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Abstract 
 

 This paper addresses three major problems of closed 
task Chinese word segmentation (CWS): word overlap, 
tagging sentences interspersed with non-Chinese words, 
and long named entity (NE) identification. For the first, we 
use additional bigram features to approximate trigram and 
tetragram features. For the second, we first apply K-means 
clustering to identify non-Chinese characters. Then, we 
employ a two-tagger architecture: one for Chinese text and 
the other for non-Chinese text. Finally, we post-process our 
CWS output using automatically generated templates. Our 
results show that additional bigrams can effectively identify 
more unknown words. Secondly, using our two-tagger 
method, segmentation performance on sentences contain-
ing non-Chinese words is significantly improved when non-
Chinese characters are sparse in the training corpus. 
Lastly, identification of long NEs and long words is also 
enhanced by template-based post-processing. Using cor-
pora in closed task of SIGHAN CWS, our best system 
achieves F-scores of 0.956, 0.947, and 0.965 on the AS, 
HK, and MSR corpora respectively, compared to the best 
context scores of 0.952, 0.943, and 0.964 in SIGHAN 
Bakeoff 2005. In AS, this performance is comparable to the 
best result (F=0.956) in the open task.  
 
1. Introduction 
 

The amount of electronic text in Chinese has in-
creased dramatically. The ability to search, index, and 
process such text is therefore in high demand. The first 
obstacle we face in processing Chinese text is Chinese 
word segmentation (CWS) problem. In western lan-
guages, words are delimited by separators (i.e. spaces), 
while in Chinese they are not. There has been significant 
research into finding word boundaries in unsegmented 
sequences and several popular annotated corpora also ex-
ist. However, it is very difficult to define a consistent and 

unified standard, and each corpus uses different word 
segmentation standards. 

An important problem is word overlap. In many situa-
tions, several possibilities may seem correct. For exam-
ple, the trigram "中国立" in the sentence "中国立国五千

年, " (China has had a continuous civilization for five 
thousand years)  can be interpreted in two ways. If the 
current character is "国", both "中国" (China) and "国立" 
(national) are valid words. In such limited contexts, a 
CWS system that can weigh all n-grams in the window 
and assign tags according to corpus statistics would be 
useful. A popular CWS approach is machine learning 
(ML) such as Conditional Random Fields (CRF) [1] . 

The second problem is identifying and segmenting 
non-Chinese word sequences in Chinese documents, es-
pecially in a closed task (to be described later). A good 
CWS system needs to handle Chinese texts peppered with 
non-Chinese words (e.g., Arabic numbers or English 
words). Since their morphologies are quite different from 
Chinese morphology, our approach must depend on how 
many non-Chinese words appear, whether they connect 
with each other, and whether they are interleaved with 
Chinese words. If we can distinguish these non-Chinese 
characters automatically and apply different strategies, the 
performance can be improved. 

The third problem in CWS, that of correctly identify-
ing longer named entities (NEs), also stems from the lim-
ited context window of ML-based CWS. Most ML-based 
CWS systems use a five-character context window to de-
termine the current character’s tag. However, these sys-
tems often handle long words poorly, such as dates, loca-
tions, and institute names. For example, "中国科技信息

所  (Institute of Science & Technical Information of 
China) 在 (under) 国家科委(National Nature Science of 
China) 支持 (support) " may be incorrectly segmented as 
"中国科技/信息/所在/国家科委 /支持".  

The recent SIGHAN CWS bakeoff contest [2] has fa-
cilitated system development and comparison. It provides 
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four datasets with significantly different segmentation 
guidelines and consistent train-test splits. The contest di-
vides its tasks as closed and open.  In closed tests, partici-
pants were only allowed to use information found in the 
training data. Absolutely no other data or information 
could be used beyond that in the training document. This 
included knowledge of character sets, punctuation charac-
ters, etc. These seemingly artificial restrictions were for-
mulated to study exactly how far one can get without 
supplemental information. In the open tests participants 
could use any external data in addition to the training 
corpus to train their system. We follow the rule of the 
closed task because we want construct a CWS system 
with minimal linguistic knowledge and compare with 
other state-of-the-art systems with the same goal. 
 
