Gradient, Divergence, and Curl

Definitions

Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$,
scalar $f(\mathbf{x})=f\left(x_{1}, x_{2}, x_{3}\right)$,
vector $\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), f_{3}(\mathbf{x})\right)$, regarded as flux (velocity of fluid), operator $\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$.

Definition	Value	Physical meaning
$\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}\right)$	vector	the direction in which f changes most rapidly
$\operatorname{div} \mathbf{f}=\nabla \cdot \mathbf{f}=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}$	scalar	density of flux, i.e. the fluid velocity per unit volume
$\operatorname{curl} \mathbf{f}=\nabla \times \mathbf{f}=\|$$\hat{i}$ \hat{j} \hat{k} $\frac{\partial}{\partial x_{1}}$ $\frac{\partial}{\partial x_{2}}$ $\frac{\partial}{\partial x_{3}}$ vector f_{1} f_{2} f_{3} spining flux (wheelpool) affecting on the virtural surface		

These three are all linear operators.

Further explanations (intuitive approaches)

Gradient: By total differentiation, $d f=\frac{\partial f}{\partial x_{3}} d x_{1}+\frac{\partial f}{\partial x_{3}} d x_{3}+\frac{\partial f}{\partial x_{3}} d x_{3}=\operatorname{grad} f \cdot\left(d x_{1}, d x_{2}, d x_{3}\right)$, in order to maximize $|d f|, d \mathbf{x}=\left(d x_{1}, d x_{2}, d x_{3}\right)$ has to be parallel to $\operatorname{grad} f$.

Divergence: Consider a tiny rectangular box \mathbf{S} centered at point \mathbf{x} with dimension ($\Delta x_{1}, \Delta x_{2}, \Delta x_{3}$). Then
the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{1}}$ of outer normal $(1,0,0)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{1}} \approx\left(f_{1}+\frac{\partial f_{1}}{\partial x_{1}} \frac{\Delta x_{1}}{2}\right) \Delta x_{2} \Delta x_{3}
$$

the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{2}}$ of outer normal $(-1,0,0)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{2}} \approx-\left(f_{1}+\frac{\partial f_{1}}{\partial x_{1}} \frac{-\Delta x_{1}}{2}\right) \Delta x_{2} \Delta x_{3},
$$

the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{3}}$ of outer normal $(0,1,0)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{3}} \approx\left(f_{2}+\frac{\partial f_{2}}{\partial x_{2}} \frac{\Delta x_{2}}{2}\right) \Delta x_{3} \Delta x_{1},
$$

the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{4}}$ of outer normal $(0,-1,0)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{4}} \approx-\left(f_{2}+\frac{\partial f_{2}}{\partial x_{2}} \frac{-\Delta x_{2}}{2}\right) \Delta x_{3} \Delta x_{1},
$$

the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{5}}$ of outer normal $(0,0,1)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{5}} \approx\left(f_{3}+\frac{\partial f_{3}}{\partial x_{3}} \frac{\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2},
$$

the flux \mathbf{f} thru facet $\mathbf{S}_{\mathbf{6}}$ of outer normal $(0,0,-1)$ is approximately equal to

$$
\mathbf{f} \cdot \mathbf{S}_{\mathbf{6}} \approx-\left(f_{3}+\frac{\partial f_{3}}{\partial x_{3}} \frac{-\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2} .
$$

Sum them up, and the total flux thru \mathbf{S} is roughly $\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}\right) \Delta x_{1} \Delta x_{2} \Delta x_{3}$,
i.e. $\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}\right)$ times the volume of \mathbf{S}.
$\Longrightarrow \operatorname{div} \mathbf{f} \stackrel{\text { def }}{=} \frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}$ is the flux in a unit volume.

