Text Analytics and Natural Language Processing

Time: 2018/12/4 & 2018/12/11 (Tue) 09:10-12:00
Place: 台北大學三峽校區人文大樓3樓 語言3教室
Host: 鄭桂蕙 教授 (國立臺北大學會計學系 鑑識會計 課程)

Min-Yuh Day
戴敏育
Assistant Professor
Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2018-12-04; 2018-12-11
Min-Yuh Day, Ph.D.
Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)
Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE 2012-)
Workshop Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI)
Outline

• Text Analytics and Text Mining
• Natural Language Processing (NLP)
• Text Analytics with Python
Text Analytics (TA)
Text Mining (TM)
Natural Language Processing (NLP)
Artificial Intelligence (AI)
Text Analytics and Text Mining

Text Mining “Knowledge Discovery in Textual Data”

- Document Matching
- Link Analysis
- Information Retrieval
- Search Engines
- POS Tagging
- Lemmatization
- Word Disambiguation
- Natural Language Processing

- Web Content Mining
- Web Structure Mining
- Web Usage Mining
- Classification
- Clustering
- Association

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Evolution of Decision Support, Business Intelligence, and Analytics

During the 1970s, the primary focus of information systems support for decision-making focused on providing structured, periodic reports that a manager could use for decision making (or ignore them). Businesses began to create routine reports to inform decision makers (managers) about what had happened in the previous period (e.g., day, week, month, quarter). Although it was useful to know what had happened in the past, managers needed more than this: They needed a variety of reports at different levels of granularity to better understand and address changing needs and challenges of the business. These were usually called management information systems (MIS). In the early 1970s, Scott-Morton first articulated the major concepts of DSS. He defined DSSs as "interactive computer-based systems, which help decision makers utilize data and models to solve unstructured problems" (Gorry and Scott-Morton, 1971).

The following is another classic DSS definition, provided by Keen and Scott-Morton (1978):

Decision support systems couple the intellectual resources of individuals with the capabilities of the computer to improve the quality of decisions. It is a computer-based support system for management decision makers who deal with semistructured problems.

Note that the term decision support system, like management information system and several other terms in the field of IT, is a content-free expression (i.e., it means different things to different people). Therefore, there is no universally accepted definition of DSS.

During the early days of analytics, data was often obtained from the domain experts using manual processes (i.e., interviews and surveys) to build mathematical or knowledge-based models to solve constrained optimization problems. The idea was to do the best with limited resources. Such decision support models were typically called operations research (OR). The problems that were too complex to solve optimally (using linear or nonlinear mathematical programming techniques) were tackled using heuristic methods such as simulation models. (We will introduce these as prescriptive analytics later in this chapter and in a bit more detail in Chapter 6.)

In the late 1970s and early 1980s, in addition to the mature OR models that were being used in many industries and government systems, a new and exciting line of models had emerged: rule-based expert systems. These systems promised to capture experts’ knowledge in a format that computers could process (via a collection of if–then–else rules or heuristics) so that these could be used for consultation much the same way that one...
Definition of Artificial Intelligence (A.I.)
Artificial Intelligence

“... the science and engineering of making intelligent machines”

(John McCarthy, 1955)
Artificial Intelligence

“... technology that thinks and acts like humans”
Artificial Intelligence

“... intelligence exhibited by machines or software”
<table>
<thead>
<tr>
<th>Thinking Humanly</th>
<th>Thinking Rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting Humanly</td>
<td>Acting Rationally</td>
</tr>
</tbody>
</table>

4 Approaches of AI

<table>
<thead>
<tr>
<th></th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Thinking Humanly: The Cognitive Modeling Approach</td>
</tr>
<tr>
<td>3.</td>
<td>Thinking Rationally: The “Laws of Thought” Approach</td>
</tr>
<tr>
<td>1.</td>
<td>Acting Humanly: The Turing Test Approach (1950)</td>
</tr>
<tr>
<td>4.</td>
<td>Acting Rationally: The Rational Agent Approach</td>
</tr>
</tbody>
</table>

AI Acting Humanly: The Turing Test Approach
(Alan Turing, 1950)

- Natural Language Processing (NLP)
- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
- Computer Vision
- Robotics

Boston Dynamics: Atlas

#13 ON TRENDING
What's new, Atlas?

https://www.youtube.com/watch?v=fRj34o4hN4I
Humanoid Robot: Sophia

https://www.youtube.com/watch?v=S5t6K9iwcdw
Can a robot pass a university entrance exam?

Noriko Arai at TED2017

https://www.ted.com/talks/noriko_arai_can_a_robot_pass_a_university_entrance_exam
https://www.youtube.com/watch?v=XQZjkPyJ8KU
Artificial Intelligence (A.I.) Timeline

1950
TURING TEST
Computer scientist Alan Turing proposes a test for machine intelligence. If a machine can trick humans into thinking it is human, then it has intelligence.

1955
A.I. BORN
Term ‘artificial intelligence’ is coined by computer scientist, John McCarthy to describe “the science and engineering of making intelligent machines”.

1961
UNIMATE
First industrial robot, Unimate, goes to work at GM replacing humans on the assembly line.

1964
ELIZA
Pioneering chatbot developed by Joseph Weizenbaum at MIT holds conversations with humans.

1966
SHAKEY
The ‘first electronic person’ from Stanford, Shakey is a general-purpose mobile robot that reasons about its own actions.

1997
DEEP BLUE
Deep Blue, a chess-playing computer from IBM defeats world chess champion Garry Kasparov.

1998
KISMET
Cynthia Breazeal at MIT introduces Kismet, an emotionally intelligent robot as far as it detects and responds to people’s feelings.

1999
AIBO
Sony launches first consumer robot pet dog AIBO (A I robot) with skills and personality that develop over time.

2002
ROOMBA
First mass-produced autonomous robotic vacuum cleaner from iRobot learns to navigate and clean homes.

2011
SIRI
Apple integrates Siri, an intelligent virtual assistant with a voice interface, into the iPhone 4S.

2011
WATSON
IBM’s question answering computer Watson wins first place on popular $1M prize television quiz show Jeopardy.

2014
EUGENE
Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human.

2014
ALEXA
Amazon launches Alexa, an intelligent virtual assistant with a voice interface that completes shopping tasks.

2016
TAY
Microsoft’s chatbot Tay goes rogue on social media making inflammatory and offensive racist comments.

2017
ALPHAGO
Google’s A.I. AlphaGo beats world champion Ke Jie in the complex board game of Go, notable for its vast number (2¹⁷⁰) of possible positions.

Artificial Intelligence
Machine Learning & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Artificial Intelligence (AI)

Machine Learning (ML)

- Supervised Learning
- Unsupervised Learning

Deep Learning (DL)

- CNN
- RNN
- LSTM
- GRU
- GAN

Semi-supervised Learning

Reinforcement Learning

Source: https://leonardoaraujosantos.gitbooks.io/artificial-intelligence/content/deep_learning.html
Text Analytics and Text Mining

Christopher D. Manning and Hinrich Schütze (1999), Foundations of Statistical Natural Language Processing, The MIT Press

Rajesh Arumugam (2018),
Hands-On Natural Language Processing with Python:
A practical guide to applying deep learning architectures to your NLP applications, Packt

Nitin Hardeniya (2015), NLTK Essentials, Packt Publishing

http://www.amazon.com/NLTK-Essentials-Nitin-Hardeniya/dp/1784396907
Text Analytics

• **Text Analytics** =
 Information Retrieval +
 Information Extraction +
 Data Mining +
 Web Mining

• **Text Analytics** =
 Information Retrieval +
 Text Mining

Text mining

• Text Data Mining
• Knowledge Discovery in Textual Databases

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text Mining Technologies

- Statistics
- Machine Learning
- Pattern Recognition
- Database Systems
- Visualization
- Natural Language Processing
- Applications
- Algorithms
- Information Retrieval
- High-performance Computing

Adapted from: Jiawei Han and Micheline Kamber (2011), Data Mining: Concepts and Techniques, Third Edition, Elsevier
Application Areas of Text Mining

• Information extraction
• Topic tracking
• Summarization
• Categorization
• Clustering
• Concept linking
• Question answering

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text-Based Deception-Detection Process

1. Statements Transcribed for Processing
2. Cues Extracted & Selected
3. Text Processing Software-Identified Cues in Statements
4. Text Processing Software-Generated Quantified Cues
5. Classification Models Trained and Tested on Quantified Cues
6. Statements Labeled as Truthful or Deceptive by Law Enforcement

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Multilevel Analysis of Text for Gene/Protein Interaction Identification

... expression of Bcl-2 is correlated with insufficient white blood cell death and activation of p53.

