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Abstract

We study a diffusive predator-prey model of Lotka-Volterra type functional response in which

both species obey the logistic growth such that the carrying capacity of the predator is pro-

portional to the prey population and the one for prey is a constant. Both continuous and

discrete diffusion are addressed. Our aim is to see whether both species can survive eventu-

ally, if an alien invading predator is introduced to the habitat of an existing prey. The answer

to this question is positive under certain restriction on the parameter. Applying Schauder’s

fixed point theory with the help of suitable upper and lower solutions, the existence of trav-

eling wave solutions for this model is proven. Furthermore, by deriving the non-existence

of traveling wave solutions, we also determine the minimal speed of traveling waves for this

model. This provides an estimation of the invasion speed.

Keywords: predator-prey model, Lotka-Volterra type, traveling wave solution, minimal

speed

1. Introduction

In this paper, we consider the following diffusive predator-prey model{
ut = uxx + ru(1− u)− rkuv,

vt = dvxx + sv
(
1− v

u

)
,

(1.1)

where the unknown functions u, v of (x, t), x, t ∈ R, stand for the population densities of prey

and predator species at position x and time t, respectively, d, r, s, k are positive constants

such that 1, d are diffusion coefficients and r, s are intrinsic growth rates of species u, v,

respectively. The functional response of predator to prey is given by rku, which is of Lotka-

Volterra type. The prey obeys the logistic growth and its carrying capacity is normalized to

be 1. However, the density of predator follows a logistic dynamics with a varying carrying

capacity proportional to the density of prey.
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In fact, the model (1.1) is a special case of the following Holling-Tanner type predator-

prey model (cf. [24, 25]): ut = uxx + ru(1− u)− rku

a+ bu
v,

vt = dvxx + sv
(
1− v

u

)
,

when a = 1, b = 0. For the case when a = 0, b = 1, it is possible that the density of prey may

vanish so that quenching or extinction phenomenon may occur. For this singular behavior,

we refer the reader to [4, 5, 7, 8, 10] and the references cited therein.

It is easy to see that (1.1) has two constant steady states (1, 0) and (1/(1 + k), 1/(1 + k)).

In [6], they studied the model (1.1) in a bounded domain with zero Neumann boundary

condition. Among other things, by constructing a delicate Lyapunov function, they show

that the unique positive constant state (1/(1+ k), 1/(1+ k)) is globally stable under certain

restrictions on k. In other words, this constant state attracts every positive solution of (1.1)

for the Neumann initial boundary value problem in a bounded domain. Since the predator

will extinct if the prey vanish, the possibility of co-existence is very important from the

ecological point view. For the case a = 1, b > 0, we refer the reader to [12, 13, 14].

In this paper, we consider the case when the habitat is the whole real line. We are

interested in the question whether both species can survive eventually, if an alien predator

is introduced into the habitat where a prey has been living there. In fact, this question is

equivalent to whether the solution of (1.1) tend to the unique positive constant steady state

as the time approaches infinity. Therefore, we study the so-called traveling wave solution

defined as follows.

A solution of (1.1) is called a traveling wave with speed c if there exist positive functions

ϕ1 and ϕ2 defined on R such that u(x, t) = ϕ1(x+ ct) and v(x, t) = ϕ2(x+ ct). Here ϕ1 and

ϕ2 are the wave profiles. Set z := x + ct and substitute (u, v)(x, t) = (ϕ1, ϕ2)(z) into (1.1).

Then the wave profile (ϕ1, ϕ2) satisfies the following system of equations: ϕ′′
1(z)− cϕ′

1(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] = 0, z ∈ R,

dϕ′′
2(z)− cϕ′

2(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
= 0, z ∈ R. (1.2)

Here the prime denotes the derivative with respect to z. As described above, we are interested

in the traveling wave solutions of (1.1) connecting (1, 0) and (1/(1 + k), 1/(1 + k)). This

implies that (ϕ1, ϕ2) satisfies the following asymptotic boundary conditions

lim
z→−∞

(ϕ1, ϕ2)(z) = (1, 0), lim
z→+∞

(ϕ1, ϕ2)(z) =

(
1

1 + k
,

1

1 + k

)
. (1.3)

Note that the existence of such traveling wave solutions (with c > 0) means the successful

invasion of the predator.

Biologically, it is also interesting to study the invasion speed. A constant c∗ is called

the minimal speed of traveling waves, if there is a traveling wave of speed c for any c ≥ c∗
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and no wave of speed c exists for c < c∗. The minimal speed of traveling waves plays an

important role in the estimation of the invasion speed. We prove that the minimal speed of

traveling wave solutions of (1.1) is given by c∗ := 2
√
ds. Notice that this minimal speed is

independent of the parameters r and k.

In this paper, we also consider the following lattice dynamical system (LDS)
dui

dt
= (ui+1 + ui−1 − 2ui) + rui(1− ui − kvi), i ∈ Z,

dvi
dt

= d(vi+1 + vi−1 − 2vi) + svi

(
1− vi

ui

)
, i ∈ Z,

(1.4)

where ui = ui(t), vi = vi(t), t ∈ R. Here ui, vi (as functions of time t) stand for the population

densities of prey and predator at niches i. In fact, when we divide the habitat into countable

niches and replace the Laplace operator of (1.1) by a finite difference operator, we end up with

the system (1.4) (with different scale of diffusion coefficients). For the aggregated dispersion,

the discrete model (1.4) is more suitable than the continuous model (1.1) to describe the

phenomenon of invasion. Indeed, lattice dynamic systems have been extensively used to

model biological problems, see, for example, [25, 26]. Therefore, we also study the LDS

model (1.4) in this paper.

A solution of (1.4) is called a traveling wave with speed c if there exist positive functions

U, V (the wave profiles) defied on R such that ui(t) = U(i + ct) and vi(t) = V (i + ct) for

i ∈ Z, t ∈ R. Set ξ = i + ct and substitute (ui, vi)(t) = (U, V )(ξ) into (1.4). Then (U, V )

satisfies the following system of equations −cU ′(ξ) +D[U ](ξ) + rU(ξ)[1− U(ξ)− kV (ξ)] = 0, ξ ∈ R,

−cV ′(ξ) + dD[V ](ξ) + sV (ξ)

[
1− V (ξ)

U(ξ)

]
= 0, ξ ∈ R, (1.5)

where D[ϕ](ξ) := ϕ(ξ + 1) + ϕ(ξ − 1)− 2ϕ(ξ). Since we are interested in the traveling wave

solution connecting (1, 0) and (1/(1 + k), 1/(1 + k)), we also impose the following boundary

conditions

lim
ξ→−∞

(U, V )(ξ) = (1, 0), lim
ξ→+∞

(U, V )(ξ) = (1/(1 + k), 1/(1 + k)). (1.6)

Notice that system (1.5) is a system of functional differential equations which is of infinite

dimensional nature. We also derive the existence of traveling waves of (1.4) and prove that

the minimal speed of traveling wave solutions of (1.4) is given by

c∗ := inf
λ>0

d(eλ + e−λ − 2) + s

λ
. (1.7)

Here the notion of minimal speed is defined as for the continuous case.

Note that the nonlinearity in the above systems ((1.1), (1.2), (1.4), (1.5)) does not enjoy

the monotone property in which the standard comparison principle can be applied. For the

existence of traveling wave solutions of non-monotone systems, the application of Schauder’s
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fixed point theorem with the help of (generalized) upper and lower solutions has been proved

to be quite successful. For this aspect, we refer the reader to the works [23, 17, 18, 21, 15,

19, 22] for the continuous case and [16, 20] for the discrete case. See also references cited

therein. Although this method (by now) is very standard, the existence of suitable upper

and lower solutions is not trivial. In fact, the construction of upper and lower solutions relies

on a delicate formulation of appropriate functions with careful choices of suitable parameters

(or constants). Due to a technical difficulty, we shall always assume that k ∈ (0, 1) in this

paper. Indeed, if one can construct a suitable pair of upper and lower solutions for k ≥ 1,

then all results of this paper can be readily derived. We leave it as an open problem.

Different from the existing works, there is a negative power nonlinearity in the predator

equation of our model. In particular, we need a positive (everywhere) lower solution for the

prey density. To overcome this singularity, a new formulation for the upper-lower-solutions

is found for the prey component. Furthermore, in the case c = c∗, due to the feature of a

double root λ2 for the characteristic equation of ϕ2 at z = −∞, the asymptotic behavior of

ϕ2 is expected to be a combination of eλ2z and zeλ2z. In fact, the leading term is only zeλ2z.

However, due to the special nonlinearity of our model, we take the perturbation term for

the lower solution of ϕ2 to be
√
−zeλ2z. This is a new formulation and it works well for our

model. A precise and detailed construction of upper and lower solutions is done in §2.1 for

the continuous case and §3.1 for the discrete case.

As for the asymptotic boundary conditions, the one at z = −∞ (or, ξ = −∞) can be

verified without any costs due to the construction of upper and lower solutions. For the

conditions at z = +∞ and ξ = +∞, we borrow an idea from [15] in which a sequence of

shrinking intervals is introduced (see the proofs of Theorems 2.5 and 3.6 for details).

The rest of this paper is organized as follows. In §2, we study the system (1.2) with the

boundary conditions (1.3). First, we construct a pair of upper and lower solutions of (1.2)

for any speed c ≥ c∗ = 2
√
ds. Next, we obtain the existence of a positive solution of system

(1.2) by applying Schauder’s fixed point theorem. Finally, we prove this solution satisfies

the boundary conditions (1.3). For c < c∗, the non-existence of solution of (1.2)-(1.3) can be

shown by using a contradiction argument with the help of the spreading phenomenon of the

Cauchy problem for Fisher’s equation. This implies that c = c∗ is the minimal wave speed

for the continuous case. Then the discrete case is treated in §3. Although the construction

of upper and lower solutions is by no means trivial, once the formula of upper and lower

solutions are found, it is not very difficult to verify it. For reader’s convenience, we give the

details of the verifications of all constructed upper and lower solutions in §4.

