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Abstract. We study an initial boundary value problem for the p-Laplace equation with

a strong absorption. We are concerned with the dead-core behavior of the solution. First,

some criteria for developing dead-core are given. Also, the temporal dead-core rate for

certain initial data is determined. Then we prove uniqueness theorem for the backward

self-similar solutions.

1. Introduction

In this paper, we consider the following initial boundary value problem

(1.1)


ut = (|ux|p−2ux)x − uq, 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = k, t > 0,

u(x, 0) = u0(x), x ∈ [0, 1],

where parameters q ∈ (0, 1), p > 2 and k > 0. We shall always assume that u0(x) > 0 for

all x ∈ [0, 1]. The local existence and uniqueness of classical solution of (1.1) is trivial.

Let [0, T ), T = T (u0) > 0, be the maximal time interval for the existence of a positive

solution u to the problem (1.1). In the case when T < ∞, we have

lim inf
t↗T

{ min
x∈[0,1]

u(x, t)} = 0

so that the solution reaches zero at some point in a finite time. We call such a property a

dead-core phenomenon. In fact, in the study of chemical reaction, the chemical is inactive

when the chemical concentration u vanishes and so the set of vanishing concentration is

called the dead-core.

Problem (1.1) with p = 2 arises from the modeling of an isothermal reaction-diffusion

process (cf. [2, 9]). See also [1, 3]. In problem (1.1), there is no flux on the boundary

x = 0 and it is injected with a fixed amount of reactant on the boundary x = 1. Owing

to the strong absorption (the reaction rate −uq−1 → −∞ as u ↘ 0, since q < 1), a

dead-core is expected to be developed for certain initial data. On the other hand, it is
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also very interesting to study the temporal dead-core rate. For this, we refer the reader

to [7, 6, 5, 4] for the study of dead-core for the equation

(1.2) ut = (um)xx − uq

in which 0 < q < 1 and m > q. The case for m = 1 corresponds to the case for p = 2

in (1.1). The dead-core rate can be either of self-similar or of non-self-similar type for

different range of m. We refer to [7, 5, 4] for more details. For m = 1, the exact dead-core

rates for different initial data is addressed in [6] by applying a braid group theory. The

other cases are largely open.

The main purpose of this paper is to study the dead-core problem for the p-Laplace

equation with a strong absorption. Some criteria of developing dead-core is provided in

the next section. Now suppose that u develops a dead-core in finite time T . If we further

assume that u′
0 ≥ 0 on [0, 1], then ux > 0 in (0, 1] × (0, T ) by the strong maximum

principle. Therefore, in this case we may re-write the first equation in (1.1) as

ut = (p− 1)up−2
x uxx − uq.

In particular, at x = 0 we have

(1.3) ut(0, t) = −u(0, t)q for all t > 0.

An integration of (1.3) from t < T to T gives that

u(0, t) = α−α(T − t)α, α := 1/(1− q).

This determines the dead-core rate at the point x = 0. Notice that the dead-core time T

is uniquely determined by u0(0) = α−αTα.

Finally, we study the self-similar solutions of problem (1.1). For this, we introduce the

following standard self-similar transformation for (1.1):

(1.4) v(y, s) =
u(x, t)

(T − t)α
, y =

x

(T − t)β
, s = − ln(T − t), β :=

p− 1− q

p(1− q)
.

Then v satisfies

(1.5) vs = (|vy|p−2vy)y − βyvy + αv − vq for 0 < y < eβs, s > s0 := − lnT.

We shall only consider the classical solutions, i.e., solutions in C2 class. For a classical

stationary solution V of (1.5) for y ∈ [0,∞), i.e., V satisfies

(1.6) (|Vy|p−2Vy)y − βyVy + αV − V q = 0, y ∈ [0,∞),

in the classical sense, there corresponds a self-similar solution u of (1.1) in the form

u(x, t) = V
( x

(T − t)β

)
(T − t)α.

In particular, let

(1.7) V∗(y) := c0y
γ , y ≥ 0,
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where

γ :=
p

p− 1− q
=

α

β
> 1, c0 := [(p− 1)γp−1(γ − 1)]

1
q−p+1 .

Then V∗(y) is a classical solution of (1.6) when γ ≥ 2. Another trivial nonzero self-similar

solution is the constant function V0 ≡ α−α. It is interesting to see whether there are

any other self-similar solutions. We prove in the last section of this paper that these

two functions are the only nonzero classical solutions of (1.6) under certain conditions.

