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Abstract. In this paper, we shall survey some recent results on the wave propagation in

2-species competition systems with Lotka-Volterra type nonlinearity. This includes systems

with continuous and discrete diffusion (or migration). We are interested in both monos-

table case and bistable with strong competition case. Questions on minimal speed for the

monostable case, uniqueness of wave speed and propagation failure in the bistable case,

monotonicity and uniqueness of wave profile for both cases are addressed. Finally, we give

some open problems on wave propagation in 2-species competition systems.

1. Introduction

The classical Lotka-Volterra competition-diffusion system for two species in a 1-d habitat

(e.g., along a river) can be written by the following system:

ut = d1uxx + u(1− u− kv), x, t ∈ R,(1.1)

vt = d2vxx + rv(1− v − hu), x, t ∈ R,(1.2)

where u(x, t), v(x, t) are populations of two competing species, d1, d2 are diffusion coefficients

of species u, v and h, k are (inter-specific) competition coefficients of species u, v, respectively.

Here we assume that, by taking suitable scales of population, the carrying capacity is 1 for

each species. Also, the intrinsic growth rate of species u is normalized to be 1 and the

intrinsic growth rate of species v is given by r. All parameters d1, d2, h, k, r are assumed to

be positive.

The global dynamics for the related kinetic system:

ut = u(1− u− kv), t ∈ R,

vt = rv(1− v − hu), t ∈ R,

can be easily described. In fact, there are always three equilibria (0, 0), (1, 0), (0, 1). In the

case when both h, k < 1 or h, k > 1, we have the fourth equilibrium (co-existence state)

(u∗, v∗) =

(
1− k

1− hk
,
1− h

1− hk

)
.
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By a phase plane analysis in the first quadrant {u, v > 0}, we have

(A) (u, v)(t) → (1, 0) as t→ ∞, if 0 < k < 1 < h;

(B) (u, v)(t) → (0, 1) as t→ ∞, if 0 < h < 1 < k;

(C) (u, v)(t) → one of {(1, 0), (0, 1), (u∗, v∗)} as t → ∞, if h, k > 1, depending on the

initial value;

(D) (u, v)(t) → (u∗, v∗) as t→ ∞, if 0 < h, k < 1.

We remark that, for case (C), there exists an invariant separatrix such that solutions of the

kinetic system with its initial data on this seperatrix converge to (u∗, v∗) as t→ ∞ (cf. [31]).

We say that the species u is a strong (weak, resp.) competitor if h > 1 (h < 1, resp.).

When h, k > 1 it is the case of strong competition. In this case, it is also called bistable case,

since both (1, 0) and (0, 1) are stable. We call the case when h, k < 1 the weak competition

(co-existence) case. For the case 0 < k < 1 < h (or, 0 < h < 1 < k), one species is

superior than the other. In this case, there is only one stable equilibrium and we call it the

monostable case. In this survey, we shall concentrate on the monostable case (A) and the

bistable case (C). The case (B) is similar to the case (A).

One interesting research topic is the dynamics with diffusion effect. In this aspect, we are

interested in the traveling wavefront solution of (1.1)-(1.2) connecting (0, 1) and (1, 0) in

the form

(u, v)(x, t) = (φ, ψ)(ξ), ξ := x+ ct,

where c is the wave speed and (φ, ψ) is the wave profile. This reduces the problem (1.1)-(1.2)

into the following 4-d dynamical system:

cφ′ = d1φ
′′ + φ(1− φ− kψ), ξ ∈ R,

cψ′ = d2ψ
′′ + rψ(1− ψ − hφ), ξ ∈ R,

with boundary conditions

(φ, ψ)(−∞) = (0, 1), (φ, ψ)(+∞) = (1, 0).

There are many interesting questions to be asked in this topic. For example, what is the

wave speed in the strong competition bistable case? Can one determine the sign of this wave

speed? Are there stationary solutions and does propagation failure occur? Can we charac-

terize the minimal speed of invading by superior species in monostable case? Are wavefront

profiles for each admissible speed unique (up to translations)? Can we say something about

the stability of traveling wavefront?

