Vector Algebra

General Inner Product Space

Let \mathcal{X} be a vector space over a field \mathbb{F} (here our vector space \mathcal{X} denotes \mathbb{R}^n or \mathbb{C}^n and \mathbb{F} denotes either real field \mathbb{R} or complex field \mathbb{C} throughout this course).

Definition 1 A semi-inner product is a binary operation $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{F}$ such that for all $\alpha, \beta \in \mathbb{F}$ and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, the followings are satisfied:

1. $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ 2. $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\beta} \langle \mathbf{x}, \mathbf{z} \rangle$ 3. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ 4. $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$

An inner product on \mathcal{X} is a semi-inner product that also satisfies 5. If $\langle \mathbf{x}, \mathbf{x} \rangle = 0$, then $\mathbf{x} = \mathbf{0}$.

Theorem 1 (Cauchy-Schwarz Inequality) If $\langle \cdot, \cdot \rangle$ is a semi-inner product on \mathcal{X} , then

 $|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.

Moreover, the equality occurs iff $\exists \alpha, \beta \in \mathbb{F}$, both not 0, such that $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \alpha \mathbf{x} + \beta \mathbf{y} \rangle = 0$.

Corollary 1 If $\langle \cdot, \cdot \rangle$ is a semi-inner product on \mathcal{X} and $\|\mathbf{x}\| \stackrel{\text{def}}{=} \langle \mathbf{x}, \mathbf{x} \rangle^{\frac{1}{2}}$ for all $\mathbf{x} \in \mathcal{X}$, then $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ (**Triangle Inequality**), $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for $\alpha \in \mathbb{F}$ and $\mathbf{x} \in \mathcal{X}$. If $\langle \cdot, \cdot \rangle$ is an inner product, then, $\|\mathbf{x}\| = 0$ implies $\mathbf{x} = \mathbf{0}$.

The quantity $\|\mathbf{x}\| \stackrel{\text{def}}{=} \langle \mathbf{x}, \mathbf{x} \rangle^{\frac{1}{2}}$ for an inner product is called the *norm* of \mathbf{x} , said it's the norm induced by the inner product.

By definitions of $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$,

$$\begin{aligned} \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle &= \langle \mathbf{x}, \mathbf{x} \rangle + 2 \operatorname{Re}(\langle \mathbf{x}, \mathbf{y} \rangle) + \langle \mathbf{y}, \mathbf{y} \rangle, \\ \text{i.e.} & \|\mathbf{x} + \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + 2 \operatorname{Re}(\langle \mathbf{x}, \mathbf{y} \rangle) + \|\mathbf{y}\|^2. \end{aligned}$$

Abstract vector algebra on Hilbert spaces

Exercise 1 Look up *metric space* and *complete* metric space.

Remark 1 A Hilbert space is a vector space \mathcal{H} over \mathbb{F} together with an inner product $\langle \cdot, \cdot \rangle$ such that relative to the metric $d(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} ||\mathbf{x} - \mathbf{y}||$ induced by the norm, \mathcal{H} is a complete metric space. (for the continuity issue).

Definition 2 (Orthgonality) If \mathcal{H} is a Hilbert space and $\mathbf{x}, \mathbf{y} \in \mathcal{H}$, then \mathbf{x} and \mathbf{y} are *orthogonal* (*perpendicular*) to each other if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, in symbol, $\mathbf{x} \perp \mathbf{y}$. If $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{H}$, then $\mathcal{X} \perp \mathcal{Y}$ provided that $\mathbf{x} \perp \mathbf{y}$ for every $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$.

Theorem 2 (The Pythagorean Theorem) If $\mathbf{x}_1, \dots, \mathbf{x}_n$ are orthogonal to one another in \mathcal{H} , then

$$\|\mathbf{x}_1 + \dots + \mathbf{x}_n\|^2 = \|\mathbf{x}_1\|^2 + \dots + \|\mathbf{x}_n\|^2$$

Theorem 3 (Parallelogram Law) If \mathcal{H} is a Hilbert space and $\mathbf{x}, \mathbf{y} \in \mathcal{H}$, then

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

Theorem 4 If $\mathcal{M} \subseteq \mathcal{H}$ is a closed linear subspace and $\mathbf{h} \in \mathcal{H}$, let $P\mathbf{h} \in \mathcal{M}$ be the unique point such that $\mathbf{h} - P\mathbf{h} \perp \mathcal{M}$. Then

- 1. P is a linear transformation on \mathcal{H} ,
- 2. $||P\mathbf{h}|| \leq ||\mathbf{h}||$ for every $\mathbf{h} \in \mathcal{H}$,

3. $P^2 = P$,

4. ker $P = \mathcal{M}^{\perp}$ and ran $P = \mathcal{M}$.

