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FOR A SINGULAR PREDATOR-PREY MODEL
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Abstract. We study an initial boundary value problem for a reaction-diffusion
system arising in the study of a singular predator-prey system. Under an assumption
on the growth rates, we first prove that the unique co-existence state is a center
for the kinetic system. Then we prove that solutions of the diffusion system with
equal diffusivity become spatially homogeneous and are subject to the kinetic part
asymptotically.

1. Introduction

In [2], a three-component model of ordinary differential equations is proposed for

the control of rabbits to protect birds from cat predation in insular environments.

By setting the rabbit population to be zero, the model is reduced to the following

two-component ordinary differential system:

(1.1)

{
B′ = rb

(
1− B

K

)
B − µC,

C ′ = rc
(
1− µC

B

)
C,

where B (resp. C) denotes the population density of birds (resp. cats). Furthermore,

rb (resp. rc) is the growth rate of birds (resp. cats), K is the carrying capacity of

birds, µ is the annual intake of birds per individual predator (cat), and the carrying

capacity of cats is assumed to be proportional to the birds. See also [3] for the model

derivation of (1.1) in the framework of non-spatially structured populations.

By introducing the function P := C/B, system (1.1) is reduced to the following

system of ordinary differential equations

(1.2)

{
B′ =

[
rb(1− B

K
)− µP

]
B,

P ′ =
[
rc − rb + rb

B
K
− µ(rc − 1)P

]
P.
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There are always two nontrivial constant equilibria, namely, (K, 0) and (0, P ∗∗), P ∗∗ :=
rc−rb

µ(rc−1)
, when rc ̸= 1. Also, when rb > 1, there is the unique co-existence state

(B∗, P ∗) := (K(1− 1/rb), 1/µ). The dynamical behaviors for solutions to system (1.2)

has been studied completely in [8]. We refer the reader to [8] for the details.

However, some results in [8] are given only based on numerical simulations. For

example, along the segment {rb + rc = 2, rb > 1, rc > 0}, it is conjectured in [8] that

the state (B∗, P ∗) is a center by numerical simulations. On the other hand, both sets

P± :=

{
(B,P ) | B > 0, P > 0,±

(
B

K
+

P

P ∗∗ − 1

)
> 0

}
,

are positively (forward) invariant for system (1.2). By numerical simulations, it is also

conjectured in [8] that solutions of (1.2) starting with initial data (B0, P0) ∈ P+ blow

up in finite time. One of the main purposes of this work is to verify the above two

numerical observations rigorously.

When taking into account the spatial dependence, the analysis of this predator-

prey model becomes much more complex. For this aspect, we consider the following

singular predator-prey model posed on a bounded smooth domain Ω ⊂ RN :

(1.3)


Bt = db∆B + rb

(
1− B

K

)
B − µC, x ∈ Ω, t > 0,

Ct = dc∆C + rc
(
1− µC

B

)
C, x ∈ Ω, t > 0,

∂B
∂ν

= ∂C
∂ν

= 0, x ∈ ∂Ω, t > 0,

B(·, 0) = B0 > 0, C(·, 0) = C0 ≥ 0, x ∈ Ω,

where db, dc, rb, rc, K, µ are positive constants and ν denotes the outer normal on ∂Ω.

The dynamical behaviors of problem (1.3) were studied in [8] when db = dc.

This includes the global existence and quenching (i.e., B reaches zero in finite time),

depending on the range of parameters rb and rc. A simplified model in the whole

space was studied in [5] in which a non-self-similar quenching was found. On the other

hand, the case when db ̸= dc is analyzed in a recent work [6] along with the associated

shadow system.

In this paper, we are interested in the case when

(1.4) rb + rc = 2, rb > 1, rc > 0.

