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Abstract

We study a diffusive predator-prey model of Lotka-Volterra type functional response in which
both species obey the logistic growth such that the carrying capacity of the predator is pro-
portional to the prey population and the one for prey is a constant. Both continuous and
discrete diffusion are addressed. Our aim is to see whether both species can survive eventu-
ally, if an alien invading predator is introduced to the habitat of an existing prey. The answer
to this question is positive under certain restriction on the parameter. Applying Schauder’s
fixed point theory with the help of suitable upper and lower solutions, the existence of trav-
eling wave solutions for this model is proven. Furthermore, by deriving the non-existence
of traveling wave solutions, we also determine the minimal speed of traveling waves for this
model. This provides an estimation of the invasion speed.

Keywords: predator-prey model, Lotka-Volterra type, traveling wave solution, minimal
speed

1. Introduction

In this paper, we consider the following diffusive predator-prey model

U = Uge +1u(l —u) — rkuv,
v (1.1)
vy = dvUg, + SU (1——),
u
where the unknown functions u, v of (z,t), z,t € R, stand for the population densities of prey
and predator species at position x and time ¢, respectively, d,r, s, k are positive constants
such that 1,d are diffusion coefficients and r, s are intrinsic growth rates of species u, v,
respectively. The functional response of predator to prey is given by rku, which is of Lotka-
Volterra type. The prey obeys the logistic growth and its carrying capacity is normalized to
be 1. However, the density of predator follows a logistic dynamics with a varying carrying
capacity proportional to the density of prey.
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In fact, the model (1.1) is a special case of the following Holling-Tanner type predator-
prey model (cf. [24, 25]):

rku
a-+bu
v

vy = dvmz—i—sv(l——),
U

U = Uge +r1u(l —u) — v,

when a = 1,b = 0. For the case when a = 0,b = 1, it is possible that the density of prey may
vanish so that quenching or extinction phenomenon may occur. For this singular behavior,
we refer the reader to [4, 5, 7, 8, 10] and the references cited therein.

It is easy to see that (1.1) has two constant steady states (1,0) and (1/(1 + k), 1/(1 + k)).
In [6], they studied the model (1.1) in a bounded domain with zero Neumann boundary
condition. Among other things, by constructing a delicate Lyapunov function, they show
that the unique positive constant state (1/(14&),1/(1+k)) is globally stable under certain
restrictions on k. In other words, this constant state attracts every positive solution of (1.1)
for the Neumann initial boundary value problem in a bounded domain. Since the predator
will extinct if the prey vanish, the possibility of co-existence is very important from the
ecological point view. For the case a = 1,b > 0, we refer the reader to [12, 13, 14].

In this paper, we consider the case when the habitat is the whole real line. We are
interested in the question whether both species can survive eventually, if an alien predator
is introduced into the habitat where a prey has been living there. In fact, this question is
equivalent to whether the solution of (1.1) tend to the unique positive constant steady state
as the time approaches infinity. Therefore, we study the so-called traveling wave solution
defined as follows.

A solution of (1.1) is called a traveling wave with speed c if there exist positive functions
¢1 and ¢o defined on R such that u(z,t) = ¢1(x + ct) and v(x,t) = ¢o(x + ct). Here ¢, and
¢o are the wave profiles. Set z := x + ¢t and substitute (u,v)(z,t) = (¢1, ¢2)(2) into (1.1).
Then the wave profile (¢1, ¢o) satisfies the following system of equations:

¢1(2) = cdh(2) +1¢1(2)[1 — ¢1(2) —kea(2)] = 0, z €R,

dd(z) — cdly(2) + sa(2) {1 - zjz;] =0, zeR.

Here the prime denotes the derivative with respect to z. As described above, we are interested
in the traveling wave solutions of (1.1) connecting (1,0) and (1/(1 + k),1/(1 + k)). This
implies that (¢1, ¢o) satisfies the following asymptotic boundary conditions

(1.2)

221_1100(%7(?2)(2) = (1,0), ngfoo(%,(?z)(z) = (H—Lk’ H%) : (1.3)

Note that the existence of such traveling wave solutions (with ¢ > 0) means the successful
invasion of the predator.

Biologically, it is also interesting to study the invasion speed. A constant ¢* is called
the minimal speed of traveling waves, if there is a traveling wave of speed ¢ for any ¢ > ¢*
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and no wave of speed c exists for ¢ < ¢*. The minimal speed of traveling waves plays an
important role in the estimation of the invasion speed. We prove that the minimal speed of
traveling wave solutions of (1.1) is given by ¢* := 2v/ds. Notice that this minimal speed is
independent of the parameters r and k.

In this paper, we also consider the following lattice dynamical system (LDS)

du;

CZ = (uip1 + w1 — 2w;) +ru(1 —w; — kvy), 1 € Z,

dUi V; ] (14)
i d(Vig1 +vi1 —2v;) +sv; | 1= — ), i €7,

where u; = u;(t), v; = v;(t), t € R. Here u;, v; (as functions of time ¢) stand for the population
densities of prey and predator at niches . In fact, when we divide the habitat into countable
niches and replace the Laplace operator of (1.1) by a finite difference operator, we end up with
the system (1.4) (with different scale of diffusion coefficients). For the aggregated dispersion,
the discrete model (1.4) is more suitable than the continuous model (1.1) to describe the
phenomenon of invasion. Indeed, lattice dynamic systems have been extensively used to
model biological problems, see, for example, [25, 26]. Therefore, we also study the LDS
model (1.4) in this paper.

A solution of (1.4) is called a traveling wave with speed c if there exist positive functions
U,V (the wave profiles) defied on R such that u;(t) = U(i 4+ ct) and v;(t) = V(i 4 ct) for
i €Z,t€R. Set =i+ ct and substitute (u;,v;)(t) = (U, V)(€) into (1.4). Then (U, V)
satisfies the following system of equations

— () + DIUNE) + rU([1 — U(€) — V()] =0, € R,
~V(© +aDIVI) + v (©) [1- 5| <0, €er
where D[¢](€) == d(E+ 1) + p(€ — 1) — 2¢(&). Since we are interested in the traveling wave

solution connecting (1,0) and (1/(1+k),1/(1+ k)), we also impose the following boundary

(1.5)

conditions

lim (U, V)(€) = (1,0), Tim (U, V)(€) = (1/(1+ k), 1/(1+ k). (1.6)
E——0o0 E—+o0
Notice that system (1.5) is a system of functional differential equations which is of infinite
dimensional nature. We also derive the existence of traveling waves of (1.4) and prove that
the minimal speed of traveling wave solutions of (1.4) is given by

d(e A _2
¢, = Inf (e +e )+s‘

A>0 A (1.7)

Here the notion of minimal speed is defined as for the continuous case.

Note that the nonlinearity in the above systems ((1.1), (1.2), (1.4), (1.5)) does not enjoy
the monotone property in which the standard comparison principle can be applied. For the
existence of traveling wave solutions of non-monotone systems, the application of Schauder’s
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fixed point theorem with the help of (generalized) upper and lower solutions has been proved
to be quite successful. For this aspect, we refer the reader to the works [23, 17, 18, 21, 15,
19, 22] for the continuous case and [16, 20] for the discrete case. See also references cited
therein. Although this method (by now) is very standard, the existence of suitable upper
and lower solutions is not trivial. In fact, the construction of upper and lower solutions relies
on a delicate formulation of appropriate functions with careful choices of suitable parameters
(or constants). Due to a technical difficulty, we shall always assume that k& € (0,1) in this
paper. Indeed, if one can construct a suitable pair of upper and lower solutions for k£ > 1,
then all results of this paper can be readily derived. We leave it as an open problem.
Different from the existing works, there is a negative power nonlinearity in the predator
equation of our model. In particular, we need a positive (everywhere) lower solution for the
prey density. To overcome this singularity, a new formulation for the upper-lower-solutions
is found for the prey component. Furthermore, in the case ¢ = ¢*, due to the feature of a
double root A\, for the characteristic equation of ¢, at 2 = —o0, the asymptotic behavior of

A2z 222 Tn fact, the leading term is only ze*??.

