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Abstract. We study traveling waves for a two-dimensional lattice dynamical system with
monostable nonlinearity. We prove that there is a minimal speed such that a traveling wave
exists if and only if its speed is above this minimal speed. Then we show the uniqueness (up
to translations) of wave profile for each given speed. Moreover, any wave profile is strictly
monotone.

1. Introduction

In this paper, we study the existence and uniqueness of traveling waves to the following

two-dimensional (2-D) lattice dynamical system:

u̇i,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j + f(ui,j), i, j ∈ Z,(1.1)

where f is monostable: f(0) = f(1) = 0 < f(u), ∀u ∈ (0, 1). The equation (1.1) is a spatial

discrete version of the following reaction-diffusion equation

(1.2) ut = ∆u + f(u), x ∈ RN , t ∈ R,

for N = 2. When f(u) = u(1 − u), the equation (1.2) is called Fisher’s equation [9] or KPP

equation [11] which arises in the study of gene development or population dynamics.

A solution {ui,j}i,j∈Z is called a traveling wave with speed c, if there exists a θ ∈ [0, 2π)

and a differentiable function U : R → [0, 1] such that U(−∞) = 1, U(+∞) = 0, and

ui,j(t) = U(ip + jq − ct) for all i, j ∈ Z, t ∈ R, where p := cos θ and q := sin θ. The

parameter θ represents the direction of movement of wave and U is called the wave profile.

Set ξ := ip + jq − ct. Then it is easy to see that (1.1) has a traveling wave with speed c if

and only if the equation

c U ′(ξ) + D2[U ](ξ) + f(U(ξ)) = 0, ξ ∈ R,(1.3)

has a solution U defined on R with 0 ≤ U ≤ 1, U(−∞) = 1, and U(+∞) = 0, where

D2[U ](ξ) := U(ξ + q) + U(ξ + p) + U(ξ − q) + U(ξ − p) − 4U(ξ).
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In particular, if θ = 0, then the problem (1.1) is reduced to a one-dimensional (1-D) lattice

dynamical system on Z.

The study of traveling wave for lattice dynamical systems has attracted a lot attentions for

past years. The main concerns are the existence, uniqueness, and stability of traveling waves

for the lattice dynamical system. For the 1-D lattice dynamical system, we refer the readers

to, e.g., [3]-[7], [10, 12, 13], [15]-[18] and the references cited therein. The nonlinearity f

under consideration in the above references is either monostable or bistable. Here f is called

a bistable nonlinearity, if there is a ∈ (0, 1) such that f(0) = f(a) = f(1) = 0, f ′(0) < 0,

and f ′(1) < 0.

On the other hand, Cahn, Mallet-Paret, and van Vleck [1] studied a two-dimensional

(2-D) lattice dynamical system with bistable nonlinearity. They obtained the existence

and non-existence (so-called propagation failure) of traveling waves for the studied lattice

dynamical system. The purpose of this paper is to study a 2-D lattice dynamical system

with monostable nonlinearity.

We shall make the following assumptions.

(A) f ∈ C1([0, 1]), f(0) = f(1) < f(u), ∀u ∈ (0, 1) and f ′(0) > 0.

(B) There exists M0 = M0(f) > 0 and α ∈ (0, 1] such that

(1.4) f ′(0)u − M0u
1+α ≤ f(u) ≤ f ′(0)u, ∀u ∈ [0, 1].

(C) f ′(1) < 0 and f(u) − f ′(1)(u − 1) = O(|u − 1|1+α) as u → 1−.

By the symmetry of D2[U ], we may only consider θ ∈ [0, π/2). Since we are dealing with

a 2-D problem, we shall always assume that θ ∈ (0, π/2). Therefore, for a given θ ∈ (0, π/2),

our problem is to find (c, U) ∈ R × C1(R) such that c U ′(ξ) + D2[U ](ξ) + f(U(ξ)) = 0, ξ ∈ R,
U(+∞) = 0, U(−∞) = 1,
0 ≤ U(ξ) ≤ 1 ∀ξ ∈ R.

(1.5)

Note that, by integrating (1.3) from −∞ to +∞, we have

(1.6) c =

∫ ∞

−∞
f(U(ξ))dξ

for any solution (c, U) of (1.5). Hence c > 0 for any solution (c, U) of (1.5).

We now state the main results of this paper as follows.

Theorem 1. Assume (A) and (B). Then the following holds:

(i) The problem (1.5) admits a solution if and only if c ≥ c∗, where

c∗ := min
λ>0

{eλq + eλp + e−λq + e−λp − 4 + f ′(0)

λ
}.

(ii) Every solution (c, U) of (1.5) satisfies 0 < U(ξ) < 1,∀ξ ∈ R.

(iii) For each c ≥ c∗, (1.5) admits a solution (c, U) with U ′ < 0 on R.
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Theorem 2. Assume (A), (B), and (C). Then, for each c ≥ c∗, wave profiles of (1.5) are

unique up to translations.

To prove this uniqueness theorem, we need the following result on the monotonicity of

wave profiles.

Theorem 3. Assume (A), (B), and (C). Then all wave profiles of (1.5) are strictly de-

creasing.

To prove the existence of traveling waves, we use the monotone iteration method developed

by Wu and Zou [15] (see also [4, 10]) with the help of a pair of super-sub-solutions. We shall

define the notion of super-sub-solutions and prove a key lemma for the existence of traveling

wave in §2. Then, in §3, we prove Theorem 1.

To derive the uniqueness of wave profiles, we shall first apply Ikehara’s Theorem (cf.

[14, 8]) to study the asymptotic behavior of wave profiles. This idea is originated from Carr

and Chmaj [2] in studying the uniqueness of waves for a nonlocal monostable equation. To

derive the asymptotic behavior of wave profiles, another method can be found in [5, 6] for 1-D

case. Here we use a different method which can be easily applied to any higher dimensional

case. With this information on the asymptotic behaviors of wave tails, we then apply a

method developed in [5] to prove Theorem 2 in §4.