In fact, it is suggested by numerical simulations in [8] that solutions of (1.3) with

db = dc may exhibit spatio-temporal oscillations under assumption (1.4). Hereafter,

we shall always assume the condition (1.4) being enforced. It is one of our purposes

to verify this interesting dynamical behavior rigorously.
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This spatio-temporal oscillation phenomena (or, eventually spatially-homogeneous

and time-periodic behavior) were also discussed in [11] for a predator-prey system and

in [10] for the Gierer-Meinhardt system. Note that the nonlinearity considered in

the works [11, 10] can be formulated as a Hamiltonian system. Unfortunately, our

nonlinearity here does not follow in this category. However, by applying the method

of Darboux (cf. [4, 12, 1, 7]), we are able to show that our nonlinearity is Darboux

integrable and a generalization of Hamiltonian-like system (see the formulation (3.2)

below) can be deduced.

The rest of this paper is organized as follows. In §2, we study the kinetic system

(1.2) under the assumption (1.4). In particular, we prove that (B∗, P ∗) is a center and

solutions starting from P+ blow up in finite time. Then the reaction diffusion system

is studied in §3. Using the results obtained in §2, we first reduce the reaction diffusion

system into a Hamiltonian-like system so that a Lyapunov functional for problem (1.3)

can be formulated. Finally, a theorem on the spatial-temporal oscillations for solutions

of problem (1.3) is proved.

2. The kinetic system

This section is devoted to the study of the kinetic system (1.2). Under assumption

(1.4), system (1.2) is reduced to

(2.1)

{
B′ = [rb(1− B

K
)− µP ]B,

P ′ = [2− 2rb + rb
B
K
+ µ(rb − 1)P ]P.

Recall the unique positive co-existence state (B∗, P ∗) = (K(1−1/rb), 1/µ), rb ∈ (1, 2).

Then the corresponding system for (B̄, P̄ ) with B̄ := B−B∗ and P̄ := P −P ∗ can be

represented as

(2.2)
d

dt

[
B̄
P̄

]
= A

[
B̄
P̄

]
+

[
− rb

K
B̄2 − µB̄P̄

rb
K
B̄P̄ + µ(rb − 1)P̄ 2

]
.

Here A is the Jacobian matrix for (2.1) evaluated at the stationary state (B∗, P ∗) and

it reads

A =

[
− rb

K
B∗ −µB∗

rb
K
P ∗ µ(rb − 1)P ∗

]
=

[
−(rb − 1) −µB∗

rb−1
µB∗ rb − 1

]
.

Therefore, the trace of A is 0 and its determinant is (rb − 1)(2 − rb) > 0. Thus the

eigenvalues of the matrix A are ±iω, where

(2.3) ω :=
√

(rb − 1)(2− rb),
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and whose corresponding eigenvectors are p± iq respectively, where

p :=

[
−µB∗

rb − 1

]
and q :=

[
0
ω

]
.

It is easy to check that these eigenvectors satisfy

(2.4) Ap = −ωq, Aq = ωp.

Also, we have

(2.5) e1 :=

[
1
0

]
=

−1

µB∗

{
p− rb − 1

ω
q
}
, e2 :=

[
0
1

]
=

1

ω
q

2.1. A simple reduction. Now, let us define the variable (X̄, Ȳ ) through the relation

(2.6)

[
B̄
P̄

]
= X̄p+ Ȳ q.

Then

(2.7) B̄ = −µB∗X̄, P̄ = (rb − 1)X̄ + ωȲ

By substituting (2.6) into (2.2) and applying (2.4), we get

X̄ ′p+ Ȳ ′q =
d

dt

[
B̄
P̄

]
(2.8)

= ωȲ p− ωX̄q+
(
− rb

K
B̄2 − µB̄P̄

)
e1 +

( rb
K

B̄P̄ + µ(rb − 1)P̄ 2
)
e2

From (2.7), (2.3) and a simple calculation,

− rb
K

B̄2 − µB̄P̄ = µ2B∗ωX̄Ȳ ,

rb
K

B̄P̄ + µ(rb − 1)P̄ 2 = µ(rb − 1){ω2Ȳ 2 − ω2X̄2 + ω(2rb − 3)X̄Ȳ }.