Similar results were proved in [7, 5, 4].

This paper is organized as the follows. We give some criteria of developing dead-core

in §2. Then we prove the uniqueness (under certain conditions to be specified below) of

self-similar solutions in §3. Although the method of proving the uniqueness theorem is

quite similar to the one given in [4], the analysis here is more delicate and involved due

to the p-Laplace diffusion term.

2. Occurrence of dead-core

In this section, we provide some criteria for the occurrence of dead-core. Similar results

for the (1.2) can be found in [5, 4]. The proof of the following theorem is based on an

idea of [8].

Theorem 2.1. For any k > 0, δ ∈ (0, 1) and M > 0, there is a constant σ > 0,

depending on δ and M , such that T (u0) < ∞ for any initial datum u0 with 0 < u0 ≤ M

in [0, 1] and u0 ≤ σ in [0, δ].

Proof. Set U(x, t) = ϵ(T − t)α(1 + y2)η, where

y :=
x

(T − t)β
, β :=

p− 1− q

p(1− q)
,

p

2(p− 1− q)
< η <

p

2(p− 2)
.

Then

Q[U ] := Ut − (|Ux|p−2Ux)x + U q

= ϵ(T − t)α−1{−α(1 + y2)η + 2βηy2(1 + y2)η−1

−ϵp−2(2η)p−1(p− 1)[2(η − 1)y2 + (1 + y2)](1 + y2)(η−1)(p−1)−1yp−2

+ϵq−1(1 + y2)ηq}.

Note that from the choice of η, 2βη > α and so Q[U ] ≥ 0, if y ≥ L ≫ 1. On the other

hand, choose ϵ sufficiently small, we have Q[U ] ≥ 0, if y ∈ [0, L]. Hence

Ut − (|Ux|p−2Ux)x + U q ≥ 0 for x ∈ (0, 1), t ∈ (0, T ).

Moreover,

U(x, t) ≥ ϵx2ηTα−2βη.
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Suppose u0 ≤ σ in [0, δ] and 0 < u0 ≤ M in [0, 1], where σ := min[0,δ] U(x, 0). Choosing T

small enough such that ϵδ2ηTα−2βη ≥ M , we have u0(x) ≤ U(x, 0) for all x ∈ [0, 1]. Also,

we have Ux(0, t) = 0 and U(1, t) ≥ M ≥ u0(1) ∀t ∈ (0, T ). Hence by the Comparison

Principle, u ≤ U in [0, 1]× [0, T ), where u is the solution of (1.1). Notice that U(0, t) =

ϵ(T − t)α → 0 as t → T−. Therefore, u attains a dead-core in a finite time ahead of T .

The theorem is proved. �

Next, we study the stationary solutions of (1.1). For this, we define the following

quantities

K(p, q) :=

[
p

(p− 1)(q + 1)

]1/p
, k0 :=

[
p− q − 1

p
K(p, q)

]p/(p−q−1)

.

Let U = Uµ be the solution of the following initial value problem:

(|U ′(x)|p−2U ′(x))′ = U q(x), x ≥ 0, U ′(0) = 0, U(0) = µ ≥ 0.

Then it is easy to see that U ′ > 0 on (0, 1] if U > 0 on (0, 1]. Moreover, Uµ1 < Uµ2 on

[0, 1] if 0 ≤ µ1 < µ2. Suppose that U(1) = k > µ. Then, by an integration, we can easily

deduce that

Ik(µ) :=

∫ k

µ

du

(uq+1 − µq+1)1/p
= K(p, q).

Note that the integral Ik(µ) is integrable such that Ik(k) = 0 and

Ik(0) =

∫ k

0

u−(q+1)/pdu =
p

p− q − 1
k(p−q−1)/p.

Therefore, a (unique) solution U with U > 0 on (0, 1] to the problem

(2.1) (|U ′(x)|p−2U ′(x))′ = U q(x), x ∈ [0, 1], U ′(0) = 0, U(1) = k > 0,

exists if and only if k ≥ k0. We denote this solution by Uk. On the other hand, for

k ∈ (0, k0), there is a unique solution Uk to (2.1) such that Uk = 0 on [0, δk] and Uk > 0

on (δk, 1] for some positive constant δk < 1. Indeed, the constant δk is determined by

(1− δk)K(p, q) =
p

p− q − 1
k(p−q−1)/p.

