Sequence and Series

 $\left\{ \begin{array}{l} \mbox{Infinite Sequence} \\ \mbox{Positive Series } \\ \mbox{Relative Series } \\ \mbox{$

Multivariate Functions $\mathbb{R}^n \to \mathbb{R}$

Vector Space & \mathbb{R}^3 $\begin{cases} dot \ product \ in \ \mathbb{R}^n, \ cross \ product \ in \ \mathbb{R}^3, \ lines, \ planes, \ arc \ length, \ curvature, \ \cdots \\ quadric \ surfaces \ in \ \mathbb{R}^3 \end{cases}$

Limit and Continuity.

	' Tangent Plane/Linear Approximation ¹ , Partial Derivative ² , Differential ³
Differentiation {	Derivative wrt. its parameter ⁽⁴⁾ \rightarrow Taylor Expansion ⁶ \Rightarrow Quadratic Approx. ⁷
	Gradient & Directional Derivative ⁽⁴⁾ \Rightarrow Local Extrema $(n = 2)^8$
	(4) \Rightarrow Find Extrema: Lagrange Multipliers ⁹
	<i>Chain Rule</i> for Multi-variable Functions ⁵
Multiple Integra	tion $\begin{cases} Ways to Cut Orthogonal Coordinate Systems \\ (Polar in \mathbb{R}^2, Cylinderical & Spherical Coordinates in \mathbb{R}^3)Application: Volume, Surface Area, Center of Mass, Inertia, etc. \end{cases}$
Vector Calculus (if time allowed	$\begin{cases} Gradient, Divergence, Curl \\ Path Integral \\ (vs. 1st order ODE) \end{cases} \begin{cases} potential, conservative vector field \\ (vs. exact differential equation) \end{cases}$
	$\int Green's Theorem In \mathbb{R}^2$