2. Traveling wave solutions of (1.1)

2.1. Upper and lower solutions

First, we give the definition of upper and lower solutions of (1.2) as follows.
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Definition 2.1. The functions (ϕ1, ϕ2) and (ϕ1, ϕ2) are called a pair of upper and lower

solutions of (1.2), if ϕi
′
, ϕi

′, ϕi
′′
, ϕi

′′, i = 1, 2 are bounded and the inequalities

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≤ 0,

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≥ 0,

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)/ϕ1(z)

]
≤ 0,

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)
[
1− ϕ2(z)/ϕ1(z)

]
≥ 0

(2.1)

hold for z ∈ R\D with some finite set D = {z1, z2, . . . , zm}.

To find upper and lower solutions of (1.2), we divide it into two cases: c > c∗ and c = c∗.

2.1.1. The case c > c∗.

For a given c > c∗ = 2
√
ds, we define the following positive constants

λ1 =
c+

√
c2 + 4r

2
, λ2 =

c−
√
c2 − 4ds

2d
, λ3 =

c+
√
c2 − 4ds

2d
.

In fact, we have

λ2
1 − cλ1 − r = 0 and dλ2

i − cλi + s = 0, i = 2, 3.

First, for given constants µ, q > 1, it is easy to check that the function

f(z) = eλ2z − qeµλ2z

has a unique zero point at z0 = −ln q/[(µ− 1)λ2] and a unique maximum point at zM =

−ln(qµ)/[(µ− 1)λ2] < z0. Since f is continuous on R and positive on (−∞, z0), there exist

δ and z2 ∈ (zM , z0) such that

0 < δ < 1− k and f(z2) = δ. (2.2)

Note that f ′(z2) < 0.

Next, we choose the constants µ, ν, η, p, q and ϵ satisfying the following assumptions

(A1)-(A3) in sequence.

(A1) µ ∈ (1,min {λ3/λ2, 2}), ν > max{1, λ2/λ1} and η > 0 is small enough such that

λ2 > ηλ1 and (ηλ1)
2 − c(ηλ1)− r + rk < 0. Here we used the assumption k < 1.

(A2) p >
r(1 + k)

−[(ηλ1)2 − c(ηλ1)− r + rk]
and q > max

{
1,

s

−[d(µλ2)2 − c(µλ2) + s](1− k)

}
.

(A3) 0 < ϵ < min

{
k,

rkδ

[(νλ1)2 − c(νλ1)− r] + rkδ
,

rk(1− qe(µ−1)λ2z2)

(νλ1)2 − c(νλ1)− r + rk

}
, where δ and

z2 satisfy (2.2).
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Now we introduce the functions ϕ1(z), ϕ1(z), ϕ2(z), ϕ2(z) as follows.

ϕ1(z) =

 1, z ≥ 0,

1− ϵ(eλ1z − eνλ1z), z ≤ 0,
(2.3)

ϕ1(z) =

 1− k, z ≥ z1,

1− k(eλ1z + peηλ1z), z ≤ z1,
(2.4)

ϕ2(z) =

 1, z ≥ 0,

eλ2z, z ≤ 0,
(2.5)

ϕ2(z) =

 δ, z ≥ z2,

eλ2z − qeµλ2z, z ≤ z2,
(2.6)

where z1 < 0 is defined by eλ1z1 + peηλ1z1 = 1. Then the following lemma holds.

Lemma 2.1. Assume that c > c∗. Then the functions (ϕ1, ϕ2) and (ϕ1, ϕ2) defined by (2.3)-
(2.6) are a pair of upper and lower solutions of (1.2).

2.1.2. The case c = c∗.

In this subsection, we always assume that c = c∗ = 2
√
ds. In this case, we have λ2 =

λ3 = c/(2d).

For given positive constants h and q, we consider the function

g(z) := [−hz − q(−z)1/2]eλ2z, z ≤ 0.

We claim that g has exactly two critical points in (−∞, 0). For this, we compute

g′(z) = [−hλ2z − qλ2(−z)1/2 − h+ q(−z)−1/2/2]eλ2z.

Note that g(0) = 0, g′(0) = ∞, g(−∞) = 0 and g′(z) > 0 for −z ≫ 1. Hence g has at least

two critical points in (−∞, 0). On the other hand, we set

G(w) := hλ2w
3 − qλ2w

2 − hw + q/2, w :=
√
−z.

ThenG′(w) = 3hλ2w
2−2qλ2w−h and so G has at most one critical point in (0,∞). However,

since G(0) = q/2 > 0, G′(0) = −h < 0 and G(∞) = ∞, G has at least one critical point

in (0,∞). Hence G has exactly one critical point in (0,∞) which is the (unique) minimum

point so that G has at most two zeros in (0,∞). Therefore, g has exactly two critical points

in (−∞, 0).

Set z0 = z0(h, q) := −(q/h)2. Then z0 is the unique zero of g in (−∞, 0). Moreover,

g > 0 in (−∞, z0) and g has a unique maximum point z̃ in (−∞, z0). Note also that the

function −hz − q(−z)1/2 is positive and strictly decreasing in (−∞, z0).
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Now, we choose the appropriate constants in sequence as follows.

First, we take η with 0 < η ≪ 1 such that

(ηλ1)
2 − c(ηλ1)− r + rk < 0, λ2 > 2ηλ1. (2.7)

Secondly, set f(z) := −hzeλ2z with h = λ2e
2/2. Then f is strictly increasing on

(−∞,−2/λ2] and f(−2/λ2) = 1. Let p be a constant with

p > max

{
e,

r[k + h/(ηλ1e)]

−[(ηλ1)2 − c(ηλ1)− r + rk]

}
. (2.8)

Then there exists a z1 such that eλ1z1 + peηλ1z1 = 1 and z1 < −2/λ2, since eλ1z + peηλ1z is

increasing in z and

e−2λ1/λ2 + pe−2ηλ1/λ2 > e−2λ1/λ2 + pe−1 > 1.

Thirdly, we choose δ > 0 small enough such that δ < 1 − k. Let z2 be the unique

z ∈ (z̃, z0) such that g(z) = δ. Note that g′ < 0 in (z̃, z0). Then we choose q > 1 sufficiently

large such that

(q/h)2 > 2/λ2, q >
4sh2

d(1− k)

(
7

2eλ2

)7/2

. (2.9)

The first inequality in (2.9) shows us that z2 < z0 < −2/λ2.

Finally, we take ν > max{1, λ2/λ1} and ϵ > 0 small enough such that

ϵ < min

{
k,

rkδ

[(νλ1)2 − c(νλ1)− r] + rkδ
,
rk(1− k)(−hz2 − q(−z2)

1/2)

[(νλ1)2 − c(νλ1)− r]

}
. (2.10)

Then we define ϕ1(z), ϕ1(z), ϕ2(z), ϕ2(z) as follows:

ϕ1(z) =

 1, z ≥ 0,

1− ϵ(eλ1z − eνλ1z), z ≤ 0,
(2.11)

ϕ1(z) =

 1− k, z ≥ z1,

1− k(eλ1z + peηλ1z), z ≤ z1,
(2.12)

ϕ2(z) =

 1, z ≥ −2/λ2,

−hzeλ2z, z ≤ −2/λ2,
(2.13)

ϕ2(z) =

 δ, z ≥ z2,

[−hz − q(−z)1/2]eλ2z, z ≤ z2.
(2.14)

Lemma 2.2. For c = c∗, the functions (ϕ1, ϕ2) and (ϕ1, ϕ2) defined by (2.11)-(2.14) are a
pair of upper and lower solutions of (1.2).
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2.2. Existence of traveling wave solutions

With upper and lower solutions at hand, we shall apply Schauder’s fixed point theorem

to derive the existence of solution to (1.2).

First, we introduce the following function spaces

X = {Φ = (ϕ1, ϕ2) | Φ is a continuous function from R to R2},
Xk = {(ϕ1, ϕ2) ∈ X | 1− k ≤ ϕ1(z) ≤ 1 and 0 ≤ ϕ2(z) ≤ 1 for all z ∈ R}.

Define the functions

F1(y1, y2) := βy1 + ry1(1− y1 − ky2),

F2(y1, y2) := βy2 + sy2

(
1− y2

y1

)
for some constant β. By taking β > max{r(1 + k), s(1 + k)/(1 − k)}, we see that F1 is

nondecreasing in y1 and is decreasing in y2 for 1 − k ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1. Also, F2 is

nondecreasing with respect to y1 and y2 for 1− k ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1.

For notational convenience, we set d1 = 1 and d2 = d. Then (1.2) can be re-written as

diϕ
′′
i (z)− cϕ′

i(z)− βϕi(z) + Fi(ϕ1, ϕ2)(z) = 0, i = 1, 2. (2.15)

Now we define

λi1(c) =
c−

√
c2 + 4βdi
2di

, λi2(c) =
c+

√
c2 + 4βdi
2di

, i = 1, 2.

Without ambiguity, we sometime omit the dependence of c and denote λi1 = λi1(c) and

λi2 = λi2(c). It is easy to see that λi1 < 0 < λi2 and

diλ
2
i1 − cλi1 − β = 0, diλ

2
i2 − cλi2 − β = 0, i = 1, 2.

For (ϕ1, ϕ2) ∈ Xk, we consider the operator P = (P1, P2) : Xk → X defined as follows

Pi(ϕ1, ϕ2)(z) =
1

di(λi2 − λi1)

[∫ z

−∞
eλi1(z−s) +

∫ ∞

z

eλi2(z−s)

]
Fi(ϕ1, ϕ2)(s)ds,

for i = 1, 2, z ∈ R. It is easy to check that the operator P satisfies

di(Pi(ϕ1, ϕ2))
′′(z)− c(Pi(ϕ1, ϕ2))

′(z)− βPi(ϕ1, ϕ2)(z) + Fi(ϕ1, ϕ2)(z) = 0,

for i = 1, 2, z ∈ R.
Although the proof of the following lemma is very standard (cf. [23, 17, 18]), for reader’s

convenience we provide some details here.