Context Diagram for the Text Mining Process

Unstructured data (text) → Extract knowledge from available data sources → Context-specific knowledge

Structured data (databases) → Extract knowledge from available data sources → Context-specific knowledge

Software/hardware limitations → Extract knowledge from available data sources
Privacy issues → Extract knowledge from available data sources
Linguistic limitations → Extract knowledge from available data sources

Domain expertise → Extract knowledge from available data sources
Tools and techniques → Extract knowledge from available data sources

The Three-Step/Task Text Mining Process

Task 1: Establish the Corpus: Collect and organize the domain-specific unstructured data

The inputs to the process include a variety of relevant unstructured (and semi-structured) data sources such as text, XML, HTML, etc.

Task 2: Create the Term-Document Matrix: Introduce structure to the corpus

The output of Task 1 is a collection of documents in some digitized format for computer processing.

The output of Task 2 is a flat file called a term-document matrix where the cells are populated with the term frequencies.

Task 3: Extract Knowledge: Discover novel patterns from the T-D matrix

The output of Task 3 is a number of problem-specific classification, association, clustering models, and visualizations.

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Term–Document Matrix

<table>
<thead>
<tr>
<th>Terms</th>
<th>Investment Risk</th>
<th>Project Management</th>
<th>Software Engineering</th>
<th>Development</th>
<th>SAP</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 3</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 5</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 6</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emotions

- Love
- Joy
- Surprise
- Anger
- Sadness
- Fear

Example of Opinion: review segment on iPhone

“I bought an iPhone a few days ago. It was such a nice phone. The touch screen was really cool. The voice quality was clear too. However, my mother was mad with me as I did not tell her before I bought it. She also thought the phone was too expensive, and wanted me to return it to the shop. ... ”

Example of Opinion: review segment on iPhone

“(1) I bought an ____ iPhone a few days ago.
(2) It was such a nice phone.
(3) The ____ touch screen was really cool.
(4) The ____ voice quality was clear too.
(5) However, my mother was mad with me as I did not tell her before I bought it.
(6) She also thought the phone was too ____ expensive, and wanted me to return it to the shop. ... ”

A Multistep Process to Sentiment Analysis

1. Calculate the O–S Polarity
2. Calculate the N–P Polarity of the sentiment
3. Identify the target for the sentiment
4. Record the Polarity, Strength, and the Target of the sentiment

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Sentiment Analysis

Tasks
- Subjectivity Classification
- Sentiment Classification
- Review Usefulness Measurement
- Opinion Spam Detection
- Lexicon Creation
- Aspect Extraction
- Polarity Determination
- Vagueness resolution in opinionated text
- Multi- & Cross-Linguual SC
- Cross-domain SC

Approaches
- Machine Learning based
- Lexicon based
- Hybrid approaches
- Ontology based
- Non-Ontology based

Sentiment Classification Techniques

- **Sentiment Analysis**
 - Machine Learning Approach
 - Supervised Learning
 - Unsupervised Learning
 - Dictionary-based Approach
 - Corpus-based Approach
 - Lexicon-based Approach
 - Supervised Learning
 - Decision Tree Classifiers
 - Linear Classifiers
 - Rule-based Classifiers
 - Probabilistic Classifiers
 - Unsupervised Learning
 - Probabilistic Classifiers
 - Support Vector Machine (SVM)
 - Neural Network (NN)
 - Deep Learning (DL)
 - Naïve Bayes (NB)
 - Bayesian Network (BN)
 - Maximum Entropy (ME)

P–N Polarity and S–O Polarity Relationship

Taxonomy of Web Mining

Web Mining

Data Mining

Web Content Mining
Source: unstructured textual content of the Web pages (usually in HTML format)

Web Structure Mining
Source: the unified resource locator (URL) links contained in the Web pages

Web Usage Mining
Source: the detailed description of a Web site’s visits (sequence of clicks by sessions)

Text Mining

Search Engines
Page Rank
Search Engine Optimization
Marketing Attribution

Sentiment Analysis
Information Retrieval
Social Network Analysis
Customer Analytics

Semantic Webs
Graph Mining
Social Media Analytics
360 Customer View

Web Analytics
Social Analytics
Clickstream Analysis
Weblog Analysis
Voice of the Customer

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Structure of a Typical Internet Search Engine

Web Usage Mining
(Web Analytics)

• **Web usage mining (Web analytics)** is the extraction of useful information from data generated through Web page visits and transactions.

• **Clickstream Analysis**
Extraction of Knowledge from Web Usage Data

Preprocess Data
Collecting
Merging
Cleaning
Structuring
- Identify users
- Identify sessions
- Identify page views
- Identify visits

Extract Knowledge
Usage patterns
User profiles
Page profiles
Visit profiles
Customer value

How to better the data
How to improve the Web site
How to increase the customer value

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Social Analytics

• Social analytics is defined as monitoring, analyzing, measuring and interpreting digital interactions and relationships of people, topics, ideas and content.

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Branches of Social Analytics

Social Analytics
 - Social Network Analysis (SNA)
 - Social Media Analytics

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
Text Mining Technologies
Text Mining (TM)

Natural Language Processing (NLP)
Steven Struhl (2015), Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence (Marketing Science), Kogan Page

http://www.amazon.com/Practical-Text-Analytics-Interpreting-Unstructured/dp/0749474017
Text Mining Concepts

• 85-90 percent of all corporate data is in some kind of unstructured form (e.g., text)

• Unstructured corporate data is doubling in size every 18 months

• Tapping into these information sources is not an option, but a need to stay competitive

• Answer: text mining
 – A semi-automated process of extracting knowledge from unstructured data sources
 – a.k.a. text data mining or knowledge discovery in textual databases

Source: Turban et al. (2011), Decision Support and Business Intelligence Systems
Text mining

Text Data Mining

Intelligent Text Analysis

Knowledge-Discovery in Text (KDT)

Text Mining
(text data mining)

the process of deriving high-quality information from text

http://en.wikipedia.org/wiki/Text_mining
Text Mining: the process of extracting interesting and non-trivial information and knowledge from unstructured text.

Text Mining: discovery by computer of new, previously unknown information, by automatically extracting information from different written resources.

An example of Text Mining

Analyze Text
- Information Extraction
- Classification
- Summarization
- Clustering

Retrieve and preprocess document

Document Collection

Management Information System

Knowledge

Overview of Information Extraction based Text Mining Framework

Text Data Mining

Natural Language Processing (NLP)

- Natural language processing (NLP) is an important component of text mining and is a subfield of artificial intelligence and computational linguistics.

<table>
<thead>
<tr>
<th>Natural Language Processing (NLP) and Text Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw text</td>
</tr>
<tr>
<td>Sentence Segmentation</td>
</tr>
<tr>
<td>Tokenization</td>
</tr>
<tr>
<td>Part-of-Speech (POS)</td>
</tr>
<tr>
<td>Stop word removal</td>
</tr>
<tr>
<td>Stemming / Lemmatization</td>
</tr>
<tr>
<td>Dependency Parser</td>
</tr>
<tr>
<td>String Metrics & Matching</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word’s stem</th>
<th>Word’s lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>am → am</td>
<td>am → be</td>
</tr>
<tr>
<td>having → hav</td>
<td>having → have</td>
</tr>
</tbody>
</table>

Source: Nitin Hardeniya (2015), NLTK Essentials, Packt Publishing; Florian Leitner (2015), Text mining - from Bayes rule to dependency parsing
Text Summarization

Topic Modeling

Topics
- gene: 0.04
- dna: 0.02
- genetic: 0.01
- life: 0.02
- evolve: 0.01
- organism: 0.01
- brain: 0.04
- neuron: 0.02
- nerve: 0.01
- data: 0.02
- number: 0.02
- computer: 0.01

Documents

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life.

One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough.

