

語意分析和命名實體識別 (Semantic Analysis and Named Entity Recognition; NER)

Time: 2020/06/05 (Fri) (9:10 -12:00)

Place: 國立臺北護理健康大學 (台北市明德路365號) G210

Host: 祝國忠 院長 (健康科技學院院長)

Min-Yuh Day

戴敏育

Associate Professor

副教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

Topics

- 1. 自然語言處理核心技術與文字探勘 (Core Technologies of Natural Language Processing and Text Mining)
- 2. 人工智慧文本分析基礎與應用
 (Artificial Intelligence for Text Analytics: Foundations and Applications)
- 3. 文本表達特徵工程 (Feature Engineering for Text Representation)
- 4. 語意分析和命名實體識別 (Semantic Analysis and Named Entity Recognition; NER)
- 5. 深度學習和通用句子嵌入模型 (Deep Learning and Universal Sentence-Embedding Models)
- 6. 問答系統與對話系統 (Question Answering and Dialogue Systems)

Semantic Analysis and Named Entity Recognition (NER)

Outline

- Semantic Analysis
 - WordNet
 - Word sense disambiguation
- Named Entity Recognition (NER)

Semantic Analysis

- Semantics
 - -the study of meaning
- Linguistic semantics
 - the study of meaning in natural language.

Semantic Analysis and NER

- WordNet and synsets
 - Analyzing lexical semantic relations
 - Word sense disambiguation
- Named entity recognition
- Analyzing semantic representations

WordNet A Lexical Database for English

PRINCETON UNIVERSITY

WordNet

A Lexical Database for English

Search... Q

What is WordNet

People

News

Use Wordnet Online

Download

Citing WordNet

License and Commercial
Use

Related Projects

Documentation

Publications

Frequently Asked

What is WordNet?

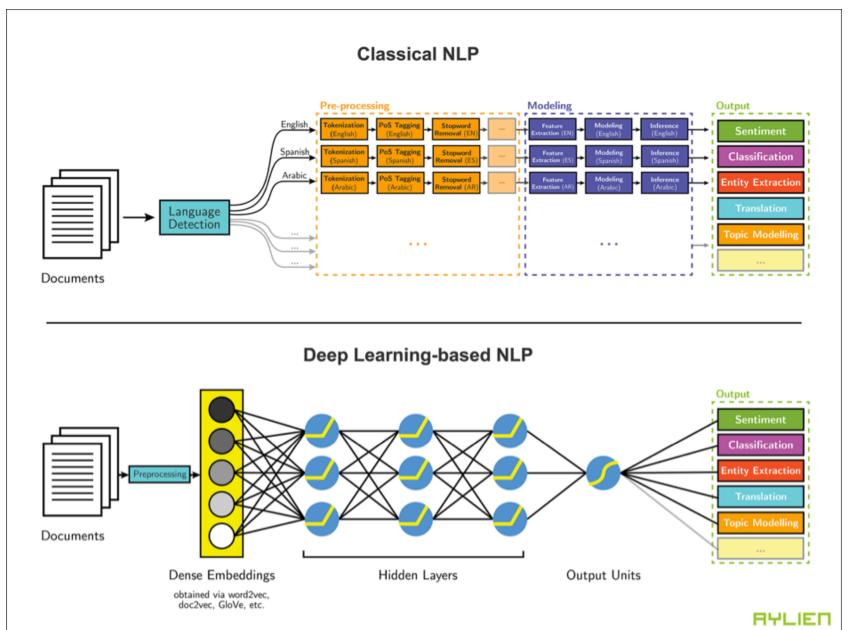
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the creators of WordNet and do not necessarily reflect the views of any funding agency or Princeton University.

When writing a paper or producing a software application, tool, or interface based on WordNet, it is necessary to properly cite the source. Citation figures are critical to WordNet funding.