Finally, we remark that the existence and uniqueness results presented in this paper for

2-D case can be extended to general higher dimensional case. But, the stability of these

traveling waves in the multi-dimensional case is much more complicated. We leave here as

an open problem for the future study.

2. Preliminaries

First, we define the notion of super-sub-solutions. Given a positive constant c. A non-

increasing continuous function U+ is called a super-solution of (1.5), if U+(+∞) = 0 and U+

is differentiable a.e. in R such that

−c(U+)′ − D2[U
+] − f(U+) ≥ 0 a.e. in R.

A continuous function U− is called a sub-solution of (1.5), if U−(+∞) = 0, U− 6≡ 0, and U−

is differentiable a.e. in R such that

−c(U−)′ − D2[U
−] − f(U−) ≤ 0 a.e. in R.

Next, we introduce the operator Hµ : C(R) → C(R) by

Hµ(U)(ξ) = µU(ξ) +
1

c
D2[U ](ξ) +

1

c
f(U(ξ))
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for any constant µ > (4 + max0≤u≤1 |f ′(u)|)/c. It is easy to see that U satisfies (1.3) and

U(+∞) = 0 if and only if U satisfies

(2.1) U(ξ) = eµξ

∫ ∞

ξ

e−µsHµ(U)(s)ds =

∫ ∞

ξ

e−µ(s−ξ)Hµ(U)(s)ds, ξ ∈ R.

Here, by choosing µ > (4 + max0≤u≤1 |f ′(u)|)/c, we see that (2.1) is well-defined and the

following property holds:

(2.2) Hµ(U)(ξ) ≤ Hµ(V )(ξ), ∀ξ ∈ R, if 0 ≤ U ≤ V ≤ 1 in R.

Lemma 2.1. Assume (A). Then (1.5) has a solution U satisfying U ′ ≤ 0, if there exists a

super-solution U+ and a sub-solution U− of (1.5) such that 0 ≤ U− ≤ U+ ≤ 1 in R.

Proof. Assume that there exist a super-solution U+ and a sub-solution U− of (1.5) such that

0 ≤ U− ≤ U+ ≤ 1 in R. Define

U1(ξ) = eµξ

∫ ∞

ξ

e−µsHµ(U+)(s)ds, ξ ∈ R.

Then U1 is a well-defined C1 function. Form the definition of super-solution, we have

U+(ξ) ≥ eµξ

∫ ∞

ξ

e−µsHµ(U+)(s)ds = U1(ξ), ∀ξ ∈ R.

Also, by the definition of sub-solution and the property (2.2) of Hµ, we get

U−(ξ) ≤ eµξ

∫ ∞

ξ

e−µsHµ(U−)(s)ds ≤ eµξ

∫ ∞

ξ

e−µsHµ(U+)(s)ds = U1(ξ), ∀ξ ∈ R.

Hence U−(ξ) ≤ U1(ξ) ≤ U+(ξ) for all ξ ∈ R. Moreover, we have

U ′
1(ξ) = µeµξ

∫ ∞

ξ

e−µs{Hµ(U+)(s) − Hµ(U+)(ξ)}ds ≤ 0,

since Hµ(U+)(s) ≤ Hµ(U+)(ξ) for all s ≥ ξ, by using the fact that U+ is non-increasing and

µ > (4 + max0≤u≤1 |f ′(u)|)/c.
Now, we define

Un+1(ξ) = eµξ

∫ ∞

ξ

e−µsHµ(Un)(s)ds, n = 1, 2, · · · .

By induction, it is easy to see that 0 ≤ U− ≤ Un+1 ≤ Un ≤ U+ ≤ 1 and U ′
n+1 ≤ 0 in R for all

n ≥ 1. Then the limit U(ξ) := limn→+∞ Un(ξ) exists for all ξ ∈ R and U(ξ) is non-increasing

in R. By Lebesgue’s Dominated Convergence Theorem, U satisfies (2.1). Hence U satisfies

(1.3).

Finally, we claim that U(+∞) = 0 and U(−∞) = 1. Since U is non-increasing and

bounded, both U(+∞) and U(−∞) exist. From 0 ≤ U(ξ) ≤ U+(ξ) and U+(+∞) = 0, it

follows that U(+∞) = 0. By L’Hospital’s rule, we have

lim
ξ→−∞

U(ξ) = lim
ξ→−∞

e−µξHµ(U)(ξ)

µe−µξ
= lim

ξ→−∞

µU(ξ) + D2[U(ξ)]/c + f(U(ξ))/c

µ
.
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This implies that f(U(−∞)) = 0. Hence U(−∞) ∈ {0, 1}. Since U−(ξ0) > 0 for some

ξ0 ∈ R, we have U(−∞) ≥ U(ξ0) ≥ U−(ξ0) > 0. Thus U(−∞) = 1. The lemma follows. ¤

Recall that p := cos θ and q := sin θ for a given θ ∈ (0, π/2).

Lemma 2.2. Assume f ′(0) > 0. Set

C(λ) :=
eλq + eλp + e−λq + e−λp − 4 + f ′(0)

λ
,

Ψ(c, λ) := cλ − [eλq + eλp + e−λq + e−λp − 4 + f ′(0)].

Then there exists a unique λ∗ > 0 such that C(λ∗) = min
λ>0

C(λ) := c∗. Moreover, if c < c∗,

then Ψ(c, λ) < 0, ∀λ ∈ R; if c > c∗, then there exist λ2(c) > λ1(c) > 0 such that Ψ(c, λi(c)) =

0, i = 1, 2, Ψ(c, ·) > 0 in (λ1(c), λ2(c)), and Ψ(c, ·) < 0 in R \ [λ1(c), λ2(c)]; if c = c∗, then

there exists a unique λ1(c) > 0 such that λ1(c) is a double root of Ψ(c, ·) = 0 and Ψ(c, λ) < 0

for all λ 6= λ1(c).