Curl: Consider a rectangular facet $\mathbf{S}_{\mathbf{1}}$ parallel to $x_{2}-x_{3}$ plane centered at point \mathbf{x} with dimension ($\Delta x_{2}, \Delta x_{3}$ and its boundary $C_{1}=\partial \mathbf{S}$ consists of 4 edges $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}$ in the counterclockwise direction, i.e. $(0,1,0),(0,0,1),(0,-1,0),(0,0,-1)$ respectively. Then
the flux \mathbf{f} along \mathbf{r}_{1} :

$$
\mathbf{f} \cdot d \mathbf{r}_{1} \approx\left(f_{2}+\frac{\partial f_{2}}{\partial x_{3}} \frac{-\Delta x_{3}}{2}\right) \Delta x_{2},
$$

the flux \mathbf{f} along \mathbf{r}_{2} :

$$
\mathbf{f} \cdot d \mathbf{r}_{2} \approx\left(f_{3}+\frac{\partial f_{3}}{\partial x_{2}} \frac{\Delta x_{2}}{2}\right) \Delta x_{2}
$$

the flux \mathbf{f} along \mathbf{r}_{3} :

$$
\mathbf{f} \cdot d \mathbf{r}_{3} \approx-\left(f_{2}+\frac{\partial f_{2}}{\partial x_{3}} \frac{-\Delta x_{3}}{2}\right) \Delta x_{2},
$$

the flux \mathbf{f} along \mathbf{r}_{4} :

$$
\mathbf{f} \cdot d \mathbf{r}_{4} \approx-\left(f_{3}+\frac{\partial f_{3}}{\partial x_{2}} \frac{-\Delta x_{2}}{2}\right) \Delta x_{2} .
$$

Sum them up, and the flux \mathbf{f} along C_{1} is roughly

$$
\underline{\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) \Delta x_{2} \Delta x_{3} .}
$$

Similarly,
if $C_{2}=\partial \mathbf{S}_{\mathbf{2}}$ is parallel to $x_{3}-x_{1}$ plane then flux \mathbf{f} along C_{2} is roughly $\left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) \Delta x_{3} \Delta x_{1}$,
if $C_{3}=\partial \mathbf{S}_{3}$ is parallel to $x_{1}-x_{2}$ plane then flux \mathbf{f} along C_{3} is roughly

$$
\underline{\left(\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) \Delta x_{1} \Delta x_{2},}
$$

These highlighted three are components of

$$
\operatorname{curl} \mathbf{f} \stackrel{\text { def }}{=}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|=\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) \hat{i}+\left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) \hat{j}+\left(\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) \hat{k}
$$

and the underlined three are the influences of f on $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}}$:

$$
\begin{aligned}
& \left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) \Delta x_{2} \Delta x_{3}=\operatorname{curl} \mathbf{f} \cdot\left(\Delta x_{2} \Delta x_{3} \hat{i}\right)=\operatorname{curl} \mathbf{f} \cdot \mathbf{S}_{\mathbf{1}}, \\
& \left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) \Delta x_{3} \Delta x_{1}=\operatorname{curl} \mathbf{f} \cdot\left(\Delta x_{3} \Delta x_{1} \hat{j}\right)=\operatorname{curl} \mathbf{f} \cdot \mathbf{S}_{\mathbf{2}}, \\
& \left(\frac{f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) \Delta x_{1} \Delta x_{2}=\operatorname{curl} \mathbf{f} \cdot\left(\Delta x_{1} \Delta x_{2} \hat{k}\right)=\operatorname{curl} \mathbf{f} \cdot \mathbf{S}_{\mathbf{3}} .
\end{aligned}
$$

From the deriviations of divergence and curl, we can directly come up with the conclusions:
Divergence Theorem V is the region enclosed by closed surface S. Then

$$
\oiint_{S} \mathbf{f} \cdot d \mathbf{S}=\iiint_{V} \operatorname{div} \mathbf{f} d V
$$

Stokes' Theorem $\quad S$ is a surface with simple closed boundary C. Then

$$
\iint_{S} \operatorname{curl} \mathbf{f} \cdot d \mathbf{S}=\oint_{C} \mathbf{f} \cdot d \mathbf{r}
$$

Green's Theorem A special case of Stokes' Theorem:

Let $\mathbf{f}(x, y, z)=(M(x, y), N(x, y), 0)$ and a flat surface $S=R$ is lying on the $x-y$ plane with boundary C, then the normal of S is $(0,0,1)$ so that $\operatorname{curlf} \cdot d \mathbf{S}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$ and $\mathbf{f} \cdot d \mathbf{r}=M d x+N d y$.
i.e. $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C} M d x+N d y$.