Although the numbers don’t match precisely, those predictions are not all that far apart, especially in comparison to the 75,000 genes in the human genome, notes Svig Andersson, a genetics professor at Umeå University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. “It may be a way of organizing any newly sequenced genome,” explains Aracdy Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

SCIENCE • VOL. 272 • 24 MAY 1996

Question Answering (QA)
IMTKU Question Answering System for World History Exams at NTCIR-13 QALab-3
IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

Department of Information Management
Tamkang University, Taiwan

Min-Yuh Day
myday@mail.tku.edu.tw

Chun Tu

NTCIR-9 Workshop, December 6-9, 2011, Tokyo, Japan
IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE-2

Department of Information Management
Tamkang University, Taiwan

Min-Yuh Day
Chun Tu
Hou-Cheng Vong
Shih-Wei Wu
Shih-Jhen Huang

myday@mail.tku.edu.tw

NTCIR-10 Conference, June 18-21, 2013, Tokyo, Japan
IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

Tamkang University 2014

Min-Yuh Day Ya-Jung Wang Che-Wei Hsu En-Chun Tu

Huai-Wen Hsu Yu-An Lin Shang-Yu Wu Yu-Hsuan Tai Cheng-Chia Tsai
IMTKU Question Answering System for World History Exams at NTCIR-12 QA Lab2

Department of Information Management
Tamkang University, Taiwan

Min-Yuh Day
Cheng-Chia Tsai
Wei-Chun Chung
Hsiu-Yuan Chang
Tzu-Jui Sun
Yuan-Jie Tsai
Jin-Kun Lin
Cheng-Hung Lee
Yu-Ming Guo
Yue-Da Lin
Wei-Ming Chen
Yun-Da Tsai
Cheng-Jhiih Han
Yi-Jing Lin
Yi-Heng Chiang
Ching-Yuan Chien

myday@mail.tku.edu.tw

NTCIR-12 Conference, June 7-10, 2016, Tokyo, Japan
IMTKU Question Answering System for World History Exams at NTCIR-13 QALab-3

Department of Information Management
Tamkang University, Taiwan

myday@mail.tku.edu.tw

NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan
IMTKU System Architecture for NTCIR-13 QALab-3

Question (XML)

Question Analysis

- Complex Essay
- Simple Essay
- True-or-False
- Factoid
- Slot-Filling
- Unique

Document Retrieval

Answer Extraction

Answer Generation

Answer (XML)

- JA&EN Translator
- Stanford CoreNLP
- Wikipedia

Word Embedding

Wiki Word2Vec

NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan
Natural Language Processing (NLP)

- Part-of-speech tagging
- Text segmentation
- Word sense disambiguation
- Syntactic ambiguity
- Imperfect or irregular input
- Speech acts

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
NLP Tasks

- Question answering
- Automatic summarization
- Natural language generation
- Natural language understanding
- Machine translation
- Foreign language reading
- Foreign language writing.
- Speech recognition
- Text-to-speech
- Text proofing
- Optical character recognition
Modern NLP Pipeline

Modern NLP Pipeline

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/
Deep Learning NLP

Documents → Preprocessing → Dense Word Embeddings → Deep Neural Network

Pre-generated Lookup OR Generated in 1st level of NeuralNet

Task / Output
Classification
Sentiment Analysis
Entity Extraction
Topic Modeling
Document Similarity

Source: http://mattfortier.me/2017/01/31/nlp-intro-pt-1-overview/
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin, mingweichang, kentonl1, kristout}@google.com

BERT uses a bidirectional Transformer.
OpenAI GPT uses a left-to-right Transformer.
ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM to generate features for downstream tasks.
Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

BERT input representation

The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.
BERT Sequence-level tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

General Language Understanding Evaluation (GLUE) benchmark

GLUE Test results

<table>
<thead>
<tr>
<th>System</th>
<th>MNLI-(m/mm)</th>
<th>QQP</th>
<th>QNLI</th>
<th>SST-2</th>
<th>CoLA</th>
<th>STS-B</th>
<th>MRPC</th>
<th>RTE</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>392k</td>
<td>363k</td>
<td>108k</td>
<td>67k</td>
<td>8.5k</td>
<td>5.7k</td>
<td>3.5k</td>
<td>2.5k</td>
<td></td>
</tr>
<tr>
<td>Pre-OpenAI SOTA</td>
<td>80.6/80.1</td>
<td>66.1</td>
<td>82.3</td>
<td>93.2</td>
<td>35.0</td>
<td>81.0</td>
<td>86.0</td>
<td>61.7</td>
<td>74.0</td>
</tr>
<tr>
<td>BiLSTM+ELMo+Attn</td>
<td>76.4/76.1</td>
<td>64.8</td>
<td>79.9</td>
<td>90.4</td>
<td>36.0</td>
<td>73.3</td>
<td>84.9</td>
<td>56.8</td>
<td>71.0</td>
</tr>
<tr>
<td>OpenAI GPT</td>
<td>82.1/81.4</td>
<td>70.3</td>
<td>88.1</td>
<td>91.3</td>
<td>45.4</td>
<td>80.0</td>
<td>82.3</td>
<td>56.0</td>
<td>75.2</td>
</tr>
<tr>
<td>BERTBASE</td>
<td>84.6/83.4</td>
<td>71.2</td>
<td>90.1</td>
<td>93.5</td>
<td>52.1</td>
<td>85.8</td>
<td>88.9</td>
<td>66.4</td>
<td>79.6</td>
</tr>
<tr>
<td>BERTLARGE</td>
<td>86.7/85.9</td>
<td>72.1</td>
<td>91.1</td>
<td>94.9</td>
<td>60.5</td>
<td>86.5</td>
<td>89.3</td>
<td>70.1</td>
<td>81.9</td>
</tr>
</tbody>
</table>

MNLI: Multi-Genre Natural Language Inference
QQP: Quora Question Pairs
QNLI: Question Natural Language Inference
SST-2: The Stanford Sentiment Treebank
CoLA: The Corpus of Linguistic Acceptability
STS-B: The Semantic Textual Similarity Benchmark
MRPC: Microsoft Research Paraphrase Corpus
RTE: Recognizing Textual Entailment

A High-Level Depiction of DeepQA Architecture

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson
NLP Libraries and Tools
Natural Language Processing with Python
– Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

This version of the NLTK book is updated for Python 3 and NLTK 3. The first edition of the book, published by O'Reilly, is available at http://nltk.org/book_1ed/. (There are currently no plans for a second edition of the book.)

0. Preface
1. Language Processing and Python
2. Accessing Text Corpora and Lexical Resources
3. Processing Raw Text
4. Writing Structured Programs
5. Categorizing and Tagging Words (minor fixes still required)
6. Learning to Classify Text
7. Extracting Information from Text
8. Analyzing Sentence Structure
9. Building Feature Based Grammars
10. Analyzing the Meaning of Sentences (minor fixes still required)
11. Managing Linguistic Data (minor fixes still required)
12. Afterword: Facing the Language Challenge

Bibliography
Term Index

This book is made available under the terms of the Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License. Please post any questions about the materials to the nltk-users mailing list. Please report any errors on the issue tracker.

http://www.nltk.org/book/
spaCy

Industrial-Strength Natural Language Processing in Python

Fastest in the world

spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. Independent research has confirmed that spaCy is the fastest in the world. If your application needs to process entire web dumps, spaCy is the library you want to be using.

Get things done

spaCy is designed to help you do real work — to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. I like to think of spaCy as the Ruby on Rails of Natural Language Processing.

Deep learning

spaCy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, Keras, Scikit-Learn, Gensim and the rest of Python's awesome AI ecosystem. spaCy helps you connect the statistical models trained by these libraries to the rest of your application.

https://spacy.io/
gensim

Gensim is a FREE Python library

- Scalable statistical semantics
- Analyze plain-text documents for semantic structure
- Retrieve semantically similar documents

https://radimrehurek.com/gensim/
TextBlob: Simplified Text Processing

Release v0.12.0. [Changelog](https://textblob.readthedocs.io)

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

```python
from textblob import TextBlob
text = "The titular threat of The Blob has always struck me as the ultimate movie monster: an insatiably hungry, amoeba-like mass able to penetrate virtually any safeguard, capable of—as a doomed doctor chillingly describes it—"assimilating flesh on contact. Snide comparisons to gelatin be damned, it's a concept with the most devastating of potential consequences, not unlike the grey goo scenario proposed by technological theorists fearful of artificial intelligence run rampant."

blob = TextBlob(text)
blob.tags # [('The', 'DT'), ('titular', 'JJ'), ('threat', 'NN'), ('of', 'IN'), ...]

blob.noun_phrases # WordList(['titular threat', 'blob', 'ultimate movie monster', 'amoeba-like mass', ...])

for sentence in blob.sentences:
    print(sentence.sentiment.polarity)
# 0.060
```

https://textblob.readthedocs.io
Welcome to polyglot's documentation!

polyglot

Polyglot is a natural language pipeline that supports massive multilingual applications.

- Free software: GPLv3 license

Features

- Tokenization (165 Languages)
- Language detection (196 Languages)
- Named Entity Recognition (40 Languages)
- Part of Speech Tagging (16 Languages)
- Sentiment Analysis (136 Languages)
- Word Embeddings (137 Languages)
- Morphological analysis (135 Languages)
- Transliteration (69 Languages)

https://polyglot.readthedocs.io/
scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ...

— Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...

— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, mean-shift, ...

— Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing, feature extraction

http://scikit-learn.org/
The Stanford NLP Group makes parts of our Natural Language Processing software available to everyone. These are statistical NLP toolkits for various major computational linguistics problems. They can be incorporated into applications with human language technology needs.

All the software we distribute here is written in Java. All recent distributions require Oracle Java 6+ or OpenJDK 7+. Distribution packages include components for command-line invocation, jar files, a Java API, and source code. A number of helpful people have extended our work with bindings or translations for other languages. As a result, much of this software can also easily be used from Python (or Jython), Ruby, Perl, Javascript, and F# or other .NET languages.

Supported software distributions

This code is being developed, and we try to answer questions and fix bugs on a best-effort basis.

All these software distributions are open source, licensed under the GNU General Public License (v2 or later). Note that this is the full GPL, which allows many free uses, but does not allow its incorporation into any type of distributed proprietary software, even in part or in translation. Commercial licensing is also available; please contact us if you are interested.

Stanford CoreNLP

An integrated suite of natural language processing tools for English and (mainland) Chinese in Java, including tokenization, part-of-speech tagging, named entity recognition, parsing, and coreference. See also: Stanford Deterministic Coreference Resolution, and the online CoreNLP demo, and the CoreNLP FAQ.

Stanford Parser

Implementations of probabilistic natural language parsers in Java: highly optimized PCFG and dependency parsers, a lexicalized PCFG parser, and a deep learning reranker. See also: Online parser demo, the Stanford Dependencies page, and Parser FAQ.

Stanford POS Tagger

A maximum-entropy (CMM) part-of-speech (POS) tagger for English,
Stanford CoreNLP

Output format: Visualise

Please enter your text here:

Stanford University is located in California. It is a great university.

<table>
<thead>
<tr>
<th></th>
<th>Stanford University</th>
<th>is</th>
<th>located in California.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PRP</td>
<td>VBZ DT JJ NN</td>
</tr>
<tr>
<td>2</td>
<td>It</td>
<td>is</td>
<td>a great university</td>
</tr>
</tbody>
</table>

Part-of-Speech:

Named Entity Recognition:

<table>
<thead>
<tr>
<th></th>
<th>Stanford University</th>
<th>is</th>
<th>located in California.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PRP</td>
<td>VBZ DT JJ NN</td>
</tr>
<tr>
<td>2</td>
<td>It</td>
<td>is</td>
<td>a great university</td>
</tr>
</tbody>
</table>

Coreference:

<table>
<thead>
<tr>
<th></th>
<th>Stanford University</th>
<th>is</th>
<th>located in California.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>PRP</td>
<td>VBZ DT JJ NN</td>
</tr>
<tr>
<td>2</td>
<td>It</td>
<td>is</td>
<td>a great university</td>
</tr>
</tbody>
</table>
Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Part-of-Speech:

Stanford: NNP
University: NNP
is: VBZ
located: JJ
in: IN
California: NNP

It: PRP
is: VBZ
a: DT
great: JJ
university: NN
Stanford University is located in California. It is a great university.

Named Entity Recognition:

1. Stanford University is located in California.
2. It is a great university.
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.

Basic dependencies:

1. Stanford University is located in California.
2. It is a great university.
Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process

Collapsed dependencies:

1. Stanford University is located in California.

2. It is a great university.

Collapsed CC-processed dependencies:

1. Stanford University is located in California.

2. It is a great university.

Visualisation provided using the brat visualisation/annotation software. Copyright © 2011, Stanford University, All Rights Reserved.
Stanford University is located in California. It is a great university.
Stanford University is located in California. It is a great university.
Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

<table>
<thead>
<tr>
<th>Id</th>
<th>Word</th>
<th>Lemma</th>
<th>Char begin</th>
<th>Char end</th>
<th>POS</th>
<th>NER</th>
<th>Normalized NER</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>It</td>
<td>it</td>
<td>46</td>
<td>48</td>
<td>PRP</td>
<td>O</td>
<td></td>
<td>PERO</td>
</tr>
<tr>
<td>2</td>
<td>is</td>
<td>be</td>
<td>49</td>
<td>51</td>
<td>VBZ</td>
<td>O</td>
<td></td>
<td>PERO</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>a</td>
<td>52</td>
<td>53</td>
<td>DT</td>
<td>O</td>
<td></td>
<td>PERO</td>
</tr>
<tr>
<td>4</td>
<td>great</td>
<td>great</td>
<td>54</td>
<td>59</td>
<td>JJ</td>
<td>O</td>
<td></td>
<td>PERO</td>
</tr>
<tr>
<td>5</td>
<td>university</td>
<td>university</td>
<td>60</td>
<td>70</td>
<td>NN</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>.</td>
<td>70</td>
<td>71</td>
<td>.</td>
<td>O</td>
<td></td>
<td>PER0</td>
</tr>
</tbody>
</table>

Parse tree
(ROOT (S (NP (PRP It)) (VP (VBZ is) (NP (DT a) (JJ great) (NN university))) (.) .))
Stanford University is located in California. It is a great university.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Head</th>
<th>Text</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 (gov)</td>
<td>Stanford University</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>It</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>a great university</td>
<td></td>
</tr>
</tbody>
</table>
Stanford University is located in California. It is a great university.

Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process
Stanford University is located in California. It is a great university.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
 <document>
 <sentences>
 <sentence id="1">
 <tokens>
 <token id="1">
 <word>Stanford</word>
 <lemma>Stanford</lemma>
 <CharacterOffsetBegin>0</CharacterOffsetBegin>
 <CharacterOffsetEnd>8</CharacterOffsetEnd>
 <POS>NNP</POS>
 <NER>ORGANIZATION</NER>
 <Speaker>PER0</Speaker>
 </token>
 <token id="2">
 <word>University</word>
 <lemma>University</lemma>
 <CharacterOffsetBegin>9</CharacterOffsetBegin>
 <CharacterOffsetEnd>19</CharacterOffsetEnd>
 <POS>NNP</POS>
 <NER>ORGANIZATION</NER>
 <Speaker>PERSON</Speaker>
 </token>
 </tokens>
 </sentence>
 </sentences>
 </document>
</root>
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney)

For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder.
In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million.

That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares.
Related: Gates reclaims title of world's richest billionaire
Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires.
It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation.
The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft’s history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft’s former CEO Steve Ballmer, who owns 333 million shares. Related: Gates reclaims title of world’s richest billionaire Ballmer, who was Microsoft’s CEO until earlier this year, was one of Gates’ first hires. It’s a passing of the torch for Gates who has always been the largest single owner of his company’s stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:
LOCATION
TIME
PERSON
ORGANIZATION
MONEY
PERCENT
DATE
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft, bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaim title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distim.sim.crf.ser.gz
Output Format: xml
Preserve Spacing: yes

Please enter your text here:

Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

Copyright © 2011, Stanford University, All Rights Reserved.
Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNET May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer, who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates, who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
Stanford Named Entity Tagger (NER)

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.all.3class.distsim.crf.ser.gz

Output Format: highlighted

Preserve Spacing: yes

Please enter your text here:

Bill Gates no longer Microsoft's biggest shareholder
By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer, who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION
ORGANIZATION
PERSON

Copyright © 2011, Stanford University, All Rights Reserved.
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION
TIME
PERSON
ORGANIZATION
MONEY
PERCENT
DATE

Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION
ORGANIZATION
PERSON
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
歐巴馬是美國的一位總統

文章的文字檔
擷取未知詞過程
包含未知詞的斷詞標記結果
未知詞列表

歐巴馬(Nb) 是(SHI) 美國(Nc) 的(DE) 一(Neu) 位(Nf) 總統(Na)
中文文字處理：中文斷詞

莎士比亞在淡江 遇見賽萬提斯
2016-04-26 02:27 聯合報 記者徐葳倫／淡水報導

首波登場的「主題書展」，展出2大文豪經典作品的原著、各種譯本以及DVD、電子書等數位化資料，校方也添購許多新書，吸引學生「搶鮮」閱讀經典名作。現場還規畫「彩繪大師」，讓學生發揮創意，畫出五彩繽紛的莎士比亞和賽萬提斯人像。

英語系四年級學生陳煒說，讀英語系接觸莎士比亞作品，但過去沒有舉辦書展時，這些作品都放在圖書館8樓。現在搬到1樓大廳陳列，不僅有很多莎士比亞、賽萬提斯的經典新書，還可藉由電子書、電影解讀兩位作家，是以前沒有過的體驗。

