
UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES
OF MONOSTABLE DYNAMICS ON LATTICES

XINFU CHEN, SHENG-CHEN FU, AND JONG-SHENQ GUO

Abstract. Established here is the uniquenes of solutions for the traveling wave prob-

lem cU ′(x) = U(x + 1) + U(x − 1) − 2U(x) + f(U(x)), x ∈ R, under the monostable

non-linearity: f ∈ C1([0, 1]), f(0) = f(1) = 0 < f(s) ∀ s ∈ (0, 1). Asymptotic expan-

sions for U(x) as x → ±∞, accurate enough to capture the translation differences, are

also derived and rigorously verified. These results complement earlier existence and

partial uniqueness/stability results in the literature (e.g. [5, 6, 27]). New tools are also

developed to deal with the degenerate case f ′(0)f ′(1) = 0, about which is the main

concern of this article.
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1. Introduction

Consider a system of countably many ordinary differential equations, for {un(·)}n∈Z,

(1.1) u̇n(t) = un+1(t) − 2un(t) + un−1(t) + f(un(t)), n ∈ Z, t > 0,

where f is a nonlinear forcing term satisfying f(0) = f(1) = 0. This system can be
embedded into a larger one, for an unknown {u(x, ·)}x∈R,

ut(x, t) = u(x+ 1, t) − 2u(x, t) + u(x− 1, t) + f(u(x, t)), x ∈ R, t > 0.(1.2)

A solution of (1.2) or (1.1) is called a traveling wave with speed c if there exists
a function U defined on R such that u(x, t) = U(x + ct) or un(t) = U(n + ct). Here
U is referred to as the wave profile. Of interest are solutions taking values in [0, 1],
specifically, traveling waves connecting the steady states 0 and 1, i.e, traveling wave
solutions (c, U) ∈ R × C1(R) of the traveling wave problem


cU ′(·) = U(· + 1) + U(· − 1) − 2U(·) + f(U(·)) on R,

U(−∞) = 0, U(∞) = 1, 0 � U � 1 on R.
(1.3)
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Equation (1.1) can be found in many biological models (e.g. [9, 20, 22]). Also, it can
be regarded as a spatial-discrete version of the parabolic partial differential equation

ut = uxx + f(u).(1.4)

The existence, uniqueness, and stability of traveling waves of (1.1) have been extensively
studied recently under various assumptions on f ; see, for example, [1, 5, 6, 7, 10, 12, 24,
25, 26, 27]. The commonly used assumption includes the condition of non-degeneracy
f ′(0)f ′(1) �= 0. For bistable dynamics, i.e., f ′(0) < 0 and f ′(1) < 0, the results on
traveling waves are quite complete; see, for example, [1, 7, 25, 26] and the references
therein. This paper concerns only the monostable dynamics, i.e., f satisfies

(A) f ∈ C1([0, 1]), f(0) = f(1) = 0 < f(s) ∀ s ∈ (0, 1).

Under the non-degeneracy and the condition that f(s) � f ′(0)s for all s ∈ [0, 1], Zinner,
Harris, and Hudson established the existence of traveling waves [27]; see also the later
developments of Fu, Guo, and Shieh [10] and Chen and Guo [5]. The uniqueness issue was
not satisfactorily resolved until a recent paper of Chen and Guo [6]. For easy reference,
we quote here the following existence and uniqueness result from [6].

Proposition 1. Assume (A).
(i) There exists cmin > 0 such that (1.3) admits a solution if and only if c � cmin.
(ii) Given c � cmin, there is a speed c wave profile satisfying U ′ > 0 on R.
(iii) Given c > 0, (1.3) admits a solution if there is a super-solution of speed c.
(iv) When f ′(0)f ′(1) �= 0, wave profiles are unique up to a translation. In addition,

lim
x→−∞

U ′(x)
U(x)

= λ, lim
x→∞

U ′(x)
U(x) − 1

= µ(1.5)

where λ is a positive real root of the characteristic equation

c λ = eλ + e−λ − 2 + f ′(0)(1.6)

and µ is the negative real root of the characteristic equation

c µ = eµ + e−µ − 2 + f ′(1).(1.7)

In addition, when c > cmin, λ is the smaller real root of the characteristic equation (1.6).