Actually, the solution u to (1.1) exists globally with u ≥ 0. We introduce the energy

E[u](t) :=
1

p

∫ 1

0

|ux(x, t)|pdx+
1

q + 1

∫ 1

0

uq+1(x, t)dx.

Then it is easy to check that

E[u]′(t) = −
∫ 1

0

u2
t (x, t)dx ≤ 0.

Therefore, the standard energy argument shows that u → Uk uniformly on [0, 1] as t → ∞.

This together with Theorem 2.1 imply the following dead-core criterion.
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Corollary 2.2. For k ∈ (0, k0), any solution of (1.1) develops a dead-core in finite

time.

3. Uniqueness of self-similar solutions

This section is devoted to the study of the self-similar solutions of (1.1). In order to

study the self-similar solution of (1.1), following [4] we introduce

(3.1) r =
Bx

(T − t)β
, s = −[ln(T − t)]/γ, zγ(r, s) =

u(x, t)

A(T − t)α
,

where

A := α−α, B := [α1−2α+pα(γ − 1)−1(p− 1)−1γ1−p]1/p.

Then the equation (1.1) is transformed to

(3.2) zγ−1zs/α = azγ−σzp−2
r zrr + zγ−σ−1(zpr − 1) + zγ−1(z − rzr),

where

a := (γ − 1)−1, σ := −(γ − 1)(p− 2) + 1.

Note that γ > 1 and σ ∈ (−1, 1), since

σ − 1 =
(1 + q)(2− p)

p− 1− q
< 0 <

p(1− q)

p− 1− q
= σ + 1.

Also, we have γ − σ − 1 = pq/(p− 1− q) > 0.

Suppose that u is a solution of (1.1) with the maximal existence time interval [0, T ). If

we assume that u′
0(x) ≥ 0 and (|u′

0|p−2u′
0)

′ − uq
0 ≤ 0 for all x ∈ [0, 1], then it follows from

the strong maximum principle that ut < 0 < ux for all x ∈ (0, 1) and t ∈ (0, T ). From

the fact that ut < 0, we obtain

(|ux|p−2ux)x − uq < 0.

Multiplying this inequality by ux and integrating it from 0 to x with x > 0, we obtain

(3.3) 0 < ux(x, t) < Cp,qu
q+1
p (x, t), 0 < x < 1, 0 < t < T,

where Cp,q = [ p
(p−1)(q+1)

]1/p. It follows from (3.3) that

(3.4) 0 < vy < Cp,qv
q+1
p , 0 < y < eβs, s > s0.

Due to the estimate (3.3) (and (3.4)), we have

z(r, s) > 0, 0 < zr(r, s) ≤ 1

for 0 < r < Beβγs, s > − lnT/γ. Therefore, any ω-limit Z of z (if it exists) satisfies

(3.5) Z ≥ 0, 0 ≤ Zr ≤ 1, r ≥ 0.
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Also, Z is a (nonnegative) steady-state solution of (3.2) in [0,∞), i.e., Z satisfies the

equation

(3.6) aZγ−σZp−2
r Zrr + Zγ−σ−1(Zp

r − 1) + Zγ−1(Z − rZr) = 0, r ≥ 0.

Hence hereafter we only consider solutions of (3.6) satisfying (3.5) such that Zγ ∈
C2([0,∞)). Note that Z ≡ 0 and Z ≡ 1 are two trivial (constant) solutions of (3.6).

For a given nontrivial solution Z of (3.6) satisfying (3.5) with Zγ ∈ C2([0,∞)), we set

r0 := inf{r ≥ 0 | Z(r) > 0}.

Then r0 is well-defined and r0 ∈ [0,∞). Note that Z(r) > 0 for all r > r0. On the other

hand, we observe from (3.6) that Z(r̄) = 1, if Zr(r̄) = 0 for some point r̄ > r0. Also,

Z ≡ 1 on [r̄, r̃], if Zr(r̄) = Zr(r̃) = 0 with r0 < r̄ < r̃. Indeed, since Z(r̄) = Z(r̃) = 1, if

Z(r) ̸= 1 for some r ∈ (r̄, r̃), then the mean value theorem implies that there is a point

r0 in either (r̄, r) or (r, r̃) such that Z ′(r0) < 0, a contradiction to (3.5).

Remark 3.1. For {Z > 0, Zr > 0}, we may write (3.6) as the system

Zr := W,

Wr = {Z−1(W 2−p −W 2) + Zσ−1(rW − Z)W 2−p}/a.

Due to the singularity of the nonlinearity, the standard uniqueness theory for initial value

problem cannot be applied for the initial value (Z,W ) = (1, 0).