For PDE system (1.1)-(1.2), there have been many studies in past years. For the positive

stationary solutions in bistable case, we refer the reader to Kan-on [35] for the instability of

stationary solutions and Kan-on [33] for the standing waves. The existence of wavefront in
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bistable case can be found in the works of Gardner [18] (using degree theory) and Conley &

Gardner [15] (using Morse index). The uniqueness of wave speed is given by Kan-on [32] and

some studies of stability of wavefront in bistable case can be found in the papers of Gardner

[18] and Kan-on & Fang [36].

For the wavefront in monostable case, the existence of wavefront is carried out by Hosono

[28] using a singular perturbation analysis. Then the existence of the minimal speed is proved

by Kan-on [34]. We also refer to Okubu, Maini, Williamson & Murray [47], Hosono [29, 30]

and Lewis, Li & Weinberger [39] for the question of the minimal speed.

Other than traveling wavefront solutions, there are solutions with two fronts approaching

each other from both ends of the real line. These are the so-called two-front entire solutions

and they are constructed by Morita & Tachibana [45]. Here an entire solution means a

solution defined for all x, t ∈ R.
When we divide the habitat into discrete regions or niches, the continuous model (1.1)-

(1.2) is reduced to the following 2-component lattice dynamical system (LDS):

u′j(t) = d1D2[uj](t) + uj(t)[1− uj(t)− kvj(t)],(1.3)

v′j(t) = d2D2[vj](t) + rvj(t)[1− vj(t)− huj(t)],(1.4)

where D2[uj] := (uj+1 − uj) + (uj−1 − uj), j ∈ Z, t ∈ R. In fact, the system (1.3)-(1.4) can

be thought as a spatial discrete version of the continuous model (1.1)-(1.2). Notice that the

diffusion coefficients d1, d2 in (1.3)-(1.4) are different from the ones in (1.1)-(1.2). Continuous

model is actually the limiting model of LDS. It is believed that LDS is more realistic than

the continuous model, since we can only measure the populations at discrete points.

As in the continuous case, the traveling wavefront for LDS can be put in the form

(uj(t), vj(t)) = (U(ξ), V (ξ)), ξ = j + ct.

It connects from (0, 1) to (1, 0). Here again c is the wave speed and U, V are the wave profiles.

This renders the problem (P): to find (c, U, V ) ∈ R× C1(R)× C1(R) such that

(1.5)


cU ′ = d1D2[U ] + U(1− U − kV ),

cV ′ = d2D2[V ] + rV (1− V − hU),

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0),

0 ≤ U, V ≤ 1,

where D2[φ](ξ) := φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ) for φ = U, V . Note that problem (P) is an

infinitely dimensional dynamical system due to the nonlocal operator D2.

Before the discussion of 2-species competition system, we first give a very brief survey on

LDS for single species as follows.



4 JONG-SHENQ GUO AND CHANG-HONG WU

The investigation on wave propagation of lattice dynamical systems for one-species has a

long history, tracking back to the work of Bell [3]. In [3], the author proposed the discrete

bistable (Nagumo-type) equation as a model for conduction in myelinated nerve axons:

(1.6)
duj
dt

= d(uj+1 + uj−1 − 2uj) + f(uj), j ∈ Z,

where d > 0 stands for diffusion(migration) rate and f is Lipschitz continuous satisfying

f(0) = f(a) = f(1) = 0, f(u) < 0 for 0 < u < a and f(u) > 0 for a < u < 1. In contrast to its

continuum case, there is no wave propagation of (1.6) when the diffusion rate is small enough.

This phenomenon is called propagation failure, established by Keener [37]. Subsequently the

existence, uniqueness (up to translations) and stability of traveling wavefronts with nonzero

wave speed was proved by Zinner [53, 54]. Note that the (nonzero) wave speed is unique.

For related works on (1.6) for the bistable case, see, e.g., [27, 16, 14, 4, 6, 44, 8, 7, 5] and

references therein.