¢ is expected to be a combination of e*2* and ze
However, due to the special nonlinearity of our model, we take the perturbation term for
the lower solution of ¢y to be v/—ze*?*. This is a new formulation and it works well for our
model. A precise and detailed construction of upper and lower solutions is done in §2.1 for
the continuous case and §3.1 for the discrete case.

As for the asymptotic boundary conditions, the one at z = —oo (or, £ = —o0) can be
verified without any costs due to the construction of upper and lower solutions. For the
conditions at z = 400 and £ = 400, we borrow an idea from [15] in which a sequence of
shrinking intervals is introduced (see the proofs of Theorems 2.5 and 3.6 for details).

The rest of this paper is organized as follows. In §2, we study the system (1.2) with the
boundary conditions (1.3). First, we construct a pair of upper and lower solutions of (1.2)
for any speed ¢ > ¢* = 2v/ds. Next, we obtain the existence of a positive solution of system
(1.2) by applying Schauder’s fixed point theorem. Finally, we prove this solution satisfies
the boundary conditions (1.3). For ¢ < ¢*, the non-existence of solution of (1.2)-(1.3) can be
shown by using a contradiction argument with the help of the spreading phenomenon of the
Cauchy problem for Fisher’s equation. This implies that ¢ = ¢* is the minimal wave speed
for the continuous case. Then the discrete case is treated in §3. Although the construction
of upper and lower solutions is by no means trivial, once the formula of upper and lower
solutions are found, it is not very difficult to verify it. For reader’s convenience, we give the
details of the verifications of all constructed upper and lower solutions in §4.

2. Traveling wave solutions of (1.1)

2.1. Upper and lower solutions

First, we give the definition of upper and lower solutions of (1.2) as follows.



Definition 2.1. The functions (¢y, $2) and (¢1,#2) are called a pair of upper and lower
solutions of (1.2), if & ) @i, b ¢i", i =1,2 are bounded and the inequalities

)
) (2.1)
(
(

hold for z € R\ D with some finite set D = {z1,29,..., 2}
To find upper and lower solutions of (1.2), we divide it into two cases: ¢ > ¢* and ¢ = ¢*.

2.1.1. The case ¢ > c*.

For a given ¢ > ¢* = 2v/ds, we define the following positive constants

et Vet dr c— V2 —4ds c+ 2 —4ds

A
! 2 2 2

Ay = Az =

In fact, we have
M—c\—r=0 and d\ —c\i+s=0,1i=23.
First, for given constants u,q > 1, it is easy to check that the function
f(z) = 2% — ge

has a unique zero point at zp = —Ing/[(x — 1)A2] and a unique maximum point at zp =
—In(qu)/[(;r — 1)Aa] < 2. Since f is continuous on R and positive on (—o0, zy), there exist
d and z2 € (2, 29) such that

0<o<1l—k and f(22)=20. (2.2)

Note that f'(z2) < 0.
Next, we choose the constants u, v, n, p, ¢ and € satisfying the following assumptions
(A1)-(A3) in sequence.
(A1) p € (1,min{A3/A,2}), v > max{l, A/} and n > 0 is small enough such that
A2 > nA; and (nA;)? — c¢(n\1) — r + 7k < 0. Here we used the assumption k < 1.

r(l+k) s
B2) 2> (o= clop) —r g 204> e {1’ —[A(uX2)? — cpha) + sI(1— k) }
rkd k(1 — gelr—Dre=)

(A3) 0<e< min{k,
29 satisfy (2.2).

here ¢ and
[(LA1)2 — c(vA1) — 1] +7kd (VA)2 — c(vhy) — 7 + rk}’ where 0 an



Now we introduce the functions ¢;(2), ¢1(2), ¢2(2), ¢2(z) as follows.

_ L, z 20,

P1(z) = (2.3)
1 —e(eM® —eM7), 2 <0,
1—k, z > 2,

$1(z) = (2.4)
1 — k(eM? +pem™=) 2 <z,

_ L, 220,
2?2 <0,
57 z Z 22,

Pa2(2) = (2.6)

6)\2Z - qe,u)\gz7 z S 22,
where z; < 0 is defined by eM* + pe"™1% = 1. Then the following lemma holds.

Lemma 2.1. Assume that ¢ > c¢*. Then the functions (¢1,2) and (¢1, ¢2) defined by (2.3)-
(2.6) are a pair of upper and lower solutions of (1.2).

2.1.2. The case c = c*.
In this subsection, we always assume that ¢ = ¢* = 2v/ds. In this case, we have \y =
A3 = ¢/ (2d).

For given positive constants h and ¢, we consider the function
9(2) == [~hz — q(—2)"?)e*, 2z <0.
We claim that ¢ has exactly two critical points in (—oo,0). For this, we compute
g'(2) = [=hAaz — gho(—2)Y% — h 4 q(—2)"V?/2)e??*,

Note that ¢(0) =0, ¢'(0) = o0, g(—o0) = 0 and ¢'(z) > 0 for —z > 1. Hence ¢ has at least
two critical points in (—oo,0). On the other hand, we set

G(w) == haw® — ghow? — hw + q/2, w = /—2.

Then G (w) = 3hAw?—2gA\yw—h and so G has at most one critical point in (0, co). However,
since G(0) = ¢/2 > 0, G'(0) = —h < 0 and G(o0) = 00, G has at least one critical point
in (0,00). Hence G has exactly one critical point in (0, c0) which is the (unique) minimum
point so that G has at most two zeros in (0, 00). Therefore, g has exactly two critical points
in (—o0,0).

Set 29 = 20(h,q) :== —(gq/h)®. Then z is the unique zero of g in (—oc,0). Moreover,
g > 0in (=00, 2p) and ¢ has a unique maximum point Z in (—o0, zp). Note also that the
function —hz — g(—2z)"/? is positive and strictly decreasing in (—oo, z).
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Now, we choose the appropriate constants in sequence as follows.
First, we take n with 0 < < 1 such that

(NAL)? —c(nh1) — 7 +71k <0, Ay > 20\ (2.7)
Secondly, set f(z) := —hze’?* with h = Xge?/2. Then f is strictly increasing on
(—00, —2/Xs] and f(—2/XA2) = 1. Let p be a constant with
rlk + h/(nAie)] }
> max s e, . 2.8
o= {e e 2

Then there exists a z; such that e** 4 pe™* = 1 and z; < —2/)\y, since e** + pe™* is

increasing in z and
M2 g pem2h/re 5 om2/Ae 4 el 5

Thirdly, we choose 6 > 0 small enough such that 6 < 1 — k. Let 25 be the unique
z € (2, zp) such that g(z) = 0. Note that ¢’ < 0 in (2, zp). Then we choose ¢ > 1 sufficiently
large such that

sh2 7/2
(q/h)* >2/Xg, q> dé f 5 (2;2) : (2.9)

The first inequality in (2.9) shows us that zo < 2o < —2/\s.
Finally, we take v > max{1, \y/\;} and € > 0 small enough such that

rké rk(1 — k)(—hzy — q(—22)"/?) }
[(vA1)?2 = c(vA1) — r] +1kd’ [(VA1)2 — c(vAy) — 7]

€ < min {k:, (2.10)

Then we define ¢1(z), ¢1(2), §2(2), ¢2(2) as follows:

1, z >0,
(2.11)
1 —e(eM® —erM2), 2 <0,

(2)
11—k, z > 2,
i(z) = (2.12)
1 — k(eM? 4+ pem™*), 2 < 2,
1, z > —2/)\2,
(2.13)
—hze*?* 2 < —=2/)\,,

6, z 2 22,

P2(z) = (2.14)

[—hz — q(—2)'/?]e*?, 2 < 2.

Lemma 2.2. For ¢ = ¢*, the functions (¢1,¢2) and (¢1, ¢2) defined by (2.11)-(2.14) are a
pair of upper and lower solutions of (1.2).



2.2. Existence of traveling wave solutions

With upper and lower solutions at hand, we shall apply Schauder’s fixed point theorem
to derive the existence of solution to (1.2).
First, we introduce the following function spaces

X = {®=(¢,¢9) | P is a continuous function from R to R*},
X = {(¢d1,02) € X |1 =k < ¢1(2) <1and 0 < ¢y(z) <1 for all z € R}.