Lemma 2.3. Let c > 0. Suppose that (1.2) has a pair of upper and lower solutions (ϕ1, ϕ2)
and (ϕ1, ϕ2) in Xk satisfying
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(1) ϕi(z) ≥ ϕi(z), z ∈ R, i = 1, 2;

(2) ϕi
′
(z−) ≥ ϕi

′
(z+), ϕi

′(z−) ≤ ϕi
′(z+), z ∈ D, i = 1, 2, where

ϕi
′
(z±) := lim

ξ→z±
ϕi

′
(ξ), ϕi

′(z±) := lim
ξ→z±

ϕi
′(ξ).

Then (1.2) has a positive solution (ϕ1, ϕ2) such that ϕi(z) ≥ ϕi(z) ≥ ϕi(z) for all z ∈ R for
i = 1, 2.

Proof. Choose a constant α ∈ (0,min{−λ11,−λ21}) and denote ∥ · ∥ the supremum norm

in R2. Define

Bα(R,R2) :=

{
Φ ∈ Xk

∣∣∣∣ sup
z∈R

∥Φ(z)∥e−α|z| < ∞
}
, |Φ|α := sup

z∈R
∥Φ(z)∥e−α|z|.

Then (Bα(R,R2), | · |α) is a Banach space. Also, we let

Γ := {(ϕ1, ϕ2) ∈ Xk | ϕi(z) ≤ ϕi(z) ≤ ϕi(z) for all z ∈ R, i = 1, 2}.

Then Γ is a nonempty convex bounded closed set with respect to the weighted norm | · |α.
First, we show that P maps Γ into itself. For (ϕ1, ϕ2)(z) ∈ Γ and each fixed z ∈ R, we

have  P1(ϕ1, ϕ2)(z) ≤ P1(ϕ1, ϕ2)(z) ≤ P1(ϕ1, ϕ2)(z),

P2(ϕ1, ϕ2)(z) ≤ P1(ϕ1, ϕ2)(z) ≤ P2(ϕ1, ϕ2)(z),

by the choice of β. Thus we only need to show that{
ϕ1(z) ≤ P1(ϕ1, ϕ2)(z) ≤ P1(ϕ1, ϕ2)(z) ≤ ϕ1(z), z ∈ R,
ϕ2(z) ≤ P2(ϕ1, ϕ2)(z) ≤ P2(ϕ1, ϕ2)(z) ≤ ϕ2(z), z ∈ R.

(2.16)

Without loss of generality, we may assume that z1 > z2 > ... > zm and set z0 = ∞,

zm+1 = −∞. For z ∈ R\D, there exists a k ∈ {0, 1, · · · ,m} such that z ∈ (zk+1, zk). By the

definition of upper and lower solutions, if z ∈ R\D, then

P1(ϕ1, ϕ2)(z) =
1

λ12 − λ11

[∫ z

−∞
eλ11(z−s) +

∫ ∞

z

eλ12(z−s)

]
F1(ϕ1, ϕ2)(s)ds

≥ 1

λ12 − λ11

[∫ z

−∞
eλ11(z−s) +

∫ ∞

z

eλ12(z−s)

] [
−ϕ1

′′(s) + cϕ1
′(s) + βϕ1(s)

]
ds

= ϕ1(z) +
1

λ12 − λ11

k∑
j=1

eλ12(z−zj)[ϕ1
′(zj+)− ϕ1

′(zj−)]

+
1

λ12 − λ11

m∑
j=k+1

eλ11(z−zj)[ϕ1
′(zj+)− ϕ1

′(zj−)]

≥ ϕ1(z).
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The continuity of P1(ϕ1, ϕ2)(z) and ϕ1(z) for z ∈ R implies that P1(ϕ1, ϕ2)(z) ≥ ϕ1(z) for all

z ∈ R. The other inequalities in (2.16) can be shown similarly.

Next, that P : Γ → Γ is completely continuous in the sense of the weighted norm | · |α
can be shown by a similar argument as in [23]. We shall not repeat it here. Finally, we apply

Schauder’s fixed point theorem to obtain the conclusion of the lemma. 2

By Lemmas 2.1- 2.3, we have the following theorem.

Theorem 2.4. For each c ≥ c∗, there exists a positive solution (ϕ1, ϕ2) of (1.2) such that

lim
z→−∞

(ϕ1, ϕ2)(z) = (1, 0) and ϕ
i
(z) ≤ ϕi(z) ≤ ϕi(z), z ∈ R, i = 1, 2.

Proof. It suffices to verify the conditions (1) and (2) in Lemma 2.3.

Now we treat the case c > c∗. First we show that ϕ1(z) ≥ ϕ1(z) for z ∈ R. Recall that

ϵ < k. For z ≥ 0, we have

ϕ1(z)− ϕ1(z) = k>0.

When z1 ≤ z < 0, we have

ϕ1(z)− ϕ1(z) = k − ϵ(eλ1z − eνλ1z)> k − ϵ > 0.

For z < z1, we know that

ϕ1(z)− ϕ1(z) = (k − ϵ)eλ1z + ϵeνλ1z + kpeηλ1z>0.

So we obtain the conclusion. Similarly, we can show that ϕ2(z) ≥ ϕ2(z) for z ∈ R. Thus,

condition (1) of Lemma 2.3 holds.

For condition (2), we have

ϕ1
′
(0+) = 0 < ϵ(ν − 1)λ1 = ϕ1

′
(0−),

ϕ1
′(z1+) = 0 > −k(λ1e

λ1z1 + pηλ1e
ηλ1z1) = ϕ1

′(z1−),

ϕ2
′
(0+) = 0 < λ2 = ϕ2

′
(0−),

ϕ2
′(z2+) = 0 > ϕ2

′(z2−).

When c = c∗, by our construction, it is easy to verify the conditions (1) and (2) in

Lemma 2.3.

That limz→−∞(ϕ1, ϕ2)(z) = (1, 0) is trivial. This completes the proof of the theorem. 2

Now we study the tail behavior of the traveling wave solution obtained in Theorem 2.4

at z = +∞. In order to do this, we define the functions m(θ) and M(θ) for θ ∈ [0, 1] as

follows.

m(θ) = θ
1

1 + k
, M(θ) = θ

1

1 + k
+ (1− θ)(1 + ε).

Here, ε is small enough such that k(1 + ε) < 1. For 0 < θ1 < θ2 < 1, it is easy to see that

0 = m(0) < m(θ1) < m(θ2) < m(1) =
1

1 + k
= M(1) < M(θ2) < M(θ1) < M(0) = 1 + ε.

We are ready to show the tail behavior of traveling wave solution at ∞ as follows.
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Theorem 2.5. Let (ϕ1, ϕ2) be a positive solution obtained in Theorem 2.4. Then

lim
z→+∞

(ϕ1, ϕ2)(z) =

(
1

1 + k
,

1

1 + k

)
. (2.17)

Proof. By the facts 1− k = ϕ1(z) ≤ ϕ1(z) ≤ ϕ1(z) = 1 and δ = ϕ2(z) ≤ ϕ2(z) ≤ ϕ2(z) = 1

for all z > 0, we obtain that

lim sup
z→+∞

ϕ1(z) ≤ 1, lim sup
z→+∞

ϕ2(z) ≤ 1,

lim inf
z→+∞

ϕ1(z) ≥ 1− k > 0, lim inf
z→+∞

ϕ2(z) ≥ δ > 0.

Now we denote

ϕ−
i = lim inf

z→+∞
ϕi(z), ϕ+

i = lim sup
z→+∞

ϕi(z), i = 1, 2.

Obviously, we have

m(0) = 0 < ϕ−
i ≤ ϕ+

i < 1 + ε = M(0), i = 1,2.

Note that (2.17) holds if we can show that

m(θ) < ϕ−
i ≤ ϕ+

i < M(θ), i = 1, 2, (2.18)

for all θ ∈ [0, 1).

Set θ0 := sup{θ ∈ [0, 1) | (2.18) holds}. Then θ0 is well-defined and it suffices to claim

that θ0 = 1. For contradiction, we suppose that θ0 < 1. Then, by passing to the limit, we

have

m(θ0) ≤ ϕ−
i ≤ ϕ+

i ≤ M(θ0), i = 1, 2.

Moreover, by the definition of θ0, (2.18) does not hold for θ = θ0, i.e., at least one of the

following conditions holds:

ϕ−
1 = m(θ0), ϕ+

1 = M(θ0), ϕ−
2 = m(θ0), ϕ+

2 = M(θ0).

First, we assume that ϕ−
1 = m(θ0). If ϕ1 is eventually monotone, we have ϕ1(∞) exists by

ϕ1 is bounded on R. Since
∫∞
0

ϕ′
1(s)ds = ϕ1(∞)−ϕ1(0) is finite, either lim infs→+∞ ϕ′

1(s) = 0

if ϕ′
1(s) ≥ 0 for s ≫ 1 or lim sups→+∞ ϕ′

1(s) = 0 if ϕ′
1(s) ≤ 0 for s ≫ 1. Then we can find

a sequence {zn} with zn → +∞ as n → +∞ such that limn→+∞ ϕ1(zn) = m(θ0) and

limn→+∞ ϕ′
1(zn) = 0. Also, we know that lim supn→+∞ ϕ2(zn) ≤ M(θ0). So we have

lim inf
n→+∞

{[1− ϕ1(zn)− kϕ2(zn)]} ≥ 1− θ0
1 + k

− k

[
θ0

1 + k
+ (1− θ0)(1 + ε)

]
= (1− θ0)(1− k(1 + ε)) > 0.
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Integrating the first equation of the system (1.2) from 0 to zn, we obtain that

ϕ′
1(zn)− ϕ′

1(0)− c[ϕ1(zn)− ϕ1(0)] = −r

∫ zn

0

ϕ1(s)[1− ϕ1(s)− kϕ2(s)]ds. (2.19)

Letting n → +∞, we get a contradiction, since the left-hand side of (2.19) remains bounded

and the right-hand side of (2.19) tends to −∞.