英語系四年級學生鄭少淮表示，莎士比亞的「馬克白」、「羅密歐與茱麗葉」都已經讀過很多次，從經典文學中理解不同城市、國家的文化。

日文系學生賴家慧說，原本只是喜歡塗鴉才來參加活動，後來才知道畫的是2位大文豪，接觸他們的作品，文學經典「原來離我這麼近」。

淡江大學外語學院院長陳小雋表示，莎士比亞的「to be, or not to be; that is the question」，賽萬提斯的「看得越多，行得越遠；書讀得越多，知識就越廣博」，都是来自文學的名言，校方希望用最簡單的方式，讓學生知道「文學不難」，就在你我身邊。

http://udn.com/news/story/7323/1653437-%E8%8E%8E%E5%A3%AB%E6%AF%94%E4%BA%9E%E5%9C%A8%E6%B7%A1%E6%B1%9F-%E9%81%87%E8%A6%8B%E8%B3%BD%E8%90%AC%E6%8F%90%E6%96%AF
自2014/01/06起，本斷詞系統已經處理過28270134篇文章

莎士比亞在淡江遇見賽萬提斯
2016-04-26 02:27 聯合報 記者徐葳倫 / 淡水報導

分享4月23日是「世界閱讀日」，也是英國大文豪莎士比亞的生日與忌日，及「唐吉訶德」作者賽萬提斯逝世之日。英專起家的淡江大學舉辦「當莎士比亞遇見賽萬提斯」活動，規劃主題書展、彩繪活動，並添購新書，拉近學生與經典文學的距離。

首波登場的「主題書展」，展出2大文豪經典作品的原著、各種譯本以及DVD、電子書等數位化資料。校方也添購許多新書，吸引學生「搶鮮」閱讀經典名作。現場還規畫「彩繪大師」，讓學生發揮創意，畫出五彩繽紛的莎士比亞和賽萬提斯人像。

英語系四年級學生陳彥伶說，讀英語系接觸莎士比亞作品，但過去沒有舉辦書展時，這些作品都放在圖書館8樓，現在搬到1樓大廳陳列，不僅有很多莎士比亞、賽萬提斯的經典新書，還可藉由電子書、電影理解兩位作家，是以前沒有過的體驗。

英語系四年級學生鄭少淮表示，莎士比亞的「馬克白」、「羅密歐與茱麗葉」都已經讀過很多次，從經典文學中理解不同城市、國家的文化。

日文系學生賴喬郁說，原本只是喜歡塗鴉才來參加活動，後來才知道畫的是2個大文豪，接觸他們的作品，文學經典「原來離我這麼近」。

淡江大學外語學院院長陳小雀表示，莎士比亞的「to be, or not to be; that is the question」，賽萬提斯的「看得越多，行得越遠；書讀得越多，知識就越廣博」，都是來自文學的名言，校方希望用最簡單的方式，讓學生知道「文學不難」，就在你我身邊。
<table>
<thead>
<tr>
<th>莎士比亞(Nb)</th>
<th>淡江(Nb)</th>
<th>遇見(VC)</th>
<th>賽萬提(Nb)</th>
<th>斯(Nep)</th>
<th>2016(Neu)</th>
<th>-FW</th>
<th>04(Neu)</th>
<th>-FW</th>
<th>2602(Neu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27(Neu)</td>
<td>聯合報(Nb)</td>
<td>記者(Na)</td>
<td>徐嘉倫(Nb)</td>
<td>淡水(Nc)</td>
<td>報導(Na)</td>
<td>分享(VJ)</td>
<td>4月(Nd)</td>
<td>23日(Nd)</td>
<td>是(SHI)</td>
</tr>
<tr>
<td>也(D)</td>
<td>是(SHI)</td>
<td>英國(Nc)</td>
<td>大(VH)</td>
<td>文豪(Na)</td>
<td>莎士比亞(Nb)</td>
<td>的(DE)</td>
<td>生日(Na)</td>
<td>與(Caa)</td>
<td>忌日(Na)</td>
</tr>
<tr>
<td>及(Caa)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>唐吉訶德(Nb)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>作者(Na)</td>
<td>賽萬提(Nb)</td>
<td>斯(Nep)</td>
<td>逝世(VH)</td>
<td>之(DE)</td>
<td>日(Na)</td>
</tr>
<tr>
<td>英(Nc)</td>
<td>專(D)</td>
<td>起家(VA)</td>
<td>的(DE)</td>
<td>淡江(Nb)</td>
<td>大學(Nc)</td>
<td>舉辦(VC)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>當(P)</td>
<td>莎士比亞(Nb)</td>
</tr>
<tr>
<td>規畫(VC)</td>
<td>主題(Na)</td>
<td>書展(Na)</td>
<td>「(PAUSECATEGORY)」</td>
<td>彩繪(VC)</td>
<td>活動(Na)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>並(Cbb)</td>
<td>添購(VC)</td>
<td>新書(Na)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>拉近(VC)</td>
<td>學生(Na)</td>
<td>與(Caa)</td>
<td>經典(Na)</td>
<td>文學(Na)</td>
<td>的(DE)</td>
<td>距離(Na)</td>
<td>' (PERIODCATEGORY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>首(Nes)</td>
<td>沖(Nf)</td>
<td>登場(VA)</td>
<td>的(T)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>主題(Na)</td>
<td>書展(Na)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>' (COMMACATEGORY)</td>
<td></td>
</tr>
<tr>
<td>展出(VC)</td>
<td>2(Neu)</td>
<td>大(VH)</td>
<td>文豪(Na)</td>
<td>經典(Na)</td>
<td>作品(Na)</td>
<td>的(DE)</td>
<td>原著(Na)</td>
<td>「(PAUSECATEGORY)」</td>
<td>各(Nes)</td>
</tr>
<tr>
<td>校方(Na)</td>
<td>也(D)</td>
<td>添購(VC)</td>
<td>許多(Nega)</td>
<td>新書(Na)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸引(VJ)</td>
<td>學生(Na)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>搶鮮(Na)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>閱讀(VC)</td>
<td>經典(Na)</td>
<td>名作(Na)</td>
<td>' (PERIODCATEGORY)</td>
<td></td>
</tr>
<tr>
<td>現場(Nc)</td>
<td>還(D)</td>
<td>規畫(VC)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>彩繪(VC)</td>
<td>大師(Na)</td>
<td>「(PARENTHEISCATEGORY)」</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>讀(VL)</td>
<td>學生(Na)</td>
<td>發揮(VJ)</td>
<td>創意(Na)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>畫出(VC)</td>
<td>五彩繽紛(VH)</td>
<td>的(DE)</td>
<td>莎士比亞(Nb)</td>
<td>和(Caa)</td>
<td>賽萬提(Nb)</td>
<td>斯人(Na)</td>
<td>像(VG)</td>
<td>' (PERIODCATEGORY)</td>
<td></td>
</tr>
<tr>
<td>英語系(Nc)</td>
<td>四年級(Na)</td>
<td>學生(Na)</td>
<td>陳彥伶(Nb)</td>
<td>說(VE)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>論(VC)</td>
<td>英語系(Nc)</td>
<td>接觸(VC)</td>
<td>莎士比亞(Nb)</td>
<td>作品(Na)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>但(Cbb)</td>
<td>過去(Nd)</td>
<td>沒有(D)</td>
<td>舉辦(VC)</td>
<td>書展(Na)</td>
<td>時(Ng)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>這些(Nega)</td>
<td>作品(Na)</td>
<td>都(D)</td>
<td>放(VC)</td>
<td>在(P)</td>
<td>圖書館(Nc)</td>
<td>8樓(Nc)</td>
<td>' (COMMACATEGORY)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
莎士比亞在淡江 遇見賽萬提斯
2016-04-26 02:27 聯合報 記者徐葳倫／淡水報導

分享4月23日是「世界閱讀日」，也是英國大文豪莎士比亞的生日與忌日，及「唐吉訶德」作者賽萬提斯逝世之日。英專起家的淡江大學舉辦「當莎士比亞遇見賽萬提斯」活動，規畫主題書展、彩繪活動，並添購新書，拉近學生與經典文學的距離。