Proof. The lemma follows by noting that C(λ) is convex and C(0+) = C(+∞) = +∞. ¤

3. Existence

In this section, we shall establish the existence of traveling waves by constructing a suitable

pair of super-sub-solutions.

First, we derive two properties of solutions of (1.5).

Lemma 3.1. (i) Every solution (c, U) of (1.5) satisfies 0 < U(ξ) < 1, ∀ξ ∈ R.

(ii) Every solution (c, U) of (1.5) satisfying U ′ ≤ 0 in R satisfies U ′ < 0 in R.

Proof. Let (c, U) be a solution of (1.5).

Suppose that there exists ξ0 ∈ R such that U(ξ0) = 0. Without loss of generality, we may

assume ξ0 is the left-most point such that U(ξ0) = 0, since U(−∞) = 1. By (1.3), using

U ≥ 0 and U ′(ξ0) = 0 we have U(ξ0 ± p) = U(ξ0 ± q) = U(ξ0) = 0. This contradicts the

definition of ξ0. Hence U > 0 in R. Similarly, U < 1 in R. Thus (i) is proved.

To prove (ii), for a contradiction, we suppose that there exists ξ1 such that U ′(ξ1) = 0.

By differentiating (2.1) with respect to ξ, we obtain

0 = µeµξ1

∫ ∞

ξ1

e−µs[ Hµ(U)(s) − Hµ(U)(ξ1) ]ds ≤ 0,

since U ′ ≤ 0. Hence we have Hµ(U)(s) = Hµ(U)(ξ1), ∀s ≥ ξ1. Letting s → +∞, we obtain

that Hµ(U)(ξ1) = 0. Then, from (1.3) and using U ′(ξ1) = 0, it follows that µU(ξ1) = 0, a

contradiction to (i). Hence the lemma is proved. ¤
Hence Theorem 1(ii) is proved.

We now construct a pair of super-sub-solution for c > c∗ as follows.
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Lemma 3.2. Assume (A) and (B). For each c > c∗, let 0 < r < min{λ1α, λ2 − λ1}, where

λi = λi(c), i = 1, 2, are defined in Lemma 2.2. Then U−(ξ) := max{0, (1 − Me−rξ)e−λ1ξ} is

a sub-solution of (1.5), provided M ≥ [M0/Ψ(c, λ1 + r)]r/(λ1α).

Proof. For ξ < ln M/r, we have U−(ξ) = 0 and so

{−c(U−)′ − D2[U
−] − f(U−)}(ξ) = −[U−(ξ + p) + U−(ξ + q)] ≤ 0.

For ξ > ln M/r, we have (U−)′(ξ) = [ (r + λ1)Me−rξ − λ1 ]e−λ1ξ. Then, using (1.4), we

compute that, for ξ > ln M/r,

{−c(U−)′ − D2[U
−] − f(U−)}(ξ)

≤ {−c(U−)′ − D2[U
−] − f ′(0)U− + M0(U

−)1+α}(ξ)

≤ Ψ(c, λ1)e
−λ1ξ − MΨ(c, λ1 + r)e−(λ1+r)ξ + M0e

−λ1(1+α)ξ

= −MΨ(c, λ1 + r)e−(λ1+r)ξ + M0e
−λ1(1+α)ξ

≤ 0

as long as M ≥ [M0/Ψ(c, λ1 + r)]r/(λ1α). Also, note that U− 6≡ 0 and U−(+∞) = 0. Hence

U− is a sub-solution of (1.5) and the lemma follows. ¤

Lemma 3.3. Assume that (A) and (B). Then, for each c > c∗, the function U+(ξ) :=

min{1, e−λ1(c)ξ} is a super-solution of (1.5).

Proof. For ξ < 0, we have U+(ξ) = 1 and so

{−c(U+)′ − D2[U
+] − f(U+)}(ξ)

= −U+(ξ + p) − U+(ξ + q) + 2

≥ 0.

For ξ > 0, we have U+(ξ) = e−λ1(c)ξ and hence

{−c(U+)′ − D2[U
+] − f(U+)}(ξ)

≥ cλ1(c)e
−λ1(c)ξ − [e−λ1(c)(ξ+p) + e−λ1(c)(ξ−p)

+e−λ1(c)(ξ+q) + e−λ1(c)(ξ−q) − 4e−λ1(c)ξ] − f ′(0)e−λ1(c)ξ

= Ψ(c, λ1(c))e
−λ1(c)ξ

= 0.

Since U+ is non-increasing and U+(+∞) = 0, U+ is a super-solution of (1.5) and the lemma

is proved. ¤
Therefore, by applying Lemma 2.1, it follows from Lemmas 3.2 and 3.3 that (1.5) admits

a solution (c, U) with U ′ ≤ 0 for any c > c∗.

Next, we prove that (1.5) has a solution (c, U) with U ′ ≤ 0 for c = c∗.
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Lemma 3.4. Assume that (A) and (B). Then (1.5) admits a solution (c, U) with U ′ ≤ 0

for c = c∗.

Proof. Let {ci, Ui}∞i=1 be a sequence of solutions of (1.5) such that ci ↓ c∗ as i → ∞ and

U ′
i ≤ 0 for all i. By appropriate translations, we may assume Ui(0) = 1/2 for all i. From

0 ≤ Ui(·) ≤ 1 in R for all i and (1.3), we know that {U ′
i} is uniformly bounded in R. It

then follows that {Ui} is equicontinuous on R. By Arzela-Ascoli Theorem, there exists a

subsequence {Uik} of {Ui} such that Uik → U∗ on R as k → ∞, uniformly on any compact

subset of R, for some U∗ ∈ C(R → [0, 1]). Moreover, since Uik satisfies (2.1), by taking

k → +∞, we have

U∗(ξ) = eµξ

∫ ∞

ξ

e−µsHµ(U∗)(s)ds, ∀ξ ∈ R.

