Vector Algebra

General Inner Product Space

Let \mathcal{X} be a vector space over a field \mathbb{F} (here our vector space \mathcal{X} denotes \mathbb{R}^{n} or \mathbb{C}^{n} and \mathbb{F} denotes either real field \mathbb{R} or complex field \mathbb{C} throughout this course).

Definition $1 A$ semi-inner product is a binary operation $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{F}$ such that for all $\alpha, \beta \in \mathbb{F}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, the followings are satisfied:

1. $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{z}\rangle+\beta\langle\mathbf{y}, \mathbf{z}\rangle$
2. $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\bar{\alpha}\langle\mathbf{x}, \mathbf{y}\rangle+\bar{\beta}\langle\mathbf{x}, \mathbf{z}\rangle$
3. $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
4. $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$

An inner product on \mathcal{X} is a semi-inner product that also satisfies
5. If $\langle\mathbf{x}, \mathbf{x}\rangle=0$, then $\mathbf{x}=\mathbf{0}$.

Theorem 1 (Cauchy-Schwarz Inequality) If $\langle\cdot, \cdot\rangle$ is a semi-inner product on \mathcal{X}, then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle|^{2} \leq\langle\mathbf{x}, \mathbf{x}\rangle\langle\mathbf{y}, \mathbf{y}\rangle \text { for all } \mathbf{x}, \mathbf{y} \in \mathcal{X}
$$

Moreover, the equality occurs iff $\exists \alpha, \beta \in \mathbb{F}$, both not 0 , such that $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \alpha \mathbf{x}+\beta \mathbf{y}\rangle=0$.

Corollary 1 If $\langle\cdot, \cdot\rangle$ is a semi-inner product on \mathcal{X} and $\|\mathbf{x}\| \stackrel{\text { def }}{=}\langle\mathbf{x}, \mathbf{x}\rangle^{\frac{1}{2}}$ for all $\mathbf{x} \in \mathcal{X}$, then $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ (Triangle Inequality), $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for $\alpha \in \mathbb{F}$ and $\mathbf{x} \in \mathcal{X}$.
If $\langle\cdot, \cdot\rangle$ is an inner product, then, $\|\mathbf{x}\|=0$ implies $\mathbf{x}=\mathbf{0}$.

The quantity $\|\mathbf{x}\| \stackrel{\text { def }}{=}\langle\mathbf{x}, \mathbf{x}\rangle^{\frac{1}{2}}$ for an inner product is called the norm of \mathbf{x}, said it's the norm induced by the inner product.
By definitions of $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$,

$$
\begin{aligned}
\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle & =\langle\mathbf{x}, \mathbf{x}\rangle+2 \operatorname{Re}(\langle\mathbf{x}, \mathbf{y}\rangle)+\langle\mathbf{y}, \mathbf{y}\rangle, \\
\text { i.e. } \quad\|\mathbf{x}+\mathbf{y}\|^{2} & =\|\mathbf{x}\|^{2}+2 \operatorname{Re}(\langle\mathbf{x}, \mathbf{y}\rangle)+\|\mathbf{y}\|^{2} .
\end{aligned}
$$

Abstract vector algebra on Hilbert spaces

Exercise 1 Look up metric space and complete metric space.

Remark 1 A Hilbert space is a vector space \mathcal{H} over \mathbb{F} together with an inner product $\langle\cdot, \cdot\rangle$ such that relative to the metric $d(\mathbf{x}, \mathbf{y}) \stackrel{\text { def }}{=}\|\mathbf{x}-\mathbf{y}\|$ induced by the norm, \mathcal{H} is a complete metric space. (for the continuity issue).

Definition 2 (Orthgonality) If \mathcal{H} is a Hilbert space and $\mathbf{x}, \mathbf{y} \in \mathcal{H}$, then \mathbf{x} and \mathbf{y} are orthogonal (perpendicular) to each other if $\langle\mathbf{x}, \mathbf{y}\rangle=0$, in symbol, $\mathbf{x} \perp \mathbf{y}$. If $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{H}$, then $\mathcal{X} \perp \mathcal{Y}$ provided that $\mathbf{x} \perp \mathbf{y}$ for every $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$.