Here by a super-solution of wave speed c it means a non-constant Lipschitz con-
tinuous function Φ from R to [0, 1] satisfying

cΦ′(x) � Φ(x+ 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) a.e. x ∈ R.

Note that for any real numbers m and k, the function z ∈ R → ez + e−z +mz + k is
strictly convex, so the characteristic equation has at most two real roots. Since f ′(1) � 0
and c > 0, there is a unique non-positive real root µ to c µ = eµ + e−µ − 2 + f ′(1). For
the characteristic equation at 0, we define

c∗ = min
z>0

ez + e−z − 2 + f ′(0)
z

{
> 0 if f ′(0) > 0,
= 0 if f ′(0) = 0.

(1.8)
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Suppose f ′(0) > 0. There are two real roots to cλ = eλ+e−λ−2+f ′(0) when c > c∗; both
are positive. When c = c∗, there is a unique real root, positive and of multiplicity two.
When c < c∗, there are no real roots, so the assertion of Proposition 1 implicitly implies
that cmin � c∗. In addition, suppose f(s) � f ′(0)s for all s ∈ [0, 1]. Then it is easy to
verify that Φ(x) := min{eλx, 1} is a super-solution of speed c if cλ = eλ + e−λ − 2+ f ′(0).
This implies that cmin = c∗. When f ′(0) = 0, we see that c∗ = 0 and λ = 0 is a root
to the characteristic equation at 0. Nevertheless, since cmin > 0, we see an example that
cmin > c∗.

It is important to observe that a (monotonic) wave profile Umin of the minimum speed is
a supersolution of any wave speed c > cmin. Since among all wave profiles of all admissible
speeds, Umin decays with the largest exponential rate as x → −∞, it is not always true
that near −∞ a supersolution is bigger than a true solution under a certain translation.
Thus, Proposition 1 (iii) is highly non-trivial; its proof in [6] was based on an original
idea of the authors of [27], with a simplification that avoids the use of degree theory.

The purpose of this paper is to remove the non-degeneracy condition f ′(0)f ′(1) �= 0
made in Proposition 1 (iv); that is, we are mainly concerned with the degenerate case
f ′(0)f ′(1) = 0. We shall also introduce a number of new techniques. In terms of the
differential equation (1.4), existence, uniqueness, and asymptotic stability of traveling
waves have been established (cf. [13, 14, 17, 21]). Here we would like to extend the
analogous result for (1.4) to (1.1). We summarize our results, for the traveling wave
problem (1.3), as follows.

Theorem 1. Assume (A). Wave profiles of a given speed are unique up to a translation.

Theorem 2. Assume (A). Any wave profile is monotonic; i.e. U ′ > 0 on R.

Theorem 3. Assume (A). Any solution (c, U) of (1.3) satisfies (1.5) and

lim
x→−∞

U ′′(x)
U ′(x)

= λ, lim
x→−∞

f(U(x))
U ′(x)

=




c if λ = 0,

f ′(0)/λ otherwise,

lim
x→∞

U ′′(x)
U ′(x)

= µ, lim
x→∞

f(U(x))
U ′(x)

=




c if µ = 0,

f ′(1)/µ otherwise,

where λ is a non-negative real root of the characteristic equation (1.6) and µ is the non-
positive real root of (1.7).

In addition, λ is the smaller root when c > cmin and the larger root when c = cmin.

Note that the root µ � 0 to (1.7) is unique. In particular, µ = 0 when f ′(1) = 0. Also,
λ = 0 when f ′(0) = 0 and c > cmin; otherwise, λ > 0. Note also that when cmin > c∗,
the characteristic equation (1.6) always has two positive real roots. To our knowledge,
it is new in the literature that, as a principle, λ is the larger root of the characteristic
equation (1.6) when c = cmin > c∗, where c∗ is as in (1.8).
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In [6], the following general system is considered

ut(x, t) = g(u(x+ 1, t)) − 2g(u(x, t)) + g(u(x − 1, t)) + f(u(x, t))

where g(·) is increasing. Under a variable change v = [g(u) − g(0)]/[g(1) − g(0)], the
system can be re-written as

h(v(x, t))vt(x, t) = v(x+ 1, t) + v(x− 1, t) − 2v(x, t) + f̃(v(x, t)).

Under assumptions that h ∈ C1 and h > 0 on [0, 1], all the analysis and results presented
in this paper apply to such an extended version.

