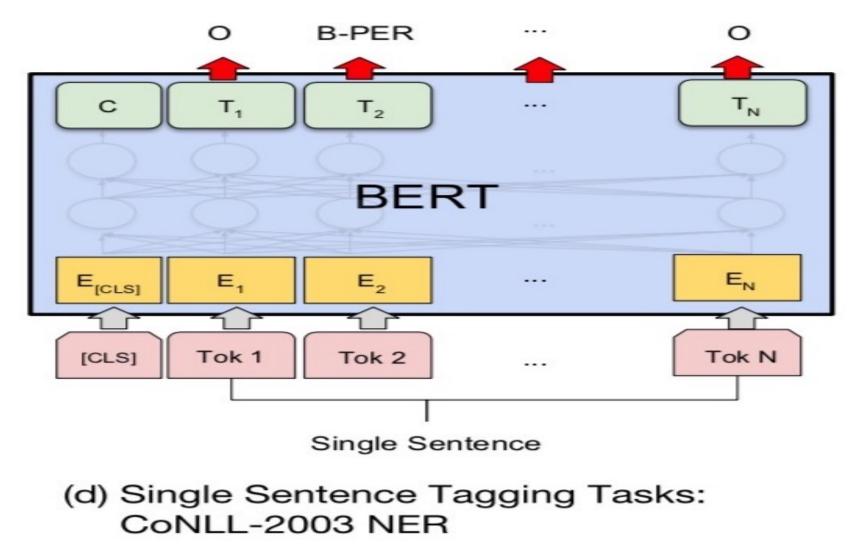
Browse SoTA > Natural Language Processing > Dialogue


Dialogue subtasks

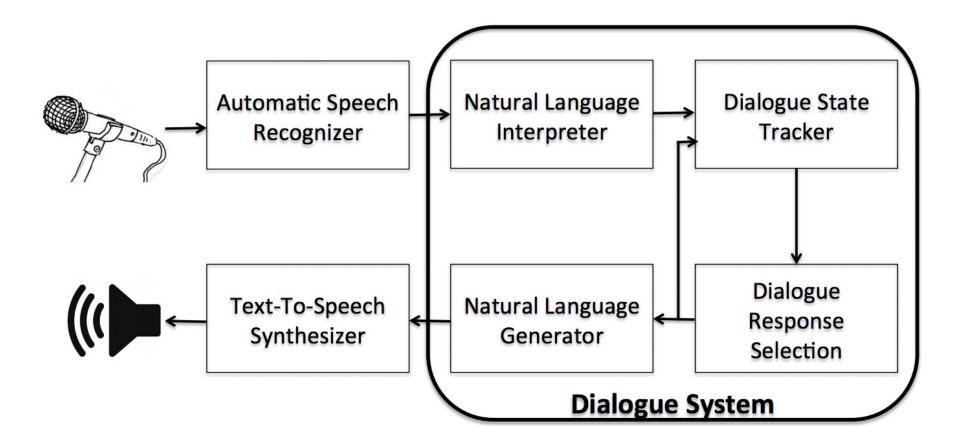

Conversational Commerce: eBay AI Chatbots

•••• A	т&т 穼	1:31 PM	④ ◀ ⑥ 76% ■	D
K Home		eBay ShopBot > Typically replies instantly	Manage	9
		I'm looking for adidas in white	stan smith	
ebay	Which for?	gender are you lookir	ng	
			Women	
ebay	Sure, I those.	've got a few options	for	
	\$63.71 STAN S B24105	alue 🤚 16 sold was \$74 - ADIDAS WOME MITH OG WHITE GREEN t.ebay.com	N'S \$99 Wh	end 9.99 iite opb
		View item		
Ð		Aa Q		

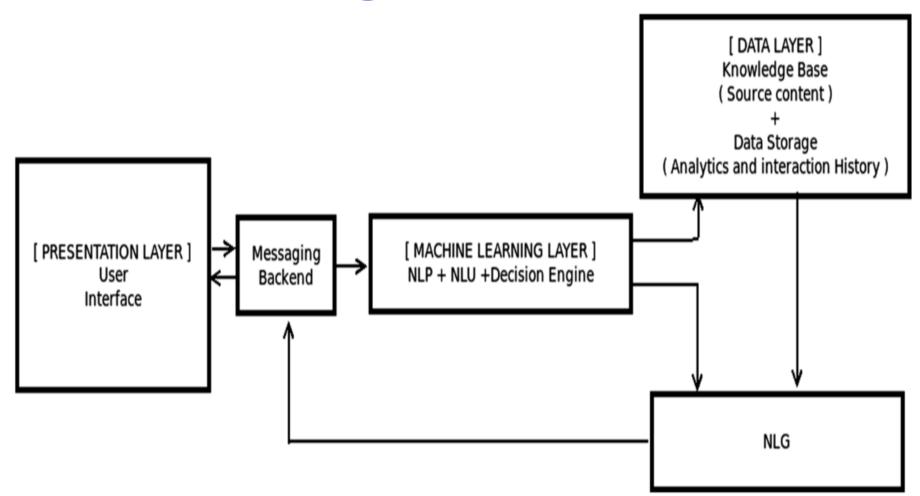
Hotel Chatbot


Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)

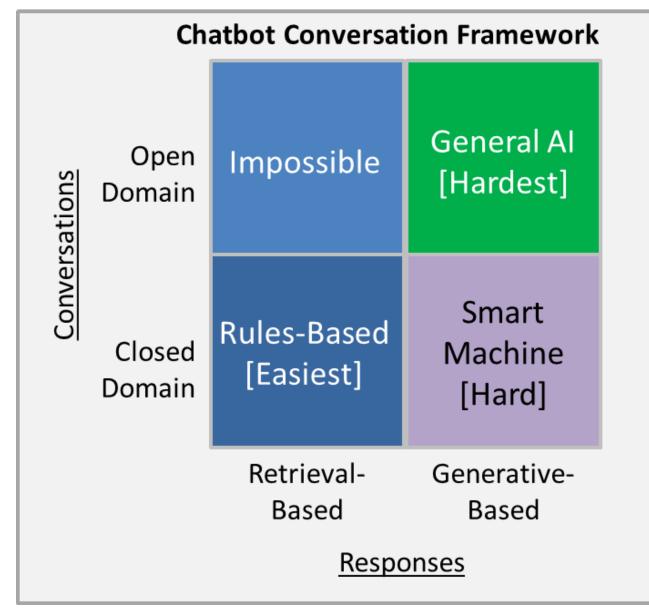
(b) Single Sentence Classification Tasks: SST-2, CoLA


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue Slot Filling (SF)