For the monostable case, i.e., when f is a Lipschitz continuous function with f(0) = 0 =

f(1) and f(u) > 0 for 0 < u < 1, under the nondegeneracy and the so-called Fisher-KPP

assumption that f(u) ≤ f ′(0)u for all u ∈ [0, 1], Zinner, Harris, and Hudson [55] established

the existence of traveling wavefronts. More recently, Chen and Guo [11, 12] generalized the

work of [55] and studied the stability, monotonicity, and uniqueness (up to translations) of

traveling wavefronts. One should note that due to the monostable nonlinearity the admissible

wave speed is a semi-infinite interval. Also, the uniqueness (up to translations) of wave

profile is for each admissible wave speed. For related works on monostable case, see, e.g.,

[17, 10, 42, 21] and references therein. In particular, [10] allows the nonlinearity having

degeneracy at both equilibria and [21] is for higher dimensional lattice.

The aforementioned works are for the homogeneous media. For the periodic media, we

refer the reader to [19] for the monostable nonlinearity and [13] for the bistable nonlinearity.

See also [26, 23].

From now on, we shall concentrate on the 2-species competition system. In extending the

results on single species to 2-species, there arises a certain degree of difficulties. We shall

point out these difficulties case by case in the following sections.

We organize this paper as follows. In section 2, we survey the results of wavefront of

problem (1.5) in the bistable case. The results on the monostable case are summarized in

section 3. Some comments and remarks shall also be given. Then a brief discussion for

the existence of two-front entire solutions for both monostable and bistable cases is given in

section 4. In section 5, we discuss the minimal speed of PDE model (1.1)-(1.2). Finally, we

give some open problems in this research area in section 6.
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2. Wavefront in bistable case

In this section, we assume the nonlinearity is bistable, i.e., h, k > 1. First, we have the

following theorems on the propagation failure and the existence of stationary solutions.

Theorem 1 ([24]). Given r > 0, h, k > 1. When d1 and d2 are small enough, there is no

traveling wavefront solution of (1.3)-(1.4) with nonzero speed connecting (0, 1) and (1, 0).

Theorem 2 ([24]). Given r > 0, h, k > 1. Then there are infinitely many stationary solutions

of (1.3)-(1.4), provided d1 and d2 are small enough.

More precisely, let us set two rectangles

I1 := [0, x1]× [y1, 1] and I2 := [x2, 1]× [0, y2],

where y1 ∈ (max{1/2, 1/k}, 1), x2 ∈ (max{1/2, 1/h}, 1). Choose x1 and y2 such that 0 <

x1, y2 ≪ 1 so that the following conditions

(2u− 1)(2v − 1) + hu(2u− 1) + kv(2v − 1) > 0, (u, v) ∈ I1 ∪ I2,

x1 <
1− y1
h

, y2 <
1− x2
k

hold. For such I1 and I2, if d1 and d2 are small enough, then (1.3)-(1.4) has a unique

stationary solution {(uj, vj)}j∈Z such that (uj, vj) ∈ Isj for all j ∈ Z for any given infinite

sequence {sj}j∈Z with sj ∈ {1, 2} for all j ∈ Z.
For 1-component LDS with bistable nonlinearity, that weak coupling (or small migration

coefficient) implies the existence of stationary solutions and propagation failure can be found

in [37, 44, 8]. When d1, d2 ≪ 1, the species almost do not have migration tendencies.

Intuitively, propagation failure occurs. Theorem 1 is proved by constructing two invariant

sets as I1, I2, and using the comparison principle. From the biological point of view, the

stationary solutions we constructed in Theorem 2 has the property that these two species

do not like to live together due to the strong competition. A similar result to Theorem 2

can be found in the work of [43] by using the implicit function theorem. Our approach here

(based on the Smale horseshoe theory, cf. [37, 48]) gives more information on the behavior

of stationary solutions.

Next, we have the following theorems on the monotonicity of wave profiles and the unique-

ness of nonzero wave speed.