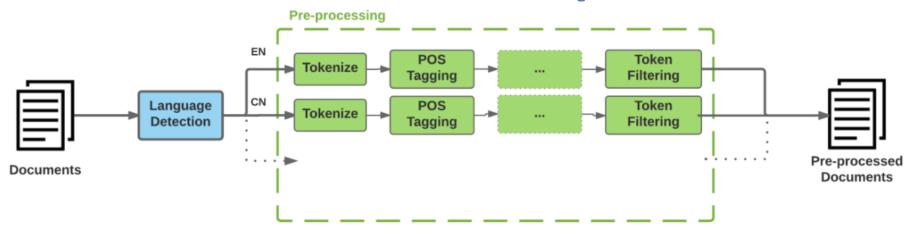
About WordNet

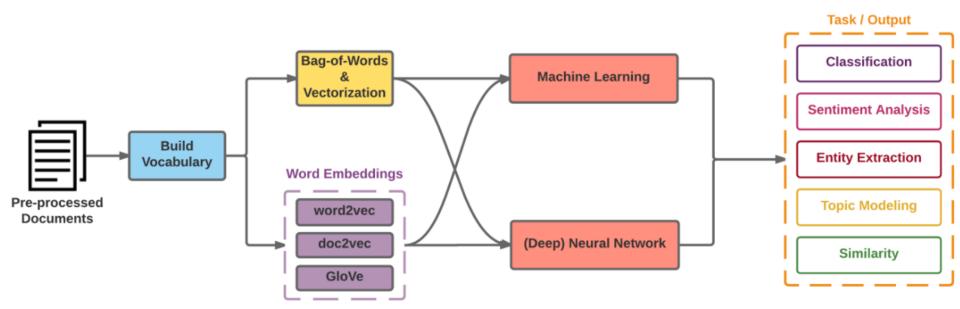
WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. The resulting network of meaningfully related words and concepts can be navigated with the browser . WordNet is also freely and publicly available for download. WordNet's structure makes it a useful tool for computational linguistics and natural language processing.

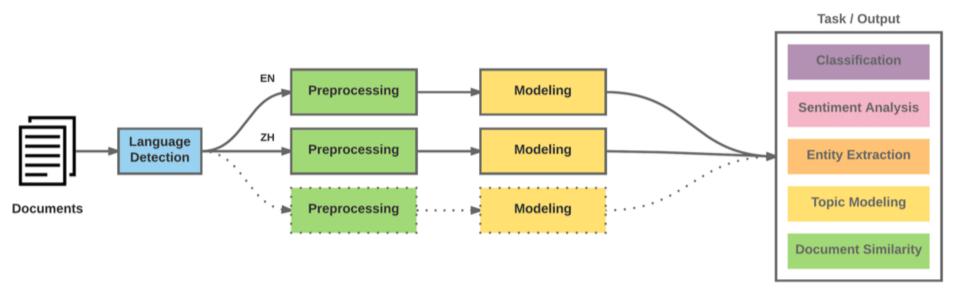
WordNet superficially resembles a thesaurus, in that it groups words together based on their


Note

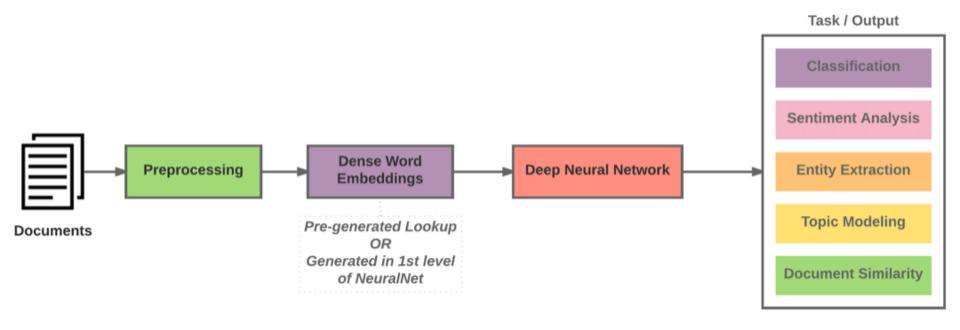
Due to funding and staffing issues, we are no longer able to accept comment and suggestions.