2. Chinese Word Segmentation System  
 
2.1. Conditional Random Fields 
 

CRFs are undirected graphical models trained to 
maximize a conditional probability [3]. A linear-chain 
CRF with parameters Λ={λ1, λ2, …} defines a conditional 
probability for a state sequence y = y1 …yT  given an in-
put sequence x = x1 …xT  to be 
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where Zx is the normalization that makes the probability 
of all state sequences sum to one; fk(yt-1, yt, x, t) is often a 
binary-valued feature function and λk is its weight. The 
feature functions can measure any aspect of a state transi-
tion, yt-1→yt, and the entire observation sequence, x, cen-
tered at the current time step, t. For example, one feature 
function might have value 1 when yt-1 is the state B, yt is 
the state I, and xt is the character "国". Large positive val-
ues for λk indicate a preference for such an event; large 
negative values make the event unlikely. 

The most probable label sequence for x, 
),|(argmax xy y Λ

∗ = P
y  

can be determined using the Viterbi algorithm [4]. 
 

2.2. N-gram Features 
 

Character n-gram features are commonly used and 
have proven their effectiveness in ML-based CWS. As 
mentioned above, the ability to weigh all n-grams in the 
window and assign tags according to corpus statistics is 
very important. In our CRF-based CWS, the n-gram fea-
tures are represented using first and second order state 
transition feature functions [9]. Specifically, we use four 
types of unigram feature functions, designated as C0 (cur-
rent character), C1 (next character), C-1 (previous charac-

ter), C-2 (the one two characters back). Furthermore, six 
types of bigram features are used, C-2C-1, C-1C0, C0C1,  
C-3C-1, C-2C0, C-1C1. Our approach is the first to use  
C-3C-1 and C-2C0 in a CWS system. Consider 埋头苦"干" 
(concentrate on "working") and 埋头苦"思" (concentrate 
on "thinking"). The two Chinese idioms shares the same 
prefix "埋头苦" (concentrate), therefore, if one of them is 
in the training set, and the other is in the test set, then the 
bigram feature, where "C-3='埋' and C-1= '苦'", will be an 
effective feature for tagging C0. 

 
2.3. Character Clustering 
 

In many cases, Chinese sentences may be interspersed 
with non-Chinese words. Since it is not allowed, we have 
no way of knowing exactly how many languages are in a 
given text in the closed task. Our solution is to apply a 
clustering algorithm to find homogeneous characters be-
longing to the same character clusters. The first difficulty 
is how to represent each character in the vector space. 
One general rule we can follow is that a language’s char-
acters will tend to appear together in tokens. In addition, 
character clusters exhibit certain distinct properties. The 
first property is that the order of some pairs of characters 
can be exchanged, either before or after the other. This is 
referred to as exchangeability. The second property is that 
some characters can appear in any position of a word, 
such as lowercase characters; while others cannot, such as 
uppercase characters. This is referred to as locational in-
dependence. According to the general rule, we can calcu-
late pairing frequency of characters in tokens by checking 
all tokens in the corpus. Assuming the alphabet is Σ, we 
first need to represent each character as a |Σ| dimensional 
vector. For each character ci, we use vj to represent its j-
dimension value, which is calculated as follows: 

r
jiijj ffv )],)[min(1( αα −+=              (2), 

where fij stands for the frequency with which ci and cj ap-
pear in the same word when ci’s position precedes that of 
cj. We take the minimum value of fij and fji because even 
when ci and cj have a high co-occurrence frequency, if ei-
ther fij or fji is low, then one order does not exist, and vj’s 
value will be low. We use two parameters to normalize vj 
to the range between 0 and 1. Parameter α enlarges the 
gap between non-zero and zero frequencies, and γ weak-
ens the influence of very high frequencies. 

Next, we apply the K-means algorithm to generate 
candidate sets that are composed of K clusters [5]. Differ-
ent K’s, α’s, and γ’s are used to generate possible charac-
ter cluster sets. Our K-means uses cosine distance. 