Theorem 2 (The Pythagorean Theorem) If $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ are orthogonal to one another in \mathcal{H}, then

$$
\left\|\mathrm{x}_{1}+\cdots+\mathrm{x}_{n}\right\|^{2}=\left\|\mathrm{x}_{1}\right\|^{2}+\cdots+\left\|\mathrm{x}_{n}\right\|^{2}
$$

Theorem 3 (Parallelogram Law) If \mathcal{H} is a Hilbert space and $\mathbf{x}, \mathbf{y} \in \mathcal{H}$, then

$$
\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=2\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right) .
$$

Theorem 4 If $\mathcal{M} \subseteq \mathcal{H}$ is a closed linear subspace and $\mathbf{h} \in \mathcal{H}$, let $P \mathbf{h} \in \mathcal{M}$ be the unique point such that $\mathbf{h}-P \mathbf{h} \perp \mathcal{M}$. Then

1. P is a linear transformation on \mathcal{H},
2. $\|P \mathbf{h}\| \leq\|\mathbf{h}\|$ for every $\mathbf{h} \in \mathcal{H}$,
3. $P^{2}=P$,
4. $\operatorname{ker} P=\mathcal{M}^{\perp}$ and $\operatorname{ran} P=\mathcal{M}$.

Such P is called the orthogonal projection of \mathcal{H} onto subspace \mathcal{M}.
Exercise 2 Prove the Cauchy-Schwarz inequality.
Exercise 3 Prove the triangle inequality.
Exercise 4 Prove the Parallelogram Law.

A Hilbert Space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$

We will focus on \mathbb{R}^{n}, specially \mathbb{R}^{3} from now on.
It can be shown that \mathbb{R}^{n} together with the inner product defined this way

$$
\langle\mathbf{x}, \mathbf{y}\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{n} x_{i} y_{i} \text { for any } \mathbf{x}=\left(x_{1}, \cdots, x_{n}\right), \mathbf{y}=\left(y_{1}, \cdots, y_{n}\right) \text { in } \mathbb{R}^{n}
$$

is a Hilbert space.
The projection of vector \mathbf{x} onto vector \mathbf{y} is a vector denoted by $\operatorname{proj}_{\mathbf{y}} \mathbf{x} \stackrel{\text { def }}{\langle } \underbrace{\left\langle\mathbf{x}, \frac{\mathbf{y}}{\|\mathbf{y}\|}\right.}_{\text {scalar }}\rangle \underbrace{\frac{\mathbf{y}}{\|\mathbf{y}\|}}_{\text {unit vector }}=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{y}\|^{2}}$.
Note that usually $\langle\mathbf{x}, \mathbf{y}\rangle$ is not equal to the magnitude of the projection of one onto the other.
Let θ be the angle between vectors \mathbf{x} and \mathbf{y}. By the law of $\operatorname{cosine,~} \cos \theta=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}$.
Exercise 5 State the law of cosine and prove it.
Definition 3 Cross Product (in \mathbb{R}^{3}) is a binary operation between two vectors:

$$
\mathbf{x} \times \mathbf{y} \stackrel{\text { def }}{=}\|\mathbf{x}\|\|\mathbf{y}\| \sin \theta \mathbf{z} \in \mathbb{R}^{3}
$$

where \mathbf{z} is a unit vector in the direction of a right-hand screw as \mathbf{x} rotating toward \mathbf{y} through angle θ. The alternative definition of cross product is

$$
\mathbf{x} \times \mathbf{y} \xlongequal{\text { def }}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|
$$

Exercise 6

1. Show that the two definitions of cross product are equivalent.
2. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{3}, \lambda \in \mathbb{R}$. Show that cross product has the following properties:
(a) $\mathbf{x} \times \mathbf{y}=-\mathbf{y} \times \mathbf{x}$ (skew-symmetry)
(b) $\mathbf{x} \times(\mathbf{y}+\mathbf{z})=\mathbf{x} \times \mathbf{y}+\mathbf{x} \times \mathbf{z}$ (distributive law)
(c) $\lambda(\mathbf{x} \times \mathbf{y})=\mathbf{x} \times(\lambda \mathbf{y})=(\lambda \mathbf{x}) \times \mathbf{y}$
(d) $\mathbf{x} \times \mathrm{x}=0$
3. Prove the Lagrange's identity: $\|\mathbf{x} \times \mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2}-(\mathbf{x} \cdot \mathbf{y})^{2}$.
4. State the law of sines and prove it.

Notice that cross product does not have associativity, i.e. $\mathbf{x} \times(\mathbf{y} \times \mathbf{z}) \neq(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}$!

Exercise 7 Namely, $\mathbf{x} \cdot \mathbf{y} \times \mathbf{z}$ means $\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})$ and $\mathbf{x} \times \mathbf{y} \cdot \mathbf{z}$ means $(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}$.