Theorem 3 ([24]). Given h, k > 1 and r, d1, d2 > 0. The wave profiles of any solution

(c, U, V ) of (P ) with nonzero speed are strictly monotone, i.e., U ′ > 0 and V ′ < 0 in R.

Theorem 4 ([24]). Given h, k > 1 and r, d1, d2 > 0. Let (ci, Ui, Vi), i = 1, 2, be two arbitrary

solutions of (P ) with nonzero speeds. Then c1 = c2.
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The proofs of Theorems 3 and 4 rely on a detailed study of asymptotic behaviors of wave

tails. The main idea of deriving the asymptotic behaviors of wave tails is to construct some

auxiliary functions to compare with wave profiles. The idea is from an original idea of

the work [10] for monostable one component LDS. But, for the 2-species case we need to

understand the exact behavior of U/(1−V ) near (U, V ) = (0, 1) and the method for the single

species case cannot be applied directly. The main difficulty is that U(ξ)/(1−V (ξ)) can tend

to zero as ξ → −∞ which means that the decay rate of wave tail of 1− V can be different

from that of U . Therefore, the issue of the uniqueness becomes more challenging. For the

uniqueness of wave speed, unfortunately we cannot exclude the case that both nonzero and

zero speeds co-exist. We expect that the speed is unique and it is either nonzero or zero,

but not both. This is left for an open problem.

For the existence of wavefront, we refer the reader to [51] for more details. The stability

and uniqueness (up to translations) of wave profiles is under investigation.

3. Wavefront in monostable case

In this section, we consider the wavefronts in the monostable case. For convenience, we

assume the following:

(A1) : 0 < k < 1 < h, d1 = 1, d2 = d > 0, and r > 0.

As usual, in the monostable case we expect to have the minimal speed which is defined by

cmin = cmin(r, d, h, k) := inf{c ∈ R | (P) has a solution}.

Theorem 5 ([25]). Assume (A1). Then there exists cmin > 0 such that the problem (P)

admits a solution (c, U, V ) satisfying U ′(·) > 0 and V ′(·) < 0 on R if and only if c ≥ cmin.

It seems that the existence of solutions of problem (P) is more complicated than that

of continuous case. Fortunately, by transforming the problem into a system of integral

equations with monotone property, it becomes easier to derive the existence of solutions of

problem (P) than the continuous case. To derive the existence of traveling wavefront, we

may use the monotone iteration method with the help of a pair of super-sub-solutions (cf.

e.g., [2, 52, 11]); or, consider a sequence of truncated problems with the help of a super-

solution (a method developed in [12]). By applying the aforementioned methods, we can

easily obtain a limit function satisfying our 2-component LDS. The main difficulty here for

the existence, in comparing with the single species case, is to check that this limit function

satisfies the desired boundary conditions.
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The next question is to characterize the minimal speed by parameters in the problem. Let

0 < k < 1, we define the positive number:

c∗ = c∗(k) := min
λ>0

{
(eλ + e−λ − 2) + (1− k)

λ

}
.

We explain why we have such a definition as follows. Linearizing the U -equation

cU ′ = D2[U ] + U(1− U − kV )

around the unstable state (0, 1), we get the characteristic equation

(3.1) Φ(c, λ) := cλ− [(eλ + e−λ − 2) + (1− k)] = 0.

Note that c∗ is independent of d and r, h. Moreover, (3.1) has at least one positive real root

if and only if c ≥ c∗. Then we have the following characterization of the minimal speed for

certain ranges of h, k, r, d.

Theorem 6 ([25, 20]). Assume (A1). Then cmin ≥ c∗(k). Moreover, there exists a constant

d∗ = d∗(k) > 2 such that cmin = c∗(k), provided that d ≤ d∗ and (h, k, r, d) ∈ A1 ∪ A2 ∪ A3,

where

A1 := {d ∈ (0, d∗], hk ≤ 1, r > 0},

A2 :=

{
d ∈ (0, 1], hk > 1, 0 < r ≤ 1− k

hk − 1

}
,

A3 :=

{
d ∈ (1, d∗), hk > 1, 0 < r ≤ d∗ − d

d∗ − 1

1− k

hk − 1

}
.