In one of his celebrated pioneer work in 1982, Weinberger [23] studied the long time (as
n → ∞) behavior and the existence of plannar traveling waves for fully discrete Fisher’s
type models of the form, for un := {un

j }j∈H ,

un+1 − un = Q[un], n = 0, 1, 2, · · · ,
where Q is a translation invariant (e.g., autonomous) non-linear operator and typical
examples of H are H = R

m and H = Z
m (m � 1). In particular, for each unit vector ξ

there exists a constant c∗(ξ) (the minimal wave speed) such that c∗(ξ) is the asymptotic
propagation speed for arbitrarily initial disturbance. After deriving a lower and an upper
bounds for c∗(ξ), the author established the existence of plannar traveling wave with
speed c for any c ≥ c∗(ξ), and non-existence for c < c∗(ξ). While Weinberger established
striking results for an extremely general fully discrete monostable dynamics, here by
contrast, we focus our attention only on a one dimensional semi-discrete (i.e., continuous
in time) version (1.1) or (1.2). Our main concern in this paper is (1) the uniqueness
and asymptotic behavior (as x → ∞) of the traveling waves and (2) the highly non-
trivial extension of the current knowledge on non-degenerate monostable dynamics to its
degenerate case, i.e., to the case f ′(0)f ′(1) = 0. That is to say, our work extends that of
Weingerber’s pioneer systematic analysis in two directions: firstly from the fully discrete
version to semi-discrete version and secondly from non-degenerate steady states to general
degenerate and/or non-degenerate steady states.

In the higher space dimensional case, the dynamics

ut(x, t) =
m∑

i,j=1

aij
∂2u(x, t)
∂xi∂xj

+ f(u(x, t)), x ∈ R
m, t > 0,

where (aij)m×m is a positive definite matrix, exhibits a variety of interesting wave phe-
nomena; see, for example, Hamel and Nadirashvili [11], Berestycki and Larrouturou [3],
and the reference therein. A two dimensional analog of (1.1) takes the form

u̇ij = a[ui+1,j + ui−1,j] + b[ui,j+1 + ui,j−1] + F (uij), i, j ∈ Z,

where a, b are positive constants. Here a planar traveling wave refers to a solution of the
form uij(t) = U(i cos θ + j sin θ + ct) for all i, j ∈ Z and t ∈ R, where (cos θ, sin θ) is the
wave direction and c = c(θ) is the wave speed. Note that U ∈ C1(R) satisfies

cU ′(ξ) = a[U(ξ + cos θ) + U(ξ − cos θ)] + b[U(ξ + sin θ) + U(ξ − sin θ)] + F (U(ξ)).
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In this direction, we refer the reader to Chen [4], Chow, Mallet-Paret and Shen [7, 8] and
Mallet-Paret [15, 16] for the bistable case and Shen [18, 19] for the bistable time almost
periodic case. Clearly, our traveling wave problem is only the special case of |θ| = π

4 .
We expect that our results and methods can be extended in a great extent to this new
problem.

We remark that limit, as a ↘ 0, of the bistable non-linearity f(u) = u(1 − u)(u − a)
is the degenerate monostable non-linearity f(u) = u2(1 − u). The limiting process is
continuous in the sense that the unique (modulo the translation invariance) traveling
wave for the bistable non-linearity approaches the unique minimum wave speed traveling
wave for the degenerate monostable nonlinearity. The limiting process is not continuous
in the sense that for the bistable case there is only one traveling wave, whereas for the
monostable case, there are infinitely many traveling waves. We would like to point out
that many tools that work for the bistable case do not work here for the monostable
case; for example, in general the tools used for the construction of super-solutions in the
bistable case do not work for the monostable case. Exaggerating a little bit, one may
say that the bistable dynamics and monstable dynamics are different, so are many of the
mathematical tools to study them.

Now we briefly discuss our analysis towards our main results. The proof of uniqueness
(Theorem 1) relies on the monotonicity (Theorem 2) and the detailed asymptotic behavior
(Theorem 3) of wave profiles. Two new techniques are specifically developed here to
study the uniqueness of traveling waves of monostable dynamics. One of them, which we
call magnification and is originated from [6], is to magnify appropriately the difference
between two wave profiles U and V by (for the purpose of demonstration only, considering
the case c > cmin)

W (ξ, x) =
∫ U(x+ξ)

V (x)

ds

f(s)
.