Remark 3.2. Note that, due to the boundary condition, we may assume that (Zγ)r(0) =

0. This implies that Zr(0) = 0, if Z(0) > 0 (so that r0 = 0). Note that Z(r0) = Zr(r0) = 0,

if r0 > 0. Therefore, in any case we have either Z(r0) = 0 or Zr(r0) = 0. Also, it is trivial

that Zrr(r0) is finite, when r0 > 0, due to (3.5). On the other hand, for r0 = 0, we have

Zγ−1(0)Zrr(0) < ∞ due to Zγ ∈ C2([0,∞)). In particular, if Z(0) > 0, then we have the

finiteness of Zrr(0).

Lemma 3.3. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and

(A) Zr > 0 on (r0, r1) and Zr(r1) = 0 for some r1 ∈ (r0,∞).

Then Zrr(r) has the same sign as that of −σ for all r ∈ (r0, r1).

Proof. For r ∈ (r0, r1), we define the quantity

ρ(r) :=

∫ r

r∗

ξZσ−1(ξ)

aZp−2
ξ (ξ)

dξ, r∗ := (r0 + r1)/2,

which is well-defined and nonnegative for all r ∈ (r0, r1). Writing (3.6) as

aZ1−σZp−2
r Zrr + Z−σ(Zp

r − 1) + (Z − rZr) = 0, r0 < r < r1,
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and differentiating it once in r, we obtain

aZ1−σZp−2
r Zrrr + σZ−σ−1Zr(1− Zp

r )

+Z−σZp−1
r

[
a(1− σ) + p+ a(p− 2)ZZ−2

r Zrr − rZσZ1−p
r

]
Zrr = 0, r0 < r < r1.

It follows that Z satisfies

(3.7) a
d

dr

[
ZrrZ

1−σ+ p
aZp−2

r e−ρ
]
= −σZ−1−σ+ p

aZr(1− Zp
r )e

−ρ

for all r ∈ (r0, r1).

For any r ∈ (r0, r1), by integrating (3.7) from r̃ ∈ (r0, r) to r and sending r̃ to r0, we

obtain

(3.8) Zrr(r) = −Z(r)−1+σ− p
aZr(r)

−p+2eρ(r)

a

∫ r

r0

σZ−1−σ+ p
aZξ(1− Zp

ξ )e
−ρdξ

for all r ∈ (r0, r1). Here we have used Remark 3.2 and the fact that the number

−1− σ +
p

a
=

2pq

p− 1− q

is positive so that the integral in (3.8) is well-defined. Notice that

(3.9)
[
ZrrZ

1−σ+ p
aZp−2

r e−ρ
]
(r+0 ) = 0.

Indeed, (3.9) holds trivially when Zrr(r0) is finite. It is left to check the case when r0 = 0

and Z(0) = 0. In this case, we have Zγ−1(0)Zrr(0) < ∞. Writing

ZrrZ
1−σ+ p

a = ZrrZ
γ−1Z1−γ+1−σ+ p

a

and noting that 1 − γ + 1 − σ + p
a
is positive, we obtain (3.9). Therefore, (3.8) holds

and we conclude that Zrr(r) has the same sign as that of −σ for all r ∈ (r0, r1), if the

condition (A) holds. �

Lemma 3.4. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and

(B) Zr(r) > 0 for all r > r2 for some r2 ≥ r0.

Then Zrr(r) has the same sign as that of σ for all r ∈ (r2,∞).

Proof. Similar to Lemma 3.3, we define

(3.10) ρ1(r) :=

∫ r

r2+1

ξZσ−1(ξ)

aZp−2
ξ (ξ)

dξ, r > r2.

We first claim that

(3.11) ρ1(r) ≥ crσ+1, r ≥ Z(0) + 2(r2 + 1),

for some constant c > 0. Indeed, since 0 ≤ Zr(r) ≤ 1 on (0,∞), we have

Z(r) = Z(0) +

∫ r

0

Zξ(ξ)dξ ≤ Z(0) + r.
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Hence Z(r) ≤ 2r, if r ≥ Z(0) + 2(r2 + 1). It follows that

ρ1(r) ≥
∫ r

r/2

ξ(2ξ)σ−1

a
dr =

2σ+1 − 1

4a(σ + 1)
rσ+1, r ≥ Z(0) + 2(r2 + 1)

and so (3.11) holds.