Indeed, the lower bound estimate follows from

Lemma 3.1 ([25]). Let (c, U, V ) be a solution of (P). Then c > 0 and the limit

lim
ξ→−∞

U ′(ξ)

U(ξ)
= Λ(c)

exists and Λ(c) is a positive root of the equation (3.1).

The second part of Theorem 6 was proved by constructing a pair of super-sub-solutions.

The restrictions on the parameters in Theorem 6 are due to the lack of suitable super-

solutions. We shall come back to the discussion of the minimal speed later in this paper.

As in the bistable case, we also have the monotonicity of wave profiles as follows.

Theorem 7 ([25]). Assume (A1). Then all wave profiles are strictly monotone.

The proof is also based on a detailed analysis of wave tails and employing the sliding

method. As in the bistable case, the main difficulty here, in comparing with the one compo-

nent lattice dynamical system, is the lack of exact information about the limit of U/(1− V )

as ξ → −∞.
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Finally, the uniqueness of wave profile for a given admissible speed can be proved, at least

for d ∈ (0, 1].

Theorem 8 ([25]). Assume (A1) and d ≤ 1. Then the wave profile is unique up to trans-

lations for a given wave speed c ≥ cmin.

Here we first use the bilateral Laplace transform and a modified version of Ikehara’s

Theorem (an idea from Carr-Chmaj [9]) to derive the more precise exponential tails of wave

profiles. Then a sliding method [12] can be applied with the help of the strong comparison

principle to finish the proof of Theorem 8. Unfortunately, we were unable to prove the

uniqueness for d > 1 due to some technical reasons. We left this case as an open problem.

4. Two-front entire solutions

In this section, we briefly describe some results on the two-front entire solutions in the

2-component lattice dynamical system. When 0 < k < 1 < h, the species u is stronger

than v and the species u invades v so that eventually v will be extinct. To know how the

stronger species invades the weaker one, the study of entire solutions is an important issue.

In particular, the 2-front entire solutions behave as two traveling wavefronts moving towards

each other from both sides of space axis. This provides another invasion way of the stronger

species to the weaker one.

To study the 2-front entire solution, it is convenient to consider the following related

continuum system:

ut(x, t) = D2[u(·, t)](x) + [u(1− u− kv)](x, t),(4.1)

vt(x, t) = dD2[v(·, t)](x) + [rv(1− v − hu)](x, t)(4.2)

for x, t ∈ R, where d, r, h, k > 0 and

D2[w](x) := w(x+ 1) + w(x− 1)− 2w(x).

Theorem 9 ([22]). Assume (A1). Let (ci, Ui, Vi) be a solution of (P) satisfying

(4.3)
Ui(ξ)

1− Vi(ξ)
≥ η0 for all ξ ≤ 0.

and let θi be a given constant, i = 1, 2. Then there exists an entire solution (u(x, t), v(x, t))

of (4.1)-(4.2) such that

lim
t→−∞

sup
x≥(c2−c1)t/2

{|u(x, t)− U1(x+ c1t+ θ1)|+ |v(x, t)− V1(x+ c1t+ θ1)|} = 0,

lim
t→−∞

sup
x≤(c2−c1)t/2

{|u(x, t)− U2(−x+ c2t+ θ2)|+ |v(x, t)− V2(−x+ c2t+ θ2)|} = 0,

lim
t→+∞

sup
x∈R

{|1− u(x, t)|+ |v(x, t)|} = 0.
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In [45], the assumption (4.3) is crucial in constructing two-front entire solutions. Also,

they provide some conditions via the eigenvalues of the linearized system around equilibria

(0, 1) and (1, 0) to assure (4.3) holds. Indeed, for our discrete problem, the condition (4.3)

holds under the extra condition 0 < d ≤ 1 (see [25, Remark 3.1]).

