Gradient, Divergence, and Curl

Definitions

Let $\mathbf{x} = (x_1, x_2, x_3)$, scalar $f(\mathbf{x}) = f(x_1, x_2, x_3)$, vector $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), f_3(\mathbf{x}))$, regarded as *flux* (velocity of fluid), operator $\nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})$.

Definition	Value	Physical meaning
grad $f = \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$	vector	the direction in which f changes most rapidly
div $\mathbf{f} = \nabla \cdot \mathbf{f} = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}$	scalar	density of flux, i.e. the fluid velocity per unit volume
$\boxed{\operatorname{curl} \mathbf{f} = \nabla \times \mathbf{f} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ f_1 & f_2 & f_3 \end{vmatrix}}$	vector	spining flux (wheelpool) affecting on the virtural surface

These three are all *linear operators*.

Further explanations (intuitive approaches)

By total differentiation, $df = \frac{\partial f}{\partial x_3} dx_1 + \frac{\partial f}{\partial x_3} dx_3 + \frac{\partial f}{\partial x_3} dx_3 = \text{grad } f \cdot (dx_1, dx_2, dx_3),$ Gradient: in order to maximize |df|, $d\mathbf{x} = (dx_1, dx_2, dx_3)$ has to be parallel to grad f. **Divergence**: Consider a tiny rectangular box \mathbf{S} centered at point \mathbf{x} with dimension $(\Delta x_1, \Delta x_2, \Delta x_3)$. Then the flux **f** thru facet \mathbf{S}_1 of outer normal (1,0,0) is approximately equal to $\mathbf{f} \cdot \mathbf{S_1} \approx (f_1 + \frac{\partial f_1}{\partial x_1} \frac{\Delta x_1}{2}) \Delta x_2 \Delta x_3,$ the flux **f** thru facet S_2 of outer normal (-1, 0, 0) is approximately equal to $\mathbf{f} \cdot \mathbf{S_2} \approx -(f_1 + \frac{\partial f_1}{\partial x_1} - \frac{\Delta x_1}{2}) \Delta x_2 \Delta x_3,$ the flux **f** thru facet \mathbf{S}_3 of outer normal (0, 1, 0) is approximately equal to $\mathbf{f} \cdot \mathbf{S}_{\mathbf{3}} \approx (f_2 + \frac{\partial f_2}{\partial x_2} \frac{\Delta x_2}{2}) \Delta x_3 \Delta x_1,$ the flux **f** thru facet \mathbf{S}_4 of outer normal (0, -1, 0) is approximately equal to $\mathbf{f} \cdot \mathbf{S_4} \approx -(f_2 + \frac{\partial f_2}{\partial x_2} - \frac{\Delta x_2}{2})\Delta x_3 \Delta x_1,$ the flux **f** thru facet \mathbf{S}_5 of outer normal (0, 0, 1) is approximately equal to $\mathbf{f} \cdot \mathbf{S_5} \approx (f_3 + \frac{\partial f_3}{\partial x_3} \frac{\Delta x_3}{2}) \Delta x_1 \Delta x_2,$ the flux **f** thru facet \mathbf{S}_6 of outer normal (0, 0, -1) is approximately equal to $\mathbf{f} \cdot \mathbf{S_6} \approx -(f_3 + \frac{\partial f_3}{\partial x_3} - \Delta x_3) \Delta x_1 \Delta x_2.$ Sum them up, and the total flux thru **S** is roughly $\left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}\right) \Delta x_1 \Delta x_2 \Delta x_3$, i.e. $\left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}\right)$ times the volume of **S**. \implies div $\mathbf{f} \stackrel{\text{def}}{=} \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}$ is the flux in a unit volume.

Consider a rectangular facet S_1 parallel to x_2 - x_3 plane centered at point **x** with dimension ($\Delta x_2, \Delta x_3$) Curl: and its boundary $C_1 = \partial \mathbf{S}$ consists of 4 edges $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4$ in the counterclockwise direction, i.e. (0,1,0),(0,0,1),(0,-1,0),(0,0,-1) respectively. Then

the flux \mathbf{f} along \mathbf{r}_1 :

$$\mathbf{f} \cdot d\mathbf{r}_1 \approx (f_2 + \frac{\partial f_2}{\partial x_3} - \Delta x_3}{2}) \Delta x_2,$$

the flux \mathbf{f} along \mathbf{r}_2 :

$$\mathbf{f} \cdot d\mathbf{r}_2 \approx (f_3 + \frac{\partial f_3}{\partial x_2} \frac{\Delta x_2}{2}) \Delta x_2,$$

the flux \mathbf{f} along \mathbf{r}_3 :

$$\mathbf{f} \cdot d\mathbf{r}_3 \approx -(f_2 + \frac{\partial f_2}{\partial x_3} - \frac{\Delta x_3}{2})\Delta x_2,$$

the flux \mathbf{f} along \mathbf{r}_4 :

$$\mathbf{f} \cdot d\mathbf{r}_4 \approx -(f_3 + \frac{\partial f_3}{\partial x_2} - \frac{\Delta x_2}{2})\Delta x_2.$$

Sum them up, and the flux \mathbf{f} along C_1 is roughly

$$\left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) \Delta x_2 \Delta x_3.$$

Similarly,

if $C_2 = \partial \mathbf{S_2}$ is parallel to x_3 - x_1 plane then flux **f** along C_2 is roughly $if C_3 = \partial \mathbf{S_3} \quad \begin{array}{c} \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \\ is \text{ parallel to } x_1 - x_2 \text{ plane then flux } \mathbf{f} \text{ along } C_3 \text{ is roughly} \\ \frac{\left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) \Delta x_1 \Delta x_2}{\hat{f}_1 - \frac{\partial f_1}{\partial x_2} \Delta x_1 \Delta x_2},\\ \end{array}$ These highlighted three are components of $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \end{vmatrix}$

$$\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \Delta x_1 \Delta x_2$$

ſſ

$$\operatorname{curl} \mathbf{f} \stackrel{\text{def}}{=} \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ f_1 & f_2 & f_3 \end{vmatrix} = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right)\hat{i} + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right)\hat{j} + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right)\hat{k}$$

and the underlined three are the influences of f on S_1, S_2, S_3 :

$$\begin{aligned} &(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3})\Delta x_2\Delta x_3 = \operatorname{curl} \mathbf{f} \cdot (\Delta x_2\Delta x_3 \hat{i}) = \operatorname{curl} \mathbf{f} \cdot \mathbf{S_1}, \\ &(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1})\Delta x_3\Delta x_1 = \operatorname{curl} \mathbf{f} \cdot (\Delta x_3\Delta x_1 \hat{j}) = \operatorname{curl} \mathbf{f} \cdot \mathbf{S_2}, \\ &(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2})\Delta x_1\Delta x_2 = \operatorname{curl} \mathbf{f} \cdot (\Delta x_1\Delta x_2 \hat{k}) = \operatorname{curl} \mathbf{f} \cdot \mathbf{S_3}. \end{aligned}$$

ſſſ

From the deriviations of divergence and curl, we can directly come up with the conclusions:

Divergence Theorem V is the region enclosed by closed surface S. Then