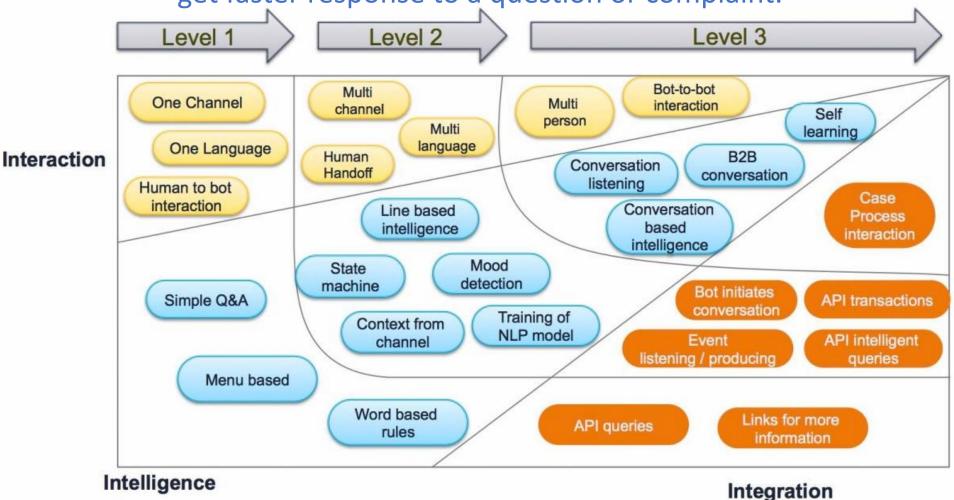


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.


Dialogue System

Overall Architecture of Intelligent Chatbot

Chatbot Conversation Framework

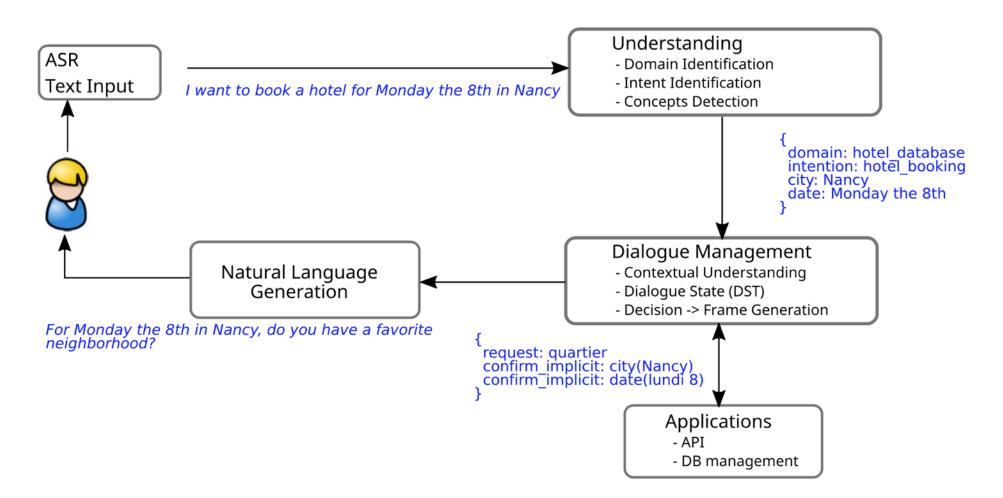

Source: https://chatbotslife.com/ultimate-guide-to-leveraging-nlp-machine-learning-for-you-chatbot-531ff2dd870c

Chatbots

Bot Maturity Model

Customers want to have simpler means to interact with businesses and

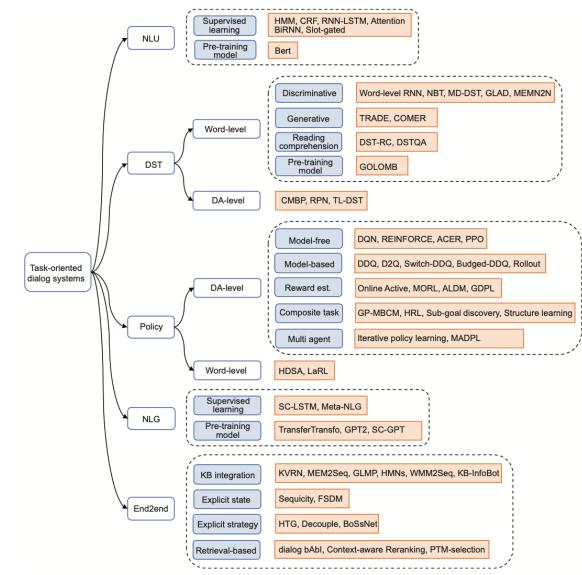
get faster response to a question or complaint.



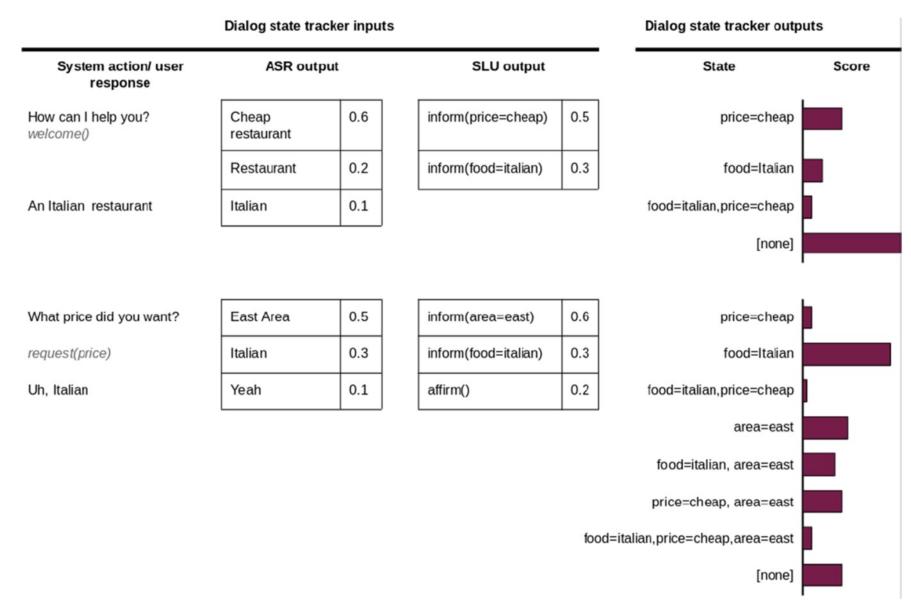
Source: https://www.capgemini.com/2017/04/how-can-chatbots-meet-expectations-introducing-the-bot-maturity/

Task-Oriented Dialogue System

Task-Oriented Dialogue System


(Deriu et al., 2021)

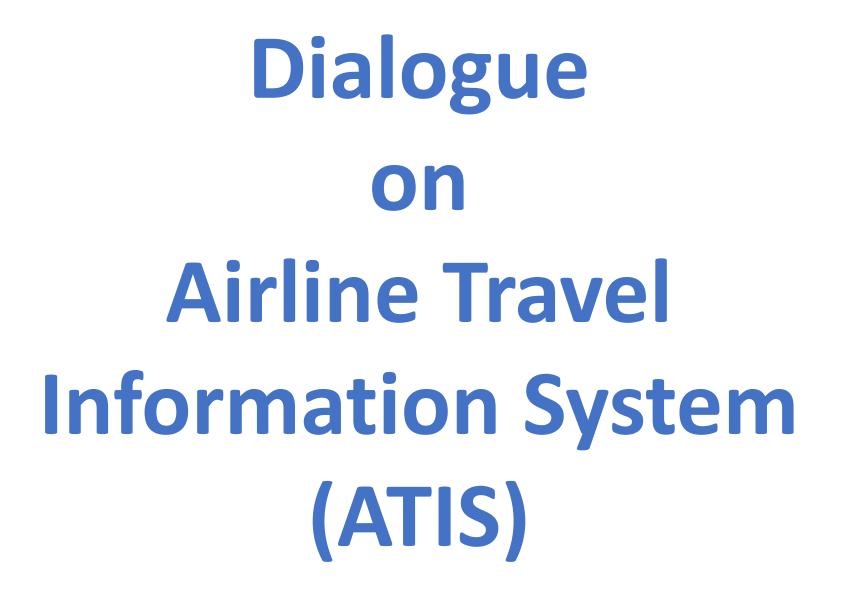
Source: Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.