莎士比亞(Nb) 在(P) 淡江(Nb) 遇見(VC) 賽萬提(Nb) 斯(Nep) 2016(Neu) -(FW) 04
(Neu) -(FW) 2602(Neu) :(COLONCATEGORY)
27(Neu) 聯合報(Nb) 記者(Na) 徐葳倫(Nb) 淡水(Nc) 報導(Na) 分享(VJ) 4月(Nd) 23日
(Nd) 是(SHI) 「(PARENTHESISCATEGORY) 世界(Nc) 閱讀日(Na) 」
(PARENTHESISCATEGORY) , (COMMACATEGORY)
也(D) 是(SHI) 英國(Nc) 大(VH) 文豪(Na) 莎士比亞(Nb) 的(DE) 生日(Na) 與(Caa) 忌日
(Na) , (COMMACATEGORY)
及(Caa) 「(PARENTHESISCATEGORY) 唐吉訶德(Nb) 」(PARENTHESISCATEGORY) 作者
(Na) 賽萬提(Nb) 斯(Nep) 逝世(VH) 之(DE) 日(Na) 。(PERIODCATEGORY)
英(Nc) 專(D) 起家(VA) 的(DE) 淡江(Nb) 大學(Nc) 舉辦(VC) 「
(PARENTHESISCATEGORY) 當(P) 莎士比亞(Nb) 遇見(VC) 賽萬提(Nb) 斯(Nep) 」
(PARENTHESISCATEGORY) 活動(Na) , (COMMACATEGORY)
規畫(VC) 主題(Na) 書展(Na) , (PAUSECATEGORY) 彩繪(VC) 活動(Na) ,
(COMMACATEGORY)
並(Cbb) 添購(VC) 新書(Na) , (COMMACATEGORY)
拉近(VC) 學生(Na) 與(Caa) 經典(Na) 文學(Na) 的(DE) 距離(Na) 。(PERIODCATEGORY)
Vector Representations of Words

Word Embeddings

Word2Vec

GloVe
Modern NLP Pipeline
Pre-trained word vectors
Word2Vec
wiki.zh.vec (861MB)
332647 word
300 vec

Pre-trained word vectors for 90 languages, trained on Wikipedia using fastText.

These vectors in dimension 300 were obtained using the skip-gram model with default parameters.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Facebook Research FastText

Word2Vec: wiki.zh.vec

(861MB) (332647 word 300 vec)

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
Word Embeddings in LSTM RNN

Time Expanded LSTM Network

Fixed length question vector encoded by the LSTM

LSTM Internal States

.8 .5 .7 .3 .2 .1

Word Embeddings

.2 .3 .0 .1 .5 .8

Input Question

Is this person dancing?
自然語言處理與資訊檢索研究資源

http://mail.tku.edu.tw/myday/resources/

淡江大學資訊管理學系
(Department of Information Management, Tamkang University)
自然語言處理與資訊檢索研究資源
(Resources of Natural Language Processing and Information Retrieval)

1. 中央研究院CKIP中文斷詞系統
 授權單位：中央研究院詞庫小組
 授權金額：免費授權學術使用。
 授權日期：2011.03.31。
 CKIP: http://ckipsvr.iis.sinica.edu.tw/

2. 「中央研究院中英雙語詞網」(The Academia Sinica Bilingual Wordnet)
 「中央研究院中英雙語詞網」(The Academia Sinica Bilingual Wordnet)，
 授權「淡江大學資訊管理學系」(Department of Information Management, Tamkang University)學術使用。
 授權單位：中央研究院，中華民國計算語言學學會
 授權金額：「中央研究院中英雙語詞網」(The Academia Sinica Bilingual Wordnet)國內非營利機構(1-10人使用) 非會員：NT$61,000元，
 授權日期：2011.05.16。
 Sinica BOW: http://bow.ling.sinica.edu.tw/
3. 開放式中研院專名問答系統 (OpenASQA)
 授權單位：中央研究院資訊科學研究所智慧型代理人系統實驗室
 授權金額：免費授權學術使用。
 授權日期：2011.05.05。
 ASQA: http://asqa.iis.sinica.edu.tw/
自然語言處理與資訊檢索研究資源

http://mail.tku.edu.tw/myday/resources/

4. 哈工大資訊檢索研究中心(HIT-CIR)語言技術平臺

語料資源
哈工大資訊檢索研究中心漢語依存樹庫（HIT-CIR Chinese Dependency Treebank）
哈工大資訊檢索研究中心同義詞詞林擴展版（HIT-CIR Tongyici Cilin (Extended)）

語言處理模組
斷句 (SplitSentence: Sentence Splitting)
詞法分析 (IRLAS: Lexical Analysis System)
基於SVMTool的詞性標注 (PosTag: Part-of-speech Tagging)
命名實體識別 (NER: Named Entity Recognition)
基於動態局部優化的依存句法分析 (Parser: Dependency Parsing)
基於圖的依存句法分析 (GParser: Graph-based DP)
全文詞義消歧 (WSD: Word Sense Disambiguation)
淺層語義標注模組 (SRL: hallow Semantics Labeling)
資料表示
語言技術置標語言 (LTML: Language Technology Markup Language)
視覺化工具
LTML視覺化XSL

授權單位：哈工大資訊檢索研究中心(HIT-CIR)
授權金額：免費授權學術使用。
授權日期：2011.05.03。
HIT IR: http://ir.hit.edu.cn/
NLP Tools: spaCy vs. NLTK

<table>
<thead>
<tr>
<th>Feature</th>
<th>spaCy</th>
<th>SyntaxNet</th>
<th>NLTK</th>
<th>CoreNLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy installation</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Python API</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Multi-language support</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tokenization</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Part-of-speech tagging</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sentence segmentation</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dependency parsing</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Entity Recognition</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Integrated word vectors</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sentiment analysis</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coreference resolution</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Natural Language Processing (NLP)

spaCy

1. Tokenization
2. Part-of-speech tagging
3. Sentence segmentation
4. Dependency parsing
5. Entity Recognition
6. Integrated word vectors
7. Sentiment analysis
8. Coreference resolution

Source: https://spacy.io/docs/api/
spaCy:
Fastest Syntactic Parser

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>LANGUAGE</th>
<th>ACCURACY</th>
<th>SPEED (WPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>Cython</td>
<td>91.8</td>
<td>13,963</td>
</tr>
<tr>
<td>ClearNLP</td>
<td>Java</td>
<td>91.7</td>
<td>10,271</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>Java</td>
<td>89.6</td>
<td>8,602</td>
</tr>
<tr>
<td>MATE</td>
<td>Java</td>
<td>92.5</td>
<td>550</td>
</tr>
<tr>
<td>Turbo</td>
<td>C++</td>
<td>92.4</td>
<td>349</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Processing Speed of NLP libraries

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>ABSOLUTE (MS PER DOC)</th>
<th>RELATIVE (TO SPACY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOKENIZE</td>
<td>TAG</td>
</tr>
<tr>
<td>spaCy</td>
<td>0.2ms</td>
<td>1ms</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>2ms</td>
<td>10ms</td>
</tr>
<tr>
<td>ZPar</td>
<td>1ms</td>
<td>8ms</td>
</tr>
<tr>
<td>NLTK</td>
<td>4ms</td>
<td>443ms</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Google SyntaxNet (2016): Best Syntactic Dependency Parsing Accuracy

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>NEWS</th>
<th>WEB</th>
<th>QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>92.8</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Parsey McParseface</td>
<td>94.15</td>
<td>89.08</td>
<td>94.77</td>
</tr>
<tr>
<td>Martins et al. (2013)</td>
<td>93.10</td>
<td>88.23</td>
<td>94.21</td>
</tr>
<tr>
<td>Zhang and McDonald (2014)</td>
<td>93.32</td>
<td>88.65</td>
<td>93.37</td>
</tr>
<tr>
<td>Weiss et al. (2015)</td>
<td>93.91</td>
<td>89.29</td>
<td>94.17</td>
</tr>
<tr>
<td>Andor et al. (2016)</td>
<td>94.44</td>
<td>90.17</td>
<td>95.40</td>
</tr>
</tbody>
</table>

Source: https://spacy.io/docs/api/
Named Entity Recognition (NER)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>PRECISION</th>
<th>RECALL</th>
<th>F-MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>spaCy</td>
<td>0.7240</td>
<td>0.6514</td>
<td>0.6858</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>0.7914</td>
<td>0.7327</td>
<td>0.7609</td>
</tr>
<tr>
<td>NLTK</td>
<td>0.5136</td>
<td>0.6532</td>
<td>0.5750</td>
</tr>
<tr>
<td>LingPipe</td>
<td>0.5412</td>
<td>0.5357</td>
<td>0.5384</td>
</tr>
</tbody>
</table>
Text Analytics with Python
Keras preprocessing text

```python
# keras.preprocessing.text Tokenizer
from keras.preprocessing.text import Tokenizer

# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit_on_texts(docs)

print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_counts:', t.document_count)

print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

# integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix')
print(texts_to_matrix)
```

Using TensorFlow backend.