Such a magnification has a special property limx→−∞Wx(ξ, x) = 0 for any ξ ∈ R and
a general property inf(ξ,x)∈R2 Wξ(ξ, x) > 0. From a basic comparison (for monotonic
profiles) which says that if U > V on [a− 1, a)∪ (b, b+ 1] then U > V on [a, b], these two
properties prohibit W from any oscillations with non-vanishing magnitude as x → −∞;
namely, there exists limx→−∞W (ξ, x) (which maybe infinite). Consequently, any two
wave profiles are ordered near −∞; see §4 for more details. An additional advantage of
this magnification is that limx→−∞W (ξ, x) exists even if V is merely a sub or a super
solution. This fact will be used in §5 to find asymptotic expansions of wave profiles.

The other technique, which we call compression, is developed to include the treatment
of the degenerate case f ′(1) = 0. Traditionally near ∞ one uses min{U + ε, 1} as a
supersolution which works for both monostable and bistable dynamics but needs the
assumption that f ′ � 0 on [1− δ, 1] for some δ > 0. To deal with the general case, we use
the following compression to obtain (local) supersolutions:

Z(�, x) = U([1 + �]x), x	 1, � ∈ (0, 1].
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The asymptotic behavior of wave profiles implies that Z approaches 1 as x→ ∞ at a rate
faster than any wave profile. With a limiting � ↘ 0 process, we can show that near ∞,
one wave profile is always bigger than a certain translation of any other wave profile.

The asymptotic behavior (1.5) follows from an analysis similar to that in [6]. After a
thorough re-investigation of the method used in [6], we found that the method in [6] can
be rephrased into the following quite fundamental theory.

Theorem 4. Let c > 0 be a constant and B(·) be a continuous function having finite
B(±∞) := limx→±∞B(x). Let z(·) be a measurable function satisfying

c z(x) = e
∫ x+1

x z(s)ds + e−
∫ x

x−1
z(s)ds +B(x) ∀x ∈ R.(1.9)

Then z is uniformly continuous and bounded. In addition, ω± = limx→±∞ z(x) exist and
are real roots of the characteristic equation c ω = eω + e−ω +B(±∞).

Note that each of z = U ′/U,U ′/(U − 1) and U ′′/U ′ satisfies an equation of the form
(1.9). This theory provides a powerful tool to study the asymptotic behavior, as x→ ±∞,
of positive solutions of a variety of semi-linear finite difference-differential equations. In
particular, once the monotonicity U ′ > 0 is shown, z = U ′′/U ′ is then well-defined and
all the limits stated in Theorem 3 follow immediately from the theory.

Now the focus is shifted to show the monotonicity of U . In the non-degenerate case,
µ < 0 < λ, so that (1.5) and a comparison between U(x + h) and U(x) on a compact
interval imply that U ′ > 0 on R. In the degenerate case, λµ = 0, so (1.5) is not sufficient
for such an argument. We shall develop a blow-up technique, showing that U ′ > 0 on a
sequence of intervals {[ξi − 1, ξi + 1]} of two unit length, where limi→±∞ ξi = ±∞. Then
we develop a modified sliding method which enables us to compare U(x+h) and U(x)
on any finite interval [ξi − 1, ξj + 1] (i < j) to prove the monotonicity result.

For a solution of (1.2) or (1.4) with initial value u(x, 0), its long time behavior (e.g.
approaching a traveling wave) depends on the asymptotic behavior of u(x, 0) as x→ −∞,
i.e. tails of which wave profile U(x) that u(·, 0) resembles; see, for example, [2, 5] and the
references therein. For this purpose, we shall also provide asymptotic expansions, accurate
enough to capture the translation difference of wave profiles near ±∞. In particular, under
the condition that f(u) = f ′(0)u+O(u1+α) for some α > 0 and all small u, we show the
following:

(i) If c = cmin and the larger root λ of (1.6) is not a double root, then for some x0 ∈ R

lim
x→−∞ e−λxU(x+ x0) = 1.(1.10)

(ii) If c = cmin and λ is a double root, then for some x0 ∈ R

either lim
x→−∞

U(x+ x0)
|x|eλx

= 1 or lim
x→−∞

U(x+ x0)
eλx

= 1.(1.11)
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(iii) If c > cmin and f ′(0) > 0, then (1.10) holds for some x0 ∈ R with λ the smaller

root of (1.6).