Task-Oriented Dialogue Systems

(Zhang et al., 2020)

Source: Zhang, Zheng, Ryuichi Takanobu, Qi Zhu, Minlie Huang, and Xiaoyan Zhu (2020). "Recent advances and challenges in task-oriented dialog systems." Science China Technological Sciences (2020): 1-17.

Dialog State Tracker (DST)


Dialogue Acts

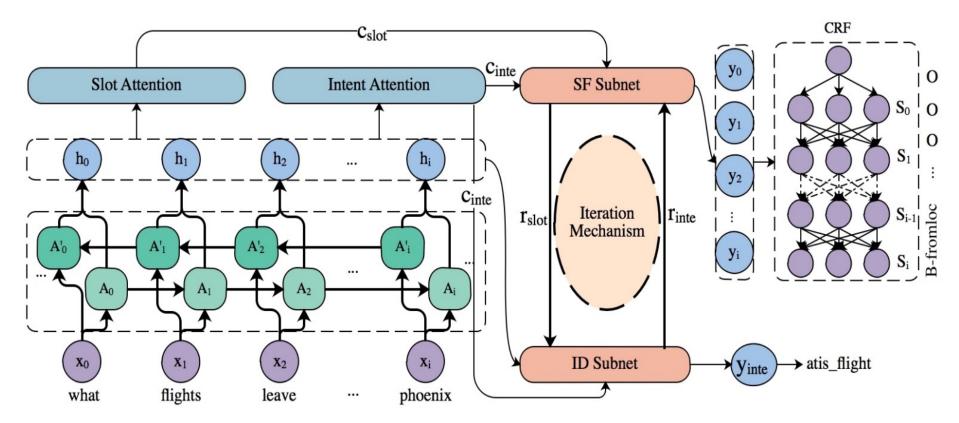
(Young et al., 2010)

Dialogue act	Description		
hello(a = x, b = y,)	Open a dialogue and give info $a = x, b = y,$		
inform(a = x, b = y,)	Give information $a = x, b = y,$		
request(a, b = x,)	Request value for a given $b = x,$		
require $(a = x,)$	Request alternative with $a = x,$		
$\operatorname{confirm}(a = x, b = y, \ldots)$	Explicitly confirm $a = x, b = y,$		
confreq(a = x,, d)	Implicitly confirm $a = x, \dots$ and request value of d		
select(a = x, a = y)	Select either $a = x$ or $a = y$		
$\operatorname{affirm}(a = x, b = y)$	Affirm and give further info $a = x, b = y,$		
negate(a = x)	Negate and give corrected value $a = x$		
deny(a = x)	Deny that $a = x$		
bye()	Close a dialogue		

Sample Dialogue Acts

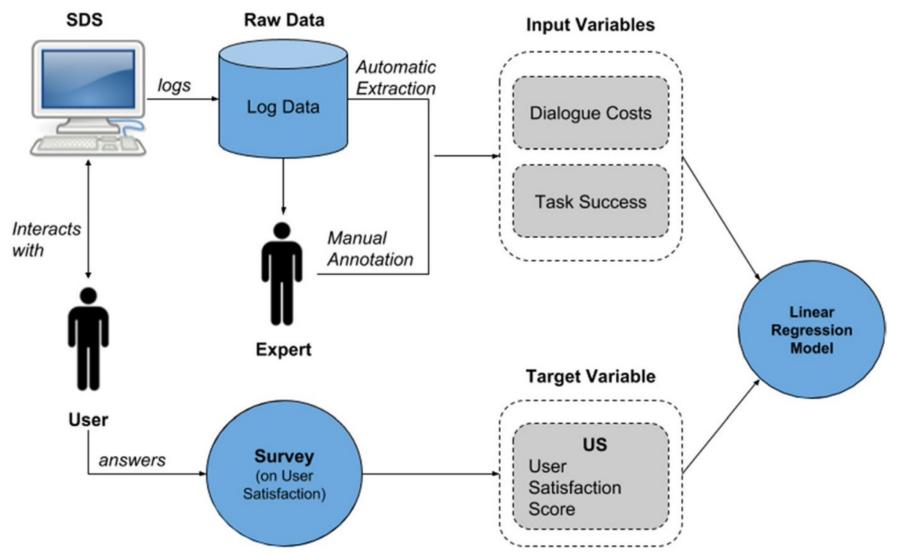
Utterance	Dialogue Act
U: Hi, I am looking for somewhere to eat	hello(task = find,type=restaurant)
S: You are looking for a restaurant. What type of food?	confreq(type = restaurant,food)
U: I'd like an Italian somewhere near the museum.	inform(food = Italian,near=museum)
S: Roma is a nice Italian restaurant near the museum.	inform(name = "Roma", type = restaurant, food = Italian, near = museum)
U: Is it reasonably priced?	confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price range.	affirm(name = "Roma", pricerange = moderate)
U: What is the phone number?	request(phone)
S: The number of Roma is 385456.	inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye.	bye()

The ATIS (Airline Travel Information System) Dataset


https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk

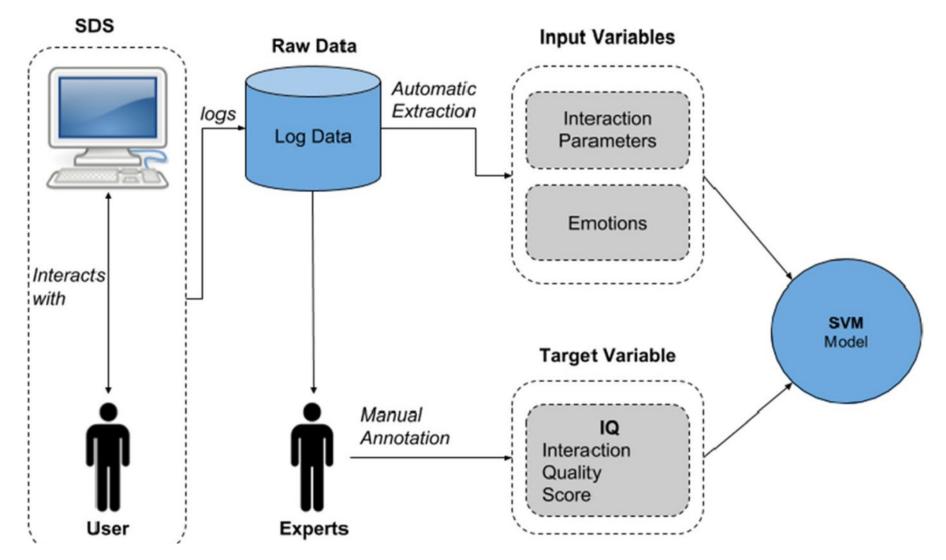
Sentence	what	flights	leave	from	phoenix	
Slots	0	0	0	0	B-fromloc	
Intent	atis_flight					

Training samples: 4978 Testing samples: 893 Vocab size: 943 Slot count: 129 Intent count: 26


SF-ID Network (E et al., 2019) Slot Filling (SF) Intent Detection (ID)

A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling

Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.