Substituting these equalities into (2.8), using (2.5), and equating the coefficients of p

and q, we get {
X̄ ′ = ωȲ − µωX̄Ȳ ,

Ȳ ′ = −ωX̄ + µ(rb − 1){ωȲ 2 − ωX̄2 + 2(rb − 1)X̄Ȳ }.

By a time scaling and setting (X,Y ) = (µX̄, µȲ ), we can reduce system (2.1) to

(2.9)

{
X ′ = Y −XY,

Y ′ = −X + α{Y 2 −X2 + 2αω−1XY },

hereafter, for notational convenience, we set α := rb−1 ∈ (0, 1) so that ω2 = α(1−α).
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2.2. Method of Darboux. We first recall the method of Darboux (cf. [4, 12, 1, 7])

for a planar system

(2.10) X ′ = p(X,Y ), Y ′ = q(X,Y ),

where p, q are polynomials of degree r. We call a polynomial f an invariant polynomial

of (2.10), if f is a solution to the following first order partial differential equation

⟨(p, q),∇f⟩ = p(X,Y )∂Xf(X,Y ) + q(X, Y )∂Y f(X, Y ) = g(X,Y )f(X, Y )

for some polynomial g, which is called the polynomial cofactor associated with the

invariant polynomial f . It is easily seen that the degree of g must be less than or

equal to r − 1. We also call the curve {f(X,Y ) = 0} an invariant algebraic curve of

system (2.10).

By the Darboux theory, if we can find invariant polynomials {fi}pi=1 with cofactors

{gi}pi=1 such that the condition

(2.11)

p∑
i=1

λigi = 0

holds for some complex numbers {λi}pi=1 which are not all zeroes, then it is easy to

check that the function

Ψ(X, Y ) :=

p∏
i=1

fλi
i (X, Y )

is a first integral of the system (2.10), i.e., Ψ satisfies

(2.12) p(X, Y )ΨX(X, Y ) + q(X, Y )ΨY (X, Y ) = 0.

In particular, (2.11) holds, if the number of different irreducible invariant curves is

strictly larger than r(r+1)/2. The reason is that the dimension of the vector space of

polynomials in two variables whose degree is less than or equal to r − 1 is r(r + 1)/2,

so that those associated cofactors must be linearly dependent.

Now, for system (2.9), the invariant polynomials are determined by solving the

partial differential equation

(2.13) [(1−X)Y ]∂Xf + [−X + α(Y 2 −X2 + 2αω−1XY )]∂Y f = gf

with some appropriate cofactor polynomial g. It is clear that equation (2.13) has a

polynomial solution

f1(X, Y ) = 1−X

with cofactor g1(X,Y ) = −Y .
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Next, we look for an invariant polynomial f which is linear in Y with coefficients

being unknown polynomials of X, that is, f(X,Y ) = k0(X) + k1(X)Y , where k0

and k1 are to be determined from a cofactor polynomial g of degree 1. With these

assumptions, we find the following two invariant straight lines

f±(X,Y ) = 1 + αX +
α

ω
(−α± 1)Y

with cofactors

g±(X, Y ) = αY +
α

ω
(α∓ 1)X,

respectively. By setting

λ1 = −1, λ± =
1

2α
(∓α− 1),

we get λ1g1 + λ+g+ + λ−g− = 0. Thus Ψ(X,Y ) := f−1
1 f

λ+

+ f
λ−
− is a first integral of

(2.9) by the Darboux integrability theory.

Since α ∈ (0, 1), we see that λ± < 0, and this first integral Ψ is positive in the

invariant domain (triangular region):

T := {(X,Y ) | f1(X,Y ) > 0, f+(X, Y ) > 0, f−(X,Y ) > 0} ∋ (0, 0).

Note also that Ψ diverges on the boundary of T .