If ϕ1 is oscillatory at ∞, then we can choose a sequence {zn} of minimal points of ϕ1 with

zn → +∞ as n → +∞ such that limn→+∞ ϕ1(zn) = m(θ0). Note that ϕ′′
1(zn)− cϕ′

1(zn) ≥ 0

for all n. Also, we have lim supn→+∞ ϕ2(zn) ≤ M(θ0) and

lim inf
n→+∞

[1− ϕ1(zn)− kϕ2(zn)] ≥ 1− θ0
1 + k

− k

[
θ0

1 + k
+ (1− θ0)(1 + ε)

]
= (1− θ0)(1− k(1 + ε)) > 0.

This implies that

lim inf
n→+∞

{ϕ′′
1(zn)− cϕ′

1(zn) + rϕ1(zn)[1− ϕ1(zn)− kϕ2(zn)]} > 0,

a contradiction. Hence ϕ−
1 = m(θ0) is impossible.

The case for ϕ+
1 = M(θ0) can be treated similarly.

Next, we deal with the case ϕ−
2 = m(θ0). In this case, without loss of generality, we

may assume that m(θ0) < ϕ−
1 ≤ ϕ+

1 < M(θ0). If ϕ2 is eventually monotone, we have ϕ2(∞)

exists due to ϕ2 is bounded on R. By the similar argument as the case ϕ1(∞) exists, we can

find a sequence {ξn} with ξn → +∞ as n → +∞ such that limn→+∞ ϕ2(ξn) = m(θ0) and

limn→+∞ ϕ′
2(ξn) = 0. Moreover, we have

lim inf
n→+∞

[
1− ϕ2(ξn)

ϕ1(ξn)

]
> 1− m(θ0)

m(θ0)
= 0.

Integrating the second equation of the system (1.2) from 0 to ξn, we obtain that

d[ϕ′
2(ξn)− ϕ′

2(0)]− c[ϕ2(ξn)− ϕ2(0)] = −s

∫ ξn

0

ϕ2(s)

[
1− ϕ2(s)

ϕ1(s)

]
ds. (2.20)

Letting n → +∞, we get a contradiction. On the other hand, if ϕ2 is oscillatory at ∞, then

we can choose a sequence {ξn} of minimal points of ϕ2 with ξn → +∞ as n → +∞ such

that limn→+∞ ϕ2(ξn) = m(θ0). Note that dϕ′′
2(ξn)− cϕ′

2(ξn) ≥ 0 for all n. Also, we have

lim inf
n→+∞

[
1− ϕ2(zn)

ϕ1(zn)

]
>

[
1− m(θ0)

m(θ0)

]
= 0,

by using ϕ−
1 > m(θ0). Hence we obtain that

lim inf
n→+∞

{
dϕ′′

2(zn)− cϕ′
2(zn) + sϕ2(zn)

[
1− ϕ2(zn)

ϕ1(zn)

]}
> 0,

a contradiction. Similarly, we can deal with the case ϕ+
2 = M(θ0) to reach a contradiction.

Consequently, we must have θ0 = 1 and (2.18) follows. 2
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2.3. Determination of the minimal speed

In this section, we would like to show that c = c∗ is the minimal wave speed. This

is equivalent to show that there is no positive solution of (1.2)-(1.3) for c < c∗, due to

Theorems 2.4 and 2.5.

First, we recall the following spreading phenomenon (cf. [1]), namely, if z0 > 0 and

c ∈ (0, 2
√
dr), then

lim inf
t→+∞

inf
|x|<ct

z(x, t) = lim sup
t→+∞

sup
|x|<ct

z(x, t) =
1

a
(2.21)

for the solution z of the following Cauchy problem for Fisher’s equation (see, e.g., [9, 27]) zt(x, t) = dzxx(x, t) + rz(x, t)[1− az(x, t)], x ∈ R, t > 0,

z(x, 0) = z0(x), x ∈ R,
(2.22)

with d, r, a are positive constants and z0(x) is a positive bounded continuous function. Then

we have

Theorem 2.6. For c < c∗, there is no positive solution of (1.2)-(1.3).

Proof. For contradiction, we suppose that there exists a positive solution (ϕ1, ϕ2) of (1.2)-

(1.3) for some c̃ < c∗. Since c̃ < c∗ = 2
√
ds, there exists a θ ∈ (0, 1) with 0 < 1− θ ≪ 1 such

that 2
√
dsθ > c̃. By (1.3) and the positivity of ϕ2, there exists a positive constant K such

that α(x, t) := ϕ2(x+ c̃t) satisfies{
αt(x, t) ≥ dαxx(x, t) + sα(x, t) [1−Kα(x, t)] ,

α(x, 0) = ϕ2(x).

Now we consider that y(t) = −(2
√
dsθ+ c̃)t/2. Note that |y(t)| < 2

√
dsθ|t|. Then, by (2.21),

we obtain

lim inf
t→+∞

α(y(t), t) ≥ 1

K
> 0.

On the other hand, y(t) + c̃t = (c̃− 2
√
dsθ)t/2 → −∞ as t → +∞. Hence we obtain that

lim sup
t→+∞

α(y(t), t) = lim sup
t→+∞

ϕ2(y(t) + c̃t) = lim
z→−∞

ϕ2(z) = 0,

a contradiction. Therefore, the proof of this theorem is done. 2

3. Traveling wave solutions of (1.4)

3.1. Upper and lower solutions

For the system (1.5), the upper and lower solutions are defined as follows.

13



Definition 3.1. The functions (U, V ) and (U, V ) are called a pair of upper and lower solu-

tions of (1.5), if U
′
, V

′
, U ′, V ′ exist and the inequalities

[U(ξ + 1) + U(ξ − 1)− 2U(ξ)]− cU
′
(ξ) + rU(ξ)[1− U(ξ)− kV (ξ)] ≤ 0, (3.1)

[U(ξ + 1) + U(ξ − 1)− 2U(ξ)]− cU ′(ξ) + rU(ξ)[1− U(ξ)− kV (ξ)] ≥ 0, (3.2)

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV
′
(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≤ 0, (3.3)

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV ′(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≥ 0 (3.4)

hold for ξ ∈ R \D with some finite set D = {ξ1, ξ2, . . . , ξm}.

Now we construct a suitable pair of upper and lower solutions of (1.5) for each c ≥ c∗.

3.1.1. The case c > c∗.

For c > c∗, there are positive constants λ1, λ2, λ3 with λ2 < λ3 such that

eλ1 + e−λ1 − 2− cλ1 − r = 0 and d(eλi + e−λi − 2)− cλi + s = 0, i = 2, 3.

For constants µ, q > 1, we consider the function

f(ξ) := eλ2ξ − qeµλ2ξ.

Then we have the following lemma.

Lemma 3.1. For any given µ, q > 1, there exist a sufficiently small δ with 0 < δ < 1 − k
and a ξ2 < 0 such that f(ξ2) = δ and f(ξ) > δ for all ξ ∈ [ξ2 − 1, ξ2).

Proof. Obviously, there exists a unique ξ0 := − 1
λ2(µ−1)

ln q < 0 such that f(ξ0) = 0 and

f(ξ) > 0 for all ξ < ξ0. So we have f(ξ0 − 1)− f(ξ0) > 0. Also, the function f has a unique

maximal point at ξM = − 1
λ2(µ−1)

ln(qµ). Since f is a continuous function, we can choose a ξ2
with 0 < ξ0 − ξ2 ≪ 1 and a sufficiently small δ with 0 < δ < 1− k such that f(ξ2) = δ and

f(ξ2 − 1)− f(ξ2) > 0. If ξ2 − 1 ≥ ξM , then we get the conclusion by the fact f is decreasing

on [ξ2−1, ξ2]. Otherwise, for the case ξ2−1 < ξM since we have f is increasing in [ξ2−1, ξM ]

and is decreasing in [ξM , ξ2], the lemma follows by using f(ξ2 − 1) > f(ξ2) = δ. 2
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Now, we define the functions U(ξ), U(ξ), V (ξ), V (ξ) as follows:

U(ξ) =

 1, ξ ≥ 0,

1− ϵ(eλ1ξ − eνλ1ξ), ξ ≤ 0,
(3.5)

U(ξ) =

 1− k, ξ ≥ ξ1,

1− k(eλ1ξ + peηλ1ξ), ξ ≤ ξ1,
(3.6)

V (ξ) =

 1, ξ ≥ 0,

eλ2ξ, ξ ≤ 0,
(3.7)

V (ξ) =

 δ, ξ ≥ ξ2,

eλ2ξ − qeµλ2ξ, ξ ≤ ξ2,
(3.8)

where the constants η, µ, ν, q, p and ϵ are chosen in sequence such that

(C1) η > 0 is small enough such that (eηλ1 + e−ηλ1 − 2)− c(ηλ1)− r+ rk < 0 and λ2 > ηλ1,

µ ∈
(
1,min

{
λ3

λ2

, 2

})
, ν > max{1, λ2/λ1},

(C2) q > max

{
1,

s

−[d(eµλ2 + e−µλ2 − 2)− c(µλ2) + s](1− k)

}
,

p >
r(1 + k)

−[(eηλ1 + e−ηλ1 − 2)− c(ηλ1)− r + rk]
,

(C3) 0 < ε < min{k, k1, k2} with k1, k2 defined by

k1 :=
rkδ

eνλ1 + e−νλ1 − 2− c(νλ1)− r + rkδ
,

k2 :=
rk(1− qe(µ−1)λ2ξ2)

eνλ1 + e−νλ1 − 2− c(νλ1)− r + rk
,

where ξ2, δ are defined as in Lemma 3.1,

and ξ1 < 0 is uniquely defined by eλ1ξ1 + peηλ1ξ1 = 1.