PARAdigm for Dialog System Evaluation PARADISE Framework (Walker et al. 1997)

Source: Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.

Interaction Quality procedure

(Schmitt and Ultes, 2015)

Source: Deriu, Jan, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak (2021). "Survey on evaluation methods for dialogue systems." Artificial Intelligence Review 54, no. 1 (2021): 755-810.

Datasets for task-oriented dialogue systems

Name	Topics	# dialogues	Reference
DSTC1	Bus schedules	15,000	(Williams et al. 2013)
DSTC2	Restaurants	3000	(Henderson et al. 2014)
DSTC3	Tourist information	2265	(Henderson et al. 2013a)
DSTC4 & DSTC5	Tourist information	35	(Kim et al. 2016)
DSTC6	Restaurant reservation	_	(Perez et al. 2017)
DSTC7 (Flex Data)	Student guiding	500	(Gunasekara et al. 2019)
DSTC8 (MetaLWOz)	47 domains	37,884	(Lee et al. 2019)
DSTC8 (Schema-Guided)	20 domains	22,825	(Rastogi et al. 2019)
MultiWOZ	Tourist information	10,438	(Budzianowski et al. 2018)
Taskmaster-1	6 domains	13,215	(Byrne et al. 2019)
MultiDoGo	6 domains	86,698	(Peskov et al. 2019)

Restaurants Dialogue Datasets

- MIT Restaurant Corpus
 - <u>https://groups.csail.mit.edu/sls/downloads/restaurant/</u>
- CamRest676 (Cambridge restaurant dialogue domain dataset)

• <u>https://www.repository.cam.ac.uk/handle/1810/260970</u>

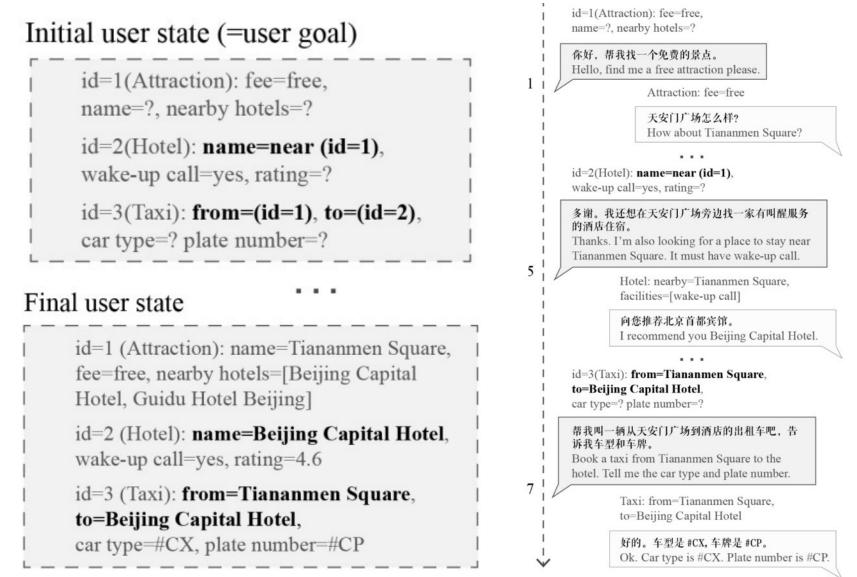
- DSTC2 (Dialog State Tracking Challenge 2 & 3)
 - <u>http://camdial.org/~mh521/dstc/</u>

CrossWOZ:

A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

MultiWOZ	CrossWOZ				
usr: I'm looking for a college type attraction.	usr: 你好, 可以帮我推荐一个评分是4.5分以上的景点吗?				
	Hello, could you recommend an attraction with a rating of 4.5 or higher?				
usr: I would like to visit in town centre please.	sys:天安门城楼,簋街小吃和北京欢乐谷都是很不错的地方呢。				
	Tiananmen, Gui Street, and Beijing Happy Valley are very nice places.				
usr: Can you find an Indian restaurant for me	usr: 我喜欢北京欢乐谷, 你知道这个景点周边的酒店都是什么吗?				
that is also in the town centre?	I like Beijing Happy Valley. What hotels are around this attraction?				
Schema	sys:那可多了,有A酒店,B酒店,C酒店。				
usr: I want a hotel in San Diego and I want to	There are many, such as hotel A, hotel B, and hotel C.				
check out on Thursday next week.	usr:太好了,我正打算在 景点附近 找个酒店住宿呢,知道哪家评分				
	是4分以上,提供叫醒服务的不?				
usr: I need a one way flight to go there.	Great! I am planning to find a hotel to stay near the attraction. Which				
	one has a rating of 4 or higher and offers wake-up call service?				

CrossWOZ:


A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset

Туре	Single-domain goal					Multi-domain goal		
Dataset	DSTC2 WOZ 2.0 Frames KVRET		M2M	MultiWOZ	Schema	CrossWOZ		
Language	EN	EN	EN	EN	EN	EN	EN	CN
Speakers	H2M	H2H	H2H	H2H	M2M	H2H	M2M	H2H
# Domains	1	1	1	3	2	7	16	5
# Dialogues	1,612	600	1,369	2,425	1,500	8,438	16,142	5,012
# Turns	23,354	4,472	19,986	12,732	14,796	115,424	329,964	84,692
Avg. domains	1	1	1	1	1	1.80	1.84	3.24
Avg. turns	14.5	7.5	14.6	5.3	9.9	13.7	20.4	16.9
# Slots	8	4	61	13	14	25	214	72
# Values	212	99	3,871	1363	138	4,510	14,139	7,871

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese cross-

domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

Task-Oriented Dialogue

Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale chinese crossdomain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

