Vector Algebra

General Inner Product Space

Let X be a vector space over a field F (here our vector space X denotes R" or C" and F denotes either
real field R or complex field C throughout this course).

Definition 1 A semi-inner product is a binary operation (-,-) : X x X — F such that for all o, € F
and X,y,z € X, the followings are satisfied:
1. (ax + By, z) = a(x,z) + B(y. 2)
2 (x.ay + 0a) =alxy) + Blx.2
3. (x,x) >
4. (x,y) = < , X)
An inner product on X is a semi-inner product that also satisfies
5. If (x,x) =0, then x = 0.

Theorem 1 (Cauchy-Schwarz Inequality) If (-,-) is a semi-inner product on X, then

(%, ¥)* < (6, x){y,y) for all x,y € X.

Moreover, the equality occurs iff 3 o, B € F, both not 0, such that (ax + By, ax + fy) = 0.

Corollary 1 If (-,-) is a semi-inner product on X and ||x|| = (x,x)2 for all x € X, then
Ix+yl < ||+ llyll for all x,y € X (Triangle Inequality),
llax|| = |o|||x|| for o € F and x € X.

If (-,-) is an inner product, then, ||x|| = 0 implies x = 0.

The quantity ||x|| & (x,x)2 for an inner product is called the norm of x, said it’s the norm induced by
the inner product.

By definitions of (-,-) and || - ||,

(x+y,x+y) = (x,x)+2Re((x,y)) + (y,¥),
ie. Ix+yl> = |Ix|*+2Re((x,y)) + y]*.

Abstract vector algebra on Hilbert spaces
Exercise 1 Look up metric space and complete metric space.

Remark 1 A Hilbert space is a vector space H over F together with an inner product (-,-) such that
def

relative to the metric d(x,y) = |[|[x —y|| induced by the norm, H is a complete metric space. (for the

continuity issue).

Definition 2 (Orthgonality) If H is a Hilbert space and x,y € H, then x and y are orthogonal
(perpendicular) to each other if (x,y) = 0, in symbol, x L y. If X,V C H, then X L Y provided that
x Ly foreveryx e X andy € ).



Theorem 2 (The Pythagorean Theorem) If x;,---,x, are orthogonal to one another in H, then

ey - x| = e |

Theorem 3 (Parallelogram Law) If 'H is a Hilbert space and x,y € H, then

2 2 2
e+ y 1"+ llx =yl =20l + [Iy[).

Theorem 4 If M C 'H is a closed linear subspace and h € H, let Ph € M be the unique point such
thath — Ph L M. Then

1. P is a linear transformation on 'H,

2. ||Ph| < ||h]| for every h € H,

3. P?=P,

4. ker P = M+ and ranP = M.
Such P is called the orthogonal projection of H onto subspace M.

Exercise 2 Prove the Cauchy-Schwarz inequality.
Exercise 3 Prove the triangle inequality.

Exercise 4 Prove the Parallelogram Law.

A Hilbert Space (R", (-, -))

We will focus on R”, specially R? from now on.

It can be shown that R™ together with the inner product defined this way

(x,y) & Sor iy forany x = (21, -+, 2,), Yy = (Y1, -+, Yp) In R?

is a Hilbert space.

e X7
The projection of vector x onto vector y is a vector denoted by proj,x = (x, L) Y . y)

E
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scalar unit vector

Note that usually (x,y) is not equal to the magnitude of the projection of one onto the other.

Let 6 be the angle between vectors x and y. By the law of cosine, cos = M

[ {1y 1l

Exercise 5 State the law of cosine and prove it.

Definition 3 Cross Product (in R?) is a binary operation between two vectors:

def

x xy = ||x|| [lyllsinfz € R®

where z is a unit vector in the direction of a right-hand screw as x rotating toward y through angle 6.
The alternative definition of cross product is

PGk
def
XXy =|2x1 T2 I3

Yy Y2 Y3



Exercise 6

1. Show that the two definitions of cross product are equivalent.

2. Let x,y,z € R, A\ € R. Show that cross product has the following properties:

(a) x Xy = —y X x (skew-symmetry)

(b) x X (y +z) = x X y +x X z (distributive law)
(c) Ax xy)=xx(Xy) = (Ax) xy

(d) xxx=

3. Prove the Lagrange’s identity: ||x x y||> = [|x||* |y|* — (x * y)%.

4. State the law of sines and prove it.

Notice that cross product does not have associativity, i.e. x X (y X z) # (X X y) X z !

Exercise 7 Namely, x + y X z means X « (y X z) and x X y « z means (X X y) » z.

1. Show that x « y X z = x X y « z. This sometimes is called scalar triple product.

2. Let [xyz] = x « y x z. Show that [xy z] = det(x,y,z) and [xyz| = [yzx] = [zxy] = —[xzy] =
[zy x| = [y xz]. Geometrically, x,y,z are co-planar iff [xy z] = 0.
xX(yxz)=(x+2)y —(x+y)z, and
3. Show that wvector triple products
(xxy)Xz=(x+2)y—(y+2)X.

4. Show that (ux v) x (x Xxy) = [uvy]x — [uvx]y = [xyu]v — [xyv]u. and implies that any
vector can be expressed as a linear combination of any non-co-planar vectors.

5. Show the extended Lagrange identity: (ux v) s« (x Xy)=(aex)(Vvey)— (Vex)(usy).
6. Show the Jacobi identity: x X (y xz) +y X (z X x)+z X (x Xy) =0.
7. Show that (x X y) « (y x z) X (z x x) = [xy z]*.

Definition 4 (Orthonormal Set) Let X = {x3,---,x;} C R". X is called orthonormal if x; + x; =
0ij forany 4,5 =1,--- k. If k = #X =n, then X is called an orthonormal basis of R™.

Definition 5 (Reciprocal Sets of Vectors) Let X = {xy,---,xx}, Y = {y1,---,yx} C R". X and

Y are said reciprocal to each other if x; « y; = 0;; for any 4,7 =1,---, k.

Exercise 8 Show that if X = {x;,x3,x3} and Y = {y,y2,y3} are reciprocal sets in R?, then
1. [x1x2x3] # 0 and [y; y2y3] # 0.
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