2.3. The state (B∗, P ∗) is a center. We first claim that the function Ψ = f−1
1 f

λ+

+ f
λ−
−

is a strictly convex function in T . For this, we write

logΨ = λ1 log f1 + λ+ log f+ + λ− log f−.

Note that f1, f± are affine functions of X and Y . We recall that the composition

of a (strictly) convex function with an affine mapping is (strictly) convex and that

the minus logarithmic function − log : (0,∞) → R is strictly convex. Also, any linear

combination with positive coefficients of (strictly) convex functions is (strictly) convex.

Moreover, the composition of a (strictly) convex function with the exponential function

exp : R → R is still (strictly) convex. Hence the function Ψ : T → (0,∞) is strictly

convex.

Applying this convex property, we can prove

Theorem 2.1. The constant state (B∗, P ∗) is a center for system (1.2).

Proof. It is easy to check that (0, 0) is a critical point of Ψ. Hence it follows from

the strict convexity of Ψ that (0, 0) is the unique minimal point of Ψ in T . This also

implies that (0, 0) is an isolated critical point in T . Note that (2.12) implies that



SINGULAR PREY-PREDATOR MODEL 7

Ψ is constant along any solution trajectory of system (2.9). Hence Ψ is a non-trivial

conserved quantity and it follows that all trajectories in T \{(0, 0)} are periodic orbits.

Hence (B∗, P ∗) is a center for system (1.2), by returning to the original variable (B,P ).

This proves the theorem. �

2.4. Blow-up occurs in P+. As before, we always assume that condition (1.4) holds.

Then it is easy to check that P ∗∗ = 2/µ and so

B∗

K
+

P ∗

P ∗∗ = 1− 1

rb
+

1

2
< 1,

using rb ∈ (1, 2) and P ∗ = 1/µ. Hence (B∗, P ∗) is outside of the region P+. By a

simple phase plane analysis, it is easy to check that the boundary of P+ is an invariant

set of (2.1). Indeed, on the boundary of P+ the flow is pointed leftward on the part

on B-axis, upward on the part on P -axis, and to the same direction as the vector from

(K, 0) to (0, P ∗∗) on the line segment connecting (K, 0) and (0, P ∗∗). We conclude

that the region P+ is an invariant region which contains no critical points of (2.1).

On the other hand, it is easy to see that B′ < 0 in the region {B ≥ K,P > 0}.
Since B′ < 0 and P ′ > 0 on the line segment {P = P ∗∗ = 2/µ,B ∈ (0, K)}, we see

that P (t0) ≥ P ∗∗ for some finite t0 > 0 for any trajectory (B,P ) of (2.1). Since rb > 1,

a simple comparison principle (using the P -equation in (2.1)) as that in [8] yields that

the component P of any solution of (2.1) blows up in a finite time for any initial data

(B0, P0) lying in P+.

3. The reaction diffusion system

We study in this section the initial boundary value problem (1.3) for the reaction

diffusion system under the condition (1.4).

First, it follows from (2.7) that

(3.1) B = B∗(1−X), P = (1 + αX + ωY )/µ.

and so we have

B = B∗(1−X), C = BP = B∗(1−X)(1 + αX + ωY )/µ.

Since the Jacobian matrix ∂(B,C)/∂(X, Y ) is nonsingular in T , the inverse function

(X(B,C), Y (B,C)) of (B,C) is well-defined in the image (B,C)(T ) := U .



8 JONG-SHENQ GUO AND MASAHIKO SHIMOJO

Now, we set Φ(B,C) := Ψ(X(B,C), Y (B,C)). Since |∇Ψ| ̸= 0 in T \ {(0, 0)},
we also have |∇Φ| ̸= 0 in the punctured domain U \ {(B∗, C∗)} in (B,C)-plane. On

the other hand, along any trajectory {(B(t), C(t)) : t ∈ [0, T )} of (1.1),

0 =
d

dt
Φ(B(t), C(t)) = ∇Φ(B(t), C(t)) · (B′(t), C ′(t)), t ∈ [0, T ),

which implies (B′(t), C ′(t)) is parallel to (ΦC(B(t), C(t)),−ΦB(B(t), C(t))) for each

t ∈ [0, T ). As a consequence, there is a function S̃(t) such that rb

(
1− B(t)

