
Gradient, Divergence, and Curl

Definitions

Let x = (x1, x2, x3),
scalar f(x) = f(x1, x2, x3),
vector f(x) = (f1(x), f2(x), f3(x)), regarded as flux (velocity of fluid),
operator ∇ = ( ∂

∂x1
, ∂
∂x2
, ∂
∂x3

).

Definition Value Physical meaning

grad f = ∇f = ( ∂f
∂x1
, ∂f
∂x2
, ∂f
∂x3

) vector the direction in which f changes most rapidly

div f = ∇ • f = ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
scalar density of flux, i.e.

the fluid velocity per unit volume

curl f = ∇× f =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

∣∣∣∣∣∣∣ vector
spining flux (wheelpool)

affecting on the virtural surface

These three are all linear operators.

Further explanations (intuitive approaches)

Gradient: By total differentiation, df = ∂f
∂x3
dx1 + ∂f

∂x3
dx3 + ∂f

∂x3
dx3 = grad f • (dx1, dx2, dx3),

in order to maximize |df |, dx = (dx1, dx2, dx3) has to be parallel to grad f .

Divergence: Consider a tiny rectangular box S centered at point x

with dimension (∆x1,∆x2,∆x3). Then

the flux f thru facet S1 of outer normal (1, 0, 0) is approximately equal to

f • S1 ≈ (f1 + ∂f1

∂x1

∆x1

2
)∆x2∆x3,

the flux f thru facet S2 of outer normal (−1, 0, 0) is approximately equal to

f • S2 ≈ −(f1 + ∂f1

∂x1

−∆x1

2
)∆x2∆x3,

the flux f thru facet S3 of outer normal (0, 1, 0) is approximately equal to

f • S3 ≈ (f2 + ∂f2

∂x2

∆x2

2
)∆x3∆x1,

the flux f thru facet S4 of outer normal (0,−1, 0) is approximately equal to

f • S4 ≈ −(f2 + ∂f2

∂x2

−∆x2

2
)∆x3∆x1,

the flux f thru facet S5 of outer normal (0, 0, 1) is approximately equal to

f • S5 ≈ (f3 + ∂f3

∂x3

∆x3

2
)∆x1∆x2,

the flux f thru facet S6 of outer normal (0, 0,−1) is approximately equal to

f • S6 ≈ −(f3 + ∂f3

∂x3

−∆x3

2
)∆x1∆x2.

Sum them up, and the total flux thru S is roughly ( ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
)∆x1∆x2∆x3,

i.e. ( ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
) times the volume of S.

=⇒ div f
def
= ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
is the flux in a unit volume.
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Curl: Consider a rectangular facet S1 parallel to x2-x3 plane centered at point x with dimension (∆x2,∆x3),

and its boundary C1 = ∂S consists of 4 edges r1, r2, r3, r4 in the counterclockwise direction,

i.e. (0,1,0),(0,0,1),(0,−1,0),(0,0,−1) respectively. Then

the flux f along r1:

f • dr1 ≈ (f2 + ∂f2

∂x3

−∆x3

2
)∆x2,

the flux f along r2:

f • dr2 ≈ (f3 + ∂f3

∂x2

∆x2

2
)∆x2,

the flux f along r3:

f • dr3 ≈ −(f2 + ∂f2

∂x3

−∆x3

2
)∆x2,

the flux f along r4:

f • dr4 ≈ −(f3 + ∂f3

∂x2

−∆x2

2
)∆x2.

Sum them up, and the flux f along C1 is roughly

( ∂f3
∂x2
− ∂f2

∂x3
)∆x2∆x3.

Similarly,

if C2 = ∂S2 is parallel to x3-x1 plane then flux f along C2 is roughly

( ∂f1
∂x3
− ∂f3

∂x1
)∆x3∆x1,

if C3 = ∂S3 is parallel to x1-x2 plane then flux f along C3 is roughly

( ∂f2
∂x1
− ∂f1

∂x2
)∆x1∆x2,

These highlighted three are components of

curl f
def
=

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

∣∣∣∣∣∣∣ = ( ∂f3

∂x2
− ∂f2

∂x3
)̂i+ ( ∂f1

∂x3
− ∂f3

∂x1
)ĵ + ( ∂f2

∂x1
− ∂f1

∂x2
)k̂

and the underlined three are the influences of f on S1,S2,S3:

( ∂f3

∂x2
− ∂f2

∂x3
)∆x2∆x3 = curl f • (∆x2∆x3î) = curl f • S1,

( ∂f1

∂x3
− ∂f3

∂x1
)∆x3∆x1 = curl f • (∆x3∆x1ĵ) = curl f • S2,

( ∂f2

∂x1
− ∂f1

∂x2
)∆x1∆x2 = curl f • (∆x1∆x2k̂) = curl f • S3.

From the deriviations of divergence and curl, we can directly come up with the conclusions:

Divergence Theorem V is the region enclosed by closed surface S. Then∫∫
©
S

f • dS =

∫∫∫
V

div f dV

Stokes’ Theorem S is a surface with simple closed boundary C. Then∫∫
S

curl f • dS =

∫
©
C

f • dr

Green’s Theorem A special case of Stokes’ Theorem:

Let f(x, y, z) = (M(x, y), N(x, y), 0) and a flat surface S = R is lying

on the x-y plane with boundary C, then the normal of S is (0, 0, 1)

so that curl f • dS = (∂N
∂x
− ∂M

∂y
) dx dy and f • dr = M dx+N dy.

i.e.

∫∫
R

(∂N
∂x
− ∂M

∂y
) dx dy =

∫
©
C

M dx+N dy.
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