Then we have the following lemma.

Lemma 3.2. Assume that c > c∗. Then the functions (U, V ) and (U, V ) defined by (3.5)-
(3.8) are a pair of upper and lower solutions of (1.5).

3.1.2. The case c = c∗.

For c = c∗, the equation

c∗λ = d(eλ + e−λ − 2) + s (3.9)
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has a unique positive root λ2. This also implies that

c∗ = d(eλ2 − e−λ2). (3.10)

Also, let λ1 be the unique positive root of c∗λ = (eλ + e−λ − 2)− r.

For the later purpose, we consider

h1(ξ) := ξ2 + ξ
√
ξ2 + ξ +

1

2
ξ, h2(ξ) := ξ2 + ξ

√
ξ2 − ξ − 1

2
ξ, ξ ≤ −1.

Then h1(ξ) and h2(ξ) are positive on (−∞,−1]. We compute by using l’Hôpital’s rule that

lim
ξ→−∞

h1(ξ) = lim
ξ→−∞

1−
(
1 + 1

ξ

)1/2

+ 1
2ξ

1
ξ2

= lim
ξ→−∞

1
2ξ2

(
1 + 1

ξ

)−1/2

− 1
2ξ2

−2
ξ3

= lim
ξ→−∞

−
(
1 + 1

ξ

)−1/2

+ 1

4
ξ

= lim
ξ→−∞

(
1 + 1

ξ

)−3/2
−1
2ξ2

−4
ξ2

= lim
ξ→−∞

(
1 + 1

ξ

)−3/2

8
=

1

8
.

Similarly, we have

lim
ξ→−∞

h2(ξ) =
1

8
.

Thus the constants

l1 := inf
ξ<−1

h1(ξ) > 0 and l2 := inf
ξ<−1

h2(ξ) > 0 (3.11)

are well-defined.

Now, we define the functions U(ξ), U(ξ), V (ξ), V (ξ) as follows:

U(ξ) =

 1, ξ ≥ 0,

1− ϵ(eλ1ξ − eνλ1ξ), ξ ≤ 0,
(3.12)

U(ξ) =

 1− k, ξ ≥ ξ1,

1− k(eλ1ξ + peηλ1ξ), ξ ≤ ξ1,
(3.13)

V (ξ) =

 1, ξ ≥ −1/λ2 − 1,

−hξeλ2ξ, ξ ≤ −1/λ2 − 1,
(3.14)

V (ξ) =

 δ, ξ ≥ ξ2,

[−hξ − q(−ξ)1/2]eλ2ξ, ξ ≤ ξ2,
(3.15)
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where the constants η, h, p, ξ1, q, δ, ξ2, ν, ϵ are chosen in sequence as follows.

First, we take η with 0 < η ≪ 1 such that

eηλ1 + e−ηλ1 − 2− c(ηλ1)− r + rk < 0,
λ2

λ2 + 1
> ηλ1. (3.16)

Secondly, we set h = λ2

λ2+1
eλ2+1 and consider w(ξ) := −hξeλ2ξ. Then w is strictly increas-

ing on (−∞,−1/λ2] and w(−1/λ2 − 1) = 1. Let p be a constant with

p > max

{
e,

r[k + h(λ2 + 1)/(λ2
2e)]

−[eηλ1 + eηλ1 − 2− c(ηλ1)− r + rk]

}
. (3.17)

Then there exists a ξ1 such that eλ1ξ1 + peηλ1ξ1 = 1 and ξ1 < −1/λ2 − 1, since eλ1ξ + peηλ1ξ

is increasing in ξ and

e−λ1(1/λ2+1) + pe−ηλ1(1/λ2+1) > e−λ1(1/λ2+1) + pe−1 > 1.

Thirdly, we choose q > 1 sufficiently large such that

(q/h)2 >
1

λ2

+ 1, q >
sh2

d(l1eλ2 + l2e−λ2)(1− k)

(
7

2eλ2

)7/2

. (3.18)

For the chosen positive constants h and q, we consider the function

g(ξ) := [−hξ − q(−ξ)1/2]eλ2ξ, ξ ≤ 0.

Then g(ξ) has the unique zero ξ0 = ξ0(h, q) := −(q/h)2 and a unique maximum point ξ̃ in

(−∞, ξ0). By using a similar argument as in Lemma 3.1, there exist a sufficiently small δ

with 0 < δ < 1 − k and a ξ2 < ξ0 such that g(ξ2) = δ and g(ξ) > δ for all ξ ∈ [ξ2 − 1, ξ2).

Also, we have ξ2 < ξ0 < −1/λ2 − 1 by the first inequality in (3.18).

Finally, we take ν > max{1, λ2/λ1} and ϵ ∈ (0, k) small enough such that

ϵ < min

{
rkδ

[eνλ1 + e−νλ1 − 2− c(νλ1)−r] + rkδ
,
rk(1− k)(−hξ2 − q

√
−ξ2)}

[eνλ1 + e−νλ1 − 2− c(νλ1)−r]

}
. (3.19)

Then the following lemma holds.

Lemma 3.3. For c = c∗, the functions (U, V ) and (U, V ) defined by (3.12)-(3.15) are a pair
of upper and lower solutions of (1.5).

3.2. Existence of traveling wave solutions

As in Section 2.2, we would like to apply Schauder’s fixed point theory to derive the

existence of solutions of (1.5). Recall that X is the space of continuous functions from R to

R2 with the usual sup-norm ∥ · ∥. Set

K = {(U, V ) ∈ X | (U(ξ), V (ξ)) ∈ [1− k, 1]× [0, 1] for all ξ ∈ R}.
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Also, we introduce the functions

F1(y1, y2) := (β − 2)y1 + ry1(1− y1 − ky2),

F2(y1, y2) := (β − 2d)y2 + sy2

(
1− y2

y1

)
for a constant β > max{2+ r(1 + k), 2d+ s(1 + k)/(1− k)}. Then, for (Ui, Vi) ∈ K, i = 1, 2,

with U1 ≤ U2 and V1 ≤ V2, we have

F1(U1, V2) ≤ F1(U1, V1) ≤ F1(U2, V1), F2(U1, V1) ≤ F2(U2, V2). (3.20)

Let c > 0. For (U, V ) ∈ K, we define the operator G = (G1, G2) : K → X by

Gi(U, V )(ξ) =
1

c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
sHi(U, V )(s)ds, i = 1, 2, ξ ∈ R,

where

H1(U, V )(ξ) := U(ξ + 1) + U(ξ − 1) + F1(U, V )(ξ),

H2(U, V )(ξ) := d[V (ξ + 1) + V (ξ − 1)] + F2(U, V )(ξ).

It easy to see that (G1, G2) satisfies the system (1.5). Moreover, by (3.20), we have

G1(U1, V2) ≤ G1(U1, V1) ≤ G1(U2, V1), G2(U1, V1) ≤ G2(U2, V2). (3.21)

for (Ui, Vi) ∈ K, i = 1, 2, with U1 ≤ U2 and V1 ≤ V2.

Let

S := {(U, V ) ∈ K | U(ξ) ≤ U(ξ) ≤ U(ξ), V (ξ) ≤ V (ξ) ≤ V (ξ) for all ξ ∈ R}.

Also, we choose a α ∈ (0, β/c) and define the function space Bα(R,R2) and the weighted

norm | · |α of X by

Bα(R,R2) := {Φ ∈ X | |Φ|α < ∞} , |Φ|α := sup
ξ∈R

∥Φ(ξ)∥e−α|ξ|, Φ ∈ X.

Then (Bα(R,R2), | · |α) is a Banach space and S is a nonempty bounded closed convex set

with respect to the weighted norm | · |α.
The following lemma gives the existence of a positive solution of (1.5) if a pair of upper

and lower solutions of (1.5) exists.

Lemma 3.4. Let c > 0. Suppose that there exists a pair of upper and lower solutions (U, V )
and (U, V ) of (1.5) in K such that U(ξ) ≤ U(ξ) and V (ξ) ≤ V (ξ) for all ξ ∈ R. Then G
has a fixed point (U, V ) ∈ S which is a solution of (1.5).

Proof. First, we show that G(S) ⊂ S. Given any (U, V ) ∈ S, by (3.21), we know that{
G1(U, V )(ξ) ≤ G1(U, V )(ξ) ≤ G1(U, V )(ξ), ξ ∈ R,
G2(U, V )(ξ) ≤ G2(U, V )(ξ) ≤ G2(U, V )(ξ), ξ ∈ R.
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Thus, we only need to show that{
U(ξ) ≤ G1(U, V )(ξ) ≤ G1(U, V )(ξ) ≤ U(ξ), ξ ∈ R,
V (ξ) ≤ G2(U, V )(ξ) ≤ G2(U, V )(ξ) ≤ V (ξ), ξ ∈ R.

By the definition of the upper and lower solutions, we obtain that

G1(U, V )(ξ) =
1

c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
sH1(U, V )(s)ds

≥ 1

c
e−

β
c
ξ

∫ ξ

−∞
e

β
c
s(cU ′ + βU)(s)ds

= e−
β
c
ξ

∫ ξ

−∞

[
e

β
c
sU ′(s) +

β

c
e

β
c
sU(s)

]
ds

= e−
β
c
ξ · e

β
c
ξU(ξ) = U(ξ).

Similarly, the other inequalities hold. Hence we have G(S) ⊂ S.
By a similar argument as in [16], the operator G : S → S is completely continuous with

respect to the weighted norm | · |α. Then the lemma can be proved by using Schauder’s fixed

point theorem. 2

By Lemmas 3.2-3.4, we have the following theorem.

Theorem 3.5. For each c ≥ c∗, there exists a positive solution (U, V ) of (1.5) such that

U(ξ) ≤ U(ξ) ≤ U(ξ), V (ξ) ≤ V (ξ) ≤ V (ξ), ∀ ξ ∈ R,

where (U, V ) and (U, V ) are defined by (3.5)-(3.8) for c > c∗ and by (3.12)-(3.15) for c = c∗.
Moreover, we have (U, V )(−∞) = (1, 0).