Define the functions

Fi(y1,y2) == Byr +ryi (1 — y1 — kya),

Fy(y1,92) := Bya + sys (1 — %>

Y1

for some constant §. By taking 8 > max{r(l + k),s(1 + k)/(1 — k)}, we see that F} is
nondecreasing in y; and is decreasing in y, for 1 —k < y; <1 and 0 < yy < 1. Also, F3 is
nondecreasing with respect to y; and yo for 1 —k <y; <land 0 < yy < 1.

For notational convenience, we set d; = 1 and dy = d. Then (1.2) can be re-written as

digy (2) — cdii(2) — Bi(2) + Fi(d1, 2)(2) =0, i=1,2. (2.15)
Now we define

— /2 +45d; \/ ¢+ 404d; _
)\il(C>:C T 6 )\i2(c>:C+ c 5 1=1,2.

2d; ’ 2d,; ’

Without ambiguity, we sometime omit the dependence of ¢ and denote \;; = A;(c) and
iz = Aia(c). Tt is easy to see that \;; < 0 < Ay and

dl)‘?l — C)\ﬂ — 6 = O, dl/\122 — C/\ig — ﬁ = 0, 1= 1, 2.

For (¢1, ¢2) € X, we consider the operator P = (P, P5) : X — X defined as follows

1 z o
ID@' _ Ai1(z—s) / Ai2(z—s) E d
@0 = g | [ [ (01,2,
fori =1,2, z € R. It is easy to check that the operator P satisfies

di(Pi(¢1, $2))"(2) — c(Pi(#1, ¢2))' (2) — BPi(¢1, d2)(2) + Fi(dr, ¢2)(2) = 0,

fori=1,2, z € R.
Although the proof of the following lemma is very standard (cf. [23, 17, 18]), for reader’s
convenience we provide some details here.

Lemma 2.3. Let ¢ > 0. Suppose that (1.2) has a pair of upper and lower solutions (1, ¢s)
and (¢1, ¢2) in Xy satisfying



(1) ¢i(2) > ¢i(2), 2 € R, i=1,2;
(2) <Z5z,( -) > E/(Z—l-), @(2—) < ¢i'(24), z € D, i = 1,2, where

6 (%) = lim &,(€), ¢/(2£) = lim ¢/(€).

E—zt — =zt —

Then (1.2) has a positive solution (¢1,ds) such that ¢;(z) > ¢i(z) > ¢i(z) for all z € R for
i=1,2.

Proof. Choose a constant a € (0, min{—M\;;, —A21}) and denote || - || the supremum norm
in R%. Define

Bao(R,R?) := {CD € X,

sup H@(z)He’“'z‘ < oo} ;| ®|q :=sup ||<I)(z)||e’°‘|zl.
zeR z€R

Then (B, (R,R?),| - |,) is a Banach space. Also, we let

[ = {(¢1,02) € Xi | ¢i(2) < ¢i(2) < ¢i(2) for all z € R, i =1,2}.

Then I' is a nonempty convex bounded closed set with respect to the weighted norm | - |,.
First, we show that P maps I" into itself. For (¢1,¢2)(z) € I" and each fixed z € R, we
have

Pi(¢1,02)(2) < Pi(¢r, 92)(2) < Pi(d1, d2)(2),

Py(¢1, ¢2)(2) < Pi(¢1, 92)(2) < Pa(¢1, ¢2)(2),

by the choice of 5. Thus we only need to show that

{QWSH@ﬁM@<H%¢M@§_ 210
$2(2) < Pa(1, $2)(2) < Pa(dhr, 92)(2) < ¢a(2), z € R. '

Without loss of generality, we may assume that z; > zo > ... > 2, and set zy5 = o0,
Zm+1 = —00. For z € R\D, there exists a k € {0,1,---,m} such that z € (2541, 2). By the
definition of upper and lower solutions, if z € R\ D, then

R = s | [ e [T o] R

—00

; ’ A11(z—s) = )\12(z—5):| o /
s L e e o) + e

—00

v

k
= o)+ ﬁ Do ey4) = 5]

)\12 — )\11 ‘Zk; M=) [¢1 (zj+) — @/(Zj—)]
h(2).

v



The continuity of Pi(¢1, $2)(z) and ¢y(2) for z € R implies that Py (¢, ¢2)(2) > ¢1(z) for all
z € R. The other inequalities in (2.16) can be shown similarly.

Next, that P : I' — I' is completely continuous in the sense of the weighted norm | - |,
can be shown by a similar argument as in [23]. We shall not repeat it here. Finally, we apply
Schauder’s fixed point theorem to obtain the conclusion of the lemma. O

By Lemmas 2.1- 2.3, we have the following theorem.

Theorem 2.4. For each ¢ > c*, there exists a positive solution (¢1,P2) of (1.2) such that

lim (g1, $2)(2) = (1,0) and ¢.(z) < ¢i(2) < 0:(2), z€R, i=1,2.

¥
Proof. It suffices to verify the conditions (1) and (2) in Lemma 2.3.

Now we treat the case ¢ > ¢*. First we show that ¢1(z) > ¢1(2) for z € R. Recall that
€ < k. For z > 0, we have

$1(2) — ¢1(z) = k>0.
When z; < z < 0, we have
01(2) — ¢1(2) =k — e(eM* — ) > k — € > 0.
For z < z;, we know that
d1(2) — ¢1(2) = (kb — €)eM? + ee" % 4 kpe™*>().

So we obtain the conclusion. Similarly, we can show that ¢»(z) > ¢o(z) for z € R. Thus,
condition (1) of Lemma 2.3 holds.
For condition (2), we have

—

B (04) =0 < (v — DA = o1 (0-),

o1 (z14) = 0> —k(MeM™ + ppre™ ) = ¢/ (21 -),
@2 (04+) = 0 < Ay = 65/ (0-),
@2’ (z0+) = 0> @9/ (22—).

When ¢ = ¢*, by our construction, it is easy to verify the conditions (1) and (2) in
Lemma 2.3.
That lim,, (1, ¢2)(2) = (1,0) is trivial. This completes the proof of the theorem. O
Now we study the tail behavior of the traveling wave solution obtained in Theorem 2.4
at z = +oo. In order to do this, we define the functions m(#) and M (0) for 6 € [0,1] as
follows.
1 1

0)=0——, M) =0——+(1—-0)(1 .

m(0) =0 M(B) =6 + (1= 8)(1+)

Here, ¢ is small enough such that k(1 +¢) < 1. For 0 < 6; < 0 < 1, it is easy to see that
1

0:m(0)<m(91)<m(62)<m(1):1+—k:M(1)<M(02)<M(6’1)<M(0):1+5.

We are ready to show the tail behavior of traveling wave solution at oo as follows.
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Theorem 2.5. Let (¢1,¢2) be a positive solution obtained in Theorem 2.4. Then

i (61,69C) = (11715 )- 21

Z—+00

Proof. By the facts 1 —k = ¢1(2) < ¢1(2) < ¢1(2) =1 and 6§ = ¢o(2) < ¢o(2) < ¢o(2) =1
for all z > 0, we obtain that

limsup ér(2) < 1, limsup éa(z) < 1,

z—>+00 zZ—+00
lir_r}jg)f $1(z) >1—k >0, I;I_I}J:&f Pa(z) > 6 > 0.

Now we denote

¢; =liminf ¢;(z), ¢ =limsupg;(z), i=1,2.

i
Z—r+00 2—+00

Obviously, we have
m(0) =0< ¢; < ¢ <14+e=M(0), i=12.
Note that (2.17) holds if we can show that
m(0) < ¢; < of < M(0), i=1,2, (2.18)

for all € [0,1).

Set 6y := sup{f € [0,1)](2.18) holds}. Then 6y is well-defined and it suffices to claim
that 8y = 1. For contradiction, we suppose that 8y < 1. Then, by passing to the limit, we
have

m(b) < ¢; < ¢f < M(), i =1,2.