We get numerous questions regarding topics that are addressed on our FAQ page. If you have a problem or question regarding something you downloaded from the "Related projects" page, you must contact the developer directly.


Please note that any changes



Modern NLP Pipeline



Modern NLP Pipeline

Deep Learning NLP

Natural Language Processing (NLP) and Text Mining

Raw text

Sentence Segmentation

Tokenization

Part-of-Speech (POS)

Stop word removal

Stemming / Lemmatization

Dependency Parser

String Metrics & Matching

am → am

word's stem word's lemma $am \rightarrow be$ having → hav having → have

Analyzing Lexical Semantic Relationships

- Entailments
- Homonyms and Homographs
- Synonyms and Antonyms
- Hyponyms and Hypernyms
- Holonyms and Meronyms
- Semantic Relationships and Similarity

Word Sense Disambiguation

- Lesk algorithm (Lesk, 1986)
 - leverage dictionary or vocabulary definitions for a word we want to disambiguate in a body of text and compare the words in these definitions with a section of text surrounding our word of interest.
 - The main objective is to return the synset with the maximum number of overlapping words or terms between the context sentence and the different definitions from each synset for the word we target for disambiguation.

Named Entity Recognition (NER)

Named entities

- represent real-world objects
- people, places, organizations
- proper names

Named entity recognition

- Entity chunking
- Entity extraction

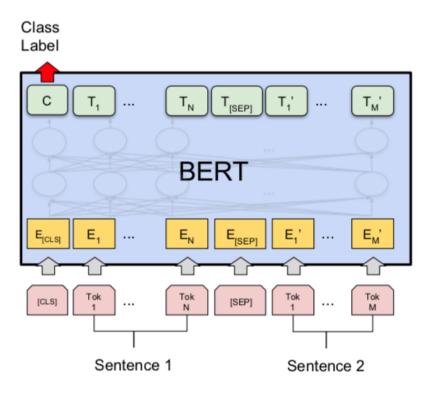
NER: OntoNotes 5 Named Entities

SID	TYPE	DESCRIPTION	
1	PERSON	People, including fictional.	
2	NORP	Nationalities or religious or political groups.	
3	FAC	Buildings, airports, highways, bridges, etc.	
4	ORG	Companies, agencies, institutions, etc.	
5	GPE	Countries, cities, states.	
6	LOC	Non-GPE locations, mountain ranges, bodies of water.	
7	PRODUCT	Objects, vehicles, foods, etc. (Not services.)	
8	EVENT	Named hurricanes, battles, wars, sports events, etc.	
9	WORK_OF_ART	Titles of books, songs, etc.	
10	LAW	Named documents made into laws.	
11	LANGUAGE	Any named language.	
12	DATE	Absolute or relative dates or periods.	
13	TIME	Times smaller than a day.	
14	PERCENT	Percentage, including "%".	
15	MONEY	Monetary values, including unit.	
16	QUANTITY	Measurements, as of weight or distance.	
17	ORDINAL	"first", "second", etc.	
18	CARDINAL	Numerals that do not fall under another type.	

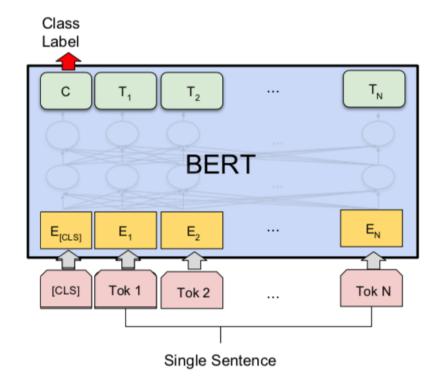
Source: https://spacy.io/api/annotation#named-entities

NER: Wikipedia Named Entities

SID	TYPE	DESCRIPTION	
1	PER	Named person or family.	
2	LOC	Name of politically or geographically defined location (cities, provinces, countries, international regions, bodies of water, mountains).	
3	ORG	Named corporate, governmental, or other organizational entity.	
4	MISC	Miscellaneous entities, e.g. events, nationalities, products or works of art.	