Such P is called the orthogonal projection of \mathcal{H} onto subspace \mathcal{M} .

Exercise 2 Prove the Cauchy-Schwarz inequality.

Exercise 3 Prove the triangle inequality.

Exercise 4 Prove the *Parallelogram Law*.

A Hilbert Space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$

We will focus on \mathbb{R}^n , specially \mathbb{R}^3 from now on.

It can be shown that \mathbb{R}^n together with the inner product defined this way

$$\langle \mathbf{x}, \mathbf{y} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i y_i \text{ for any } \mathbf{x} = (x_1, \cdots, x_n), \ \mathbf{y} = (y_1, \cdots, y_n) \text{ in } \mathbb{R}^n$$

is a Hilbert space.

The projection of vector \mathbf{x} onto vector \mathbf{y} is a vector denoted by $\operatorname{proj}_{\mathbf{y}} \mathbf{x} \stackrel{\text{def}}{=} \underbrace{\langle \mathbf{x}, \frac{\mathbf{y}}{\|\mathbf{y}\|} \rangle}_{\text{scalar}} \underbrace{\frac{\mathbf{y}}{\|\mathbf{y}\|}}_{\text{unit vector}} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2}.$

Note that usually $\langle \mathbf{x}, \mathbf{y} \rangle$ is not equal to the magnitude of the projection of one onto the other.

Let θ be the angle between vectors \mathbf{x} and \mathbf{y} . By the law of cosine, $\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$.

Exercise 5 State the *law of cosine* and prove it.

Definition 3 Cross Product (in \mathbb{R}^3) is a binary operation between two vectors:

$$\mathbf{x} \times \mathbf{y} \stackrel{\text{def}}{=} \|\mathbf{x}\| \|\mathbf{y}\| \sin \theta \, \mathbf{z} \in \mathbb{R}^3$$

where \mathbf{z} is a unit vector in the direction of a right-hand screw as \mathbf{x} rotating toward \mathbf{y} through angle θ . The alternative definition of cross product is

$$\mathbf{x} \times \mathbf{y} \stackrel{\text{def}}{=} \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right|$$

Exercise 6

- 1. Show that the two definitions of cross product are equivalent.
- 2. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$, $\lambda \in \mathbb{R}$. Show that cross product has the following properties:
 - (a) x × y = -y × x (skew-symmetry)
 (b) x × (y + z) = x × y + x × z (distributive law)
 - (c) $\lambda(\mathbf{x} \times \mathbf{y}) = \mathbf{x} \times (\lambda \mathbf{y}) = (\lambda \mathbf{x}) \times \mathbf{y}$
 - (d) $\mathbf{x} \times \mathbf{x} = 0$
- 3. Prove the Lagrange's identity: $\|\mathbf{x} \times \mathbf{y}\|^2 = \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 (\mathbf{x} \cdot \mathbf{y})^2$.
- 4. State the law of sines and prove it.

Notice that cross product does not have associativity, i.e. $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) \neq (\mathbf{x} \times \mathbf{y}) \times \mathbf{z}$!

Exercise 7 Namely, $\mathbf{x} \cdot \mathbf{y} \times \mathbf{z}$ means $\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})$ and $\mathbf{x} \times \mathbf{y} \cdot \mathbf{z}$ means $(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}$.