An example dialog from the test set for MultiWOZ ($en \rightarrow zh$) sub-task

Speaker	Utterance	Dialog State Update
User System	Hello! I am looking for a local guesthouse in the centre. 你好!我在市中心找一家本地宾馆。 OK. I am glad to recommend Alexander Bed and Breakfast	hotel: {area: centre, type: guesthouse} 旅馆: {区域: 中心, 类型: 宾馆}
System	to you. 好的。这边很高兴向您推荐亚历山大住宿加早餐旅馆。	
User	Where is it? 它在哪里?	hotel: {name: alexander bed and breakfast} 旅馆: {名称: 亚历山大住宿加早餐旅馆}
System	It is at 56 Saint Barnabas Road. 圣巴纳巴斯路56号。	
User	I also wish to have a meal in a local European restaurant in the centre. 我还想在市中心的一家本地欧洲餐厅吃饭。	restaurant: {food: european, area: centre} 餐厅: {食物: 欧洲的, 区域: 中心}
System	You can choose Eraina. 您可以选择伊莱娜。	
User	Please give me its address. 那请给我它的地址。	restaurant: {name: eraina} 餐厅: {名称: 伊莱娜}
System	It is in Free School Lane City Centre. 市中心自由校园巷。	
User	Ok. I'll go there. I need to book a taxi from Alexander Bed and Breakfast to Eraina after 07:00. 好。那我去那里。我还要预订一辆7:00时从亚历山大住 宿加早餐旅馆到伊莱娜的出租车。	taxi: {leaveAt: 07:00, destination: eraina, departure: alexander bed and breakfast} 出租车: {出发时间: 07:00, 目的地: 伊莱娜,
System	Well. I find a yellow Skoda. 好的。是一辆黄色的斯柯达。	出发地:亚历山大住宿加早餐旅馆}
User	How about its phone number? 它的电话号码是多少?	No update
System	It is 78519675253. 78519675253 •	
User	Thank you for your help. Bye! 谢谢你帮忙。再见!	No update
System	A pleasure. Bye bye! 我很乐意。再见!	

Reinforcement Learning from Human Feedback (RLHF)

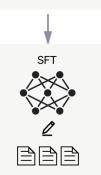
ChatGPT: Optimizing Language Models for Dialogue

Collect comparison data and

train a reward model.

Step 1

Collect demonstration data and train a supervised policy.


A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

 \mathfrak{O} Explain reinforcement learning to a 6 year old.

A prompt and several model outputs are sampled.

Step 2

 \mathbb{C} Explain reinforcement learning to a 6 year old.

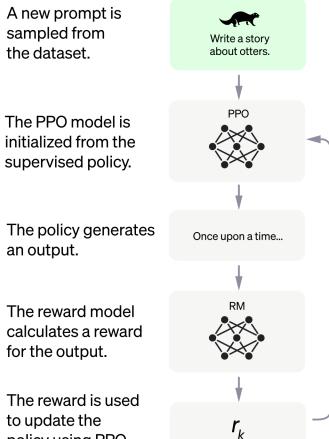
> (A) **B** In reinforcement learning, the agent is... C D In machine learning.

A labeler ranks the outputs from best to worst.

RM

D > C > A > B

This data is used to train our reward model.

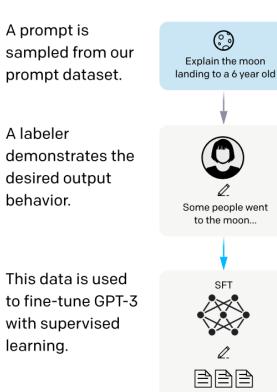


The reward model calculates a reward for the output.

> The reward is used to update the policy using PPO.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.



Source: https://openai.com/blog/chatgpt/

Training language models to follow instructions with human feedback InstructGPT and GPT 3.5

Step 1

Collect demonstration data, and train a supervised policy.

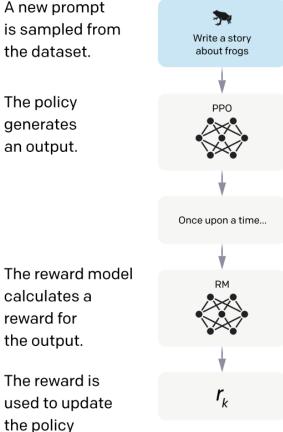
Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

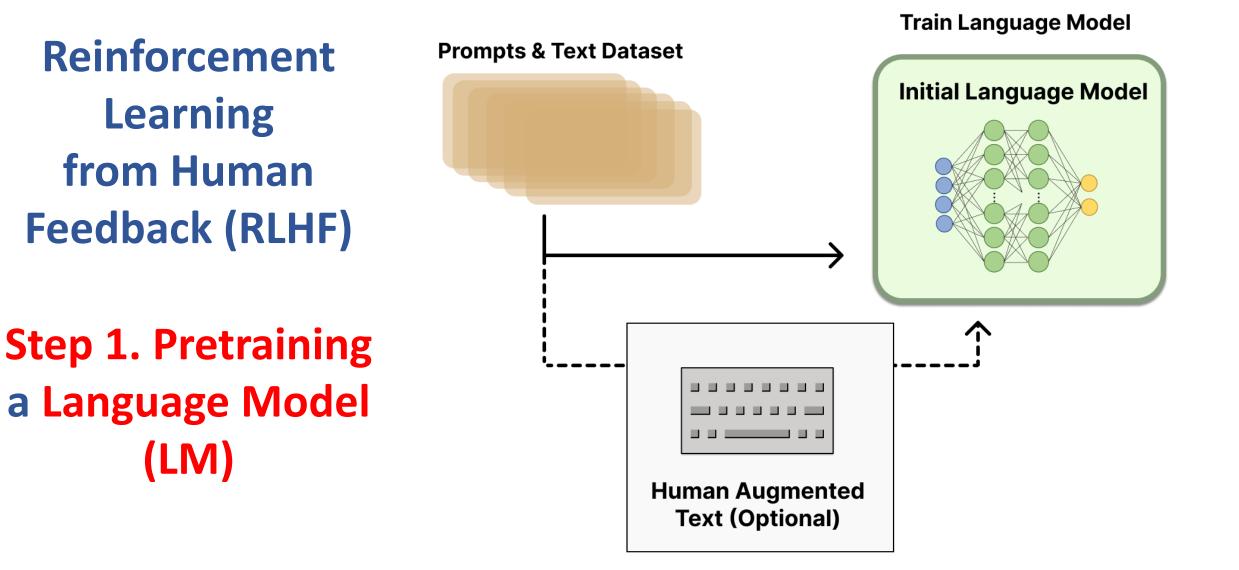
This data is used to train our reward model.


D > C > A = B

reinforcement learning.