Moreover, by the definition of 6y, (2.18) does not hold for § = 6y, i.e., at least one of the
following conditions holds:

oy =m(0o), o7 = M(6y), ¢3 =m(by), ¢35 = M(6y).

First, we assume that ¢; = m(6p). If ¢; is eventually monotone, we have ¢;(c0) exists by
¢1 is bounded on R. Since [} ¢} (s)ds = ¢1(00) —$1(0) is finite, either liminf o ¢} (s) = 0
if ¢1(s) > 0 for s > 1 or limsup,_,, . ¢1(s) = 0 if ¢{(s) <0 for s > 1. Then we can find
a sequence {z,} with 2z, — +o00 as n — 400 such that lim, , . ¢1(2,) = m(6y) and
lim, 100 @1 (2,,) = 0. Also, we know that limsup,,_, . ¢2(2,) < M (6p). So we have

) )
tininf (1= 01(z0) = Ka(n)]} 2 1= o = | 1o+ (1= Bo)(142)

= (1—0)(1—k(1+¢) > 0.
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Integrating the first equation of the system (1.2) from 0 to z,, we obtain that

B (2n) — 6(0) — cln(z2) — / or($)[1 — buls) — ken(s)ds.  (2.19)

Letting n — +o0, we get a contradiction, since the left-hand side of (2.19) remains bounded
and the right-hand side of (2.19) tends to —oo.

If ¢, is oscillatory at oo, then we can choose a sequence {z,} of minimal points of ¢; with
Zp — +00 as n — +oo such that lim, - ¢1(2,) = m(fy). Note that ¢7(z,) — cdi(z,) >0
for all n. Also, we have limsup,,_, ., ¢2(zn) < M(6y) and

.. 6o o
1%I_I>1ig[1—¢1(zn)—k¢2(2n)] > 1_1+k;_k 1+k+(1—90)(1+6)

= (1-6p)(1—k(1+¢))>0.

This implies that
l%rill&f{qb/{(zn) — C¢/1(Zn) + 1oy (Zn>[1 - ¢1<Zn) - k¢2(zn>]} >0,

a contradiction. Hence ¢; = m(6p) is impossible.

The case for ¢ = M (6y) can be treated similarly.

Next, we deal with the case ¢; = m(fy). In this case, without loss of generality, we
may assume that m(0y) < ¢; < ¢ < M(6p). If ¢y is eventually monotone, we have ¢;(00)
exists due to ¢, is bounded on R. By the similar argument as the case ¢;(c0) exists, we can
find a sequence {,} with &, — +o0o0 as n — 400 such that lim, o ¢2(&,) = m(6y) and
limy, 4 00 #5(&,) = 0. Moreover, we have

o _ $2(&n) o m(6o) _
lim inf [1 —(bl(én)} > 1 m(00) 0.

n——+00
Integrating the second equation of the system (1.2) from 0 to &,, we obtain that

én

A16,(&x) — 04(0)] — clénl€) — a(0)] = =5 | * n(s) [1 _ ZE;] ds. (2.20)

Letting n — +o00, we get a contradiction. On the other hand, if ¢5 is oscillatory at co, then
we can choose a sequence {,} of minimal points of ¢ with &, — +o0c0 as n — +oo such
that lim,, o0 $2(&,) = m(6y). Note that doi(&,) — cdh(&,) > 0 for all n. Also, we have

lim inf [1 _ M] > {1 _ m(g‘))} —0,

n—+00 ¢1(2n) m(6o)

by using ¢; > m(6p). Hence we obtain that

lim inf {d(b’z’(zn) — edh(zn) + 56(20) {1 . %(Z”)} } >0,

n—4o00 ¢1 (Zn)

a contradiction. Similarly, we can deal with the case ¢3 = M (6y) to reach a contradiction.
Consequently, we must have 6y = 1 and (2.18) follows. O
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2.3. Determination of the minimal speed

In this section, we would like to show that ¢ = ¢* is the minimal wave speed. This
is equivalent to show that there is no positive solution of (1.2)-(1.3) for ¢ < ¢*, due to
Theorems 2.4 and 2.5.

First, we recall the following spreading phenomenon (cf. [1]), namely, if zy > 0 and
¢ € (0,2/dr), then

1
liminf inf z(x,t) = limsup sup z(z,t) = — (2.21)
a

t=rFo0 |xf<ct t—4o0 |z|<ct

for the solution z of the following Cauchy problem for Fisher’s equation (see, e.g., [9, 27])

z2i(x,t) = dzge(x,t) +12(2,t)[1 — az(x,t)], xR, t>0,
(2.22)
Z(x,O) :Zo(x), r € R,

with d, 7, a are positive constants and zy(x) is a positive bounded continuous function. Then
we have

Theorem 2.6. For c < c¢*, there is no positive solution of (1.2)-(1.3).

Proof. For contradiction, we suppose that there exists a positive solution (¢q, ¢o) of (1.2)-
(1.3) for some ¢ < ¢*. Since & < ¢* = 2v/ds, there exists a § € (0,1) with 0 < 1 —6 < 1 such
that 2v/dsf > é. By (1.3) and the positivity of ¢, there exists a positive constant K such
that a(x,t) := ¢o(x + ¢t) satisfies

{ OKt(-T,t) > darx(xvt) + SO{(ZB,t) [1 - Ka(aj’t)] y
a(z,0) = ¢go(x).

Now we consider that y(t) = —(2v/dsf+¢)t/2. Note that |y(t)| < 2v/dsf|t|. Then, by (2.21),

we obtain

1
lim inf t).t) > — .
im inf o (y(t), )_K>O

t—+o00

On the other hand, y(t) + ¢t = (¢ — 2V ds#)t/2 — —oo as t — +o00. Hence we obtain that

limsup a(y(t),t) = limsup ¢2(y(t) + &) = lim ¢o(z) =0,

t—+oo t—+o00 Z—r—0

a contradiction. Therefore, the proof of this theorem is done. O

3. Traveling wave solutions of (1.4)

3.1. Upper and lower solutions

For the system (1.5), the upper and lower solutions are defined as follows.
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Definition 3.1. The functions (U,V) and (U,V) are called a pair of upper and lower solu-
tions of (1.5), if U,V , U,V exist and the inequalities

[TE+1)+T(E—1)—20(€)] — U () +rUE)[L - T(€) —kV(E)] <0, (3.1)

UE+1D)+UE—1)—20()] —cU'(§) + U1 -UE) —kV(E] =0, (3.2)

e A

AT+ )+ ViE=1) - W) -V +7© (1-5 ) <0 @9
: V()

AV (€ + 1) + V(€ — 1) — 2V()] — V'(€) + sV(€) (1— Q(£)>20 (3.4)

hold for & € R\ D with some finite set D = {&1,&, ..., &m}-
Now we construct a suitable pair of upper and lower solutions of (1.5) for each ¢ > c,.

3.1.1. The case ¢ > c,.
For ¢ > c¢,, there are positive constants A, Ay, A3 with Ay < A3 such that

eMte™M—2—ch\—r=0 and d(ed+e M —2)—cA\+s5=0,i=23.
For constants p,q > 1, we consider the function
(&) = et — qeM™e.

Then we have the following lemma.

Lemma 3.1. For any given u,q > 1, there exist a sufficiently small 6 with 0 < 6 <1 —Fk
and a & < 0 such that f(§&) = d and f(§) > 0 for all § € [&s — 1,&).

Proof. Obviously, there exists a unique &, := —mlnq < 0 such that f(&§) = 0 and
(&) >0 for all £ < &. So we have f(§ — 1) — f(&§) > 0. Also, the function f has a unique
maximal point at £y = —m In(gu). Since f is a continuous function, we can choose a &,

with 0 < & — & < 1 and a sufficiently small § with 0 < 6 < 1 — k such that f(&) = § and
f(&a—1)— f(&) > 0. If & — 1 > &)y, then we get the conclusion by the fact f is decreasing
on [ —1,&)]. Otherwise, for the case £ —1 < &y since we have f is increasing in [§; — 1, &/
and is decreasing in [£/, &), the lemma follows by using f(§ — 1) > f(&) = 6. O
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Now, we define the functions U(¢),U(£), V(€), V(€) as follows:

) =

) . £>0,

uE) = { [ — (M€ — ey ¢ <, (3.5)
1—k, £ > &,

u) = { 1 — k(eMé + pen™€), €<, .