Note that λ > 0 in all these cases, so, as we expected from (1.5), that U(x) decays to
zero exponentially fast as x → −∞. Earlier results (e.g. [5, 10, 12, 27]) on this matter
depend on the construction of global sub and supersolution pairs that sandwich a wave
profile. Such a construction is possible for all large wave speeds for general f and for
all non-minimum wave speeds when f(s) � f ′(0)s for all s ∈ [0, 1]. We remark that the
stability (which implies uniqueness) result in [5] was established under the assumption
(1.10). By proving (1.10), the result in [5] then implies that any solution of (1.2) ap-
proaches, as t → ∞, a traveling wave of speed c (> cmin) if u(·, 0) takes values on [0, 1]
and

lim
x→−∞ e−λxu(x, 0) = 1, lim inf

x→∞ u(x, 0) > 0.

On the other hand, λ = 0 when f ′(0) = 0 and c > cmin, so from (1.5), an exponential
decay is impossible and an algebraic decay is to be expected (cf. [13, 14, 17, 21] for (1.4)).
Indeed, under certain additional assumptions (cf. (B1) in §5) we show the following:

(iv) If c > cmin and f ′(0) = 0, then for some x0 ∈ R

lim
x→−∞

{ ∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x+ x0

c

}
= 0.(1.12)

For example, when f(u) = κu2(1 − u)p (κ > 0, p ≥ 1), the above limit yields

U(x) =
c

κ[|x| − x0 + o(1)] + (pc− 2κ/c) ln |x| as x→ −∞.

The asymptotic expansion of U(x) as x→ ∞ can be treated similarly. Indeed,

lim
x→∞

{ ∫ U(x)

1/2

ds

f(s)[1 + f ′(s)/c2]
− x+ x0

ν

}
= 0,

for some x0 ∈ R, where ν = c if f ′(1) = 0 and ν = f ′(1)/µ if f ′(1) < 0. Since this limiting
behavior has nothing to do with the condition needed on the initial data for the long time
behavior of solutions of (1.2), we choose to omit the details here.

This paper is organized as follows. In §2, we derive the asymptotic behavior of wave
profiles near ±∞ and prove Theorem 3. We prove the monotonicity of wave profiles
(Theorem 2) in §3, by using the method of sliding and a new blow-up technique. In §4,
the uniqueness of traveling waves is established. Finally in §5, we construct suitable local
super/sub solutions to verify our asymptotic expansions of wave profiles near x = ±∞.

2. Asymptotic Behavior of Wave Profiles Near x = ±∞
In the sequel, the assumption (A) is always assumed.
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2.1. The idea in [6]. The most important technique developed in [6] can be presented
as follows. Suppose that the following quantities

ρ(x) :=
U ′(x)
U(x)

, σ(x) :=
U ′(x)

U(x) − 1
, χ(x) :=

U ′′(x)
U ′(x)

are well-defined. This is the case, if U > 0, U < 1, and U ′ > 0 for ρ, σ, and χ,
respectively. Then each of them satisfies an equation of the form (1.9), where B(·) is a
continuous function having limx→±∞B(x) =: B(±∞). For any positive constant m, we
set

v(x) = emx+
∫ x
0

z(s)ds.

Then

c v′(x) = [cm+B(x)]v(x) + e−mv(x+ 1) + emv(x− 1).

Assume that c > 0. We take a specific m = ‖B(x)‖L∞(R)/c. Then v′(x) ≥ 0. Conse-
quently,

c v(x) − c v(x− 1/2) >
∫ x

x−1/2
e−mv(s+ 1)ds > 1

2v(x+ 1/2)e−m.

This implies that v(x) > v(x+ 1/2)/(2cem) > v(x+ 1)/(2cem)2. Therefore,

e
∫ x+1
x z(s)ds =

v(x+ 1)e−m

v(x)
� 4c2em, e−

∫ x
x−1 z(s)ds =

emv(x− 1)
v(x)

� em,

and so

−m < z(x) < m+ 4cem + em/c ∀x ∈ R, m := ‖B‖L∞(R)/c.(2.1)