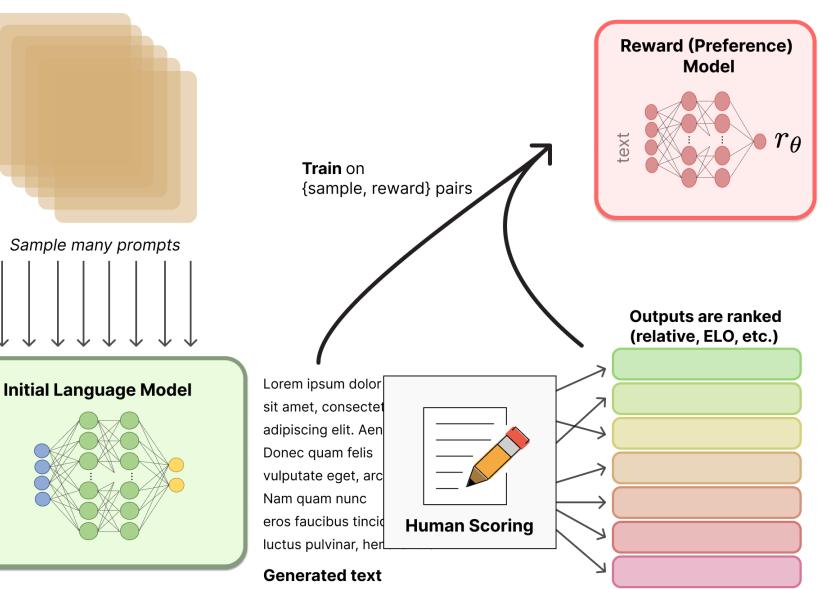
Step 3

Optimize a policy against

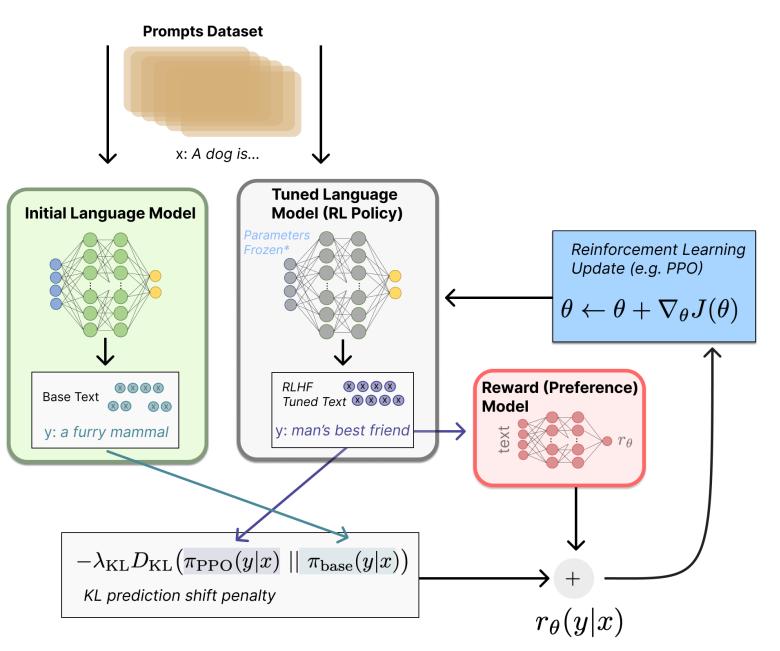

the reward model using

using PPO. Source: Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.

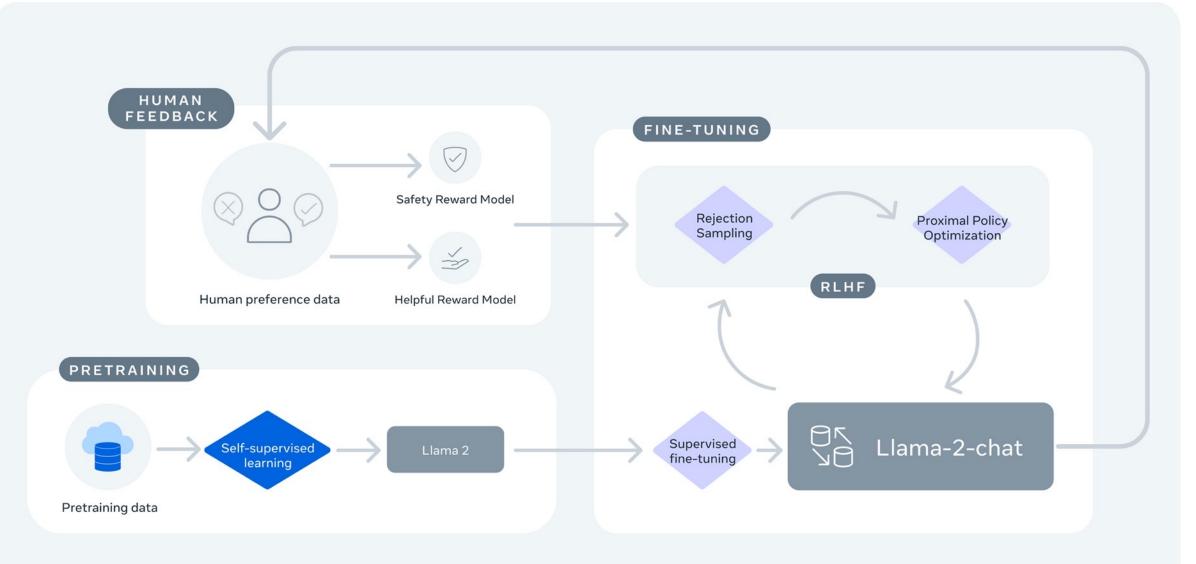
Reinforcement Learning from Human Feedback (RLHF)


- **1. Pretraining a Language Model (LM)**
- 2. Gathering Data and Training a Reward Model
- **3. Fine-tuning the LM with Reinforcement Learning**

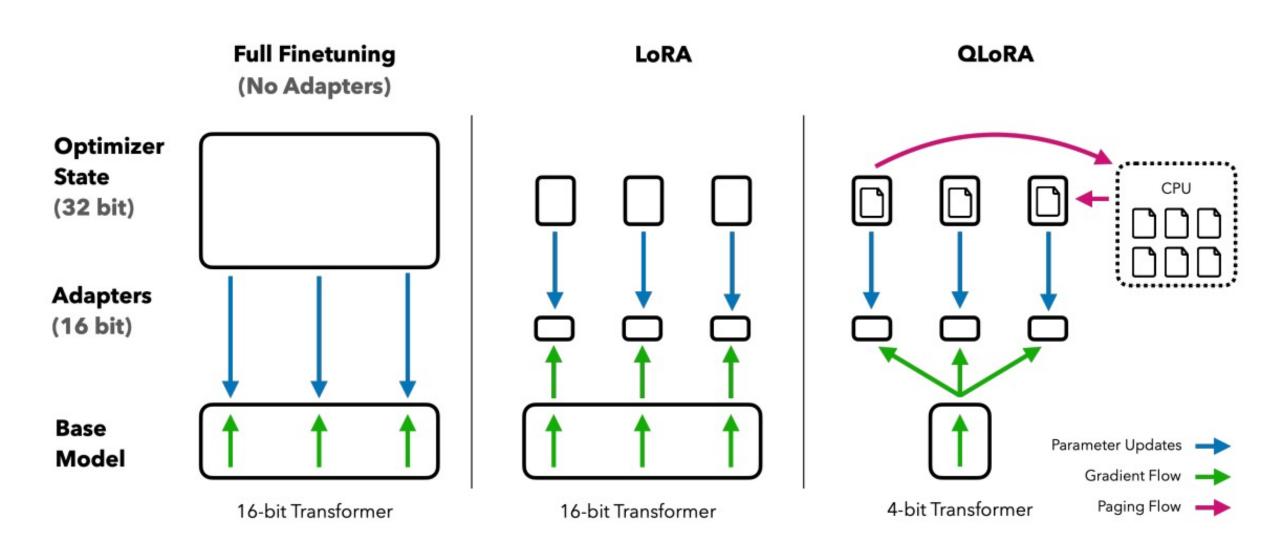
Reinforcement Learning from Human Feedback (RLHF)