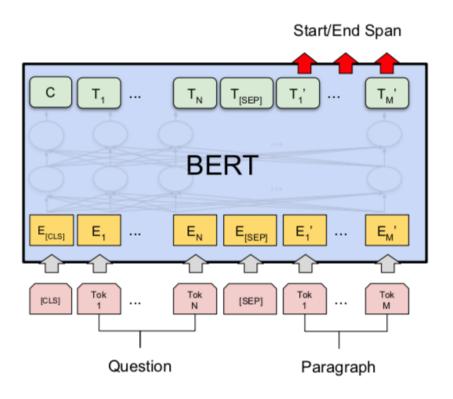

NER IOB Scheme

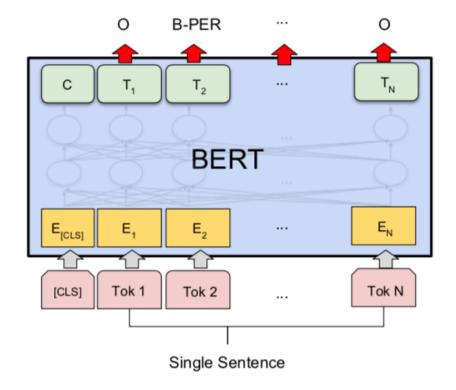
TAG	ID	DESCRIPTION
" "	1	Token is inside an entity.
"O"	2	Token is outside an entity.
"B"	3	Token begins an entity.
1111	0	No entity tag is set (missing value).


NER BILUO Scheme

TAG	DESCRIPTION
BEGIN	The first token of a multi-token entity.
	An inner token of a multi-token
IN	entity.
	The final token of a multi-token
LAST	entity.
UNIT	A single-token entity.
OUT	A non-entity token.