Note that, for c = c∗, we have V (ξ) ≤ V (ξ) for all ξ ∈ R, since ξ2 < −1/λ2−1, by (3.18).

The other cases can be easily checked and hence Lemma 3.4 can be applied.

It remains to derive the tail behavior of the solution obtained in Theorem 3.5 at ξ = ∞.

To do this, we recall that [m(θ),M(θ)]× [m(θ),M(θ)], θ ∈ [0, 1], where

m(θ) := θ
1

1 + k
, M(θ) := θ

1

1 + k
+ (1− θ)(1 + ε)

and ε is a small positive constant such that k(1 + ε) < 1.

Theorem 3.6. Let (U, V ) be a positive solution obtained in Theorem 3.5. Then

lim
ξ→∞

(U, V )(ξ) =

(
1

1 + k
,

1

1 + k

)
. (3.22)
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Proof. The proof is similar to the one given in Theorem 2.5, we present the proof for the

completeness.

Set

U− := lim inf
ξ→∞

U(ξ), U+ := lim sup
ξ→∞

U(ξ),

V − := lim inf
ξ→∞

V (ξ), V + := lim sup
ξ→∞

V (ξ).

Since

lim
ξ→∞

U(ξ) = 1, lim
ξ→∞

U(ξ) = 1− k, lim
ξ→∞

V (ξ) = 1, lim
ξ→∞

V (ξ) = δ,

we have

U+ ≤ 1, U− ≥ 1− k, V + ≤ 1, V − ≥ δ.

Hence we obtain

m(0) = 0 < U− ≤ U+ < 1 + ϵ = M(0), m(0) = 0 < V − ≤ V + < 1 + ϵ = M(0). (3.23)

We claim that

m(θ) < U− ≤ U+ < M(θ), m(θ) < V − ≤ V + < M(θ), (3.24)

for all θ ∈ [0, 1). First we set θ0 := sup{θ ∈ [0, 1) | (3.24) holds}. Since (3.24) holds for

0 < θ ≪ 1 due to (3.23), θ0 is well-defined. By a contradiction argument, we assume that

θ0 < 1. Then, by passing to the limit, we have

m(θ0) ≤ U− ≤ U+ ≤ M(θ0), m(θ0) ≤ V − ≤ V + ≤ M(θ0). (3.25)

Hence at least one of the following equalities holds:

U− = m(θ0), U
+ = M(θ0), V

− = m(θ0), V
+ = M(θ0).

Assume that U− = m(θ0). Then we can find a sequence {ξn} of U with ξn → +∞ as n →
+∞ such that limn→+∞ U(ξn) = m(θ0) and limn→+∞ U ′(ξn) = 0. Indeed, if U is eventually

monotone, we know that U(∞) exists by the boundedness of U . Since
∫∞
0

U ′(s)ds = U(∞)−
U(0) is finite, either lim infs→+∞ U ′(s) = 0 if U ′(s) > 0 for s ≫ 1 or lim sups→+∞ U ′(s) = 0

if U ′(s) < 0 for s ≫ 1. This implies that the sequence {ξn} can be found. If U is oscillatory

at ∞, then the sequence {ξn} can be chosen as the minimal points of U . By the definition

of U−, we have

lim inf
n→+∞

U(ξn + 1) ≥ U−, lim inf
n→+∞

U(ξn − 1) ≥ U−.
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Also, using (3.25) and lim supn→+∞ V (ξn) ≤ M(θ0), we have

lim inf
n→∞

[1− U(ξn)− kV (ξn)] ≥ 1− θ0
1 + k

− k

[
θ0

1 + k
+ (1− θ0)(1 + ϵ)

]
= (1− θ0)[1− k(1 + ϵ)] > 0.

This implies that

0 = lim inf
n→∞

{[U(ξn + 1) + U(ξn − 1)− 2U(ξn)]− cU ′(ξn) + rU(ξn)[1− U(ξn)− kV (ξn)]}

≥ (U− + U− − 2U−)− c · 0 + rU− · lim inf
n→∞

[1− U(ξn)− kV (ξn)] > 0,

a contradiction. Similarly, we can show that U+ = M(θ0) does not hold.

For the other cases V − = m(θ0) and V + = M(θ0), we may assume that m(θ0) < U− ≤
U+ < M(θ0). Then they can be treated by the similar argument as previous cases. Therefore,

(3.24) holds for all θ < 1 and (3.22) follows by taking θ → 1. Hence the theorem is proved.

2

3.3. Determination of the minimal speed

First, we have the following lemma.

Lemma 3.7. If (c, U, V ) is a solution of (1.5)-(1.6) such that U, V ≥ 0, then U, V are
positive on R and c > 0.

Proof. Although the proof is similar to the one given in [11], we provide the details here for

the completeness. First, we claim that U > 0 in R. Otherwise, due to U(+∞) = 1/(1 + k),

we can find ξ0 such that U(ξ0) = 0 and U(ξ) > 0 for all ξ > ξ0. On the other hand, U ′(ξ0) = 0

due to U ≥ 0. By the first equation of (1.5), we obtain that U(ξ0 + 1) = U(ξ0 − 1) = 0

and get a contradiction. So U(ξ) > 0 for all ξ ∈ R. Similarly, we also have V (ξ) > 0 for all

ξ ∈ R.
Now we show that c > 0. Since limξ→−∞(U, V )(ξ) = (1, 0), there exists a sufficiently

large N such that for any ξ ≤ −N

1− V (ξ)

U(ξ)
≥ 1

2
.

Then we integrate the second equation of (1.5) from −∞ to ξ < −N and derive that

cV (ξ) = d

[∫ ξ+1

ξ

V (θ)dθ −
∫ ξ

ξ−1

V (θ)dθ

]
+

∫ ξ

−∞
sV (θ)

[
1− V (θ)

U(θ)

]
dθ. (3.26)

Thus, we obtain that

|c|+ 2d ≥ cV (ξ)− d

[∫ ξ+1

ξ

V (θ)dθ −
∫ ξ

ξ−1

V (θ)dθ

]
=

∫ ξ

−∞
sV (θ)

[
1− V (θ)

U(θ)

]
dθ ≥ s

2

∫ ξ

−∞
V (θ)dθ.
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This shows us that I(ξ) :=
∫ ξ

−∞ V (θ)dθ is well-defined for all ξ < −N and I(ξ) is increasing

in (−∞,−N). Now, we integrate (3.26) from −∞ to η < −N and obtain that

cI(η) = d

[∫ η+1

η

I(ξ)dξ −
∫ η

η−1

I(ξ)dξ

]
+

∫ η

−∞

∫ ξ

−∞
sV (θ)

[
1− V (θ)

U(θ)

]
dθdξ > 0.

This implies that c > 0. Hence the lemma follows. 2

The next theorem provides a lower bound for the admissible wave speeds.

Theorem 3.8. Let (c, U, V ) be a solution of (1.5)-(1.6) such that U, V ≥ 0. Then c ≥ c∗,
where c∗ is given in (1.7).

Proof. Suppose that (c, U, V ) is a positive solution of (1.5)-(1.6). Set

z(ξ) = V ′(ξ)/V (ξ), B(ξ) = s[1− V (ξ)/U(ξ)]− 2d.

Then we can derive from the second equation of (1.5) that

cz(ξ) = d
[
e
∫ ξ+1
ξ z(s)ds + e−

∫ ξ
ξ−1 z(s)ds

]
+B(ξ).

It follows from [3, Theorem 4] (see also [2]) that the limit ω := limξ→−∞ z(ξ) exists and it

satisfies

cω = d(eω + e−ω − 2) + s.

Hence c ≥ c∗, by the definition of c∗, and the theorem is proved. 2

From the results shown in Theorems 3.5, 3.6 and 3.8, c = c∗ is the minimal speed of the

traveling wave solution of (1.5)-(1.6).

4. Verifications of upper and lower solutions

In this section, we provide the details of verifications of all upper and lower solutions

constructed in the previous two sections.

Proof of Lemma 2.1. First, we claim that

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≤ 0

holds for z ∈ R\{0}. For z > 0, we have ϕ1(z) = 1 and

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] = −rkϕ2(z) ≤ 0.

When z2 ≤ z < 0, we have ϕ1(z) = 1− ϵ(eλ1z − eνλ1z) and so

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)]

= ϵ[(νλ1)
2 − c(νλ1)− r]eνλ1z − rϵ2(eλ1z − eνλ1z)2 − rk[1− ϵ(eλ1z − eνλ1z)]δ

≤ ϵ[(νλ1)
2 − c(νλ1)− r]eνλ1z + ϵrkeλ1zδ − rkδ

≤ ϵ
{
[(νλ1)

2 − c(νλ1)− r] + rkδ
}
− rkδ ≤ 0,
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by the choices of ν and ϵ. If z < z2, we have

ϕ1(z) = 1− ϵ(eλ1z − eνλ1z), ϕ2(z) = eλ2z − qeµλ2z

and so

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)]

= ϵ[(νλ1)
2 − c(νλ1)− r]eνλ1z − rϵ2(eλ1z − eνλ1z)2

−rk[1− ϵ(eλ1z − eνλ1z)](eλ2z − qeµλ2z)

≤ eλ2z{ϵ[(νλ1)
2 − c(νλ1)− r]e(νλ1−λ2)z

+rkϵ(eλ1z − eνλ1z)(1− qe(µ−1)λ2z)− rk(1− qe(µ−1)λ2z)}
≤ eλ2z{ϵ[(νλ1)

2 − c(νλ1)− r + rk]− rk(1− qe(µ−1)λ2z2)} ≤ 0,

by the assumptions (A1) and (A3).

Next, for z ̸= z1, we would like to show that

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≥ 0.