Thus U∗ satisfies (1.3) and U∗ ∈ C1(R).

Next, we claim U∗(+∞) = 0 and U∗(−∞) = 1. Note that U ′
∗ ≤ 0. Since U∗ is bounded,

we know U∗(±∞) exists and 0 ≤ U(±∞) ≤ 1. Recall from (1.6) that

cik =

∫ +∞

−∞
f(Uik(s))ds, ∀k.

Then, by applying Fatou’s Lemma, we obtain∫ +∞

−∞
f(U∗(s))ds =

∫ +∞

−∞
lim inf

k→∞
f(Uik(s))ds ≤ lim inf

k→∞

∫ +∞

−∞
f(Uik(s))ds = c∗.

It follows that f(U∗(±∞)) = 0. Hence U∗(±∞) ∈ {0, 1}. On the other hand, since U∗

satisfies (1.3) and U∗(0) = 1/2, we have

c∗[U∗(−∞) − U∗(+∞)] =

∫ +∞

−∞
f(U∗(s))ds > 0.

It follows that U∗(+∞) = 0 and U∗(−∞) = 1. The lemma is proved. ¤
Hence we have proved the necessary condition in Theorem 1(i) and Theorem 1(iii).

To prove the sufficient condition in Theorem 1(i), we need the following lemma.

Lemma 3.5. Assume (A). Suppose that (c, U) is a solution of (1.5). Then

(i) U(ξ + s)/U(ξ) is uniformly bounded for ξ ∈ R, s ∈ [−1, 1],

(ii) U ′(ξ)/U(ξ) is bounded and uniformly continuous in R.

Proof. Since µ > (4 + max0≤u≤1 |f ′(u)|)/c, U ′(ξ) − µU(ξ) ≤ 0,∀ξ ∈ R. By an integration

from ξ to ξ + s, s > 0, we have U(ξ + s) ≤ U(ξ)eµs for ξ ∈ R, s > 0. In particular, for any

s > 0, we have

U(ξ − s/2) = U(y − s + ξ + s/2 − y) ≤ eµ(ξ+s/2−y)U(y − s) ≤ eµs/2U(y − s)

for all y ∈ [ξ, ξ + s/2]; and U(y) ≤ eµsU(ξ) for all y ∈ [ξ, ξ + s].
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Integrating (1.3) from ξ to +∞ gives

cU(ξ) =

∫ ∞

ξ

D2[U ](y)dy +

∫ ∞

ξ

f(U(y))dy

≥
∫ ξ+q

ξ

U(y − q)dy −
∫ ξ+q

ξ

U(y)dy +

∫ ξ+p

ξ

U(y − p)dy −
∫ ξ+p

ξ

U(y)dy

≥
∫ ξ+q/2

ξ

U(y − q)dy −
∫ ξ+q

ξ

U(y)dy −
∫ ξ+p

ξ

U(y)dy

≥ e−µq/2U(ξ − q/2)q/2 − U(ξ)(qeµq + peµp).

It follows that

U(ξ − q/2)

U(ξ)
≤ 2(c + qeµq + peµp)eµq/2

q
, ∀ξ ∈ R.

Hence, by a finite number of iterations, we can easily show that U(ξ + s)/U(ξ) is uniformly

bounded for ξ ∈ R for any s ∈ [−1, 0]. Hence (i) follows. Moreover, (ii) follows from (1.3)

by applying (i). The lemma is proved. ¤
Now, we are ready to prove the sufficient condition in Theorem 1(i).

Lemma 3.6. Assume (A). If (c , U) is a solution of (1.5), then c ≥ c∗.

Proof. Let (c, U) be a solution of (1.5) and ε > 0 be given. Since

lim
ξ→∞

{f(U(ξ))/U(ξ)} = f ′(0),

we can choose x = x(ε) such that

f(U(ξ))

U(ξ)
≥ f ′(0) − ε, ∀ξ > x.

Set

R(ξ) :=
U(ξ + q)

U(ξ)
+

U(ξ + p)

U(ξ)
+

U(ξ − q)

U(ξ)
+

U(ξ − p)

U(ξ)
.

Dividing (1.3) by U and integrating it over [x, y], y > x, we have

c [ ln U(x) − ln U(y)] =

∫ y

x

{R(ξ) − 4 +
f(U(ξ))

U(ξ)
}dξ

≥
∫ y

x

R(ξ)dξ + (f ′(0) − 4 − ε)(y − x).

Hence

cλ(x, y) ≥ 1

y − x

∫ y

x

R(ξ)dξ + (f ′(0) − 4 − ε),

where

λ(x, y) :=
ln U(x) − ln U(y)

y − x
=

ln[U(x)/U(y)]

y − x
.
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We can write

R(ξ) = exp

{
ln

U(ξ + q)

U(ξ)

}
+ exp

{
ln

U(ξ + p)

U(ξ)

}
+ exp

{
ln

U(ξ − q)

U(ξ)

}
+ exp

{
ln

U(ξ − p)

U(ξ)

}
.