- 1. Show that $\mathbf{x} \cdot \mathbf{y} \times \mathbf{z} = \mathbf{x} \times \mathbf{y} \cdot \mathbf{z}$. This sometimes is called *scalar triple product*.
- 2. Let $[\mathbf{x} \mathbf{y} \mathbf{z}] \stackrel{\text{def}}{=} \mathbf{x} \cdot \mathbf{y} \times \mathbf{z}$. Show that $[\mathbf{x} \mathbf{y} \mathbf{z}] = \det(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $[\mathbf{x} \mathbf{y} \mathbf{z}] = [\mathbf{y} \mathbf{z} \mathbf{x}] = [\mathbf{z} \mathbf{x} \mathbf{y}] = -[\mathbf{x} \mathbf{z} \mathbf{y}] = [\mathbf{z} \mathbf{y} \mathbf{x}] = [\mathbf{y} \mathbf{x} \mathbf{z}]$. Geometrically, $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are co-planar iff $[\mathbf{x} \mathbf{y} \mathbf{z}] = 0$.
- 3. Show that vector triple products $\begin{aligned} \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) &= (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} (\mathbf{x} \cdot \mathbf{y}) \mathbf{z}, \text{ and} \\ (\mathbf{x} \times \mathbf{y}) \times \mathbf{z} &= (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} (\mathbf{y} \cdot \mathbf{z}) \mathbf{x}. \end{aligned}$
- 4. Show that $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{x} \times \mathbf{y}) = [\mathbf{u} \mathbf{v} \mathbf{y}] \mathbf{x} [\mathbf{u} \mathbf{v} \mathbf{x}] \mathbf{y} = [\mathbf{x} \mathbf{y} \mathbf{u}] \mathbf{v} [\mathbf{x} \mathbf{y} \mathbf{v}] \mathbf{u}$. and implies that any vector can be expressed as a linear combination of any non-co-planar vectors.
- 5. Show the extended Lagrange identity: $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{x} \times \mathbf{y}) = (\mathbf{u} \cdot \mathbf{x})(\mathbf{v} \cdot \mathbf{y}) (\mathbf{v} \cdot \mathbf{x})(\mathbf{u} \cdot \mathbf{y}).$
- 6. Show the Jacobi identity: $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) + \mathbf{y} \times (\mathbf{z} \times \mathbf{x}) + \mathbf{z} \times (\mathbf{x} \times \mathbf{y}) = \mathbf{0}$.
- 7. Show that $(\mathbf{x} \times \mathbf{y}) \cdot (\mathbf{y} \times \mathbf{z}) \times (\mathbf{z} \times \mathbf{x}) = [\mathbf{x} \mathbf{y} \mathbf{z}]^2$.

Definition 4 (Orthonormal Set) Let $X = {\mathbf{x}_1, \dots, \mathbf{x}_k} \subset \mathbb{R}^n$. X is called *orthonormal* if $\mathbf{x}_i \cdot \mathbf{x}_j = \delta_{ij}$ for any $i, j = 1, \dots, k$. If k = #X = n, then X is called an *orthonormal basis* of \mathbb{R}^n .

Definition 5 (Reciprocal Sets of Vectors) Let $X = {\mathbf{x}_1, \dots, \mathbf{x}_k}, Y = {\mathbf{y}_1, \dots, \mathbf{y}_k} \subset \mathbb{R}^n$. X and Y are said *reciprocal* to each other if $\mathbf{x}_i \cdot \mathbf{y}_j = \delta_{ij}$ for any $i, j = 1, \dots, k$.

Exercise 8 Show that if $X = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3}$ and $Y = {\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3}$ are reciprocal sets in \mathbb{R}^3 , then 1. $[\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3] \neq 0$ and $[\mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3] \neq 0$.

2.
$$\mathbf{x}_1 = \frac{\mathbf{y}_2 \times \mathbf{y}_3}{[\mathbf{y}_1 \, \mathbf{y}_2 \, \mathbf{y}_3]}, \quad \mathbf{x}_2 = \frac{\mathbf{y}_3 \times \mathbf{y}_1}{[\mathbf{y}_1 \, \mathbf{y}_2 \, \mathbf{y}_3]}, \quad \mathbf{x}_3 = \frac{\mathbf{y}_1 \times \mathbf{y}_2}{[\mathbf{y}_1 \, \mathbf{y}_2 \, \mathbf{y}_3]}, \text{ and}$$

 $\mathbf{y}_1 = \frac{\mathbf{x}_2 \times \mathbf{x}_3}{[\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3]}, \quad \mathbf{y}_2 = \frac{\mathbf{x}_3 \times \mathbf{x}_1}{[\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3]}, \quad \mathbf{y}_3 = \frac{\mathbf{x}_1 \times \mathbf{x}_2}{[\mathbf{x}_1 \, \mathbf{x}_2 \, \mathbf{x}_3]}.$