B L, £>0,

V(e = { e £ <, v
s, § > &,

V(§) = o

eAZE — qe,U')\Qg, 5 S 62’

where the constants 7, i, v, ¢, p and € are chosen in sequence such that
(C1) n > 0 is small enough such that (e"™ +e " —2) —c(n\;) —r+7rk < 0 and Ay > nAy,

I E (1,min {%,2}), v > max{1l, \a/ A\ },
2

(C2) g > max {1’ —[d(err2 4+ e=md2 — 2) — ¢(uAa) + s](1 — k) }7
r(1+k)
—[(e + e —2) —¢(nAy) —r +rk]’

p >

(03) O<e< min{k, ]fl, kQ} with kl, ko defined by

P rko
T e e — 2 — (uhy) — 1 + kb
Tk(l — qe(/‘fl)A2£2)
/{32 =

eM +e M — 2 — (V) —r+rk’
where &, d are defined as in Lemma 3.1,

and & < 0 is uniquely defined by e*ét + pemiét = 1,
Then we have the following lemma.

Lemma 3.2. Assume that ¢ > c,. Then the functions (U,V) and (U,V) defined by (3.5)-
(3.8) are a pair of upper and lower solutions of (1.5).

3.1.2. The case c = c,.
For ¢ = c,, the equation

cA=de*+e*—2)+s (3.9)

15



has a unique positive root A\g. This also implies that
e, = d(eM — e ™). (3.10)

Also, let A\; be the unique positive root of c,A = (e* +e™* —2) —r.
For the later purpose, we consider

1 1
() =€ +EVETE 36 ha(§) =& +EV/E@E- 6 £<-1

Then hy(€) and hy(&) are positive on (—oo, —1]. We compute by using I’'Hopital’s rule that

Y2, 4 1 1) Y2 1
. (1) Tk w1l
lim hi(¢) = lim T = lim —
E——o0 E——o0 @ E——o0 @
—1/2 —3/2
~(1+1) T+ (1+1)
= lim 1 = lim ol
E——o0 E E——o00 =
1\ 32
. ( +z> 1
= lim = —
E——0 8 8
Similarly, we have
lim hy(€) = =
§E——00
Thus the constants
ly ;= inf h >0 d [y:= inf h >0 3.11
1= dnf h(8) and I == inf hy(¢) (3.11)

are well-defined.
Now, we define the functions U(¢),U (), V (€),V(€) as follows:

) = ) 2

_ 1, §=>0,

Ug) = { | (ehe_ ), <o, (3.12)
1 —k, ST

_ 1, §>—-1/A—1,

V(E) = { e, < 1jn -1 (3.14)

V() = { ' e (3.15)
[—h€ — q(=€)?)et, € <&,
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where the constants 1, h, p, &1, q, 0, &, v, € are chosen in sequence as follows.
First, we take n with 0 < < 1 such that

A
™ ™ 2 —c(nhy) —r + 1k <0, 2> (3.16)
Ao+ 1
Secondly, we set h = ﬁe)‘”l and consider w(§) := —h&e*?¢. Then w is strictly increas-

ing on (—oo, —1/X;] and w(—1/Ay — 1) = 1. Let p be a constant with

rlk+h(As +1)/(Age)] }
—[em e —2 —¢(n\y) —r+rk] |’

p > max {e, (3.17)

Then there exists a & such that eMé& + pe”™i& =1 and £ < —1/)\y — 1, since eMé + penhi
is increasing in ¢ and

e~ M1/ A2+1) _'_pe—n)q(l/)\z-l-l) > e M1/ A2+l +p€—1 > 1.

Thirdly, we choose g > 1 sufficiently large such that

, 1 sh? 7\’
P> = 41 | 1
(/)™= 5 1 4> G e = <26A2> (3.18)

For the chosen positive constants h and ¢, we consider the function

9(6) = [~he —q(=€)"7]e*, ¢ <0,

Then g(¢) has the unique zero & = &(h, q) := —(q/h)? and a unique maximum point € in
(—00,&). By using a similar argument as in Lemma 3.1, there exist a sufficiently small §
with 0 < 0 < 1 —Fk and a & < & such that g(§&) = d and g(§) > 0 for all £ € [& — 1,&).
Also, we have & < & < —1/Xy — 1 by the first inequality in (3.18).

Finally, we take v > max{1, \y/A1} and € € (0, k) small enough such that

' rko rk(1 —k)(=h& — qv—62)}
€= mm { [evM e — 2 — e(vAy)—r] + 1k [evM + e — 2 — (V) —T] } - (319)

Then the following lemma holds.

Lemma 3.3. Forc = c,, the functions (U, V) and (U,V) defined by (3.12)-(3.15) are a pair
of upper and lower solutions of (1.5).

3.2. FExistence of traveling wave solutions

As in Section 2.2, we would like to apply Schauder’s fixed point theory to derive the
existence of solutions of (1.5). Recall that X is the space of continuous functions from R to
R? with the usual sup-norm || - ||. Set

K={(UV)eX | (U®E),V(E) el —k1] x[0,1] for all £ € R}.
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Also, we introduce the functions

Fi(yr,y2) = (B —2)y1 +ryn(1 —y1 — kyo),

for a constant § > max{2+r(1+k),2d+s(1+k)/(1 —k)}. Then, for (U;,V;) € K,i=1,2,
with U; < Uy and Vi < V;, we have
Fy(U, Va) < By (U, Vi) < Fi(Us, Vi), Fa(Ur, Vi) < Fy(Us, Va). (3.20)

Let ¢ > 0. For (U,V) € K, we define the operator G = (G1,G3) : K — X by

C

3
Gi(UVY(E) = 1e—fﬁ/ B (U V) (s)ds, i = 1,2, € € R,

— o0
where

Hi(U,V)() = U(E+ 1)+ U - 1)+ F1(U, V)(E)
Hy(U,V)(§) :==d[V(E+ 1) + V(€ = D] + B(U, V(&)

)(€)
It easy to see that (G, G2) satisfies the system (1.5). Moreover, by (3.20), we have
G1(U1,Va) < G1(U1, Vi) < Gi(U, V1), G2(Ur, Vi) < Go(Uy, Va). (3.21)

for (U;,V;) € K,i = 1,2, with U; < U, and V; < V5.
Let

S:={(U,V) e K |U(§) U <T), V(&) < V(§) < V(¢) for all £ € R}

Also, we choose a a € (0,3/c) and define the function space B, (R, R?) and the weighted
norm | - |, of X by

B,(R,R?) :={® € X ||®|o, <00}, |®|s:=sup|®E)|e ¢, &cX.
EeR

Then (B, (R,R?),|-|,) is a Banach space and S is a nonempty bounded closed convex set
with respect to the weighted norm | - |,.

The following lemma gives the existence of a positive solution of (1.5) if a pair of upper
and lower solutions of (1.5) exists.

Lemma 3.4. Let ¢ > 0. Suppose that there exists a pair of upper and lower solutions (U,V)
and (U, V) of (1.5) in K such that U(§) < U(§) and V.(§) < V(&) for all £ € R. Then G
has a fized point (U, V') € S which is a solution of (1.5).

Proof. First, we show that G(S) C S. Given any (U,V) € S, by (3.21), we know that

{ G1(U,V)(€) < G1(U,V)(€) < Gi( ¥)<5>7 § R,
Vv

U,

18



Thus, we only need to show that

{ U() <Gi(U,
V() < Go(U,

)(©) < GT.V)(E) <TE), £,
)€) < Go(T, V)(E) < V(€), €€ R.

By the definition of the upper and lower solutions, we obtain that

1% % U
)\ vV vV

o 3
U T)E) = Lol /_ 25 1, (U, V) (s)ds

cetU(€) = U(9).

