Differential Operators versus Vector Operators

Any vector operator \circledast possessing *distributive property* (eg. +, -, •, \times) will satisfy the following:

 $d(\mathbf{A} \circledast \mathbf{B}) = (d\mathbf{A}) \circledast \mathbf{B} + \mathbf{A} \circledast (d\mathbf{B});$ $\frac{d}{dt}(\mathbf{A} \circledast \mathbf{B}) = \frac{d\mathbf{A}}{dt} \circledast \mathbf{B} + \mathbf{A} \circledast \frac{d\mathbf{B}}{dt}, \text{ if } t \text{ is possibly the only variable of } \mathbf{A} \text{ and } \mathbf{B};$ $\frac{\partial}{\partial t}(\mathbf{A} \circledast \mathbf{B}) = \frac{\partial \mathbf{A}}{\partial t} \circledast \mathbf{B} + \mathbf{A} \circledast \frac{\partial \mathbf{B}}{\partial t}, \text{ if } t \text{ is possibly a variable of } \mathbf{A} \text{ and } \mathbf{B}.$

Curvature (more intuitive approaches)

Let $\mathbf{r}(t)$ be a parametric curve in \mathbb{R}^n , and <u>s</u> denote <u>arc length</u> from some fixed point on the curve. Define $\mathbf{T}(t) \stackrel{\text{def}}{=} \frac{\dot{\mathbf{r}}(t)}{\|\dot{\mathbf{r}}(t)\|}$ a <u>unit tangent</u> at t, then $\mathbf{T} = \frac{\dot{\mathbf{r}}}{\|\dot{\mathbf{r}}\|} = \frac{\frac{d\mathbf{r}}{dt}}{\frac{ds}{dt}} = \frac{d\mathbf{r}}{ds}$.

A particle moves in a very short period (from t to $t + \Delta t$, $\Delta t \approx 0$) and assume that this locus is an arc of a circle of radius R sweeping through angle $\theta \approx 0$. The arc length $R\theta \approx \|\mathbf{r}(t + \Delta t) - \mathbf{r}(t)\|$. Since **T** is a *unit tangent*, $\therefore \|\mathbf{T}(t + \Delta t) - \mathbf{T}(t)\| \approx \theta$. Hence, as $\Delta t \sim 0$, the instantaneous radius

$$R \approx \frac{\|\mathbf{r}(t + \Delta t) - \mathbf{r}(t)\|}{\|\mathbf{T}(t + \Delta t) - \mathbf{T}(t)\|} = \frac{\left\|\frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}\right\|}{\left\|\frac{\mathbf{T}(t + \Delta t) - \mathbf{T}(t)}{\Delta t}\right\|} \xrightarrow{\Delta t \to 0} \frac{\|\dot{\mathbf{r}}(t)\|}{\left\|\dot{\mathbf{T}}(t)\right\|}$$

Define the *curvature* $\kappa \stackrel{\text{def}}{=} \frac{1}{R}$, and R is hereby called the *radius of curvature*, then

$$\kappa = \frac{\left\| \dot{\mathbf{T}}(t) \right\|}{\left\| \dot{\mathbf{r}}(t) \right\|} = \frac{\left\| \frac{d\mathbf{T}}{dt} \right\|}{\left\| \frac{d\mathbf{r}}{dt} \right\|} = \left\| \frac{d\mathbf{T}}{ds} \right\|$$

Similarly, since $R\theta \approx \|\mathbf{r}(t + \Delta t) - \mathbf{r}(t)\|$ and $\mathbf{T}(t + \Delta t) - \mathbf{T}(t) \approx \theta \mathbf{N}$ (where **N** is a unit vector $\|\mathbf{T}(t + \Delta t) - \mathbf{T}(t)$, roughly $\perp \mathbf{T}$),

$$\frac{\mathbf{T}(t+\Delta t)-\mathbf{T}(t)}{\|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)\|} \approx \frac{1}{R} \mathbf{N}, \stackrel{\Delta t \leadsto 0}{\Longrightarrow} \frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}.$$

Clearly, **N** must be a unit vector perpendicular to $\mathbf{T}(\because \|\mathbf{T}\|^2 = 1 \stackrel{\frac{d}{ds}}{\Longrightarrow} 2\mathbf{T} \cdot \frac{d\mathbf{T}}{ds} = 0)$ and we call it the *principal normal* to the curve $\mathbf{N} \stackrel{\text{def}}{=} \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}$.

Now, define $\mathbf{B} \stackrel{\text{def}}{=} \mathbf{T} \times \mathbf{N}$, called *bi-normal* to the curve. We have shown in class that since $\frac{d\mathbf{B}}{ds} \perp \mathbf{B}$ and $\mathbf{N} \Longrightarrow \frac{d\mathbf{B}}{ds} \parallel \mathbf{N}$. Moreover, $\frac{d\mathbf{B}}{ds}$ is opposite to \mathbf{N} . Therefore $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$ for some $\tau > 0$ called *torsion*.

Now we can easily derive the *Frenet-Serret formulae* by the orthonormal basis **T**, **N**, **B**:

unit tangent
$$\mathbf{T} \stackrel{\text{def}}{=} \frac{d\mathbf{r}}{ds}$$
,
curvature $\kappa \stackrel{\text{def}}{=} \left\| \frac{d\mathbf{T}}{ds} \right\|$,
unit normal $\mathbf{N} \stackrel{\text{def}}{=} \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}$,
binormal $\mathbf{B} \stackrel{\text{def}}{=} \mathbf{T} \times \mathbf{N}$,
torsion τ is a constant such that
 $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$,