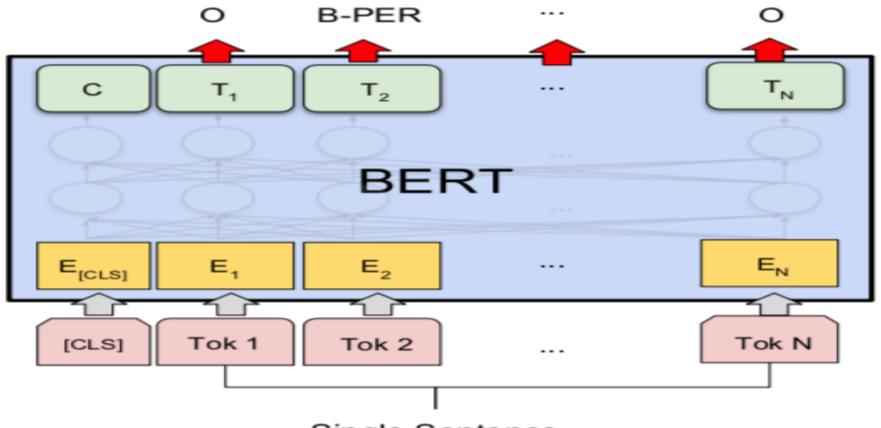
BERT Sequence-level tasks




(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

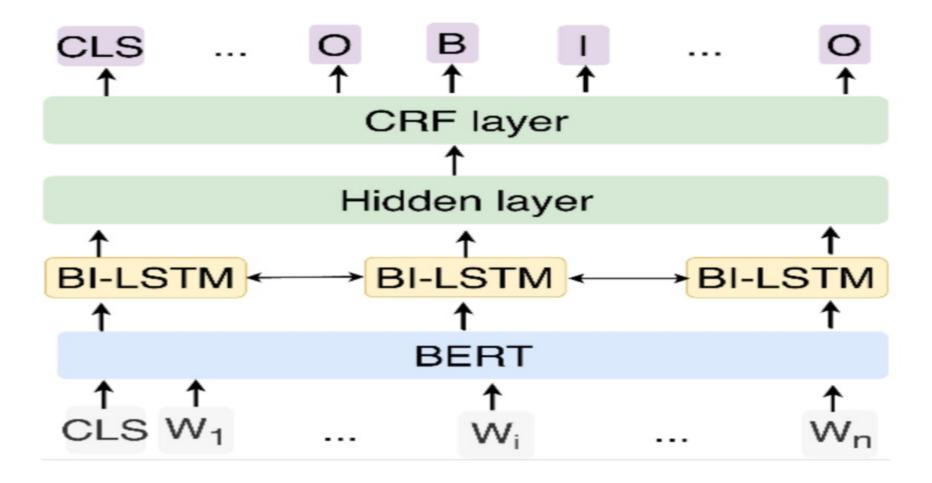
(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

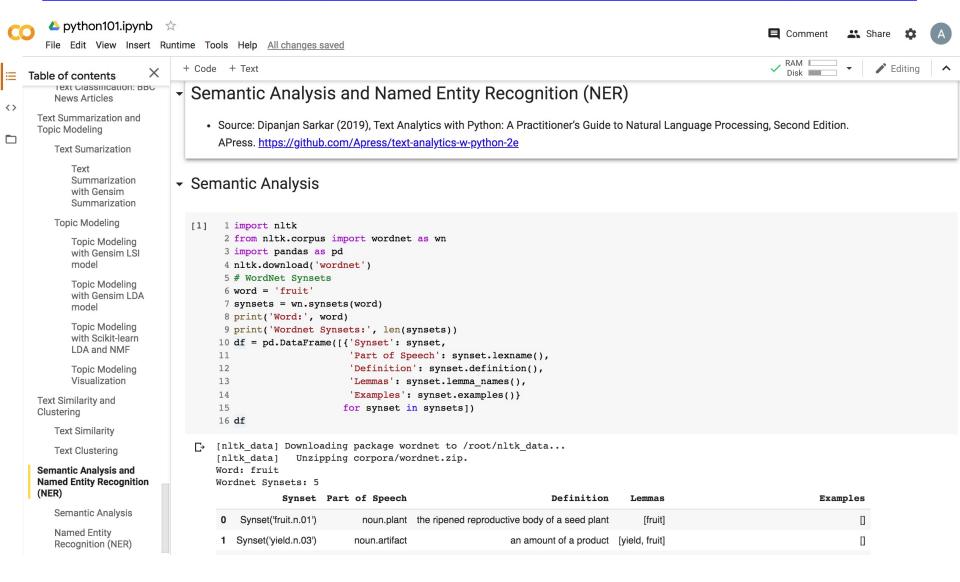


(c) Question Answering Tasks: SQuAD v1.1

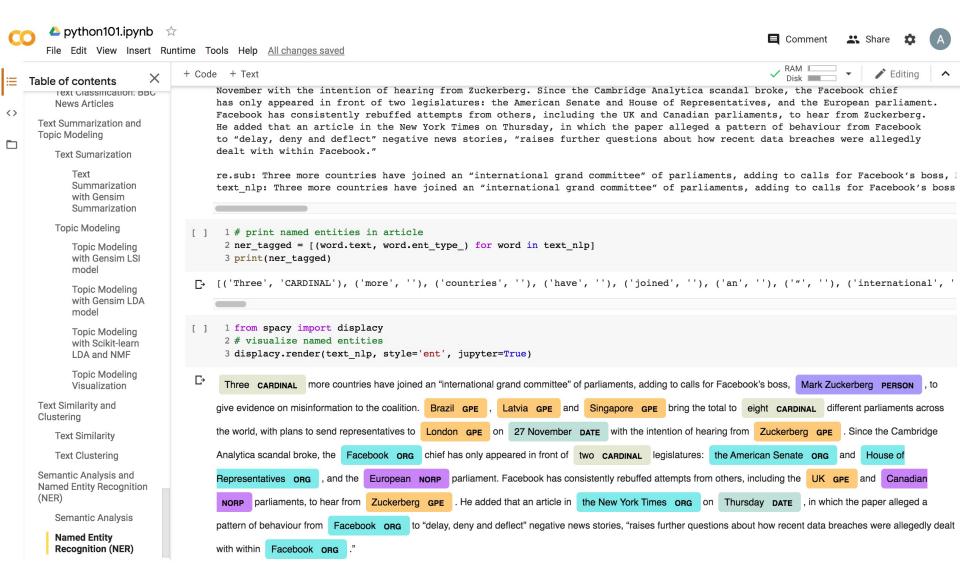
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER


NER: Single Sentence Tagging

Single Sentence


(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

NER: Fine-tuning BERT with Bi-LSTM CRF


Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

NLP Benchmark Datasets

Task	Dataset	Link
Machine Translation	WMT 2014 EN-DE	http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
Wachine Translation	WMT 2014 EN-FR	nup.//www-num.umv-iemans.m/~schwenk/csnn_joint_papei/
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Text Summarization	Newsroom	https://summari.es/
Text Summarization	DUC	https://www-nlpir.nist.gov/projects/duc/data.html
	Gigaword	https://catalog.ldc.upenn.edu/LDC2012T21
	ARC	http://data.allenai.org/arc/
	CliCR	http://aclweb.org/anthology/N18-1140
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/
Reading Comprehension	NewsQA	https://datasets.maluuba.com/NewsQA
Question Answering	RACE	http://www.qizhexie.com/data/RACE_leaderboard
Question Generation	SQuAD	https://rajpurkar.github.io/SQuAD-explorer/
Question Generation	Story Cloze Test	http://aclweb.org/anthology/W17-0906.pdf
	NarativeQA	https://github.com/deepmind/narrativeqa
	Quasar	https://github.com/bdhingra/quasar
	SearchQA	https://github.com/nyu-dl/SearchQA
	AMR parsing	https://amr.isi.edu/index.html
Semantic Parsing	ATIS (SQL Parsing)	https://github.com/jkkummerfeld/text2sql-data/tree/master/data
	WikiSQL (SQL Parsing)	https://github.com/salesforce/WikiSQL
	IMDB Reviews	http://ai.stanford.edu/~amaas/data/sentiment/
Sentiment Analysis	SST	https://nlp.stanford.edu/sentiment/index.html
Sentiment Analysis	Yelp Reviews	https://www.yelp.com/dataset/challenge
	Subjectivity Dataset	http://www.cs.cornell.edu/people/pabo/movie-review-data/
	AG News	http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
Text Classification	DBpedia	https://wiki.dbpedia.org/Datasets
Text Classification	TREC	https://trec.nist.gov/data.html
	20 NewsGroup	http://qwone.com/~jason/20Newsgroups/
	SNLI Corpus	https://nlp.stanford.edu/projects/snli/
Natural Language Inference	MultiNLI	https://www.nyu.edu/projects/bowman/multinli/
	SciTail	http://data.allenai.org/scitail/
Samontia Pola Labelina	Proposition Bank	http://propbank.github.io/
Semantic Role Labeling	OneNotes	https://catalog.ldc.upenn.edu/LDC2013T19

Summary

- Semantic Analysis
 - WordNet
 - Word sense disambiguation
- Named Entity Recognition (NER)

References

- Dipanjan Sarkar (2019),
 Text Analytics with Python: A Practitioner's Guide to Natural Language
 Processing, Second Edition. APress. https://github.com/Apress/text-analytics-w-python-2e
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018),
 Applied Text Analysis with Python, O'Reilly Media.
 https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/
- HuggingFace (2020), Transformers Notebook, https://huggingface.co/transformers/notebooks.html
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Min-Yuh Day (2020), Python 101, https://tinyurl.com/imtkupython101