Then, by Jensen’s Inequality, we obtain

1

y − x

∫ y

x

R(ξ)dξ

≥ exp

{
1

y − x

∫ y

x

ln
U(ξ + q)

U(ξ)
dξ

}
+ exp

{
1

y − x

∫ y

x

ln
U(ξ + p)

U(ξ)
dξ

}
+ exp

{
1

y − x

∫ y

x

ln
U(ξ − q)

U(ξ)
dξ

}
+ exp

{
1

y − x

∫ y

x

ln
U(ξ − p)

U(ξ)
dξ

}
= e−λ(x,y)q+41 + e−λ(x,y)p+42 + eλ(x,y)q+43 + eλ(x,y)p+44 ,

where

41 = 41(x, y) :=
1

y − x

{∫ y+q

y

ln
U(ξ)

U(y)
dξ −

∫ x+q

x

ln
U(ξ)

U(x)
dξ

}
,

42 = 42(x, y) :=
1

y − x

{∫ y+p

y

ln
U(ξ)

U(y)
dξ −

∫ x+p

x

ln
U(ξ)

U(x)
dξ

}
,

43 = 43(x, y) :=
1

y − x

{∫ x

x−q

ln
U(ξ)

U(x)
dξ −

∫ y

y−q

ln
U(ξ)

U(y)
dξ

}
,

44 = 44(x, y) :=
1

y − x

{∫ x

x−p

ln
U(ξ)

U(x)
dξ −

∫ y

y−p

ln
U(ξ)

U(y)
dξ

}
.

Hence we get

(3.1) cλ(x, y) ≥ e−λ(x,y)q+41 + e−λ(x,y)p+42 + eλ(x,y)q+43 + eλ(x,y)p+44 + (f ′(0) − 4 − ε).

Also, from Lemma 3.5 it follows that (y − x) 4i (x, y) is bounded in y for each i. Hence

there exists z > x large enough such that | 4i (x, y)| < ε ,∀y ≥ z, i = 1, 2, 3, 4. Now taking

y large enough so that λ(x, y) > 0 and y ≥ z. Then it follows from (3.1) that

c ≥ e−λ(x,y)q−ε + e−λ(x,y)p−ε + eλ(x,y)q−ε + eλ(x,y)p−ε + (f ′(0) − 4 − ε)

λ(x, y)

≥ inf
λ>0

e−λq−ε + e−λp−ε + eλq−ε + eλp−ε + (f ′(0) − 4 − ε)

λ
.

Letting ε → 0, we obtain that

c ≥ inf
λ>0

eλq + eλp + e−λq + e−λp + f ′(0) − 4

λ
= c∗.

Hence the lemma follows. ¤
Therefore, the proof of Theorem 1 is completed.
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4. Uniqueness

In this section, we always assume that (A), (B), and (C) hold. Let (c, U) be a solution

of (1.5). We shall follow a method of Carr and Chmaj [2] to prove that for each (c, U) there

exists η = η(U) ∈ R such that

(4.1) lim
ξ→∞

U(ξ + η)

e−λ1(c)ξ
= 1 for c > c∗; lim

ξ→∞

U(ξ + η)

ξe−λ1(c)ξ
= 1 for c = c∗,

where λ1(c) is the smaller root of Ψ(c, λ) = 0. Hereafter we shall always assume that c ≥ c∗.

Lemma 4.1. Let (c , U) be a solution of (1.5). Then U(ξ) = O(e−λ0ξ) as ξ → ∞ for some

λ0 > 0.

Proof. Given s ∈ R. Integrating (1.3) over [s, y], y > s, we obtain

(4.2) c[U(s) − U(y)] =

∫ y

s

D2[U ](ξ)dξ +

∫ y

s

f(U(ξ))dξ.

Introduce

a(s) := inf
ξ≥s

f(U(ξ))

U(ξ)
= inf

u∈[0,δ(s)]

f(u)

u
> 0, δ(s) := sup

ξ≥s
U(ξ) ∈ (0, 1).

Then (4.2) implies that

(4.3) c[U(s) − U(y)] ≥
∫ y

s

D2[U ](ξ)dξ + a(s)

∫ y

s

U(ξ)dξ,

Set

W (x) :=

∫ x

x−q

U(ξ)dξ +

∫ x

x−p

U(ξ)dξ −
∫ x+q

x

U(ξ)dξ −
∫ x+p

x

U(ξ)dξ.

Then ∫ y

s

D2[U ](ξ)dξ = W (s) − W (y).

Since U(ξ) → 0 as ξ → ∞, W (y) → 0 as y → ∞. Letting y → ∞ in (4.3), we see that

cU(s) ≥
∫ ∞

s

D2[U ](ξ)dξ + a(s)

∫ ∞

s

U(ξ)dξ(4.4)

and so U ∈ L((s, +∞)) for all s ∈ R. Moreover, by (4.2),

(4.5) cU(s) =

∫ ∞

s

D2[U ](ξ)dξ +

∫ ∞

s

f(U(ξ))dξ.

Set V (s) :=
∫ ∞

s
U(ξ)dξ. Then 0 < V < +∞ and V is decreasing. Note also that a(s) is

non-decreasing in s and a(+∞) = f ′(0). Set a0 := a(0). Integrating (4.4) over [x,∞) for

x ≥ 0, we obtain

(4.6) cV (x) ≥
∫ ∞

x

D2[V ](s)ds + a0

∫ ∞

x

V (s)ds.
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Note that∫ ∞

x

D2[V ](s)ds =

∫ x

x−q

V (s)ds +

∫ x

x−p

V (s)ds −
∫ x+q

x

V (s)ds −
∫ x+p

x

V (s)ds ≥ 0,

since V is decreasing. Then form (4.6) it follows that

cV (x) ≥ a0

∫ x+z

x

V (s)ds ≥ a0zV (x + z)

for all z > 0 and x ≥ 0. This implies that

c

a0z
V (x) ≥ V (x + z), ∀z > 0, x ≥ 0.

Choose z > 0 such that c < a0z. Then there exists λ0 > 0 such that e−λ0z = c/(a0z) and so

eλ0(x+z)V (x + z) ≤ eλ0xV (x), ∀x ≥ 0.