= e_Z

Similarly, the other inequalities hold. Hence we have G(S) C S.
By a similar argument as in [16], the operator G : § — S is completely continuous with
respect to the weighted norm |- |,. Then the lemma can be proved by using Schauder’s fixed

point theorem. O
By Lemmas 3.2-3.4, we have the following theorem.

Theorem 3.5. For each ¢ > ¢, there ezists a positive solution (U, V') of (1.5) such that
UE) <UE <UE), V(E)<V(E<SV(E), VYEER,

where (U, V) and (U,V) are defined by (3.5)-(3.8) for ¢ > ¢, and by (3.12)-(3.15) for c = c,.
Moreover, we have (U,V)(—o0) = (1,0).

Note that, for ¢ = c,, we have V(£) < V(£) for all ¢ € R, since & < —1/Ay— 1, by (3.18).
The other cases can be easily checked and hence Lemma 3.4 can be applied.

It remains to derive the tail behavior of the solution obtained in Theorem 3.5 at £ = oo.
To do this, we recall that [m(6), M (6)] x [m(0), M(8)], 8 € [0, 1], where

m(9) = ‘91%{;’ M(9) = 91%{ + (1= 0)(1+¢)

and ¢ is a small positive constant such that k(1 +¢) < 1.

Theorem 3.6. Let (U, V) be a positive solution obtained in Theorem 3.5. Then

lin1(U,V)(£)z< S ) (3.22)

£00 1+k"1+k
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Proof. The proof is similar to the one given in Theorem 2.5, we present the proof for the

completeness.
Set
U™ :=liminfU(§), U :=limsupU(¢),
§—o0 &—o0
V™ i=liminf V(§), V7T :=limsup V().
§—o0 £—o0
Since

lim U(E) =1, lim U(§) =1—k, lim V(¢) =1, lim V(¢) =,

=00 §—o0 §—o0 §—ro0
we have
Ur<1,U >1—k, V<1, V- >4
Hence we obtain
m0)=0<U <U"<1+e=M0), m0)=0<V <VT<l4+e=M(0). (323
We claim that
m(0) <U- <UT < M), m) <V <Vt <M(@®), (3.24)

for all 6 € [0,1). First we set 6y := sup{f € [0,1)](3.24) holds}. Since (3.24) holds for
0 < 6 < 1 due to (3.23), 6 is well-defined. By a contradiction argument, we assume that
0y < 1. Then, by passing to the limit, we have

m(f) KU~ <UY < M), m(by) <V~ <VT < M(b). (3.25)
Hence at least one of the following equalities holds:
U™ = m(@o), U+ = M(eo), VT = m(Qo), V+ = M(eo)

Assume that U~ = m(fy). Then we can find a sequence {,} of U with &, — 400 asn —
+o00o such that lim,,_, - U(&,) = m(6y) and lim, . U'(§,) = 0. Indeed, if U is eventually
monotone, we know that U(co) exists by the boundedness of U. Since [~ U’(s)ds = U(oc) —
U(0) is finite, either liminf, , ., U'(s) = 0 if U'(s) > 0 for s > 1 or limsup,_,,  U'(s) =0
if U'(s) < 0 for s > 1. This implies that the sequence {£,} can be found. If U is oscillatory
at 0o, then the sequence {&,} can be chosen as the minimal points of U. By the definition
of U™, we have

liminfU(§, +1) > U, liminfU(, —1)>U".

n—-+o0o n—-+00
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Also, using (3.25) and limsup,_,, . V(&,) < M(6y), we have

0 0
liminf[l - U(&,) —kV(&)] = 1—1+°k—k; 1+‘]k+(1—90)(1+e)

— (1= 0)[1 — k(1 +¢)] >0.

This implies that

0 = Hminf{{U(§ +1) + U(& — 1) = 2U(&)] — cU' (&) + rU (&) [ — U(&) — kV (&)}
> (U 4+U =2U")—c-0+rU" -liminf[l — U(&,) — kV(&,)] > 0,

n—o0

a contradiction. Similarly, we can show that U™ = M (6,) does not hold.

For the other cases V=~ = m(fy) and V* = M(6y), we may assume that m(6y) < U~ <
Ut < M(6p). Then they can be treated by the similar argument as previous cases. Therefore,
(3.24) holds for all # < 1 and (3.22) follows by taking 6 — 1. Hence the theorem is proved.
O

3.8. Determination of the minimal speed

First, we have the following lemma.

Lemma 3.7. If (c,U,V) is a solution of (1.5)-(1.6) such that U,V > 0, then U,V are
positive on R and ¢ > 0.

Proof. Although the proof is similar to the one given in [11], we provide the details here for
the completeness. First, we claim that U > 0 in R. Otherwise, due to U(+00) = 1/(1 + k),
we can find & such that U(&) = 0 and U(&) > 0 for all £ > &). On the other hand, U'(§)) =0
due to U > 0. By the first equation of (1.5), we obtain that U(§y + 1) = U(§ —1) =0
and get a contradiction. So U(§) > 0 for all £ € R. Similarly, we also have V(§) > 0 for all
EeR.

Now we show that ¢ > 0. Since limg,_ (U, V)(§) = (1,0), there exists a sufficiently
large N such that for any ¢ < —N

V1
U — 2
Then we integrate the second equation of (1.5) from —oo to £ < —N and derive that
§+1 3 € V()
cV(€)=d / V(6)do — / V(6)de +/ sV (0) |1 ———=|db. (3.26)
13 £—1 —00 U(e)

Thus, we obtain that

| +2d > cV(f)—d[/;HV(O)d&—/:IV(H)d@]

_ /E sV(Q){ _%] dezg/_g v (6)do.

— 00 [e.e]
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This shows us that I(§) := ffoo V(0)do is well-defined for all £ < —N and () is increasing
in (—oo, —N). Now, we integrate (3.26) from —oo to 7 < —N and obtain that

cI(n) =d [/ﬂnﬂ 1(€)dé — n: I(g)dg] + /_7; /_1 sV () [1 - %] dfd¢ > 0.

This implies that ¢ > 0. Hence the lemma follows. a
The next theorem provides a lower bound for the admissible wave speeds.

Theorem 3.8. Let (¢,U, V) be a solution of (1.5)-(1.6) such that U,V > 0. Then ¢ > c,,
where ¢, is given in (1.7).

Proof. Suppose that (¢,U, V) is a positive solution of (1.5)-(1.6). Set

€)= VI(&)/V(E), B = s[L - V()/U(€)] - 2d.

Then we can derive from the second equation of (1.5) that
Cz(g) _d ef§£+l z(s)ds +e f§71 z(s)ds + B(g)

It follows from [3, Theorem 4] (see also [2]) that the limit w = lim¢_,_ 2(&) exists and it
satisfies

cw=d(e+e ¥ —2)+s.

Hence ¢ > ¢,, by the definition of ¢,, and the theorem is proved. O
From the results shown in Theorems 3.5, 3.6 and 3.8, ¢ = ¢, is the minimal speed of the
traveling wave solution of (1.5)-(1.6).