Next, we claim that

(3.12) Zrr(r) =
Z−1+σ− p

2Z−p+2
r eρ1(r)

a

∫ ∞

r

σZ−1−σ+ p
aZξ(1− Zp

ξ )e
−ρ1dξ

for all r > r2. To see this, we note that (3.7), with ρ replacing by ρ1, holds for r > r2.

Using the estimate

a|Zrr|Z1−σ+ p
aZp−2

r = Z−σ+ p
a (a|Zrr|ZZp−2

r )

≤ Z−σ+ p
a (1− Zp

r ) + Z
p
a |(rZr − Z)|

≤ |Z(0) + r|−σ+ p
a + |Z(0) + r|

p
a
+1

for r > r2, by integrating (3.7), with ρ replacing by ρ1, from r > r2 to ∞, (3.12) follows.

Hence the lemma is proved. �

Lemma 3.5. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤ 0.

Then Zr > 0 for all r > r0.

Proof. Suppose for contradiction that there exists r̄ > r0 such that Zr(r̄) = 0. Then

Z(r̄) = 1. Set

r1 := inf{r > r0 | Zr(r) = 0}, r2 := sup{r > r0 | Zr(r) = 0}.

Then ri ∈ [r0,∞], i = 1, 2, are well-defined such that r1 ≤ r2 and Z ≡ 1 on [r1, r2].

Furthermore, we have either r1 > r0 or r2 < ∞. Otherwise, r1 = r0 implies that Z(r0) = 1

and so r0 = 0. If we also have r2 = ∞, then Z ≡ 1 on [0,∞), a contradiction to Z is

nontrivial.

Suppose that r1 > r0. Then Zr > 0 in (r0, r1) and Zr(r1) = 0. Hence the condition (A)

holds. It follows from the mean value theorem that Zrr(r̂) < 0 for some r̂ ∈ ((r0+r1)/2, r1),

a contradiction to Lemma 3.3 due to the assumption σ ≤ 0.

On the other hand, suppose that r2 < ∞. Then Zr(r2) = 0 and Zr(r) > 0 for all

r > r2. It follows from Lemma 3.4 that Zrr(r) ≤ 0 for all r > r2. But, the mean value

theorem implies that Zrr(r̂) > 0 for some r̂ ∈ (r2,∞), a contradiction. Thus the lemma

follows. �

Lemma 3.6. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤ 0.

Then r0 = 0 and Zr(r) > 0 for all r > 0.



p-LAPLACIAN 9

Proof. Note that Z(r), Zr(r) > 0 for r > r0, by Lemma 3.5. Set

(3.13) J(r) := rZr − Z.

Then we compute

Jr = rZrr =
r

aZZp−2
r

(1− Zp
r + ZσJ)

=
r

aZZp−2
r

(1− Zp
r ) + (ρ1)rJ

for all r > r0. It follows that

d

dr
(e−ρ1J) =

re−ρ1

aZZp−2
r

(1− Zp
r ), r > r0.

Integrating from r > r0 to R > r and letting R → ∞, we obtain

(3.14) J(r) = −eρ1(r)
∫ ∞

r

ξe−ρ1(ξ)

aZZp−2
ξ

(1− Zp
ξ )dξ, r > r0,

by using (3.11) and the fact that

−(Z(0) +R) ≤ −Z(R) ≤ J(R) ≤ R.

Notice that, by (3.14), J(r) ≤ 0 for all r > r0.

Suppose for contradiction that r0 > 0. Then Z(r) = 0 on [0, r0]. Integrating [Z(r)/r]r =

J/r2 ≤ 0 over (r̂, r), r0 < r̂ < r, and sending r̂ to r0, we have Z(r)/r ≤ Z(r0)/r0 = 0 for

all r > r0. This implies that Z ≡ 0 on [0,∞), a contradiction. Consequently, r0 = 0 and

Zr(r) > 0 for all r > 0. The proof is completed. �

Now, we divide our discussions into two cases. First, we deal with the case that Z(0) =

0.

Lemma 3.7. Suppose that Z is a nontrivial solution of (3.6) satisfying (3.5) and σ ≤ 0.

If Z(0) = 0, then Zr(0
+) = 1.

Proof. First, from (3.14), we have J(r) ≤ 0 and (Z/r)r = J/r2 ≤ 0 for all r > 0.

Hence the limit

l := lim
r→0+

Z(r)

r

exists and l ∈ [Z(1), 1].

Next, we claim that

(3.15) l = lim
r→0+

Zr(r) = Zr(0
+).