By a similar argument as in [22], we can also prove a similar theorem on two-front entire

solutions for the bistable case. We omit the details here.

5. Minimal speed for PDE model

In this section, we consider the continuous model (1.1)-(1.2) with d1 = 1, d2 = d. We also

define the minimal speed of traveling fronts of (1.1)-(1.2) by

cmin = inf{c > 0 | traveling front with speed c exists }.

In [34], Kan-on proved that cmin ≥ 2
√
1− k. Then Hosono [29] conjectured that:

0 < k < 1 < h⇒ cmin = 2
√
1− k,

under the condition

(h, k, r) ∈ {hk ≤ 1, r > 0} ∪ {hk > 1, 0 < r ≤ r∗}

for some r∗ = r∗(h, k, d) > 0 for certain d.

The constant 2
√
1− k is actually from evaluating 2

√
fu(0, 1) at the unstable state (0, 1),

where f(u, v) := u(1−u−kv) is the nonlinearity defined in the u-equation. This is precisely

the same as the case of single KPP-equation [38], namely, the minimal speed is given by

2
√
f ′(0) for the equation ut = uxx + f(u) under certain conditions on f . Recently, Lewis,

Li, Weinberger [39] proved that cmin = 2
√
1− k, if 0 < d ≤ 2 and rhk ≤ r + (2− d)(1− k),

i.e., (h, k, r, d) ∈ B1 ∪B2, where

B1 := {d ∈ (0, 2], hk ≤ 1, r > 0},

B2 :=

{
d ∈ (0, 2], hk > 1, 0 < r ≤ (2− d)(1− k)

hk − 1

}
.

A natural question is whether this is an optimal result for the so-called linear determinacy.

Here the linear determinacy means that the minimal speed (2
√
fu(0, 1) or 2

√
f ′(0)) is exactly

given by the quantity (fu(0, 1) or f ′(0)) from the linearization of the associated equation

around the unstable equilibrium ((0, 1) or 0). In fact, the notion of minimal speed is closely

related to the so-called spreading speed. We shall not address this issue here and only refer

the reader to, e.g., [1, 49, 50, 39, 40, 41].

It will be of interest to investigate whether the linear determinacy hold. Murray predicted

that the minimal speed is 2
√
1− k by a heuristic argument [46]. Later, Hosono [29] gave

a numerical example showing that minimal speed can be larger than 2
√
1− k. This gave
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a counter-example to Murray’s conjecture. To the best of our knowledge, there is no an-

alytical results for Hosono’s conjecture. However, Hosono’s results suggest that the linear

determinacy may not hold.

Through the study on LDS, we are able to extend the result of [39]. For this, using

the finite difference scheme, we can approximate the system (1.1)-(1.2) by the following

discretized system (Pτ ):{
û′j(t) = τ−2[ûj+1(t) + ûj−1(t)− 2ûj(t)] + ûj(t)(1− ûj(t)− kv̂j(t)),

v̂′j(t) = dτ−2[v̂j+1(t) + v̂j−1(t)− 2v̂j(t)] + rv̂j(t)(1− v̂j(t)− hûj(t)),

j ∈ Z, t ∈ R, where ûj(t) := û(jτ, t), v̂j(t) := v̂(jτ, t) and τ is the spatial mesh size. It

follows from Theorem 6 that the minimal speed of (Pτ ) is given by

c∗(k; τ) = min
λ>0

{
τ−2(eλ + e−λ − 2) + (1− k)

λ

}
under the assumptions that 0 < k < 1 < h, 0 < d ≤ d∗, r > 0 and (h, k, r, d) ∈ A1∪A2∪A3.

Moreover, it is shown in [25] that

(5.1) τc∗(k; τ) → 2
√
1− k as τ → 0+.

Based on the above observations, we can prove the following theorem on the linear determi-

nacy for the system (1.1)-(1.2). Recall the constant d∗ = d∗(k) > 2 defined in Theorem 6.