K

)
B(t)− µC(t)

rc

(
1− µC(t)

B(t)

)
C(t)

 = S̃(t)

[
ΦC(B(t), C(t))
−ΦB(B(t), C(t))

]
for each t ∈ [0, T ). Since there is a unique trajectory passing through each point

(B,C) in U \ {(B∗, C∗)}, the function S(B,C) := S̃(t) (for a certain t) is well-defined

in U such that [
rb
(
1− B

K

)
B − µC

rc
(
1− µC

B

)
C

]
= S(B,C)

[
ΦC(B,C)
−ΦB(B,C)

]
.

Therefore, the first two equations in problem (1.3) can be re-formulated as

(3.2) Bt = db∆B + SΦC , Ct = db∆C − SΦB.

With this formulation, we are ready to prove the spatio-temporal oscillations of

solutions to problem (1.3) as follows.

Theorem 3.1. Assume db = dc and (1.4). Let (B,C) be a solution of problem (1.3)

such that

(3.3) I0 := {(B0(x), C0(x)) | x ∈ Ω} is a compact subset of U .

Then there exists an orbit Ô of (1.1) such that

(3.4) lim
t→∞

distC2((B(·, t), C(·, t)); Ô) = 0.

Moreover, if this Ô is not the center (B∗, C∗), C∗ := B∗P ∗, then

(3.5) lim
t→∞

∥(B(·, t+ l), C(·, t+ l))− (B(·, t), C(·, t))∥C2(Ω) = 0

for some constant l > 0.

Here (in Theorem 3.1) the notation distC2 is defined (as that in [11, 10]) by

distC2((B(·, t);C(·, t)), Ô) := inf
(B̂,Ĉ)∈Ô

∥(B(·, t), C(·, t))− (B̂, Ĉ)∥C2 ,

where ∥ · ∥C2 is the standard C2 norm.
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Proof of Theorem 3.1. First, we show that U is convex. Indeed, using ω2 = α(1 − α)

and (3.1), it is easy to check that {f1(X, Y ) = 0} is mapped to {B = 0}, {f+(X, Y ) =

0} is sent to {P = 0}, and {f−(X, Y ) = 0} is mapped to {B/K + P/P ∗∗ = 1}, where
P ∗∗ = 2/µ. Hence the image of T by the mapping (B,P ) is the triangular region

P− with vertices {(0, 0), (K, 0), (0, P ∗∗)}. Furthermore, it is easy to check that the

mapping (B,C)(B,P ) = (B,BP ) sends P− to the set U with

U = {(B,C) | B > 0, C > 0, B2/K + C/P ∗∗ < B}.

Therefore, the set U is convex.

Using the convexity of Ψ(X, Y ) and (3.1), it follows that the function Ψ̂(B,P ) :=

Ψ(X(B,P ), Y (B,P )) is strictly convex. Moreover, since (B,C) → C/B is convex in

the set {B > 0, C > 0}, it follows that Φ(B,C) is strictly convex on the convex set U .
Hence the Hessian of Φ, ∇2Φ(B,C), is positive definite in U .

Next, by Theorem 2.1, the set U is consisted of all closed orbits of (1.1) lying in

U . These closed orbits are simply the (convex) level curves of Φ. Now, by assumption

(3.3), there is an orbit O0 of (1.1) such that the set I0 is contained in the interior

of the region U0 which is enclosed by O0. Since the region U0 is convex, by the

standard invariance theory of [13], the solution (B,C) stays in U0 for all t ≥ 0. In

particular, (B,C) exists globally in time, is uniformly bounded in Ω × (0,∞) and

B ≥ δ for some constant δ > 0. Then, by the standard parabolic regularity theory,

the orbit O := {(B(·, t), C(·, t))}t≥0 is compact in C2(Ω̄) × C2(Ω̄). Hence the theory

of dynamical system (cf. [9]) implies that the ω-limit set of the orbit O, ω(B0, C0), is

a nonempty compact, connected and invariant set in C2(Ω̄)× C2(Ω̄).

