Gradient, Divergence, and Curl

Definitions

Let x = (x1, 2, 73),

scalar f(x) = f(x1,z2,x3),
vector f(x) = ( fl( ) fa(x), f3(x)), regarded as fluz (velocity of fluid),
P

operator V = (a_:m pros 8—13).
Definition Value | Physical meaning
grad f =V f = (f?Tfl> g—xé, E?ng) vector | the direction in which f changes most rapidly

divf=V.f= g!: o+ gﬁ + gg scalar | density of flux, i.e.

the fluid velocity per unit volume

spining flux (wheelpool
curlf =V x f = 83_ 88_ 88_ vector p 'g ( 'p )
v gre 0% affecting on the virtural surface
i fo f3

These three are all linear operators.

Further explanations (intuitive approaches)

Gradient: By total differentiation, df = da:l + 6; dxs + 8f dxs = grad f « (dxy, dxg, dz3),

in order to maximize |df|, dx = (dzy, dxs, drs) has to be parallel to grad f.

Divergence: Consider a tiny rectangular box S centered at point x
with dimension (Axy, Azy, Azz). Then
the flux f thru facet S; of outer normal (1,0, 0) is approximately equal to

fe S1 (f + 8f1 AII )ACL’QAJ]?,,

the flux f thru facet Sz of outer normal (—1,0,0) is approximately equal to
f oSy —(fi + g2 =55) AryAs,

the flux f thru facet 53 of outer normal (0, 1,0) is approximately equal to
fe. Sg ~ (f + af2 AxQ)ACC’gAl’l,

the flux f thru facet S4 of outer normal (0, —1,0) is approximately equal to
f . S4 ~ —(f2 —+ 8f2 _A$2)Ax3Al’1,

the flux f thru facet S5 of outer normal (0,0, 1) is approximately equal to
feSs=(fs+ 8f3 Am)AmA@,

the flux f thru facet 86 of outer normal (0,0, —1) is approximately equal to
feSem —(fs+ 5L=52)An, Ay,

Sum them up, and the total ﬂux thru S is roughly <§£ + 92 4 8f3 ) AriAxs Az,

Oxo
Le. (gﬁ + gg + 8f3) times the volume of S.

— divf & 8f1 + gﬁ + 8f3 is the flux in a unit volume.



Curl: Consider a rectangular facet Sy parallel to xs-z3 plane centered at point x with dimension (Azy, Axs
and its boundary C7 = 0S consists of 4 edges ry, ry, r3, ry in the counterclockwise direction,
i.e. (0,1,0),(0,0,1),(0,—1,0),(0,0,—1) respectively. Then
the flux f along ry:
fodry~(fo+ 9f2 —53) Agry,

Ox3 2
the flux f along rj:

fodro~(f3+ g£§ A§2)A$27

the flux f along rj:
fe dr3 (fg + 9f2 _Az3)AQZ2,

oxs3

the flux f along ry:
fodr,~ —(fs+ 222002 )Ag,.

Oxa 2
Sum them up, and the flux f along C' is roughly

0, Ofs

Similarly,
if Cy = 0S4 is parallel to x3-z; plane then flux f along C5 is roughly

(g% — %)Al'gAl'l,

if 3 = 0S3 is parallel to x1-x5 plane then flux f along Cj5 is roughly

(% — 20\ Azy A,

These highlighted three are components of

ik
| o b o | _(8fs _ 9fa\} (8h _ 0fs\i o (92 _ Ofi\]
cwlf =\ 5 m am | = (Gn an) (G~ E ) (G Gk
fi 2 fs

and the underlined three are the influences of f on S;, Sa, Ss:

(8 _ 8f2)A:r2A:r3 = curl f « (AzyAxgi) = curlf « Sy,

Oxo
<§§i af3)Ax3Ax1 = curlf - (AngxJ) = curlf « Sy,
<g£i afl ) Az Az = curlf - (A1 Axok) = curl f « S.

From the deriviations of divergence and curl, we can directly come up with the conclusions:

Divergence Theorem V is the region enclosed by closed surface S. Then

ﬁf-dS:/// div f dV

S v

Stokes’ Theorem S is a surface with simple closed boundary C'. Then
//wrlf-dS:¢ fedr
5 c

Green’s Theorem A special case of Stokes’ Theorem:

Let f(x,y,2) = (M(z,y), N(z,y),0) and a flat surface S = R is lying
on the z-y plane with boundary C', then the normal of S is (0,0, 1)
so that  curlf « dS = (aN aM)dxdy and f e« dr = Mdx+ N dy.

ie. // & — 2= dxdy—gﬁ M dx + N dy.