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1)]
document_count: 5
word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1]
texts_to_matrix:
[[0. 0. 1. 1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]]
Text Classification

Source: https://developers.google.com/machine-learning/guides/text-classification/
Text Classification Workflow

- Step 1: Gather Data
- Step 2: Explore Your Data
- Step 2.5: Choose a Model*
- Step 3: Prepare Your Data
- Step 4: Build, Train, and Evaluate Your Model
- Step 5: Tune Hyperparameters
- Step 6: Deploy Your Model

Source: https://developers.google.com/machine-learning/guides/text-classification/
Text Classification S/W<1500: N-gram

Prepare data

N-gram

N-gram range

unigram

bigram

trigram

Count mode

binary

tf-idf

count

Scoring method

none

f_classif

chi2

Select top_k features [score]

min(top_1K, 2K, 15K, 20K, 25K, 90K, all)

Normalization mode

samplewise

None

featurewise

Build model

SVM

MLP

GBDT

Text Classification S/W>=1500: Sequence

1. Select top_k features [freq]
2. min(top: 1K, 2K, ..., 15K, 20K, 25K, ..., 90K, all)
3. Normalization mode
 - samplewise
 - None
 - featurewise
4. Embeddings
5. S/W < 15K
 - Yes: Fine-tuned pre-trained embedding
 - No: Frozen pre-trained embedding
 - Embeddings learned from scratch
6. Build model
 - RNN
 - stacked RNN
 - CNN-RNN
 - sepCNN
 - CNN
7. Hyperparameter tuning

Step 2.5: Choose a Model

Samples/Words < 1500

150,000/100 = 1500

IMDb review dataset, the samples/words-per-sample ratio is ~ 144

Step 2.5: Choose a Model

Samples/Words < 15,000

1,500,000/100 = 15,000
Step 3: Prepare Your Data

Texts:
T1: 'The mouse ran up the clock'
T2: 'The mouse ran down'

Token Index:
{'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6}.

NOTE: 'the' occurs most frequently, so the index value of 1 is assigned to it.
Some libraries reserve index 0 for unknown tokens, as is the case here.

Sequence of token indexes:
T1: 'The mouse ran up the clock' = [1, 2, 3, 4, 1, 5]
T1: 'The mouse ran down' = [1, 2, 3, 6]
One-hot encoding

'The mouse ran up the clock' =

The 1 [[0, 1, 0, 0, 0, 0, 0, 0],
mouse 2 [0, 0, 1, 0, 0, 0, 0, 0],
rans 3 [0, 0, 0, 1, 0, 0, 0, 0],
ups 4 [0, 0, 0, 0, 1, 0, 0, 0],
thes 1 [0, 1, 0, 0, 0, 0, 0, 0],
clocks 5 [0, 0, 0, 0, 0, 1, 0, 0]]

[0, 1, 2, 3, 4, 5, 6]
Word embeddings

Male-Female

Verb Tense

Country-Capital

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
Word embeddings

The mouse ran up the clock

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
</tr>
</tbody>
</table>

The mouse ran down

<table>
<thead>
<tr>
<th>Word</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>mouse</td>
<td>2</td>
</tr>
<tr>
<td>ran</td>
<td>3</td>
</tr>
<tr>
<td>up</td>
<td>4</td>
</tr>
<tr>
<td>clock</td>
<td>5</td>
</tr>
<tr>
<td>down</td>
<td>6</td>
</tr>
</tbody>
</table>

[1, 2, 3, 4, 1, 5] -> [1, 2, 3, 6]

Embedding layer (output dim = 4)

[[0.236, -0.141, 0.000, 0.045],
 [0.006, 0.652, 0.270, -0.556],
 [0.305, 0.569, -0.028, 0.496],
 [0.421, 0.195, -0.058, 0.477],
 [0.236, -0.141, 0.000, 0.045],
 [0.844, -0.001, 0.763, 0.201]]

Source: https://developers.google.com/machine-learning/guides/text-classification/step-3
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)

terms = ['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
sortedset = ['clock', 'down', 'mouse', 'ran', 'the', 'up']

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)

tfdict = {}
for term in terms:
 if term not in tfdict:
 tfdict[term] = 1
 else:
 tfdict[term] += 1

a = []
for k,v in tfdict.items():
 a.append('{} , {}'.format(k,v))
print(a)

['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
['the', 3, 'mouse', 2, 'ran', 2, 'up', 1, 'clock', 1, 'down', 1]
sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)

sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)

id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}

word2id = dict([(v, k) for (k, v) in id2word.items()])
sorted_by_value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted_by_value:', sorted_by_value)
sorted_by_value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted_by_value2:', sorted_by_value2)
sorted_by_value_reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted_by_value_reverse:', sorted_by_value_reverse)
sorted_by_value_reverse_dict = dict(sorted_by_value_reverse)
print('sorted_by_value_reverse_dict:', sorted_by_value_reverse_dict)
id2word = {id: word for id, word in enumerate(sorted_by_value_reverse_dict)}
print('id2word:', id2word)
word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id:', word2id)
len_words = len(word2id)
sorted_by_key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted_by_key:', sorted_by_key)

tfstring = \n'.join(a)
print(tfstring)
tf = tfdict.get('mouse')
print(tf)

sorted_by_value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted_by_value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted_by_value_reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id {'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len_words: 6
sorted_by_key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1

https://colab.research.google.com/drive/1FEG6DnGvWFUbeo4zJ1zTunjMqf2RkCrT
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)
integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix:')
print(texts_to_matrix)

docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1)]
word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts_to_matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.]]
from keras.preprocessing.text import Tokenizer
define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)
integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='count')
print('texts_to_matrix:')
print(texts_to_matrix)

Source: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
texts_to_matrix =
 t.texts_to_matrix(docs, mode='count')
docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word_counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nice', 1), ('excellent', 1)])
document_count: 5
word_index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word_docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts_to_matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 1.]]
Source: https://machinelearningmastery.com/prepare-text-data-deep-learning-keras/
from keras.preprocessing.text import Tokenizer

define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']

create the tokenizer
t = Tokenizer()
fit the tokenizer on the documents
t.fit_on_texts(docs)
print('docs:', docs)
print('word_counts:', t.word_counts)
print('document_count:', t.document_count)
print('word_index:', t.word_index)
print('word_docs:', t.word_docs)

integer encode documents
texts_to_matrix = t.texts_to_matrix(docs, mode='tfidf')
print('texts_to_matrix:')
print(texts_to_matrix)
Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, plus comprehensive API documentation, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics using Python,” and “an amazing library to play with natural language.”

Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://www.nltk.org/book_1ed.)

Some simple things you can do with NLTK

Tokenize and tag some text:

```python
>>> import nltk
```
<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>matplotlib</td>
<td>2.0.0</td>
<td>np111py36_0</td>
</tr>
<tr>
<td>mistune</td>
<td>0.7.3</td>
<td>py36_1</td>
</tr>
<tr>
<td>mkl</td>
<td>2017.0.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>mkl-service</td>
<td>1.1.2</td>
<td>py36_3</td>
</tr>
<tr>
<td>mpmath</td>
<td>0.19</td>
<td>py36_1</td>
</tr>
<tr>
<td>multipledispatch</td>
<td>0.4.9</td>
<td>py36_0</td>
</tr>
<tr>
<td>nbconvert</td>
<td>4.2.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>nbformat</td>
<td>4.2.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>networkx</td>
<td>1.11</td>
<td>py36_0</td>
</tr>
<tr>
<td>nltk</td>
<td>3.2.2</td>
<td>py36_0</td>
</tr>
<tr>
<td>nose</td>
<td>1.5.7</td>
<td>py36_1</td>
</tr>
<tr>
<td>notebook</td>
<td>4.3.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>numba</td>
<td>0.30.1</td>
<td>np111py36_0</td>
</tr>
<tr>
<td>numexpr</td>
<td>2.6.1</td>
<td>np111py36_2</td>
</tr>
<tr>
<td>numpy</td>
<td>1.11.3</td>
<td>py36_0</td>
</tr>
<tr>
<td>numpydoc</td>
<td>0.6.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>odo</td>
<td>0.5.0</td>
<td>py36_1</td>
</tr>
<tr>
<td>openpyxl</td>
<td>2.4.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>openssl</td>
<td>1.0.2k</td>
<td>py36_1</td>
</tr>
<tr>
<td>pandas</td>
<td>0.19.2</td>
<td>np111py36_1</td>
</tr>
<tr>
<td>pandas-datareader</td>
<td>0.2.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>partd</td>
<td>0.3.7</td>
<td>py36_0</td>
</tr>
<tr>
<td>path.py</td>
<td>10.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>pathlib2</td>
<td>2.2.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>patsy</td>
<td>0.4.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>pep8</td>
<td>1.7.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>pexpect</td>
<td>4.2.1</td>
<td>py36_0</td>
</tr>
<tr>
<td>pickleshare</td>
<td>0.7.4</td>
<td>py36_0</td>
</tr>
<tr>
<td>pillow</td>
<td>4.0.0</td>
<td>py36_0</td>
</tr>
<tr>
<td>pip</td>
<td>9.0.1</td>
<td>py36_1</td>
</tr>
<tr>
<td>plotly</td>
<td>1.12.9</td>
<td>py36_0</td>
</tr>
<tr>
<td>ply</td>
<td>3.9</td>
<td>py36_0</td>
</tr>
<tr>
<td>prompt_toolkit</td>
<td>1.0.9</td>
<td>py36_0</td>
</tr>
<tr>
<td>psutil</td>
<td>5.0.1</td>
<td>py36_0</td>
</tr>
</tbody>
</table>
```python
help('modules')
```
import nltk
import nltk
nltk.download()
```python
import nltk
nltk.download()
```