Step 2. Gathering Data and Training a Reward Model

Prompts Dataset



Reinforcement Learning from Human Feedback (RLHF)

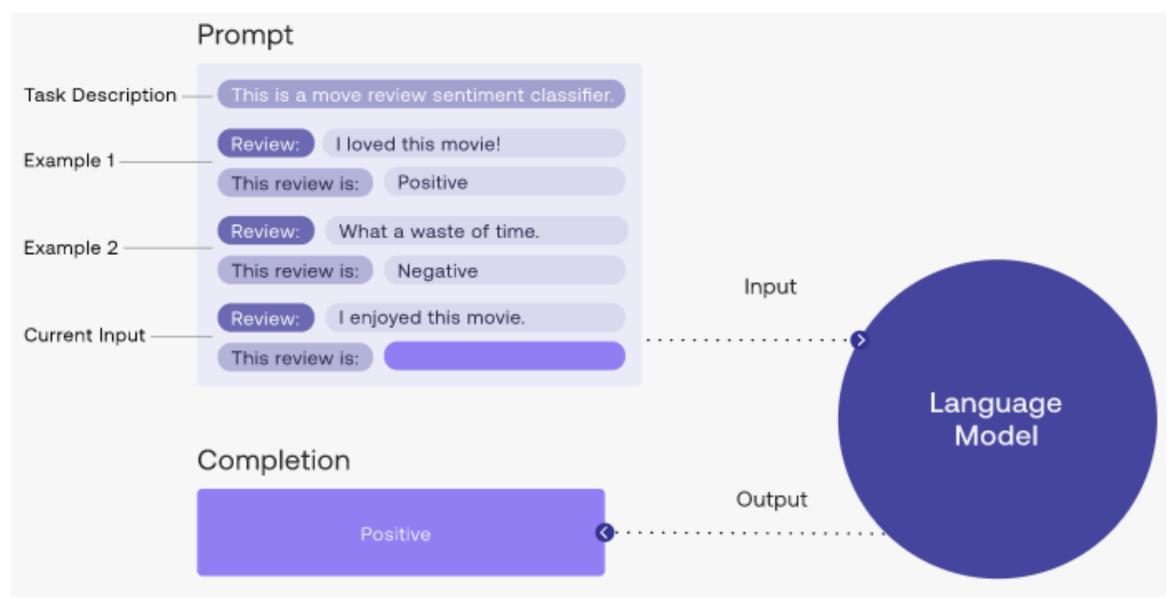

Step 3. Fine-tuning the LM with Reinforcement Learning

Llama-2-chat uses RLHF to ensure safety and helpfulness

QLoRA: Efficient Finetuning of Quantized LLMs

QLoRA: Efficient Finetuning of Quantized LLMs

QLoRA reduces the average memory requirements of finetuning a **65B** parameter model from >780GB of **GPU memory** to **<48GB**


Model	Size	Elo	
GPT-4	-	1348 ± 1	
Guanaco 65B	41 GB	1022 ± 1	
Guanaco 33B	21 GB	992 ± 1	
Vicuna 13B	26 GB	974 ± 1	
ChatGPT	-	966 ± 1	
Guanaco 13B	10 GB	916 ± 1	
Bard	-	902 ± 1	
Guanaco 7B	6 GB	879 ± 1	

QLoRA: Efficient Finetuning of Quantized LLMs

Model / Dataset	Params	Model bits	Memory	ChatGPT vs Sys	Sys vs ChatGPT	Mean	95% CI
GPT-4	-	-	-	119.4%	110.1%	114.5%	2.6%
Bard	-	-	-	93.2%	96.4%	94.8%	4.1%
Guanaco	65B	4-bit	41 GB	96.7%	101.9%	99.3 %	4.4%
Alpaca	65B	4-bit	41 GB	63.0%	77.9%	70.7%	4.3%
FLAN v2	65B	4-bit	41 GB	37.0%	59.6%	48.4%	4.6%
Guanaco	33B	4-bit	21 GB	96.5%	99.2%	97.8 %	4.4%
Open Assistant	33B	16-bit	66 GB	91.2%	98.7%	94.9%	4.5%
Alpaca	33B	4-bit	21 GB	67.2%	79.7%	73.6%	4.2%
FLAN v2	33B	4-bit	21 GB	26.3%	49.7%	38.0%	3.9%
Vicuna	13B	16-bit	26 GB	91.2%	98.7%	94.9 %	4.5%
Guanaco	13B	4-bit	10 GB	87.3%	93.4%	90.4%	5.2%
Alpaca	13B	4-bit	10 GB	63.8%	76.7%	69.4%	4.2%
HĤ-RLHF	13B	4-bit	10 GB	55.5%	69.1%	62.5%	4.7%
Unnatural Instr.	13B	4-bit	10 GB	50.6%	69.8%	60.5%	4.2%
Chip2	13B	4-bit	10 GB	49.2%	69.3%	59.5%	4.7%
Longform	13B	4-bit	10 GB	44.9%	62.0%	53.6%	5.2%
Self-Instruct	13B	4-bit	10 GB	38.0%	60.5%	49.1%	4.6%
FLAN v2	13B	4-bit	10 GB	32.4%	61.2%	47.0%	3.6%
Guanaco	7B	4-bit	5 GB	84.1%	89.8%	87.0 %	5.4%
Alpaca	7B	4-bit	5 GB	57.3%	71.2%	64.4%	5.0%
FLAN v2	7B	4-bit	5 GB	33.3%	56.1%	44.8%	4.0%

Source: Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. "QLoRA: Efficient Finetuning of Quantized LLMs." arXiv preprint arXiv:2305.14314 (2023).

Prompt Engineering with ChatGPT for NLP

Outline

- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

Challenges and Limitations of Generative AI for QA and Dialogue Systems

- Understanding and Contextualization
- Consistency
- Data Dependence and Bias
- Sensitivity to Input Phrasing
- Ethical and Privacy Concerns