After obtaining the K clusters, we need to select the N1 
best character clusters from among them. First, we re-
move the one-character clusters. Then, assuming the an-
gle between the cluster centroid vector and (1, 1, ... , 1) is 
θ, the cluster that has the largest cosine θ will be re-
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moved. This is because characters whose co-occurrence 
frequencies are nearly all zero will be transformed into 
vectors very close to (α, α, ... ,α). Therefore, their cen-
troids will also be very close to (α,α, ... ,α), leading to un-
reasonable results. 

Then, for each character c in cluster M, we calculate 
the inverse relative distance (IRDist) of c using (3): 
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where mi and m are the centroids of Mi and M. 
Then, we calculate the average inverse distance for 

each M. The N1 best are selected from the original K. 
The above K-means clustering and character cluster 

selection is executed iteratively for each cluster set gener-
ated from K-means with different K’s, α’s, and γ’s. 

After selecting the N1 best clusters for each cluster set, 
we add them all to a pool and rank them according to 
their inner ratio, which is calculated as follows:  
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where co-occur(ci, cj) stands for the frequency with which 
character ci and cj co-occur in the same word. 

 
Algorithm 1 Balanced Cluster Selection 
Input: A set of character clusters P={M1 ,  . . .  , MK} 
          Number of selections N2, 
Output: A set of clusters Q={ '

1M  ,  . . .  , '
2NM }. 

1: C={} 
2: sort the clusters in P by their inner ratio; 
3: while |C|<=N2 do 
4:     pick the cluster M that has highest inner ratio; 
5:     for each character c in M do 
6:          if frequency of c in C∪M is over threshold τ 
7:                 P←P－M; 
8:                 continue; 
9 :        else 
10:               C←C∪M; 
11:               P←P－M; 
12:        end; 
13:   end; 
14: end 
 

To ensure that we select a balanced mix of clusters, 
for each character in the incoming cluster M, we use Al-
gorithm 1 to check if the frequency of each character in C
∪M is greater than a threshold τ. 

The above algorithms give us best N2 clusters in terms 
of exchangeability.  

Then we execute the above procedures again to select 
the N2 best clusters for both locational independence and 
exchangeability. The only difference now is that for each 
character ci, we use vj to stand for its j dimension value. 
We calculate vj as follows: 

r
jijiijijj ffffv )]',,',)[min(1(' αα −+=       (5) 

where ijf  stands for the frequency with which ci and cj 
appear in the same word when ci is the first character. f'ij 
stands for the frequency with which ci and cj co-occur in 
the same word when ci precedes cj  but not in the first po-
sition. We choose the minimum value from ijf , f'ij, jif , 
and f'ji since if ci and cj can both appear in the first posi-
tion of a word and their order is exchangeable, the four 
frequency values will all be large enough, including the 
minimum value. 

Our next goal is to create the best hybrid of the above 
two cluster sets. The set selected for exchangeability is 
referred to as set EX, and that selected for both exchange-
ability and locational independence as set EL. We create a 
development set and use the best first strategy to build the 
optimal cluster set from EX∪EL. The EX and EL for HK 
corpus are shown in Table 1. Section 2.4 details how we 
exploit character cluster information in CWS. 

 
Table 1  Clustering results of HK corpus 

 Cluster Inner (K, α, γ) 
,.0123456789 0.94 (10, 0.6, 0.16)EX

 -/ABCDEFGHIKLMNOPRSTUVWabcdefghi 
klmnoprstuvwxy 0.93 (10, 0.7, 0.16)

－／ABCDEFGHIKLMNOPRSTUVWabcde 
fghiklmnoprstvwxy 0.84 (10, 0.5, 0.25)EL
０１２３４５６７８９ 0.76 (10, 0.5, 0.26)
 

2.4. Handling Non-Chinese Words 
 
In Chinese texts interspersed with non-Chinese words 

and phrases, non-Chinese characters suffer from serious 
data sparseness problem since their frequencies are much 
lower than Chinese characters. As to the bigrams contain-
ing at least one non-Chinese character (referred as non-
Chinese bigrams), the problem becomes more serious. 
Take the phrase "約莫  20 歲" (about 20 years old) for 
example. The character "2" is usually predicted as I, (i.e., 
"約莫" is connected with "2") and result in a wrong seg-
mentation, because the frequency of "2" in the I class is 
much higher than that of "2" in the B class even though 
the feature C-2C-1="約莫" has high weight for assigning 
"2" to the B. 