4. Verifications of upper and lower solutions

In this section, we provide the details of verifications of all upper and lower solutions
constructed in the previous two sections.
Proof of Lemma 2.1. First, we claim that

B (2) = b1 (2) + ré1(2)[1 = $1(2) — ka(2)] <0

holds for z € R\{0}. For z > 0, we have ¢;(z) = 1 and

61" (2) = ' (2) +rd (2L = 6a(2) — ken(2)] = —rhen(2) < 0.
When 2, < z < 0, we have ¢;(z) = 1 — e(e?* — ¢"}%) and so
B (2) = (2) +101(2)[1 — 91(2) — ko (2)]
e[(VA)? — c(vAy) — r]er™® — re(eM? — M%) — rk[1 — e(eM® — e"M17))§
e[(vA)? — clv)y) — r]e"M* + erke*s — rks
e{[(wA)? —c(vh) —r] +rké} —rké <0,

INA A
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by the choices of v and €. If z < 25, we have

E(z) —1— 6(6)\1,2 o el/)qz)’ ng(Z) — e)\gz o qe,u)\gz

and so

B (2) — cb1 (2) + 1 (2)[L — Bu(2) — ko(2)]
— 6[(’/)\1)2 —e(vh) — T]el/)\lz _ T€2(6/\1z _ eu/\lz)Q
CrR[L = e(eMF — eNF)] (M2 — gerte®)
< (M) — c(vAy) — etz
Frke(eh* — M1 - el k(1 - gel-Dh))
< e[(WA)? — c(whr) — 7 4 k] — (1 — ge® D)) <,

by the assumptions (A1) and (A3).
Next, for z # z;, we would like to show that

$1"(2) — ey (2) + 1 (2)[1 — ¢u(2) — k2(2)] > 0

When z > z;, we have ¢;(z) = 1 — & and

61"(2) = i/ (2) +1é1(2)[1 = $u(2) — ka(2)] = (1 = k)k(1 — $2(2)) > 0

by ¢2(2) < 1. Otherwise, for z < z1, we have ¢1(z) = 1 — k(eM* 4 pe"™%), ¢y(2) = €** and

01"(2) = cdn(2) +1¢1(2)[1 = ¢u(2) — ka(2)]
= —k[\2eMF 4 p(nh)2e™ ] + ck[Ae™F 4 p(ny)e™ ]
[l — k(eM? 4 pe™F)|[k(eM* + pe™1F) — ke
F{—=(A] = cA = r)e? = pl(nh1)? — c(nh) — r]e™*}

—rEk?(eMF 4 pe™ )2 — pker?t 4 rE?(eMF 4 pelthF) et
E{—p[(n\1)? — c(n)1) — r]e™ =} — rEk?(eM? 4 pe™7) — rke?*
ke™={ —p[(nA1)? — c(nAy) —r + rk] — rkell=mhz _ re(’\rn)‘l)z}
ke™ = —p[(nA1)? — c(nhy) — 7 +rk] —r(1 + k)} >0,

AVAR VAR V]

by the choices of p and 7.
Now we show that

5 (2) - B0+ 8 [1 - 2] <o
for z # 0. In the case z > 0, we have ¢,(2) = 1 and ¢»(z) = 1 and
57 (2) - i) st [1- 2] o
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For z < 0, we have ¢y(2) = €*?* and

wz)} _ B

087" (2) — 83 (=) + 58a(2) [1 -2 o

Finally, we prove that

dgy"(2) — c¢a'(2) + 562(2)

[1 _ $a(2)
91(2)
holds for z # 2. If z > 25, we know that ¢5(z) = 0. Then we obtain that

E

dds" () — ey’ (=) + s(2) [1 - zj—zﬂ > 5 {1 - ﬂi—k)} >0

by § < 1— k. On the other hand, if z < z;, we have ¢y(z) = e** — ge"*** and so

Ay (2) — () + s6a(2) [1 - @8]
Ay (2) — () + s6a(2) {1 1 _(ZZ:}
= A3 — ()] — c[hae™ — (o) e

_'_S(e/\gz o qe,u/\Qz) . e)\gz - qe,u)\gz)2

v

1-— /{:(
> e Lo glauae = lpoa) + o - e

. eﬂkzz{—q[dwa —c(umw—ik} >0,

by the fact ¢1(z) > 1 —k and the choices of ¢ and p. Therefore, the proof of this lemma has
been completed. O

Proof of Lemma 2.2. First, we claim that

O (2) = ey (2) +rn(2)[1 — B (2) — kohy(2)] < 0 (4.1)
holds for z € R\{0}. For z > 0 and 2z, < z < 0, the inequality (4.1) holds by a similar
argument as in the case ¢ > ¢*, using

k
v>1, e< rko .
[(VA1)? — c(vAy) — r] +rkd
For z < zp, we have ¢1(z) = 1 — e(eM* — e"M1%) and ¢(z) = [~hz — q(—2)"/?]e***. Then

O (2) = ey (2) +ru(2)[1 = Bi(2) — ko (2)]
el(VA)? = c(v)y) — r]er™® — pe?(eM — evh17)?
T O e
2 e[(vA)? — c(vAy) —r e(Phi—Ara)z rk[l — e(eM? — M%) [~hz — q(—z)l/Q]}
[
[

e {e[(vA1)? — c(vAi) — 7] — 7k(1 — k)[—hz — q(—2)"*]}

)\gz {

IAIA TN

(
(VA1) — c(v)y) — 7] — k(1 — k)[~hzy — q(_22)1/2]} <0
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for all z < z, by using (2.10). Hence (4.1) holds for all z € R\{0}.
Next, for z # z1, we would like to show that

ﬁ”(z) — c@'(z) +r¢1(2)[1 — ¢1(2) — kpy(2)] > 0.
When z > z;, we have ¢;(z) = 1 — k and so
01"(2) = e/ (2) +1¢1(2)[1 = d1(2) = kda(2)] = (1 = k)k(1 — ¢2(2)) = 0,

by ¢2(z) < 1. For z < 21 < —2/X3, we have ¢1(2) = 1—k(eM* +pe™7) and ¢(z) = —hze*>?.
Hence we obtain

¢1"(2) = e (2) + ru(2)[1 — ¢u(2) — ka(2)]

= —k[)\fe’\lz +p(77)\1)2e’7’\1z] + ck‘[)\le)‘lz + p(n)\l)e”’\lz]
+r[1 — k(e 4 pe™ )] [k(eM? 4 pe™?) — k(—hze**?)]
> k{—(\] = cAr = r)eM® = p[(nA1)® = c(nhy) — rle"™*}

—rk?(eM? 4 pe™#)? — rk(—hze??)
E{—p[(n\1)? — c(n\1) — r]e™ =} — rk?(eM* + pe™ %) — rk(—hze*??)
ke™={—p[(n\)? — c(nhy) — 1 + 1k] — rke(l=MAE _p(—pz)ePemmh)z)
ke™*{ —pl(n\1)? — e(nA1) — r + k] — r[k + h/(n\ie)]} >0

AVAR | I,

for all z < z;1, by using (2.7) and (2.8). Here we have also used the fact that
—hzeP2=m)z < _poenhiz < h/(nAie) for all z < 0.

Now we show that

&
$1(2)

for z # —2/Xy. In the case z > —2/\y, we have ¢y(z) = 1 and

() - () + ) [1- 28| <o

dds' (2) — cda (2) + 52 (2) [1 - %Ezﬂ =5 [1 - EEZ)} <0

from ¢1(z) < 1. For z < —2/),, we have ¢,(z) = —hze*2* and

dds (2) — cda (2) + sha(2) {1 — %Ej;] = —S%EZ <0.
Finally, we prove that
o (2) — ¢/ (2) + s¢ha(2) [1 - %Ez;} >0 (4.2)
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for all z # z3. For z > 25, (4.2) holds by a similar argument as in the case ¢ > ¢*. When
z < zp, we have ¢y(z) = [~hz — g(—2)Y2]e** and

dey"(2) — ey (2) + s (2) [1 B ¢2(z)]

— ¢1(2)
> dg () — et () + 91>[1—ff2}
_ %(_2)—3/2 Aoz — k[ hz — Q( )1/2]262)\2,2

_ dg  s5(=2)*[=hz — q(=2)"*]?e*
— . 3/2 Xz ) 24
(=2)""e { 4 1—k

@_%(_2)7/26)\22}

dg  sh* [ 7 \"?
> _\3/2, %22 ) L >
2 (=2)7e {4 1—k<26)\2) 20,

by the facts ¢1(2) > 1 —k, Ay = ¢/(2d) and the choice of ¢ in (2.9). Here we have used the
fact that

v

—~
I

~—
&
~
no
>

¥

N

N
(—2)2er < (2 S ) for all z < 0.
EAg

Therefore, the proof of the lemma is completed. a

Proof Lemma 3.2. To prove the lemma, we note that

U(g) <1, U(g) <1-— 6(6)\1§ €V>\1§)
UE)>1—k, UE)>1— k(eM + pem™¢)
V() <1, V(6 <e™, V(€) > e — gert

for all £ € R, and V(§) > § for £ > & — 1 due to Lemma 3.1.
First, we show that (3.1) holds for all £ # 0. It is trivial that (3.1) holds for £ > 0, since
UE+1)=1,U(—-1)<Tand U() =1. For & < € < 0, we have

e +1) + e 1)~ 20(6)] - (&) + ()1 — T(e) — KL (E)]