Theorem 10 ([20]). Suppose that 0 < k < 1 < h, d > 0, and r > 0. If d ≤ d∗ and

(h, k, r, d) ∈ A1∪A2∪A3, then the minimal speed cmin of the traveling front of (1.1)-(1.2) is

equal to 2
√
1− k. More precisely, (1.1)-(1.2) admits a traveling front connecting (0, 1) and

(1, 0) with speed c if and only if c ≥ 2
√
1− k.

This theorem gives some extension of the result of [39]. Note that d∗(k) > 2. Clearly,

B1 ⊂ A1. Writing B2 = B20 ∪B21 with

B20 :=

{
d ∈ (0, 1], hk > 1, 0 < r ≤ (2− d)(1− k)

hk − 1

}
,

B21 :=

{
d ∈ (1, 2], hk > 1, 0 < r ≤ (2− d)(1− k)

hk − 1

}
,

we have B21 ⊂ A3 ∩ {d ∈ (1, 2]} and A2 ⊂ B20.

For reader’s convenience, we give a rough idea of the proof of Theorem 10 as follows. For

the details, we refer the reader to [20].

Proof of Theorem 10. It suffices to prove the existence of front for any speed c > 2
√
1− k.

Given c > 2
√
1− k. First, by (5.1), there exists τ0 > 0 such that

τc∗(k; τ) < c, ∀τ ∈ (0, τ0].
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For any speed c/τ , by Theorem 6, (Pτ ) has a traveling front (c/τ, Ũ τ,c, Ṽ τ,c), if τ ∈ (0, τ0].

Take τn = 1/n and cn ↓ c as n→ ∞. Let

(Ũn, Ṽn) = (Ũ τn,cn , Ṽ τn,cn), (Un, Vn)(ξ) = (Ũn, Ṽn)(ξ/τn).

Then (Un, Vn) satisfies

cn(Un)
′(ξ) = n2[Un(ξ + 1/n) + Un(ξ − 1/n)− 2Un(ξ)] + Un(ξ)[1− Un(ξ)− kVn(ξ)],

cn(Vn)
′(ξ) = n2d[Vn(ξ + 1/n) + Vn(ξ − 1/n)− 2Vn(ξ)] + rVn(ξ)[1− Vn(ξ)− hUn(ξ)].

Next, we use the discrete Fourier transform and the variation-of-constant formula to derive

the equi-continuity of (Un, Vn). Then, by taking a suitable subsequence of (Un, Vn) and

passing to the limit, the limit function (φ, ψ) satisfies (1.1)-(1.2).

Finally, we show that (φ, ψ) connecting (0, 1) to (1, 0) from −∞ to ∞. This completes

the proof. �

6. Some open problems

In this section, we list some interesting open problems in the study of discrete 2-species

competition system as follows.

(1) The uniqueness (up to translations) of traveling wavefront for the monostable case

with d > 1 and the bistable case.

(2) The stability of traveling wave solutions for both monostable and bistable cases.

(3) In the bistable case, it is important to determine the sign of the (unique) wave speed.

This would tell us which species wins the competition. The question is to determine

how the parameters in the system influence the sign of the speed.

(4) In the bistable case, it is expected that there exists a critical value d∗ so that the

propagation failure occurs when d < d∗ and nonzero speed traveling wave solutions

exist when d > d∗. It will be very interesting to characterize the d∗ by the parameters

in the system.

(5) Concerning 2-front entire solutions, it would be nice if one could construct 2-front

entire solutions for our LDS by relaxing the boundedness assumption on [1− Vi]/Ui.

Moreover, can we find some other new type entire solutions? This would give us

different invading/competiton phenomena.

(6) In the bistable case, it is interesting to determine the stability of the non-monotone

stationary solutions (when the migration rates are small) which we have constructed.

For the continuous PDE monostable case, a very difficult and interesting question is to

determine the optimal condition for the linear determinacy by the parameters of the system.

Note that all of the above results are for the homogeneous environment. However, in reality
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the environment is always heterogeneous. Therefore, it is very important to study the

competition system when the environment is heterogeneous.
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