Differential Operators versus Vector Operators

Any vector operator \circledast possessing distributive property (eg. $+,-, \mathbf{\bullet}, \times$) will satisfy the following:
$d(\mathbf{A} \circledast \mathbf{B})=(d \mathbf{A}) \circledast \mathbf{B}+\mathbf{A} \circledast(d \mathbf{B}) ;$
$\frac{d}{d t}(\mathbf{A} \circledast \mathbf{B})=\frac{d \mathbf{A}}{d t} \circledast \mathbf{B}+\mathbf{A} \circledast \frac{d \mathbf{B}}{d t}, \quad$ if t is possibly the only variable of \mathbf{A} and $\mathbf{B} ;$
$\frac{\partial}{\partial t}(\mathbf{A} \circledast \mathbf{B})=\frac{\partial \mathbf{A}}{\partial t} \circledast \mathbf{B}+\mathbf{A} \circledast \frac{\partial \mathbf{B}}{\partial t}, \quad$ if t is possibly a variable of \mathbf{A} and \mathbf{B}.

Curvature (more intuitive approaches)

Let $\mathbf{r}(t)$ be a parametric curve in \mathbb{R}^{n}, and s denote arc length from some fixed point on the curve. Define $\mathbf{T}(t) \stackrel{\text { def }}{=} \frac{\dot{\mathbf{r}}(t)}{\|\mathbf{r}(t)\|}$ a unit tangent at t, then $\mathbf{T}=\frac{\dot{\mathbf{r}}}{\|\dot{\mathbf{r}}\|}=\frac{\frac{d \mathbf{r}}{d t}}{\frac{d s}{d t}}=\frac{d \mathbf{r}}{d s}$.
A particle moves in a very short period (from t to $t+\Delta t, \Delta t \approx 0$) and assume that this locus is an arc of a circle of radius R sweeping through angle $\theta(\approx 0)$. The arc length $R \theta \approx\|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)\|$. Since \mathbf{T} is a unit tangent, $\therefore\|\mathbf{T}(t+\Delta t)-\mathbf{T}(t)\| \approx \theta$. Hence, as $\Delta t \leadsto 0$, the instantaneous radius

$$
R \approx \frac{\|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)\|}{\|\mathbf{T}(t+\Delta t)-\mathbf{T}(t)\|}=\frac{\left\|\frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}\right\|}{\left\|\frac{\mathbf{T}(t+\Delta t)-\mathbf{T}(t)}{\Delta t}\right\|} \xrightarrow{\Delta t \leadsto 0} \frac{\|\dot{\mathbf{r}}(t)\|}{\|\dot{\mathbf{T}}(t)\|}
$$

Define the curvature $\kappa \stackrel{\text { def }}{=} \frac{1}{R}$, and R is hereby called the radius of curvature, then

$$
\kappa=\frac{\|\dot{\mathbf{T}}(t)\|}{\|\dot{\mathbf{r}}(t)\|}=\frac{\left\|\frac{d \mathbf{T}}{d t}\right\|}{\left\|\frac{d \mathbf{r}}{d t}\right\|}=\left\|\frac{d \mathbf{T}}{d s}\right\| .
$$

Similarly, since $R \theta \approx\|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)\|$ and $\mathbf{T}(t+\Delta t)-\mathbf{T}(t) \approx \theta \mathbf{N}$ (where \mathbf{N} is a unit vector $\|$ $\mathbf{T}(t+\Delta t)-\mathbf{T}(t)$, roughly $\perp \mathbf{T})$,

$$
\frac{\mathbf{T}(t+\Delta t)-\mathbf{T}(t)}{\|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)\|} \approx \frac{1}{R} \mathbf{N}, \stackrel{\Delta t \leadsto 0}{\Longrightarrow} \frac{d \mathbf{T}}{d s}=\kappa \mathbf{N} .
$$

Clearly, \mathbf{N} must be a unit vector perpendicular to $\mathbf{T}\left(\because\|\mathbf{T}\|^{2}=1 \xrightarrow{\frac{d}{d s}} 2 \mathbf{T} \cdot \frac{d \mathbf{T}}{d s}=0\right)$ and we call it the principal normal to the curve $\mathbf{N} \xlongequal{\text { def }} \frac{1}{\kappa} \frac{d \mathbf{T}}{d s}$.
Now, define $\mathbf{B} \xlongequal{\text { def }} \mathbf{T} \times \mathbf{N}$, called bi-normal to the curve.
We have shown in class that since $\frac{d \mathbf{B}}{d s} \perp \mathbf{B}$ and $\mathbf{N} \Longrightarrow \frac{d \mathbf{B}}{d s} \| \mathbf{N}$. Moreover, $\frac{d \mathbf{B}}{d s}$ is opposite to \mathbf{N}. Therefore $\frac{d \mathbf{B}}{d s}=-\tau \mathbf{N}$ for some $\tau>0$ called torsion.
Now we can easily derive the Frenet-Serret formulae by the orthonormal basis T, N, B:

$$
\left.\begin{array}{ll}
\text { unit tangent } & \mathbf{T} \\
\stackrel{\text { def }}{=} \frac{d \mathbf{r}}{d s}, \\
\text { curvature } & \kappa \\
\stackrel{\text { def }}{=}\left\|\frac{d \mathbf{T}}{d s}\right\|, \\
\text { unit normal } & \mathbf{N} \\
\stackrel{\text { def }}{=} \frac{1}{\kappa} \frac{\mathbf{T}}{d s}, \\
\text { binormal } & \mathbf{B} \\
\stackrel{\text { def }}{=} \mathbf{T} \times \mathbf{N}, \\
\text { torsion } & \tau \\
& \text { is a constant such that } \\
& \frac{d \mathbf{B}}{d s}=-\tau \mathbf{N},
\end{array}\right\} \text { then, } \frac{d \mathbf{N}}{d s}=\tau \mathbf{B}-\kappa \mathbf{T} \text {. }
$$