The uniform boundedness of z implies that z is uniformly continuous. Hence, for any
unbounded sequence {xi}, {z(xi + ·)} is a bounded and equi-continuous family. Along a
subsequence, it converges to a limit r, uniformly in any compact subset of R. In addition,
r satisfies the fundamental equation

c r(x) = e
∫ x+1
x r(s) ds + e

∫ x−1
x r(s) ds + b ∀x ∈ R(2.2)

where b = B(∞) if limi→∞ xi = ∞ and b = B(−∞) if limi→∞ xi = −∞. For the
fundamental equation, Chen and Guo established in [6] the following key result:

Proposition 2. Let c > 0, b ∈ R and P (ω) = cω − eω − e−ω − b. Consider (2.2).
(1) When P (ω) = 0 has no real root, there is no solution.
(2) When P (ω) = 0 has only one real root λ, r ≡ λ is the only solution.
(3) When P (ω) = 0 has two real roots {λ,Λ} (λ < Λ), every solution can be written as

r(x) =
u′(x)
u(x)

, u(x) = θeλx + (1 − θ)eΛx, θ ∈ [0, 1].

In particular, any nonconstant solution satisfies r′ > 0, r(−∞) = λ, and r(∞) = Λ.
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Proof of Theorem 4. We need consider only the case when the characteristic equation
has two real roots. For this, let λ and Λ be the roots where λ < Λ. Suppose limx→−∞ z(x)
does not exist. Then there exist ω �∈ {λ,Λ} and a sequence {xi} satisfying limi→−∞ xi =
−∞, z(xi) = ω and z′(xi) � 0 for all i. Since {z(xi + ·)} is uniformly bounded and equi-
continuous, a subsequence converges to a limit r which solves (2.2) with b = B(−∞). In
addition, by the definition of r, we have r(0) = ω and r′(0) � 0. But from Proposition
2, there are no such kind of solutions. Hence, limx→−∞ z(x) exists and is one of the two
roots to the characteristic equation. Similarly, one can show that limx→∞ z(x) exists. �

Remark 2.1. (i) By working on the function ẑ(x) := −z(−x) the assertion of the Theo-

rem remains unchanged when c < 0.
(ii) Theorem 4 extends to a more general equation

z(x) = a1(x)e
∫ x+1

x z(s)ds + a2(x)e−
∫ x
x−1 z(s)ds +B(x)

where a1 and a2 are continuous positive functions having limits

a± := lim
x→±∞a1(x) = lim

x→±∞a2(x) > 0.

(iii) Theorem 4 also extends to the case when z is a continuous function defined on

[−1,∞) (or (−∞, 1]) and satisfies (1.9) on [0,∞) (or (−∞, 0]). The conclusion is that

limx→∞ z(x) (or limx→−∞ z(x)) exists and is the root of the characteristic equation.

2.2. The asymptotic behavior. Now we establish the limits stated in Theorem 3.

1. We begin with the limits in (1.5). First we show that U > 0. Suppose on the
contrary there exists y ∈ R such that U(y) = 0. Then it is a global minimum so that
U ′(y) = 0 and from the equation in (1.3), U(y + 1) + U(y − 1) = 0 which implies that
U(y ± 1) = 0. An induction gives U(y + k) = 0 for all k ∈ Z, contradicting U(∞) = 1.
Thus, U > 0. Similarly, U < 1. Once we know 0 < U < 1, we can define

ρ(x) :=
U ′(x)
U(x)

⇒
∫ x+1

x
ρ(z)dz = ln

U(x+ 1)
U(x)

,

σ(x) :=
U ′(x)

U(x) − 1
⇒

∫ x+1

x
σ(z)dz = ln

U(x+ 1) − 1
U(x) − 1

.

Diving the ode in (1.3) by U and U − 1 respectively we obtain

cρ(x) = e
∫ x+1

x
ρ(z)dz + e

∫ x−1
x

ρ(z)dz − 2 +B1(x),

cσ(x) = e
∫ x+1

x
σ(s) ds + e

∫ x−1
x

σ(s) ds − 2 +B2(x),

where B1(x) = f(U(x))/U(x) and B2(x) = f(U(x))/[U(x) − 1]. Since U(−∞) = 0 and
U(∞) = 1, we see that B1(−∞) = f ′(0), B1(∞) = 0, B2(−∞) = 0, and B2(∞) = f ′(1).
The limits in (1.5) thus follow from Theorem 4.