When z > z1, we have ϕ1(z) = 1− k and

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] = r(1− k)k(1− ϕ2(z)) ≥ 0

by ϕ2(z) ≤ 1. Otherwise, for z < z1, we have ϕ1(z) = 1− k(eλ1z + peηλ1z), ϕ2(z) = eλ2z and

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)]

= −k[λ2
1e

λ1z + p(ηλ1)
2eηλ1z] + ck[λ1e

λ1z + p(ηλ1)e
ηλ1z]

+r[1− k(eλ1z + peηλ1z)][k(eλ1z + peηλ1z)− keλ2z]

= k{−(λ2
1 − cλ1 − r)eλ1z − p[(ηλ1)

2 − c(ηλ1)− r]eηλ1z}
−rk2(eλ1z + peηλ1z)2 − rkeλ2z + rk2(eλ1z + peηλ1z)eλ2z

≥ k{−p[(ηλ1)
2 − c(ηλ1)− r]eηλ1z} − rk2(eλ1z + peηλ1z)− rkeλ2z

≥ keηλ1z{−p[(ηλ1)
2 − c(ηλ1)− r + rk]− rke(1−η)λ1z − re(λ2−ηλ1)z}

≥ keηλ1z{−p[(ηλ1)
2 − c(ηλ1)− r + rk]− r(1 + k)} ≥ 0,

by the choices of p and η.

Now we show that

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
≤ 0

for z ̸= 0. In the case z > 0, we have ϕ1(z) = 1 and ϕ2(z) = 1 and

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
= 0.
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For z < 0, we have ϕ2(z) = eλ2z and

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
= −s

ϕ
2

2(z)

ϕ1(z)
≤ 0.

Finally, we prove that

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)

[
1−

ϕ2(z)

ϕ1(z)

]
≥ 0

holds for z ̸= z2. If z > z2, we know that ϕ2(z) = δ. Then we obtain that

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)

[
1−

ϕ2(z)

ϕ1(z)

]
≥ sδ

[
1− δ

(1− k)

]
> 0

by δ < 1− k. On the other hand, if z < z2, we have ϕ2(z) = eλ2z − qeµλ2z and so

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)

[
1−

ϕ2(z)

ϕ1(z)

]
≥ dϕ2

′′(z)− cϕ2
′(z) + sϕ2(z)

[
1−

ϕ2(z)

1− k

]
= d[λ2

2e
λ2z − q(µλ2)

2eµλ2z]− c[λ2e
λ2z − q(µλ2)e

µλ2z]

+s(eλ2z − qeµλ2z)− s

1− k
(eλ2z − qeµλ2z)2

≥ eµλ2z

{
−q[d(µλ2)

2 − c(µλ2) + s]− s

1− k
e(2−µ)λ2z

}
≥ eµλ2z

{
−q[d(µλ2)

2 − c(µλ2) + s]− s

1− k

}
≥ 0,

by the fact ϕ1(z) ≥ 1− k and the choices of q and µ. Therefore, the proof of this lemma has

been completed. 2

Proof of Lemma 2.2. First, we claim that

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≤ 0 (4.1)

holds for z ∈ R\{0}. For z > 0 and z2 ≤ z < 0, the inequality (4.1) holds by a similar

argument as in the case c > c∗, using

ν > 1, ϵ <
rkδ

[(νλ1)2 − c(νλ1)− r] + rkδ
.

For z < z2, we have ϕ1(z) = 1− ϵ(eλ1z − eνλ1z) and ϕ2(z) = [−hz − q(−z)1/2]eλ2z. Then

ϕ1
′′
(z)− cϕ1

′
(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)]

= ϵ[(νλ1)
2 − c(νλ1)− r]eνλ1z − rϵ2(eλ1z − eνλ1z)2

−rk[1− ϵ(eλ1z − eνλ1z)][−hz − q(−z)1/2]eλ2z

≤ eλ2z{ϵ[(νλ1)
2 − c(νλ1)− r]e(νλ1−λ2)z − rk[1− ϵ(eλ1z − eνλ1z)][−hz − q(−z)1/2]}

≤ eλ2z
{
ϵ[(νλ1)

2 − c(νλ1)− r]− rk(1− k)[−hz − q(−z)1/2]
}

≤ eλ2z
{
ϵ[(νλ1)

2 − c(νλ1)− r]− rk(1− k)[−hz2 − q(−z2)
1/2]

}
≤ 0
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for all z < z2, by using (2.10). Hence (4.1) holds for all z ∈ R\{0}.
Next, for z ̸= z1, we would like to show that

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] ≥ 0.

When z > z1, we have ϕ1(z) = 1− k and so

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)] = r(1− k)k(1− ϕ2(z)) ≥ 0,

by ϕ2(z) ≤ 1. For z < z1 < −2/λ2, we have ϕ1(z) = 1−k(eλ1z+peηλ1z) and ϕ2(z) = −hzeλ2z.

Hence we obtain

ϕ1
′′(z)− cϕ1

′(z) + rϕ1(z)[1− ϕ1(z)− kϕ2(z)]

= −k[λ2
1e

λ1z + p(ηλ1)
2eηλ1z] + ck[λ1e

λ1z + p(ηλ1)e
ηλ1z]

+r[1− k(eλ1z + peηλ1z)][k(eλ1z + peηλ1z)− k(−hzeλ2z)]

≥ k{−(λ2
1 − cλ1 − r)eλ1z − p[(ηλ1)

2 − c(ηλ1)− r]eηλ1z}
−rk2(eλ1z + peηλ1z)2 − rk(−hzeλ2z)

≥ k{−p[(ηλ1)
2 − c(ηλ1)− r]eηλ1z} − rk2(eλ1z + peηλ1z)− rk(−hzeλ2z)

= keηλ1z{−p[(ηλ1)
2 − c(ηλ1)− r + rk]− rke(1−η)λ1z − r(−hz)e(λ2−ηλ1)z}

≥ keηλ1z{−p[(ηλ1)
2 − c(ηλ1)− r + rk]− r[k + h/(ηλ1e)]} ≥ 0

for all z < z1, by using (2.7) and (2.8). Here we have also used the fact that

−hze(λ2−ηλ1)z ≤ −hzeηλ1z ≤ h/(ηλ1e) for all z ≤ 0.

Now we show that

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
≤ 0

for z ̸= −2/λ2. In the case z > −2/λ2, we have ϕ2(z) = 1 and

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
= s

[
1− 1

ϕ1(z)

]
≤ 0

from ϕ1(z) ≤ 1. For z < −2/λ2, we have ϕ2(z) = −hzeλ2z and

dϕ2
′′
(z)− cϕ2

′
(z) + sϕ2(z)

[
1− ϕ2(z)

ϕ1(z)

]
= −s

ϕ
2

2(z)

ϕ1(z)
≤ 0.

Finally, we prove that

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)

[
1−

ϕ2(z)

ϕ1(z)

]
≥ 0 (4.2)
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for all z ̸= z2. For z > z2, (4.2) holds by a similar argument as in the case c > c∗. When

z < z2, we have ϕ2(z) = [−hz − q(−z)1/2]eλ2z and

dϕ2
′′(z)− cϕ2

′(z) + sϕ2(z)

[
1−

ϕ2(z)

ϕ1(z)

]
≥ dϕ2

′′(z)− cϕ2
′(z) + sϕ2(z)

[
1−

ϕ2(z)

1− k

]
=

dq

4
(−z)−3/2eλ2z − s

1− k
[−hz − q(−z)1/2]2e2λ2z

= (−z)−3/2eλ2z

{
dq

4
− s(−z)3/2[−hz − q(−z)1/2]2eλ2z

1− k

}
≥ (−z)−3/2eλ2z

{
dq

4
− sh2

1− k
(−z)7/2eλ2z

}
≥ (−z)−3/2eλ2z

{
dq

4
− sh2

1− k

(
7

2eλ2

)7/2
}

≥ 0,

by the facts ϕ1(z) ≥ 1− k, λ2 = c/(2d) and the choice of q in (2.9). Here we have used the

fact that

(−z)7/2eλ2z ≤
(

7

2eλ2

)7/2

for all z ≤ 0.

Therefore, the proof of the lemma is completed. 2

Proof Lemma 3.2. To prove the lemma, we note that

U(ξ) ≤ 1, U(ξ) ≤ 1− ϵ(eλ1ξ − eνλ1ξ),

U(ξ) ≥ 1− k, U(ξ) ≥ 1− k(eλ1ξ + peηλ1ξ),

V (ξ) ≤ 1, V (ξ) ≤ eλ2ξ, V (ξ) ≥ eλ2ξ − qeµλ2ξ

for all ξ ∈ R, and V (ξ) ≥ δ for ξ ≥ ξ2 − 1 due to Lemma 3.1.

First, we show that (3.1) holds for all ξ ̸= 0. It is trivial that (3.1) holds for ξ > 0, since

U(ξ + 1) = 1, U(ξ − 1) ≤ 1 and U(ξ) = 1. For ξ2 ≤ ξ < 0, we have

[U(ξ + 1) + U(ξ − 1)− 2U(ξ)]− cU ′(ξ) + rU(ξ)[1− U(ξ)− kV (ξ)]

≤ 1− ϵ(eλ1(ξ+1) − eνλ1(ξ+1)) + 1− ϵ(eλ1(ξ−1) − eνλ1(ξ−1))− 2(1− ϵ(eλ1ξ − eνλ1ξ))

−c(−ϵλ1e
λ1ξ + ϵνλ1e

νλ1ξ) + r(ϵeλ1ξ − ϵeνλ1ξ)

−rϵ2(eλ1ξ − eνλ1ξ)2 − rkδ[1− ϵ(eλ1ξ − eνλ1ξ)]

≤ ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r]eνλ1ξ + ϵrkδeλ1ξ − rkδ

≤ ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r + rkδ]− rkδ ≤ 0,
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by the choices of ϵ and ν. If ξ < ξ2, we have

[U(ξ + 1) + U(ξ − 1)− 2U(ξ)]− cU ′(ξ) + rU(ξ)[1− U(ξ)− kV (ξ)]

≤ ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)− r]eνλ1ξ − rk[1− ϵ(eλ1ξ − eνλ1ξ)][eλ2ξ − qeµλ2ξ]

≤ eλ2ξ{ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r]e(νλ1−λ2)ξ

+rkϵ(eλ1ξ − eνλ1ξ)(1− qe(µ−1)λ2ξ)− rk(1− qe(µ−1)λ2ξ)}
≤ eλ2ξ{ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r + rk]− rk(1− qe(µ−1)λ2ξ2)} ≤ 0,

by the assumptions (C1) and (C3). Hence (3.1) holds for all ξ ̸= 0.