Set K := max{eλ0xV (x) | x ∈ [0, z]}. Then K ∈ (0,∞) and eλ0yV (y) ≤ K for all y ≥ 0.

Hence V (x) = O(e−λ0x) as x → ∞. From (4.5) and noting that∫ ∞

s

D2[U ](ξ)dξ = V (s + q) + V (s + p) + V (s − q) + V (s − p) − 4V (s),∫ ∞

s

f(U(ξ))dξ ≤ f ′(0)

∫ ∞

s

U(ξ)dξ = f ′(0)V (s),

the lemma follows. ¤

To derive the asymptotic behavior of wave profile U , we first recall the following theorem.

Ikehara’s Theorem. For a positive non-increasing function U , we define

F (Λ) :=

∫ +∞

0

e−ΛξU(ξ)dξ.

If F can be written as F (Λ) = H(Λ)/(Λ + γ)k+1 for some constants k > −1, γ > 0, and

some analytic function H in the strip −γ ≤ ReΛ < 0, then

lim
ξ→+∞

U(ξ)

ξke−γξ
=

H(−γ)

Γ(γ + 1)
.

Here we only need the case when k = 0 and k = 1. The proof of Ikehara’s Theorem can

be found in, e.g., [14, 8].

Applying Lemma 4.1 and choosing Λ ∈ C such that −λ0 < ReΛ < 0, we can define the

bilateral Laplace transform of U by

L(Λ) :=

∫ +∞

−∞
e−ΛξU(ξ)dξ.

Note that ∫ +∞

−∞
e−ΛξD2[U ](ξ)dξ = [eΛq + eΛp + e−Λq + e−Λp − 4]L(Λ).
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Rewrite (1.3) as cU ′ + D2[U ] + f ′(0)U = f ′(0)U − f(U), we deduce that

c

∫ +∞

−∞
e−ΛξU ′(ξ)dξ + [eΛq + eΛp + e−Λq + e−Λp − 4 + f ′(0)]L(Λ)

=

∫ +∞

−∞
e−Λξ[f ′(0)U(ξ) − f(U(ξ))]dξ.

An integration by parts gives

c

∫ +∞

−∞
e−ΛξU ′(ξ)dξ = −c(−Λ)L(Λ),

so we have

−Ψ(c,−Λ)L(Λ) =

∫ +∞

−∞
e−Λξ[f ′(0)U(ξ) − f(U(ξ))]dξ.(4.7)

It follows from (4.7) that

(4.8)

∫ +∞

0

e−ΛξU(ξ)dξ = −
∫ +∞
−∞ e−Λξ[f ′(0)U(ξ) − f(U(ξ))]dξ

Ψ(c,−Λ)
−

∫ 0

−∞
e−ΛξU(ξ)dξ

whenever L is well-defined.

In order to apply Ikehara’s Theorem, we define

H(Λ) := −
∫ +∞
−∞ e−Λξ[f ′(0)U(ξ) − f(U(ξ))]dξ

Ψ(c,−Λ)/[Λ + λ1(c)]k+1
−

(∫ 0

−∞
e−ΛξU(ξ)dξ

)
[Λ + λ1(c)]

k+1,

where k = 0 if c > c∗; k = 1 if c = c∗. We claim that H is analytic in the strip

S := {Λ ∈ C | −λ1(c) ≤ ReΛ < 0}.

It is trivial that (∫ 0

−∞
e−ΛξU(ξ)dξ

)
[Λ + λ1(c)]

k+1

is analytic in {ReΛ < 0}. Thus it suffices to show that the function

H(Λ) := −
∫ +∞
−∞ e−Λξ[f ′(0)U(ξ) − f(U(ξ))]dξ

[Ψ(c,−Λ)/(Λ + λ1(c))k+1]

is analytic in S. First, we show that L(Λ) is well-defined for −λ1(c) < ReΛ < 0. Since

U(+∞) = 0 and, by the assumption (B), f ′(0)U − f(U) = O(U1+α) as ξ → +∞, the right-

hand side of (4.7) is well-defined for −(1+α)λ0 < ReΛ < 0. Hence L(Λ) is well-defined until

Λ is a zero of Ψ(c,−Λ). Recall a property of Laplace transform (cf. Theorem 5b in p.58 of

[14]): if L(Λ) is well-defined (convergent) in {ReΛ > −s} and diverges in {ReΛ < −s}, then

necessarily Λ = −s is a singularity of L(Λ). It follows from Lemma 2.2 that L(Λ) is well-

defined for −λ1(c) < ReΛ < 0. Since H(Λ) = L(Λ)[Λ + λ1(c)]
k+1 in {−λ1(c) < ReΛ < 0}, it

follows that H(Λ) is analytic in {−λ1(c) < ReΛ < 0}.
Next, we claim that H(Λ) is analytic on ReΛ = −λ1(c). For this, we first claim that

the only zero of Ψ(c,−Λ) on ReΛ = −λ1(c) is Λ = −λ1(c). Indeed, if Ψ(c,−Λ) = 0 with
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Re(−Λ) = λ1(c) and Im(−Λ) = β for some β ∈ R, then we have βp = 2mπ and βq = 2kπ

for some integers m and k, by using Ψ(c, λ1(c)) = 0 and Re{Ψ(c,−Λ)} = 0. Then, by

considering the imaginary part of the equation Ψ(c,−Λ) = 0, we conclude that β = 0.

Therefore, the only zero of Ψ(c,−Λ) on ReΛ = −λ1(c) is Λ = −λ1(c). Hence H(Λ) is

analytic on ReΛ = −λ1(c), since the zeroes of Ψ(c,−Λ) are isolated. We conclude that

H(Λ) is analytic in S.

Now, we are ready to derive the asymptotic behavior of wave profile U as follows.