1. Show that $\mathbf{x} \cdot \mathbf{y} \times \mathbf{z}=\mathbf{x} \times \mathbf{y} \cdot \mathbf{z}$. This sometimes is called scalar triple product.
2. Let $[\mathbf{x y z}] \stackrel{\text { def }}{=} \mathbf{x} \cdot \mathbf{y} \times \mathbf{z}$. Show that $[\mathbf{x y z}]=\operatorname{det}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $[\mathbf{x y z}]=[\mathbf{y} \mathbf{z x}]=[\mathbf{z x y}]=-[\mathbf{x} \mathbf{z} \mathbf{y}]=$ $[\mathbf{z y x}]=[\mathbf{y x z}]$. Geometrically, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are co-planar iff $[\mathbf{x y z}]=0$.
3. Show that vector triple products

$$
\begin{aligned}
& \mathrm{x} \times(\mathbf{y} \times \mathrm{z})=(\mathrm{x} \cdot \mathrm{z}) \mathbf{y}-(\mathrm{x} \cdot \mathbf{y}) \mathbf{z}, \text { and } \\
& (\mathrm{x} \times \mathrm{y}) \times \mathrm{z}=(\mathrm{x} \cdot \mathrm{z}) \mathbf{y}-(\mathrm{y} \cdot \mathrm{z}) \mathbf{x} .
\end{aligned}
$$

4. Show that $(\mathbf{u} \times \mathbf{v}) \times(\mathbf{x} \times \mathbf{y})=[\mathbf{u} \mathbf{v} \mathbf{y}] \mathbf{x}-[\mathbf{u} \mathbf{v} \mathbf{x}] \mathbf{y}=[\mathbf{x y u}] \mathbf{v}-[\mathbf{x y v}] \mathbf{u}$. and implies that any vector can be expressed as a linear combination of any non-co-planar vectors.
5. Show the extended Lagrange identity: $(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{x} \times \mathbf{y})=(\mathbf{u} \cdot \mathbf{x})(\mathbf{v} \cdot \mathbf{y})-(\mathbf{v} \cdot \mathbf{x})(\mathbf{u} \cdot \mathbf{y})$.
6. Show the Jacobi identity: $\mathbf{x} \times(\mathbf{y} \times \mathbf{z})+\mathbf{y} \times(\mathbf{z} \times \mathbf{x})+\mathbf{z} \times(\mathbf{x} \times \mathbf{y})=\mathbf{0}$.
7. Show that $(\mathbf{x} \times \mathbf{y}) \cdot(\mathbf{y} \times \mathbf{z}) \times(\mathbf{z} \times \mathbf{x})=[\mathbf{x} \mathbf{y} \mathbf{z}]^{2}$.

Definition 4 (Orthonormal Set) Let $X=\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{k}\right\} \subset \mathbb{R}^{n} . X$ is called orthonormal if $\mathbf{x}_{i} \cdot \mathbf{x}_{j}=$ $\delta_{i j}$ for any $i, j=1, \cdots, k$. If $k=\# X=n$, then X is called an orthonormal basis of \mathbb{R}^{n}.

Definition 5 (Reciprocal Sets of Vectors) Let $X=\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{k}\right\}, Y=\left\{\mathbf{y}_{1}, \cdots, \mathbf{y}_{k}\right\} \subset \mathbb{R}^{n} . X$ and Y are said reciprocal to each other if $\mathbf{x}_{i} \cdot \mathbf{y}_{j}=\delta_{i j}$ for any $i, j=1, \cdots, k$.

Exercise 8 Show that if $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ and $Y=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\}$ are reciprocal sets in \mathbb{R}^{3}, then

1. $\left[\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3}\right] \neq 0$ and $\left[\mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{3}\right] \neq 0$.
2. $\mathbf{x}_{1}=\frac{\mathbf{y}_{2} \times \mathbf{y}_{3}}{\left[\mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{3}\right]}, \quad \mathbf{x}_{2}=\frac{\mathbf{y}_{3} \times \mathbf{y}_{1}}{\left[\mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{3}\right]}, \quad \mathbf{x}_{3}=\frac{\mathbf{y}_{1} \times \mathbf{y}_{2}}{\left[\mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{3}\right]}$, and

$$
\mathbf{y}_{1}=\frac{\mathbf{x}_{2} \times \mathbf{x}_{3}}{\left[\mathrm{x}_{1} \mathrm{x}_{2} \mathbf{x}_{3}\right]}, \quad \mathbf{y}_{2}=\frac{\mathbf{x}_{3} \times \mathbf{x}_{1}}{\left[\mathrm{x}_{1} \mathbf{x}_{2} \mathrm{x}_{3}\right]}, \quad \mathbf{y}_{3}=\frac{\mathbf{x}_{1} \times \mathrm{x}_{2}}{\left[\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}\right]} .
$$