Secondly, we claim that (3.2) holds for ξ ̸= ξ1. The case when ξ > ξ1 is trivial. For

ξ < ξ1, we compute

[U(ξ + 1) + U(ξ − 1)− 2U(ξ)]− cU ′(ξ) + rU(ξ)[1− U(ξ)− kV (ξ)]

≥ 1− k(eλ1(ξ+1) + peηλ1(ξ+1)) + 1− k(eλ1(ξ−1) + peηλ1(ξ−1))

−2[1− k(eλ1ξ + peηλ1ξ)]− c[−k(λ1e
λ1ξ + p(ηλ1)e

ηλ1ξ)]

+rk[1− k(eλ1ξ + peηλ1ξ)][eλ1ξ + peηλ1ξ − eλ2ξ]

= k{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r]eηλ1ξ − rk(eλ1ξ + peηλ1ξ)2

−reλ2ξ + rk(eλ1ξ + peηλ1ξ)eλ2ξ}
≥ keηλ1ξ{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r + rk]− rke(1−η)λ1ξ

−re(λ2−ηλ1)ξ}
≥ keηλ1ξ{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r + rk]− r(1 + k)} ≥ 0,

by the choices of p and η. Hence (3.2) holds for ξ ̸= ξ1.

Thirdly, since it is trivial that (3.3) holds for all ξ ̸= 0, we omit the details.

Finally, we prove that (3.4) holds for all ξ ̸= ξ2. For ξ > ξ2, we have

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV ′(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≥ sδ

[
1− δ

1− k

]
> 0,

since V (ξ + 1) = V (ξ) = δ, V (ξ − 1) ≥ δ, and δ < 1− k. For ξ < ξ2, we have

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV ′(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≥ d[eλ2(ξ+1) − qeµλ2(ξ+1) + eλ2(ξ−1) − qeµλ2(ξ−1) − 2eλ2ξ + 2qeµλ2ξ]

−c[λ2e
λ2ξ − q(µλ2)e

µλ2ξ] + s[eλ2ξ − qeµλ2ξ]

[
1− 1

1− k
(eλ2ξ − qeµλ2ξ)

]
≥ eµλ2ξ

{
−q[d(eµλ2 + e−µλ2 − 2)− c(µλ2) + s]− s

1− k
e(2−µ)λ2ξ

}
≥ eµλ2ξ

{
−q[d(eµλ2 + e−µλ2 − 2)− c(µλ2) + s]− s

1− k

}
≥ 0
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by the fact U(ξ) ≥ 1− k and the choice of q. Hence (3.4) holds for all ξ ̸= ξ2 and the lemma

is proved. 2

Proof of Lemma 3.3. Later, we will use the following facts.

U(ξ) ≤ 1, U(ξ) ≤ 1− ϵ(eλ1ξ − eνλ1ξ) for ξ ∈ R,
U(ξ) ≥ 1− k, U(ξ) ≥ 1− k(eλ1ξ + peηλ1ξ) for ξ ∈ R,
V (ξ) ≤ 1 for ξ ∈ R, V (ξ) ≤ −hξeλ2ξ for ξ ≤ −1/λ2,

V (ξ) ≥ δ for ξ ≥ ξ2 − 1, V (ξ) ≥ [−hξ − q(−ξ)1/2]eλ2ξ for ξ ≤ ξ2 + 1.

First, we claim that (3.1) holds for ξ ∈ R \ {0}. For ξ > 0 and ξ2 ≤ ξ < 0, the inequality

(3.1) holds by a similar argument as in the case c > c∗, using

ν > 1, ϵ <
rkδ

[eνλ1 + e−νλ1 − 2− c(νλ1)−r] + rkδ
.

For ξ < ξ2, we have U(ξ) = 1− ϵ(eλ1ξ − eνλ1ξ) and V (ξ) = [−hξ − q(−ξ)1/2]eλ2ξ. Then

U(ξ + 1) + U(ξ − 1)− 2U(ξ)− cU ′(ξ) + rU(ξ)(1− U(ξ)− kV (ξ))

≤ ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)− r]eνλ1ξ − rϵ2(eλ1ξ − eνλ1ξ)2

−rk[1− ϵ(eλ1ξ − eνλ1ξ)][−hξ − q(−ξ)1/2]eλ2ξ

≤ eλ2ξ{ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)− r]e(νλ1−λ2)ξ

−rk[1− ϵ(eλ1ξ − eνλ1ξ)][−hξ − q(−ξ)1/2]}
≤ eλ2ξ

{
ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r]− rk(1− k)[−hξ − q(−ξ)1/2]

}
≤ eλ2ξ

{
ϵ[eνλ1 + e−νλ1 − 2− c(νλ1)−r]− rk(1− k)[−hξ2 − q(−ξ2)

1/2]
}
≤ 0

for all ξ < ξ2, by using (3.19). Hence (3.1) holds for all ξ ∈ R \ {0}.
Next, we check (3.2) for ξ ̸= ξ1. The case when ξ > ξ1 is trivial. For ξ < ξ1 < −1/λ2− 1,

we have

U(ξ) = 1− k(eλ1ξ + peηλ1ξ), V (ξ) = −hξeλ2ξ.

Hence we obtain

U(ξ + 1) + U(ξ − 1)− 2U(ξ)− cU ′(ξ) + rU(ξ)(1− U(ξ)− kV (ξ))

≥ k{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r]eηλ1ξ − rk(eλ1ξ + peηλ1ξ)2

−r(−hξ)eλ2ξ + rk(eλ1ξ + peηλ1ξ)(−hξ)eλ2ξ}
≥ keηλ1ξ{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r + rk]− rke(1−η)λ1ξ − r(−hξ)e(λ2−ηλ1)ξ}
≥ keηλ1ξ{−p[eηλ1 + e−ηλ1 − 2− c(ηλ1)− r + rk]− r[k + h(λ2 + 1)/(λ2

2e)]} ≥ 0

for all ξ < ξ1, by using (3.16) and (3.17). Here we have also used the fact that

−hξe(λ2−ηλ1)ξ ≤ −hξe
λ22

λ2+1
ξ ≤ h(λ2 + 1)

λ2
2e

for all ξ ≤ 0.
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Now we show that (3.3) holds for ξ ̸= −1/λ2 − 1. In the case ξ > −1/λ2 − 1, we have

V (ξ) = 1 and so

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV
′
(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≤ s

[
1− 1

U(ξ)

]
≤ 0,

from U(ξ) ≤ 1. For ξ < −1/λ2 − 1, we have V (ξ) = −hξeλ2ξ and so

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV
′
(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≤ d[−h(ξ + 1)eλ2(ξ+1) − h(ξ − 1)eλ2(ξ−1) + 2hξeλ2ξ]

−c(−λ2hξe
λ2ξ − heλ2ξ)− shξeλ2ξ − s

V
2
(ξ)

U(ξ)

= −[d(eλ2 + e−λ2 − 2)− cλ2 + s]hξeλ2ξ − [d(eλ2 − e−λ2)− c]heλ2ξ − s
V

2
(ξ)

U(ξ)

= −s
V

2
(ξ)

U(ξ)
≤ 0.

Hence (3.3) is verified.

Finally, we prove that (3.4) holds for all ξ ̸= ξ2. The case for ξ > ξ2 is trivial. When

ξ < ξ2 < −1, we have

d[V (ξ + 1) + V (ξ − 1)− 2V (ξ)]− cV ′(ξ) + sV (ξ)

(
1− V (ξ)

U(ξ)

)
≥ d[−q

√
−ξ − 1eλ2(ξ+1) − q

√
−ξ + 1eλ2(ξ−1) + 2q

√
−ξeλ2ξ]

−c

(
−qλ2

√
−ξ + q

1

2
√
−ξ

)
eλ2ξ − sq

√
−ξeλ2ξ − s

1− k
(−hξ − q

√
−ξ)2e2λ2ξ

= dq

[(
ξ2 + ξ

√
ξ2 + ξ +

1

2
ξ

)
eλ2 +

(
ξ2 + ξ

√
ξ2 − ξ − 1

2
ξ

)
e−λ2

]
(−ξ)−3/2eλ2ξ

− s

1− k
(−hξ − q

√
−ξ)2e2λ2ξ

≥ [dq(l1e
λ2 + l2e

−λ2)](−ξ)−3/2eλ2ξ − s

1− k
(−hξ − q

√
−ξ)2e2λ2ξ

= (−ξ)−3/2eλ2ξ

{
[dq(l1e

λ2 + l2e
−λ2)]− s(−ξ)3/2[−hξ − q(−ξ)1/2]2eλ2ξ

1− k

}
≥ (−ξ)−3/2eλ2ξ

{
[dq(l1e

λ2 + l2e
−λ2)]− sh2

1− k
(−ξ)7/2eλ2ξ

}
≥ (−ξ)−3/2eλ2ξ

{
[dq(l1e

λ2 + l2e
−λ2)]− sh2

1− k

(
7

2eλ2

)7/2
}

≥ 0,

by the facts U(ξ) ≥ 1− k, (3.9)-(3.11) and the choice of q in (3.18). Here we have also used

the fact that

(−ξ)7/2eλ2ξ ≤
(

7

2eλ2

)7/2

for all ξ ≤ 0.
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Therefore, the proof of the lemma is completed. 2
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