2. Next, we establish the remaining limits stated in Theorem 3. Here we shall use the
fact U ′ > 0, to be proven in the next section. Differentiating the ode in (1.3) with respect
to x we have
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cU ′′(x) = U ′(x+ 1) + U ′(x− 1) + [f ′(U(x)) − 2]U ′(x).

Define

χ(x) :=
U ′′(x)
U ′(x)

⇒
∫ x+1

x
χ(z)dz = ln

U ′(x+ 1)
U ′(x)

.

Then

c χ(x) = e
∫ x+1

x
χ(z)dz + e−

∫ x
x−1

χ(z)dz + f ′(U(x)) − 2 ∀x ∈ R.

The stated limits for χ in Theorem 3 thus follows from Theorem 4 and L’Hopital’s rule.

3. Finally, the limits of f(U(x))/U ′(x) as x → ±∞ are obtained by using the limits
of χ and the identity

f(U(x))
U ′(x)

= c− [U(x+ 1) − U(x)] − [U(x) − U(x− 1)]
U ′(x)

= c−
∫ 1

0

{
e
∫ x+z

x
χ(s)ds − e−

∫ x
x−z χ(s)ds

}
dz.

In the next two subsections, we show the additional part of Theorem 3; namely, we
show that λ is the smaller real root to the characteristic equation (1.6) when c > cmin

and the larger root when c = cmin.

2.3. The characteristic values of non-minimum speed waves.

Lemma 2.1. If (c, U) is a traveling wave of speed c > cmin, then the characteristic
equation cλ = eλ+e−λ−2+f ′(0) has two different real roots and λ := limx→−∞U ′(x)/U(x)
is the smaller root. In particular, when f ′(0) = 0, limx→−∞U ′(x)/U(x) = 0.

Proof. Recall from Theorem 2 of [6] that cmin � c∗, where

c∗ := min
z>0

ez + e−z − 2 + f ′(0)
z

.

Hence cminz = ez + e−z − 2 + f ′(0) always has a root. This implies that c z = ez + e−z −
2 + f ′(0) has exactly two roots, which we denote by λ(c) and Λ(c) with λ(c) < Λ(c), for
c > cmin.

Suppose on the contrary that limx→−∞U ′(x)/U(x) = Λ(c). Let ĉ ∈ (cmin, c) and (ĉ, Û)
be a traveling wave of speed ĉ. By (1.5), limx→−∞ Û ′(x)/Û (x) � Λ(ĉ). Then

lim
x→−∞

d

dx

(
ln
Û(x)
U(x)

)
= lim

x→−∞

{ Û ′(x)
Û(x)

− U ′(x)
U(x)

}
� Λ(ĉ) − Λ(c) < 0,

by the strictly monotonicity of Λ(c) in c. Thus, limx→−∞ ln[Û(x)/U(x)] = ∞ and there
exists M > 0 such that Û(x) > U(x) for all x � −M . Similarly,

lim
x→∞

d

dx

{ ∫ Û(x)

U(x)

ds

f(s)

}
= lim

x→∞

{ Û ′(x)
f(Û(x))

− U ′(x)
f(U(x))

}

=

{
1/ĉ − 1/c if f ′(1) = 0,
[µ(ĉ) − µ(c)]/f ′(1) if f ′(1) < 0.
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This quantity is positive when f ′(1) = 0; so is the case when f ′(1) < 0 since the negative
root µ = µ(c) of cµ = eµ + e−µ − 2+ f ′(1) satisfies µ(ĉ) < µ(c). Thus there exists M1 > 0
such that Û(x) > U(x) for all x � M1. In conclusion, Û(· +M1) > U(· −M).

Now both u1(x, t) := Û(x + M1 + ĉt) and u2(x, t) := U(x −M + ct) are solutions of
(1.2). Since u1(·, 0) � u2(·, 0), the comparison principle for (1.2) implies u1(·, t) � u2(·, t)
for all t > 0, which is impossible since c > ĉ. Thus, limx→−∞U ′(x)/U(x) = λ(c). �

The asymptotic behavior of U stated in Theorem 3 immediately gives the following

Corollary 2.2. Suppose (c1, U1) and (c2, U2) are two traveling waves where c1 < c2.
Then there exist a, b ∈ R such that

U1 < U2 in (−∞, a), U1 > U2 in (b,∞).