Traditional CWS approaches use one general tagger 
(referred as G tagger). In our system, we use two. Similar 
to the traditional approach, we still have a general tagger. 
In addition to that, we design a specialized tagger to deal 
with non-Chinese words. The composite tagger (general 
plus specialized tagger) is referred as GS tagger. 

Section 2.3 has described the details of how to gener-
ate character clusters. Here, all characters in the selected 
clusters are referred as non-Chinese characters. In the de-
velopment stage, the best-first feature selector will deter-
mine which clusters are used. Then, we convert each sen-
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tence in the training and test data into normalized sen-
tence. Each non-Chinese character c is replaced by a clus-
ter representative symbol σM, where c is in cluster M. We 
refer the string composed of all σM as F. If |F| is greater 
than W, it will be shortened to length W. Then, the nor-
malized sentence is placed in one file, and the non-
Chinese character sequence is placed in another. Then, 
we use the normalized training and test file for the general 
tagger, and the non-Chinese sequence training and test 
file for the specialized tagger. Finally, the results of these 
two taggers are combined. 

The advantage is that the data sparseness of non-
Chinese bigrams is relieved. Consider the previous exam-
ple. σ stands for the numeral cluster. Since "約莫 8 年" is 
not in the training data, C-1C0= "莫 8" is still an unknown 
bigram using G tagger. But using GS tagger, "約莫 20 歲

" and "約莫 8 年" will be converted as "約莫 σσ歲" and 
"約莫 σ 年", respectively. Therefore, the bigram feature 
C-1C0="莫 σ" is no longer unknown. And since σ in "莫
σ" is tagged as B, (i.e., "莫" and "σ" are separated), "莫" 
and "σ" are separated in  "約莫 σσ歲". 

 
2.5. Generating Long-word Templates 
 
2.5.1. Global Alignment and Template Generation. 
Since long words have certain morphological similarities, 
we use global alignment to generate long-word templates.  
Take the two NEs "中国三峡总公司" and "中国核工业
总公司" for example. They have common affixes "中国" 
and "总公司." Therefore, we can apply global alignment 
to generate the template "中国＊总公司". 
 
2.5.2. Template Generation. We first extract all possible 
word candidates from the training set. Given a minimum 
word length L, we extract all words whose length is 
greater than or equal to L. Then we align all word pairs. 
For each pair, if more than 50% of the chars are identical, 
a template will be generated to match both of them. 
 
2.5.3. Template Filtering. We have two criteria to filter 
the extracted templates. First, we test each template t’s 
accuracy in the development set, which is as follows: 

strings matched all of #
separators no with strings matched of #)( =tA

. 
In our system, templates that have accuracy lower 

than the threshold τ1 are directly discarded. For the re-
maining templates, we apply two different strategies. 
Most templates with accuracy under τ2 are ineffective. To 
refine such templates we employ the character class in-
formation generated by character clustering to impose 
class limitation to certain template slots. This regulates 
potential input and improves precision. Consider a tem-
plate with one or more wildcard slots. If any string 

matched with these wildcard slots contain characters in 
different clusters, this template is also discarded. 
 
2.5.4. Template-Based Post-Processing (TBPP). The 
generated templates are then used to match our CWS out-
put and check if the matched tokens can be combined into 
complete words. If a template’s accuracy is greater than 
τ2, then all separators in the matched strings will be elimi-
nated. Otherwise, for a template t with accuracy between 
τ1 and τ2, we will eliminate all separators in its matched 
string if there is no substring matched with the t’s wild-
card slots contains characters in different clusters. Result-
ing words shorter than three characters are discarded be-
cause CRF performs well with such words. 

 
3. Experiment 
 
3.1. Dataset  
 

We use the three corpora in SIGHAN Bakeoff 2005: a 
Simplified Chinese corpus provided by Microsoft Re-
search Beijing and two Traditional Chinese corpora pro-
vided by Academia Sinica and the City University of 
Hong Kong. Details on are provided in Table 3. 