1 — 6( 1(€+1) V>\1(£+1)) +1— €<e/\1(5*1) _ e”\l(f*l)) —2(1— 6(6)\16 _ ew\lé))
—c(—eAeME v e’ M) £ r(eet — eeM0)

—re?(eME — M) _pES[1 — e(eMt — M8

ele’ 4+ e M — 2 — () —r]e’M 4 erkdeMs — rkd

e[e”)‘l e M 9 c(vh)—r+rkd] —rko <0,

IA A
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by the choices of € and v. If £ < &, we have

[U(§+1) + U —1) = 20()] — cU'(€) + rU(§)[L — U(€) — kV(&)]

< eleM e =2 —c(vhg) — r]eME — rk[l — e(eM — MO [ — ger?2d)
< e e[eM e — 2 — ¢(vAy)—r]eMTAE

+rke(eM® — M) (1 — e DA28) (1 — gelh—Dr26))
< e eeM 4 eTM — 2 — (V) =1 + 1] — rk(1 — gelD2)) <,

by the assumptions (C1) and (C3). Hence (3.1) holds for all £ # 0.
Secondly, we claim that (3.2) holds for £ # &. The case when & > & is trivial. For
& < &1, we compute

(U(E +1) +U(E ~ 1) — 2U(6)] — el'(€) + rU()1L — U(E) — KV (&)

1— k(e)\l(£+1) _|_p67l>\1(§+1)) + 1 — k(eAl(f—l) —i—pe")‘l(g_l))

91— h(eME + pe™E)] — k(e + p(rA )™ )

—i—Tk[l . k(€>\1£ +p€nA1§)][€/\1€ _|_p€77>\1§ _ eAQE]

= k{—p[e™ + e —2 —¢(n)) — r]e™E — rk(eMt + petié)?
—ref 4 rk(e’\1£ + pe"’\lg)eMS}

> ke"’\lg{—p[en)‘1 e 9 cp\y) —r +rk] — rket=mMs

_re(h—n)\l)f}

> ke™ —ple™ +e ™ =2 —c(nhy) —r +71k] —r(1+k)} >0,

v

by the choices of p and 7. Hence (3.2) holds for & # &;.
Thirdly, since it is trivial that (3.3) holds for all £ # 0, we omit the details.
Finally, we prove that (3.4) holds for all £ # &. For & > &, we have

AV(€+1) + V(€= 1) = 2V(€)] = V(&) + sV (¢) (1 ) %)

(S
> N
35[1 1 k}>0,

since V(E+1)=V () =0,V (€—1)>06,and § <1 — k. For £ < &, we have

dV(E+1) + V(€= 1) = 2V(&)] — eV'(€) + sV (€) (1 B %)

d[e)‘Q@H) _ qe“)‘2(5+1) 4 et qeukz(ﬁ—l) — 26 2q€u>\2§]

v

_C[)\thf _ q(,u)\Q)elMﬁ] + 8[6/\25 _ qeukzﬁ] |:1 _ (6/\25 _ qeu)\zﬁ)]

1—k

v

ehA2t {—q[d(e“h +e N 2) — c(pAa) + s] — . j ke@_“mf}

v

o5 { gl e =) = clrg) 4] = 7 | 20
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by the fact U(§) > 1 — k and the choice of q. Hence (3.4) holds for all £ # & and the lemma
is proved. O

Proof of Lemma 3.3. Later, we will use the following facts.

U@E) <1, UE) <1—e(eM—e™8) for €€R,

UE)>1—k, U®€) =1-k(eM +pe™€) for £€R,

V() <1 for €€R, V() < —hge™ for £ < —1/N,

V() =6 for £>&6—1, V(&) >[-hE—q(—£)"?e™ for £<&H+1.

First, we claim that (3.1) holds for £ € R\ {0}. For £ > 0 and & < € < 0, the inequality
(3.1) holds by a similar argument as in the case ¢ > c¢,, using

rkd

> 1 < .
v r € [ePM 4 emvM — 2 — (V) —r] + 1kd

For ¢ < &, we have U(£) = 1 — e(eMé — e"M18) and V(€) = [—hé — q(—€)Y/?]e?2¢. Then

U+ 1)+ U(E—1) —20(€) — cU'(€) +rUE)(1 - U(§) — kL (€))

< ee™ FemM — 2 — (V) — r]erME — e (eME — erhf)?
—rk[L — e(eM€ — ™M) [—hE — (=€)
< e[ femM — 2 — C(V/\ ) — rjehi—A2)
—rk[1 — e(eM* — ”Alg)][ —q(=9)"?)}
< e {eeM F e =2 — c(v) ) r] = rk(1 = k)[=h& — q(=&)"?]}
< e e =2 — c(wh)—r] = k(1 = k)[-h& — (=€)} <0

for all £ < &, by using (3.19). Hence (3.1) holds for all £ € R\ {0}.
Next, we check (3.2) for £ # &;. The case when £ > & is trivial. For £ < & < —1/Xs —1,
we have

U(€) = 1 - KM+ pe™), T(€) = —hee™.
Hence we obtain

U +1)+U(E—1) =20(&) = cU'(€) +rU(E)(1 = U(E) — kV(€))
k{—ple™ + e ™1 — 2 — c(nhy) — r]e"™ — rk(eM® + pe™¢)?

T (e 1))
> kenhﬁ{_p[enh _’_e—nh _ (77)‘1) _ T’—I—Tk] Tk;e(l—n)hﬁ ( hf) (A2—nA1)€ }
> ke™& —ple™ + ™ —2 —c(nAy) —r +rk] —r[k +h(Ay +1)/(M2e)]} >0

for all £ < &, by using (3.16) and (3.17). Here we have also used the fact that

h(Xs +1)

2
—hgePamhE < —hfeﬁg <
- - e

for all £ < 0.

28



Now we show that (3.3) holds for & # —1/Ay — 1. In the case & > —1/Xy — 1, we have
V(€) =1 and so

AV(E +1) + V(E — 1) = 2V(9)] — V' (€) + sV () (1 - %) < {1 _ %] <0,
from U(€) < 1. For £ < —1/Xy — 1, we have V(£) = —h&e*2¢ and so
AV(E+1) +V(E = 1) = 2V(Q)] = eV (€) + V() (1 ) %)
< d[—h(& + 1)e2EHD) — p(e — 1)e2ED 4 opge]
—c(— e)\QE _ 6)\25 — s 6)\25 o Sm
(—=A2hg he ) — she e
= —[d(e% + 6_>\2 — 2) —cAg + S]hé“e)\zf _ [d(e)\z _ e—)\z) _ C]heAgg . S%
U —

Hence (3.3) is verified.
Finally, we prove that (3.4) holds for all £ # &. The case for £ > &, is trivial. When
& <& < —1, we have

AV (€ + 1)+ V(E— 1) = 2V(0)] — el(€) + sV () (1 - %)
> d[—qy/—€ — 122D — g /¢ 4 1M 4 2q\/—_ek25
( q)\2\/_ +q \/_> — Sq\/_eAQS h§ _ Q\/_ 2 2>\2§

= dq [(52 +EVE+E+ 55) 4 <§ +EVE - ¢~ _g) Az] (—€)~3/2eM¢
5 e g B
> [dq(l1€>\2 + l2€_>\2)](—§)_3/26>\2£ _ ﬁ(_hg _ q\/__§)262>\2§

oG ol e )
1—-k

= (=& {[dq(lle” +he )] -

h2
2 L [dg(lie + e )] - k<—5>7/26”£}
)]

sh? 7 \?
>0,
1—k <26)\2) -

, (3.9)-(3.11) and the choice of ¢ in (3.18). Here we have also used

v

(e { g
2 (_g)3/26A2£{[dq(lle)\2+l2e)\2
k

by the facts U(§) > 1 —
the fact that

7
26)\2

7/2
(=&M< < ) for all £ <0.
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Therefore, the proof of the lemma is completed. a
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