Lemma 4.2. Let (c, U) be a solution of (1.5). Then (4.1) holds for some η = η(U) ∈ R.

Moreover,

(4.9) lim
ξ→∞

U ′(ξ)

U(ξ)
= −λ1(c)

for all c ≥ c∗.

Proof. Recall (4.8). If U is non-increasing, then, by applying Ikehara’s Theorem with a

suitable translation, we can easily deduce (4.1).

In general, by (1.3), we have

cU ′(ξ) = −D2[U ](ξ) − f(U(ξ)) ≤ 4U(ξ).

Hence the function U(ξ) := U(ξ)e−4ξ/c is non-increasing in R. Now, we define the bilateral

Laplace transform of U by

L(Λ) :=

∫ +∞

−∞
e−Λξ U(ξ)dξ.

Note that L(Λ) = L(Λ + 4/c). Then, by Ikehara’s Theorem again, we have

lim
ξ→∞

U(ξ + η̄)

e−(λ1(c)+4/c)ξ
= 1 for c > c∗; lim

ξ→∞

U(ξ + η̄)

ξe−(λ1(c)+4/c)ξ
= 1 for c = c∗

for some η̄ = η̄(U) ∈ R. Hence (4.1) follows for some η = η(U) ∈ R.

Finally, (4.9) follows from (1.3) and (4.1). This proves the lemma. ¤

Next, for each c ≥ c∗, we let ν = ν(c) be the unique positive root of

(4.10) cν + eνp + eνq + e−νp + e−νq − 4 + f ′(1) = 0.

Set V = 1−U and F (s) = f(1− s). Then by a similar argument as above we can derive the

following lemma. Since the proof is very similar to that of deriving (4.1), we omit its details

here (see also Theorem 4.5 in [5]).

Lemma 4.3. Any solution (c, U) of (1.5) satisfies

(4.11) lim
ξ→−∞

U ′(ξ)

U(ξ) − 1
= ν(c),

where ν(c) is the unique positive root of (4.10).
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In order to prove the monotonicity result, we shall need the following strong comparison

principle.

Lemma 4.4. Let (c, U1) and (c, U2) are solutions of (1.5) with U1 ≥ U2 on R. Then either

U1 ≡ U2 or U1 > U2 in R.

Proof. Suppose that there exists ξ0 such that U1(ξ0) = U2(ξ0). Then

0 = U1(ξ0) − U2(ξ0) = eµξ0

∫ ∞

ξ0

e−µs[Hµ(U1)(s) − Hµ(U2)(s)]ds.

It follows that Hµ(U1)(s) = Hµ(U2)(s) for all s ≥ ξ0, since U1 ≥ U2 in R. By the definitions

of Hµ and D2, we have

0 ≤ [U1(s + q) − U2(s + q)] + [U1(s − q) − U2(s − q)]

+[U1(s + p) − U2(s + p)] + [U1(s − p) − U2(s − p)]

= (−cµ + 4)[U1(s) − U2(s)] − [f(U1(s)) − f(U2(s)]

≤ −(cµ − 4 − max
0≤u≤1

|f ′(u)|)[U1(s) − U2(s)]

≤ 0

for all s ≥ ξ0. Hence U1(ξ) = U2(ξ) for all ξ ∈ [ξ0 − r,∞), where r can be either p = cos θ or

q = sin θ. Note that r is a positive constant. Repeating the above argument with ξ0 replaced

by ξ0 − r (infinitely many times), we conclude that U1 ≡ U2 in R. ¤

Proof of Theorem 3. Let (c, U) be a solution of (1.5). Then it follows from (4.9) and (4.11)

that there exists x1 > 0 and x2 > 0 such that U ′(ξ) < 0 for all ξ ≥ x1 and ξ ≤ −x2.

Now, since 0 < U < 1 and U(−∞) = 1, we can define

η∗ := inf{ η > 0 | U(ξ + s) ≤ U(ξ) ∀ξ ∈ R, s ≥ η}.

In particular, U(ξ + η∗) ≤ U(ξ) for all ξ ∈ R. We claim that η∗ = 0. Otherwise, η∗ > 0.

By Lemma 4.4, we have U(ξ + η∗) < U(ξ) for all ξ ∈ R. Also, by the continuity of U , there

exists η0 ∈ (0, η∗) such that U(ξ + η0) < U(ξ) for all ξ ∈ [−x2 − 2η0, x1 + 2η0]. Since U ′ < 0

on ξ ∈ R \ [−x2, x1], we have U(ξ + η0) ≤ U(ξ) for all ξ ∈ R \ [−x2 − η0, x1 + η0]. Hence

U(· + η0) ≤ U(·) in R. But, η0 < η∗, a contradiction to the definition of η∗. This implies

that η∗ = 0. Therefore, U ′ ≤ 0 in R. By Lemma 3.1(ii), U ′ < 0 in R. Hence the theorem

follows. ¤
With this monotonicity result, we now apply a method developed in [5] to derive the

uniqueness of wave profiles.

Hereafter we shall always assume that c ≥ c∗.
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Lemma 4.5. Let (c, U) be a solution of (1.5). Then there exists ρ0 = ρ0(c, f) ∈ (0, 1) such

that for any ρ ∈ (0, ρ0],

f((1 + ρ)U(ξ)) − (1 + ρ)f(U(ξ)) < 0

on { ξ | 1 − ρ0 < U(ξ) ≤ 1/1 + ρ}.

Proof. Note that {f((1+ρ)u)− (1+ρ)f(u)}|ρ=0 = 0. Since f ′(1) < 0, we may choose ρ0 > 0

small enough such that uf ′(u) − f(u) < 0 for u ∈ (1 − ρ0, 1]. Also,

d

dρ
{f((1 + ρ)u) − (1 + ρ)f(u)}|ρ=0 = uf ′(u) − f(u) < 0

for u ∈ (1 − ρ0, 1]. Then the lemma follows by choosing ρ0 > 0 smaller (if necessary). ¤

For a given solution (c, U) of (1.5), we define

κ = κ(U) := sup{ U(ξ)

|U ′(ξ)|
| U(ξ) ≤ 1 − ρ0}.