 
Table 3. Corpora information 

Training Size  Test Size Corpus 
Types Words Types Words

Academia Sinica (AS) 141 K 5.45 M 19 K 122 K
City University (HK) 69 K 1.46 M 9 K 41 K 

Microsoft Research (MSR) 88 K 2.37 M 13 K 107 K
 
3.2. Results of Baseline Tagger  
 

The n-grams used by [1] is used as our baseline n-
grams, as shown in Table 4. Detailed figures are shown in 
Table 5. ROOV stands for the recall rate of the out-of-
vocabulary words. RIV stands for the recall rate of the in-
vocabulary words, and NC stands for n-changes. 

 
Table 4. Baseline features 

Uni-gram Bigram  
C-2, C-1, C0, C1 C-2C-1, C-1C0, C0C1, C-1C1, C0C2 

 
Table 5. Detailed baseline performance 

Corpus R P F ROOV RIV NC 
AS 0.949 0.957 0.953 0.706 0.969 7750 
HK 0.948 0.944 0.946 0.726 0.963 2819 
MSR 0.964 0.960 0.962 0.687 0.968 5468 
 
3.3. Results of Best G Tagger  
 

The best n-gram features are listed in Table 6. 
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Table 6. Best n-gram features 
Uni-gram Bigram  

C-2, C-1, C0, C1 C-2C-1, C-1C0, C0C1, C-3C-1, C-2C0, C-1C1 
 

3.4. Results of GS Tagger  
 

Table 7. Performance on sentences with non-
Chinese words 

Conf R P F ROOV RIV NC NCR 

ASG 0.917 0.920 0.918 0.708 0.943 928 
ASGS 0.932 0.918 0.925 0.744 0.955 858 7.54% 

HKG 0.945 0.951 0.948 0.729 0.961 1040 
HKGS 0.948 0.952 0.950 0.744 0.966 1010 2.88% 

MSRG 0.949 0.956 0.952 0.757 0.959 1964 
MSRGS 0.951 0.959 0.955 0.792 0.960 1853 5.66% 

 
Table 8.  Performance on sentences without 

non-Chinese words 
Conf R P F ROOV RIV NC NCR 
ASG 0.961 0.952 0.957 0.725 0.971 6635 
ASGS 0.961 0.953 0.957 0.732 0.971 6558 1.16% 

HKG 0.942 0.946 0.944 0.728 0.959 1768 
HKGS 0.942 0.946 0.944 0.735 0.960 1784 -0.91% 

MSRG 0.965 0.971 0.968 0.682 0.971 3267 
MSRGS 0.965 0.971 0.968 0.675 0.970 3304 -1.13% 

 
Table 9.  Overall performance 

Conf R P F ROOV RIV NC NCR 
ASG 0.950 0.958 0.954 0.722 0.969 7563 
ASGS 0.951 0.959 0.955 0.732 0.970 7416 1.94% 

HKG 0.948 0.944 0.946 0.737 0.962 2809 
HKGS 0.948 0.944 0.946 0.739 0.963 2794 0.53% 

MSRG 0.967 0.960 0.963 0.721 0.967 5231 
MSRGS 0.967 0.961 0.964 0.737 0.968 5156 1.43% 

 
Table 7 and 8 compare GS and G tagger’s perform-

ance on sentences with and without non-Chinese charac-
ters respectively. "NCR" stands for the NC reduction rate 
of using GS tagger. Table 9 compares them on the whole 
corpora. We can see that the GS tagger not only improves 
non-Chinese-sentence and overall performance, but also 
improves performance on Chinese-only sentences in AS. 
Figure 1 shows the NC reduction attained by using the 
GS tagger. NC reduction in AS is more dramatic due to 
ability of the GS tagger to handle sparse distribution of 
non-Chinese characters. In AS’s training set, there are 
only 6.8% sentences containing non-Chinese words, 
which is much less than HK (38.8%) and MSR (28.9%) 
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Figure 1. Comparison of NC Reduction 

 
3.5. Results of TBPP  
 

Next, we evaluate the performance of TBPP on the 
GS tagger’s output, as shown in Table 11. 
 