Now, without loss of generality, we may assume that db = dc = 1. By a simple

calculation and using (3.2), we have

d

dt

∫
Ω

Φ(B(x, t), C(x, t)) dx =

∫
ω

{ΦBBt + ΦCCt} dx

=

∫
ω

{ΦB(∆B + SΦc) + ΦC(∆C − SΦB)} dx(3.6)

= −
∫
Ω

{ΦBB|∇B|2 + 2ΦBC∇B · ∇C + ΦCC |∇C|2} dx.

Therefore, the right-hand side of (3.6) is non-positive and so the functional

E[B,C](t) :=

∫
Ω

Φ(B(x, t), C(x, t)) dx
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is a Lyapunov functional for problem (1.3). Moreover, E ′[B,C](t) = 0 for some t > 0

if and only if |∇B(·, t)|2 + |∇C(·, t)|2 ≡ 0 in Ω.

Recall from the definitions of f1, f±, and T that Φ(B,C) ≥ 1 for (B,C) ∈ U .
Since E ′[B,C](t) ≤ 0 for all t ≥ 0, the value E∞ := limt→∞ E[B,C](t) exists and

E∞ ∈ [1,∞). Let (B∗, C∗) ∈ ω(B0, C0), i.e., there exists a sequence {tj} tending to ∞
such that

lim
j→∞

∥(B(·, tj), C(·, tj))− (B∗(·), C∗(·))∥C2 = 0.

Then, up to extracting a subsequence of {tj}, E ′[B,C](tj) → 0 as j → ∞. It follows

that |∇B∗|2 + |∇C∗|2 ≡ 0 in Ω, i.e., (B∗, C∗) is a constant independent of the space

variable x. Moreover, Φ(B∗, C∗) = E∞/|Ω|, where |Ω| is the Lebesgue measure of Ω.

Since this is true for any (B∗, C∗) in ω(B0, C0), this determines a unique orbit Ô of

(1.1) such that (3.4) holds.

Finally, we prove (3.5) when the orbit Ô is not the single point (B∗, C∗). Let l be

the period of Ô. Then we have l > 0. Given any sequence {tj} such that tj → ∞ as

j → ∞. By the parabolic regularity and Ascoli-Arzela theorem, the same argument

as above implies that there exists a subsequence {tjk} of {tj} such that

lim
k→∞

sup
s∈[−2l,2l]

∥(B(·, s+ tjk), C(·, s+ tjk))− (B̂(s), Ĉ(s))∥C2 = 0,

where (B̂(s), Ĉ(s)) ∈ Ô. It follows from (B̂(s+ l), Ĉ(s+ l)) = (B̂(s), Ĉ(s)) that

lim sup
k→∞

∥(B(·, s+ tjk + l), B(·, s+ tjk + l))− (B(·, s+ tjk), C(·, s+ tjk)∥C2

≤ lim
k→∞

∥(B(·, s+ tjk + l), C(·, s+ tjk + l))− (B̂(s+ l), Ĉ(s+ l))∥C2

+ lim
k→∞

∥(B(·, s+ tjk), C(·, s+ tjk))− (B̂(s), Ĉ(s))∥C2 = 0.

Hence we obtain

lim
k→∞

∥(B(·, s+ tjk + l), B(·, s+ tjk + l))− (B(·, s+ tjk), C(·, s+ tjk)∥C2 = 0.

Since {tj} is arbitrary, we conclude that

lim
t→∞

∥(B(·, s+ t+ l), C(·, s+ t+ l))− (B(·, s+ t), C(·, s+ t)∥C2 = 0.

Then (3.5) follows by setting s = 0. This completes the proof of Theorem 3.1. �
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