Understanding and Contextualization

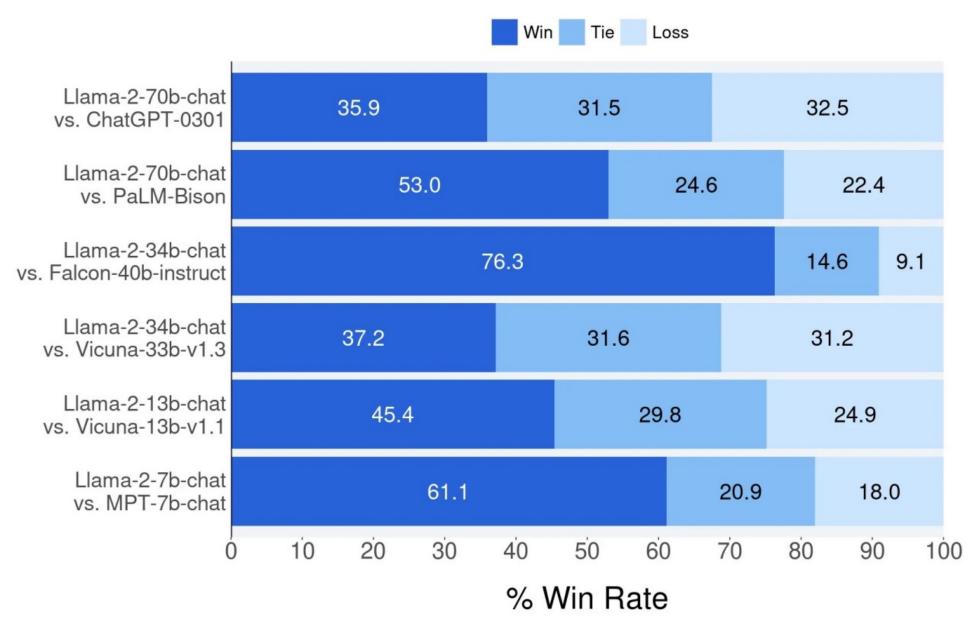
- Generative AI models like ChatGPT can understand and generate human-like text, but they struggle with maintaining context and a deep understanding of complex subjects over a long conversation.
- LLMs might not grasp the underlying connotations, cultural references, or subtle humor in a conversation.
- LLMs are also limited by the information they were trained on and cannot learn or acquire new information

Consistency

- Despite significant improvements in generating relevant responses, LLMs can still be inconsistent.
- LLMs might provide different answers to slight rephrasings of the same question or forget previously mentioned information in a conversation.
- This is because LLMs lack a persistent memory and are unable to reason about facts in the way humans do.

Data Dependence and Bias

- The quality of generative AI's responses largely depends on the data it was trained on.
- If the training data contains biases, misinformation, or lowquality information, the model can reproduce those.
- As a result, LLMs might propagate harmful stereotypes, misinformation, or inappropriate responses.


Sensitivity to Input Phrasing

- Generative AI model's responses can be very sensitive to how a question or statement is phrased.
- Slight changes in input phrasing can lead to substantially different responses.
- This can make the interaction with Generative AI models unpredictable and unreliable.

Ethical and Privacy Concerns

- With the ability to generate human-like text, there's a risk that these systems could be used maliciously, like generating deepfakes or disinformation.
- Generative AI models might inadvertently generate sensitive or personal information which they learned during training, even though they are designed to avoid doing so.
- Balancing the benefits of these systems with the need to prevent misuse is a significant challenge.

Llama-2 Chat: Helpfulness Human Evaluation

Acknowledgments: Research Projects

- 1. Applying AI technology to construct knowledge graphs of cryptocurrency anti-money laundering: a few-shot learning model
 - MOST, 110-2410-H-305-013-MY2, 2021/08/01~2023/07/31
- 2. Fintech Green Finance for Carbon Market Index, Corporate Finance, and Environmental Policies. Carbon Emission Sentiment Index with AI Text Analytics
 - NTPU, 112-NTPU_ORDA-F-003 [,] 2023/01/01~2024/12/31
- 3. Research on speech processing, synthesis, recognition, and sentence construction of people with language disabilities. Multimodal Cross-lingual Task-Oriented Dialogue System
 - NTPU, 112-NTPU_ORDA-F-004, 2023/01/01~2025/12/31
- 4. Use deep learning to identify commercially dental implant systems observational study
 - USTP-NTPU-TMU, USTP-NTPU-TMU-112-01, 2023/01/01~2023/12/31
- 5. Metaverse Avatar Automatic Metadata Generation Module
 - FormosaVerse x NTPU, NTPU-111A413E01, 2022/12/01~2023/11/30
- 6. Establishment and Implement of Smart Assistive Technology for Dementia Care and Its Socio-Economic Impacts. Intelligent, individualized and precise care with smart AT and system integration
 - MOST, 111-2627-M-038-001-, 2022/08/01~2023/07/31

Summary

- Introduction
- Overview of Generative AI
- Overview of Large Language Models (LLMs)
- Foundation of Transformers: Attention Mechanism
- Fine-tuning LLM for Question Answering System
- Fine-tuning LLM for Dialogue System
- Challenges and Limitations of Generative AI for QA and Dialogue Systems
- Q & A

- Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun (2023). "A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT." arXiv preprint arXiv:2303.04226.
- Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. (2023) "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing." ACM Computing Surveys 55, no. 9 (2023): 1-35.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min et al. (2023) "A Survey of Large Language Models." arXiv preprint arXiv:2303.18223.
- Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov et al. (2023) "Llama 2: Open Foundation and Fine-Tuned Chat Models." arXiv preprint arXiv:2307.09288 (2023).
- Junliang Wang, Chuqiao Xu, Jie Zhang, and Ray Zhong (2022). "Big data analytics for intelligent manufacturing systems: A review." Journal of Manufacturing Systems 62 (2022): 738-752.
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.
- Gozalo-Brizuela, Roberto, and Eduardo C. Garrido-Merchan (2023). "ChatGPT is not all you need. A State of the Art Review of large Generative AI models." arXiv preprint arXiv:2301.04655 (2023).
- Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. (2023) "InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning." arXiv preprint arXiv:2305.06500 (2023).
- Shahab Saquib Sohail, Faiza Farhat, Yassine Himeur, Mohammad Nadeem, Dag Øivind Madsen, Yashbir Singh, Shadi Atalla, and Wathiq Mansoor (2023). "The Future of GPT: A Taxonomy of Existing ChatGPT Research, Current Challenges, and Possible Future Directions." Current Challenges, and Possible Future Directions (April 8, 2023) (2023).
- Longbing Cao (2022). "Decentralized ai: Edge intelligence and smart blockchain, metaverse, web3, and desci." IEEE Intelligent Systems 37, no. 3: 6-19.
- Qinglin Yang, Yetong Zhao, Huawei Huang, Zehui Xiong, Jiawen Kang, and Zibin Zheng (2022). "Fusing blockchain and AI with metaverse: A survey." IEEE Open Journal of the Computer Society 3: 122-136.
- Russell Belk, Mariam Humayun, and Myriam Brouard (2022). "Money, possessions, and ownership in the Metaverse: NFTs, cryptocurrencies, Web3 and Wild Markets." Journal of Business Research 153: 198-205.
- Thien Huynh-The, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han, and Dong-Seong Kim (2022). "Artificial Intelligence for the Metaverse: A Survey." arXiv preprint arXiv:2202.10336.
- Thippa Reddy Gadekallu, Thien Huynh-The, Weizheng Wang, Gokul Yenduri, Pasika Ranaweera, Quoc-Viet Pham, Daniel Benevides da Costa, and Madhusanka Liyanage (2022).
 "Blockchain for the Metaverse: A Review." arXiv preprint arXiv:2203.09738.
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.

Generative AI and Large Language Models for Question Answering and Dialogue Systems

Time: 10:00-12:00; 14:00-16:00, Wednesday, July 26, 2023 Place: Taipei Research and Development Center, Asia University Address: 16-5, No. 77, Xintai 5th Road, Xizhi District, New Taipei City, Taiwan (FE World Center) Host: Prof. Wen-Lian Hsu

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2023-07-26