Table 11. Detailed TBPP performance  
 R P F ROOV RIV NC 

AS 0.952 0.960 0.956 0.737 0.970 7270 
HK 0.949 0.945 0.947 0.740 0.963 2768 

MSR 0.969 0.962 0.965 0.751 0.968 4957 
 
Figure 2 illustrates that our system outperforms the 

best SIGHAN-05 closed system.  
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Figure. 2. Our system v.s. best SIGHAN-05  

 
4. Analysis and Discussion 
 
4.1. Baseline vs Best G Tagger  

 
In comparison to the baseline, C-2C0, C-3C-1, are 

added, while C0C2 is removed. All the OOV recall rates 
are significantly improved. These bigrams can be re-
garded as an approximation to trigram and tetragram fea-
tures. In Table 11, we list four frequent morphological 
rules of words whose length is longer than two. The sec-
ond rule is the most frequently used among these four. 
Take "老人家" for example. CRF-based tagger tends to 
label "家" as B, because in the training corpus, "老人" is 
often individually tagged as a word. However, the bigram 
feature "C-2='老' and C0= '家' " provides information for 
the CRF-based tagger that the current character C0  must 
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be tagged as the I tag. In addition, these bigrams outper-
forms those using trigrams or tetra grams directly. This is 
because the characters between the beginning character 
and the ending character sometimes can be replaced by 
other characters. Therefore, the unknown words or words 
in inconsistent construction may be tagged correctly.  

 
4.2. G Tagger vs. GS Tagger. 

 
Table 11. The ways composing a Chinese 

word of length greater than 2 
Morphological Rule Example 
append chars before an existing word 市“政府” (city “government”) 
append chars following an existing word “老人”家 (“elder” person) 
interleave a word with another  “裝”模“作”樣 (to attitudinize) 
three-character word “對不起”(sorry) 

 
Tagging non-Chinese strings separately can effec-

tively block the influence of adjacent Chinese characters. 
This is because in most cases, the adjacent Chinese char-
acters are independent of the tags of characters in the 
non-Chinese strings. Take the phrase "ＬＣＤ面板" for 
example. If we only use one tagger to process it, since "面
" usually appears as the second character in a word of 
length two, the CWS tagger tends to determine "Ｄ面板" 
as a word, even though the relationship of "Ｄ" and "面" 
is very weak. Using the two-tagger method can avoid this. 

Another advantage brought by is the effectiveness in 
resolving the data sparseness problem of bigrams that are 
composed of a non-Chinese character and a Chinese 
character. In most cases, pure Chinese bigrams have 
comparatively more samples, therefore, CWS performs 
better in pure Chinese sentences than in mixed sentences. 
However, since the frequencies of non-Chinese characters 
are lower than Chinese characters, the bigrams composed 
of a Chinese character and a non-Chinese character is 
usually unknown. Normalizing characters in the same 
character cluster to the same symbol can effectively re-
solve data sparseness of these bigrams. Take the non-
Chinese string "１１比９" (11:9) for example. In the 
training corpus, the bigram "C-1='１' and C0= '比' " is un-
seen in the training set. Although other instances in the 
same form such as "２比２" has appeared in the training 
corpus, the one tagger method cannot correctly segment 
this string. On the other hand, by normalizing these num-
bers to one unused symbol, the GS tagger can correctly 
segment it as "１１  比  ９. " 
 
4.2. The Effects of TBPP  
 

The main contribution of TBPP is that it can correct 
long NE errors. In addition to long NEs, TBPP is also ef-
fective for identifying longer words and their variations. 

For example, TBPP generates the template "﹡﹡．﹡％" 
from "５２．４％" and "７０．２％. " When applying 
this template to modify our CWS’s result, "九十六  ．  
九％" can be fixed to "九十六．九％".  
 
5. Conclusion 
 

First, we add two n-gram features to CRF-based CWS 
that can effectively identify unknown words (2.6%) while 
achieving performance comparable with the best CWS 
systems. Second, we apply the K-means algorithm to 
character clustering for our GS tagger. This significantly 
improves not only the handling of sentences containing 
non-Chinese words but also the overall performance. 
Third, we develop a post-processing method that com-
pensates for the weakness of ML-based CWS on long 
words and NEs. In AS, our performance is comparable to 
the best system (F=0.956) in the open task. 
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