For this, from

lim sup
r→0+

Zr(r) ≤ lim
r→0+

Z(r)/r = l = lim
r→0+

∫ 1

0

Zr(rξ)dξ ≤ lim sup
r→0+

Zr(r),



10 JONG-SHENQ GUO AND CHIN-CHIN WU

it follows that lim supr→0+ Zr(r) = l. On the other hand, from (3.6) it follows that

aZp−1
r Zrr ≥ −ZσZr

for all r > 0. Integrating each side from r1 to r with 0 < r1 < r, we obtain

a

p
Zp

r (r)−
a

p
Zp

r (r1) ≥ −Z(r)σ+1

σ + 1
+

Z(r1)
σ+1

σ + 1
≥ −Z(r)σ+1

σ + 1
.

Sending r1 to 0 along a subsequence on which Zr(r1) → l, we have

Zp
r (r) ≥ lp − p

a(σ + 1)
Zσ+1(r) for all r > 0.

It follows lim infr→0+ Zr(r) ≥ l and thus (3.15) is proved.

Now, we rewrite (3.6) as

aZZp−2
r Zrr + Zp

r − 1 = Zσ(rZr − Z).

Then integrating it from 0 to r > 0 yields

a

p− 1
(ZZp−1

r )(r) +
p− 1− a

p− 1

∫ r

0

Zp
ξ dξ − r

=
r

σ + 1
Zσ+1(r)− σ + 2

σ + 1

∫ r

0

Zσ+1dξ = O(rσ+2).

Dividing the above equation by r and sending r to 0+, we deduce that

a

p− 1
lp +

p− 1− a

p− 1
lp − 1 = 0.

Here the fact σ + 1 > 0 is used. Hence we have lp = 1 and so l = 1. �

With this lemma, we are ready to prove the first main theorem of this section.

Proposition 3.8. Let Z be a nontrivial solution of (3.6) satisfying (3.5) and let σ ≤ 0.

If Z(0) = 0, then Z(r) = r for all r ≥ 0.

Proof. From Lemma 3.7, Zr(0
+) = 1, and so Z(r) = r(1+o(1)) for 0 < r ≪ 1. Recall

(3.10) with r2 = 0. Then

ρ1(0) = lim
r→0+

ρ1(y) = −
∫ 1

0

ξZσ−1(ξ)

aZp−2
ξ (ξ)

dξ,

since σ > −1. Moreover, from (3.14),

lim
r→0+

J(r) = −
∫ ∞

0

ξeρ1(0)−ρ1(ξ)

aZZp−2
ξ

(1− Zp
ξ )dξ.

On the other hand, limr→0+ J(r) = limr→0+{rZr − Z} = 0. It follows Zp
r ≡ 1 and so

Zr ≡ 1 on [0,∞). Hence Z(r) = r for all r ≥ 0 and the proposition is proved. �

For the case Z(0) > 0, we have
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Proposition 3.9. Let Z be a solution of (3.6) satisfying (3.5) and let σ ≤ 0. If

Z(0) > 0, then Z(r) ≡ 1 for all r ≥ 0.

Proof. Note that Zr(0) = 0, since Z(0) > 0. Suppose that Z ̸≡ 1. Then, by

Lemma 3.6, Zr(r) > 0 for all r > 0. But, by Lemma 3.4, Zrr(r) ≤ 0 for all r > 0. This

implies that Zr(r) ≤ 0 for all r ≥ 0, a contradiction. Hence the proposition follows. �

Returning to the original variable, we have the following uniqueness theorem.

Theorem 3.10. Suppose that σ ≤ 0 and V is a nonzero classical solution of

(3.16) (|Vy|p−2Vy)y − βyVy + αV − V q = 0, y ≥ 0,

and Vy(0) = 0 such that

(3.17) 0 ≤ Vy ≤ Cp,qV
q+1
p (x, t), y > 0.

Then either V ≡ α−α or V = V∗, where V∗ is defined by (1.7).

Proof. Let V be a nonzero classical solution of (3.16) and Vy(0) = 0 such that (3.17)

holds. From (1.4) and (3.1), we can see that Z defined by

Z(r) := A−1/γV 1/γ(y), r := By,

is a nonzero solution of (3.6) satisfying (3.5). Hence the theorem follows by combining

Propositions 3.8 and 3.9. �

Note that σ ≤ 0 if and only if p ≥ 1 + 1/q. Due to q ∈ (0, 1), 1 + 1/q > 2.
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