Source: http://www.nltk.org/

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Name</th>
<th>Size</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All packages</td>
<td>n/a</td>
<td>partial</td>
</tr>
<tr>
<td>all-corpora</td>
<td>All the corpora</td>
<td>n/a</td>
<td>partial</td>
</tr>
<tr>
<td>book</td>
<td>Everything used in the NLTK Book</td>
<td>n/a</td>
<td>partial</td>
</tr>
</tbody>
</table>

Server Index: http://www.nltk.org/nltk_data/
Download Directory: `/Users/imony/nltk_data`

Downloading package `u'cess_esp`
import nltk
	nltk.download()
nltk_data

- chunkers
- corpora
- grammars
- help
- models
- stemmers
- taggers
- tokenizers
At eight o'clock on Thursday morning Arthur didn't feel very good.
At eight o'clock on Thursday morning, Arthur didn't feel very good.
```
import nltk
sentence = "At eight o'clock on Thursday morning Arthur didn't feel very good."
tokens = nltk.word_tokenize(sentence)
tokens
print(tokens)
```

```python
In [1]:
import nltk
sentence = "At eight o'clock on Thursday morning Arthur didn't feel very good."
tokens = nltk.word_tokenize(sentence)
tokens
Out[1]: ['At', 'eight', "o'clock", 'on', 'Thursday', 'morning', 'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
```

```python
In [2]:
print(tokens)

[ 'At', 'eight', "o'clock", 'on', 'Thursday', 'morning', 'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
```

Source: http://www.nltk.org/
```python
In [3]:
tagged = nltk.pos_tag(tokens)
tagged[0:6]
```

```
Out[3]:
[('At', 'IN'),
 ('eight', 'CD'),
 ('o'clock', 'NN'),
 ('on', 'IN'),
 ('Thursday', 'NNP'),
 ('morning', 'NN')]
```
tagged

In [4]: tagged

Out[4]: [('At', 'IN'),
 ('eight', 'CD'),
 ('o'clock', 'NN'),
 ('on', 'IN'),
 ('Thursday', 'NNP'),
 ('morning', 'NN'),
 ('Arthur', 'NNP'),
 ('did', 'VBD'),
 ('n't', 'RB'),
 ('feel', 'VB'),
 ('very', 'RB'),
 ('good', 'JJ'),
 ('.', '.')]
At eight o'clock on Thursday morning Arthur didn't feel very good.
entities = nltk.chunk.ne_chunk(tagged)
entities

Tree('S', [('At', 'IN'), ('eight', 'CD'), ('o'clock', 'NN'), ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN'), Tree('PERSON', [('Arthur', 'NNP')]), ('did', 'VBD'), ('n't', 'RB'), ('feel', 'VB'), ('very', 'RB'), ('good', 'JJ'), ('.', '.')]
from nltk.corpus import treebank

t = treebank.parsed_sents('wsj_0001.mrg')[0]
t.draw()
(S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old)
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NNN director))
 (NP-TMP (NNP Nov.) (CD 29)))
 (.. .)))
(S
 (NP-SBJ (NNP Mr.) (NNP Vinken))
 (VP (VBZ is)
 (NP-PRD
 (NP (NNN chairman))
 (PP (IN of)
 (NP
 (NP (NNP Elsevier) (NNP N.V.))
 (, ,)
 (NP (DT the) (NNP Dutch) (VBG publishing) (NN group)))))
 (.. .)))

Source: http://www.nltk.org/
Pragmatic NLP

Pragmatic NLP - Live Demo

Dataset: CNN Facebook Posts 2012-2016

Source: https://data.world/martincheke/2012-2016-facebook-posts

In [1]

```python
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from textblob import TextBlob
# Don't forget to fetch necessary models for TextBlob's NLTK hooks to function > 'python -m textblob.download_corpora'

import json
import multiprocessing
import regex as re
```

In [2]

```python
fname_data = '/Volumes/SD/datasets/facebook-news/cnn-5550296508.csv-cnn-5550296508.csv'
```

1. Ingest Data

In [3]

```python
pd_data = pd.read_csv(fname_data, encoding='utf-16', na_values='NULL', quoting=1)
```

In []

```python
pd_data.id = pd_data['id'].map(lambda x : x.replace('"',''))
```

https://github.com/fortiema/notebooks/blob/master/Pragmatic%20NLP.ipynb
Python Jieba “结巴” 中文分词

https://github.com/fxsjy/jieba
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
wordspos = pseg.cut(sentence)
result = ''
for word, pos in wordspos:
 print(word + ' (' + pos + '))
 result = result + ' ' + word + '(' + pos + '))
print(result.strip())
```python
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變，金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))  #銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技人才

wordspos = pseg.cut(sentence)
result = ''
for word, pos in wordspos:
    print(word + ' (' + pos + ')')
    result = result + ' ' + word + ' (' + pos + ')
print(result.strip())  #銀行(n) 產業(n) 正在(t) 改變(v) ，(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
```

銀行產業正在改變，金融機構欲挖角科技人才
銀行 產業 正在 改變 ， 金融 機構 欲 挖角 科技人才
銀行 (n)
產業 (n)
正在 (t)
改變 (v)
， (x)
金融 (n)
機構 (n)
欲 (d)
挖角 (n)
科技人才 (n)
銀行(n) 產業(n) 正在(t) 改變(v) ，(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
Python Jieba “结巴”中文分词

• https://github.com/fxsjy/jieba
• jieba.set_dictionary('data/dict.txt.big')
 – #/anaconda/lib/python3.5/site-packages/jieba
 – dict.txt (5.4MB)(349,046)
 – dict.txt.big.txt (8.6MB)(584,429)
 – dict.txt.small.txt (1.6MB)(109,750)
 – dict.tw.txt (4.2MB)(308,431)
• https://github.com/ldkrsi/jieba-zh_TW
 – 结巴中文斷詞台灣繁體版本
AI and Deep Machine Learning

• Artificial Intelligence (AI)
 – AI is the broadest term, applying to any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning).

• Machine Learning (ML)
 – The subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning.

• Deep Learning (DL)
 – The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data.

TensorFlow NLP Examples

• Basic Text Classification
 (Text Classification) (46 Seconds)

• NMT with Attention
 (20-30 minutes)
Text Classification
IMDb Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i_gror

Copyright 2018 The TensorFlow Authors.
Licensed under the Apache License, Version 2.0 (the "License");
MIT License

Text classification with movie reviews
Download the IMDB dataset
Explore the data
Convert the integers back to words
Prepare the data
Build the model
Hidden units
Loss function and optimizer
Create a validation set
Train the model
Evaluate the model

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.
Summary

• Text Analytics and Text Mining
• Natural Language Processing (NLP)
• Text Analytics with Python
References

• Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
• Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
• Christopher D. Manning and Hinrich Schütze (1999), Foundations of Statistical Natural Language Processing, The MIT Press.
• Nitin Hardeniya (2015), NLTK Essentials, Packt.
• Bing Liu (2009), Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.
Q & A

文本分析與自然語言處理
(Text Analytics and Natural Language Processing)

Time: 2018/12/4 & 2018/12/11 (Tue) 09:10-12:00
Place: 台北大學三峽校區人文大樓3樓 語言3教室
Host: 鄭桂蕙 教授 (國立臺北大學會計學系 鑑識會計 課程)

Min-Yuh Day
戴敏育
Assistant Professor
專任助理教授

Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2018-12-04; 2018-12-11