Note that 0 < κ < +∞, since limξ→∞ U ′(ξ)/U(ξ) = −λ1 and U ′ < 0 in R.

Lemma 4.6. Let (c, U1) and (c, U2) are two solutions of (1.5) and there exists ρ ∈ (0, ρ0]

such that (1 + ρ)U1(· + κρ) ≥ U2(·) in R, where κ = κ(U1). Then U1(·) ≥ U2(·) in R.

Proof. First, we define W (ρ, ξ) := (1 + ρ)U1(ξ + κρ) − U2(ξ) and

ρ∗ := inf{ ρ > 0 | W (ρ, ξ) ≥ 0, ∀ξ ∈ R}.

Then, by the continuity of W , W (ρ∗, ξ) ≥ 0 for all ξ ∈ R.

Now, we claim ρ∗ = 0. For a contradiction, we suppose that ρ∗ ∈ (0, ρ0]. Then, by the

definition of κ,

d

dρ
W (ρ, ξ) = U1(ξ + κρ) + κ(1 + ρ)U ′

1(ξ + κρ) < 0

on {ξ | U1(ξ + κρ) ≤ 1 − ρ0}. Also note that W (ρ∗,−∞) = ρ∗ > 0. Hence there exists ξ0

with U1(ξ0 + κρ∗) > 1 − ρ0 such that 0 = W (ρ∗, ξ0) = Wξ(ρ
∗, ξ0), W (ρ∗, ξ0 ± p) ≥ 0, and

W (ρ∗, ξ0 ± q) ≥ 0. Then

(1 + ρ∗)U1(P0) = U2(ξ0), (1 + ρ∗)U ′
1(P0) = U ′

2(ξ0),

(1 + ρ∗)U1(P0 ± p) ≥ U2(ξ0 ± p), (1 + ρ∗)U1(P0 ± q) ≥ U2(ξ0 ± q),

where P0 := ξ0 + κρ∗. So we have

0 = cU ′
2(ξ0) + D2[U2](ξ0) + f(U2(ξ0))

≤ c(1 + ρ∗)U ′
1(P0) + D2[(1 + ρ∗)U1](P0) + f((1 + ρ∗)U1(P0))

= −(1 + ρ∗)D2[U1](P0) − (1 + ρ∗)f(U1(P0)) + D2[(1 + ρ∗)U1](P0) + f((1 + ρ∗)U1(P0))

= f((1 + ρ∗)U1(P0)) − (1 + ρ∗)f(U1(P0)).
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But, by Lemma 4.5, the last quantity is negative, a contradiction. Hence we must have

ρ∗ = 0 and the lemma follows. ¤

Proof of Theorem 2. Let (c, U1) and (c, U2) be two solutions of (1.5). By translation, we

may assume U1(0) = U2(0) = 1/2. From (4.1), we have limξ→∞[U2(ξ)/U1(ξ)] = eλ1η for some

η ∈ R. Hence we may assume that limξ→∞[U2(ξ)/U1(ξ)] ≤ 1, by exchanging U1 and U2 if

necessary. Then limξ→∞[U2(ξ + z)/U1(ξ)] < 1 for all z > 0.

Fix z > 0, then there exists M > 0 such that U1(ξ) > U2(ξ + z) for all ξ ≥ M . Since

U1(−∞) = 1, we can find z0 > 0 large enough such that (1 + ρ0)U1(ξ + κρ0) ≥ U2(ξ + z0)

for all ξ ∈ R. Applying Lemma 4.6, we have U1(ξ) ≥ U2(ξ + z0) for all ξ ∈ R. Hence we can

define

z∗ := inf{ z > 0 | U1(ξ) ≥ U2(ξ + z) ∀ξ ∈ R}.

We clam that z∗ = 0.

For a contradiction, we assume that z∗ > 0. From

lim
ξ→∞

U2(ξ + z∗)

U1(ξ + z∗/2)
< 1,

it follows that there exists M1 > 0 such that

U1(· + z∗/2) ≥ U2(· + z∗) on [M1,∞).(4.12)

Next, since U1(−∞) = 1 and U ′
1(−∞) = 0, there exists M2 > 0 large enough such that

d

dρ
{(1 + ρ)U1(ξ + 2κρ)} = U1(ξ + 2κρ) + 2κ(1 + ρ)U ′

1(ξ + 2κρ) > 0

for all ρ ∈ [0, 1] and ξ ∈ (−∞,−M2]. So we have

(1 + ρ)U1(ξ + 2κρ) ≥ U1(ξ) ≥ U2(ξ + z∗)(4.13)

for all ρ ∈ [0, 1] and ξ ∈ (−∞,−M2].

Now, since U1(·) ≥ U2(· + z∗) in R, by Lemma 4.4, U1(·) > U2(· + z∗) in R. Also, U1 is

uniformly continuous on R, we can choose 0 < ε < min{z∗/(4κ), ρ0} small enough such that

U1(ξ + 2κε) ≥ U2(ξ + z∗)(4.14)

for all ξ ∈ [−M2,M1].

Combining (4.12), (4.13), and (4.14), we have (1 + ε)U1(· + 2κε) ≥ U2(· + z∗) in R. By

Lemma 4.6, we have

U1(ξ + κε) ≥ U2(ξ + z∗) ∀ ξ ∈ R.

This contradicts the definition of z∗. Hence z∗ = 0, i.e., U1(·) ≥ U2(·) in R. Since U1(0) =

U2(0) = 1/2, by Lemma 4.4, the theorem follows. ¤
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