We remark that in the case of the differential equation cU ′ = U ′′ + f(U) one can take
a = b to conclude that a smaller speed wave profile is steeper than a larger speed wave
profile; namely, on the phase plane (U,U ′), if one writes U ′ = P (c, U), then P (c1, s) >
P (c2, s) for all s ∈ (0, 1) and c2 > c1 � cmin. For (1.3), we believe that this should also
be the case.

2.4. The characteristic value of minimum speed waves.

Lemma 2.3. If (cmin, U) is a wave of minimum speed, then Λ := limx→−∞U ′(x)/U(x) is
the larger root (if there are two) of the characteristic equation cminz = ez +e−z −2+f ′(0).

Proof. Notice that when cmin = c∗ (defined in (1.8)), the characteristic equation has
only one real root, so there is nothing to prove in this case. Hence we consider the case
when cmin > c∗. We denote the smaller real root by λ and the larger root by Λ. We use
a contradiction argument by assuming that limx→−∞U ′(x)/U(x) = λ. As we shall see,
this will allow us to construct a super-solution Φ of wave speed c for some c < cmin by
joining an exponential function ψ defined on (−∞, 0] and another function φ defined on
[0,∞) obtained from the wave profile U of speed cmin. We divide this construction into
the following steps.

1. Set ω = (λ + Λ)/2 and δ := cmin ω − eω − e−ω + 2 − f ′(0). Then δ > 0 since the
function P (z) := cmin z − ez − e−z + 2 − f ′(0) is concave and vanishes at λ and Λ. Also
by translation, we can assume that U(0) is so small that

sup
0<s�U(0)eω

∣∣∣f(s)
s

− f ′(0)
∣∣∣ < δ

2
, sup

x�1

U ′(x)
U(x)

< ω .

Set ψ(x) = U(0)eωx. For every c ∈ [cmin − δ/(2ω), cmin],

Lψ(x) := cψ′(x) − ψ(x+ 1) − ψ(x− 1) + 2ψ(x) − f(ψ(x))

= ψ(x)
{
c ω − eω − e−ω + 2 − f(ψ(x))

ψ(x)

}
> 0 ∀x ≤ 1.

2. Next, we construct φ(c, ·), to be used as the super-solution defined on [0,∞).
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For each c ∈ (0, cmin], consider the equation φ = Tcφ on R where

Tcφ :=




e−mx/c{U(0) + c
∫ x
0 e

mz/cW [m,φ](z)dz} if x � 0,

U(x) if x < 0,

W [m,φ](z) := φ(z + 1) + φ(z − 1) + [m− 2]φ(z) + f(φ(z)).

Following [6], a solution can be obtained as follows. Define {φn}∞n=0 by

φ0(c, ·) ≡ 1, φn+1(c, ·) := Tcφn(c, ·) ∀n ∈ N.

Note that Tc is a monotonic operator: ψ1 � ψ2 ⇒ Tcψ1 � Tcψ2. It follows that
φn+1 � φn � 1. In addition, since

c (emx/cU)′ − emx/cW [m,U ] = (c− cmin)U ′eµx/c � 0,

integrating this inequality over [0, x] gives U � TcU . This implies that φn � U for all n.
Consequently, φ(c, ·) := limn→∞ φn exists and is a solution to φ = Tcφ. It is easy to see
that U � φ < 1 on [0,∞), φ(c, 0) = U(0), and

c φ′(c, x) = φ(c, x+ 1) + φ(c, x− 1) − 2φ(c, x) + f(φ(c, x)) ∀x > 0.

This equation implies, for 0 < c1 < c2 � cmin, that φ(c2, ·) � Tc1φ(c2, ·), so that
φn(c1, ·) � φ(c2, ·) for all n and φ(c1, ·) > φ(c2, ·) on (0,∞). Following an idea in [6]
or the technique for the uniqueness of U presented in this paper (§4), one can further
show that φ(c, ·) is unique. The uniqueness implies that φ(c, ·) is continuous in c and
φ(cmin, ·) ≡ U . Therefore, limc→cmin

φ(c, ·) = U in C1([0,∞)). This further implies that

lim
c→cmin

φ′(c, x)
φ(c, x)

=
U ′(x)
U(x)

uniformly for x ∈ [0, 1].

3. Now let c ∈ [cmin − δ/(2ω), cmin) be such that

max
x∈[0,1]

φ′(c, x)
φ(c, x)

< ω.

We define

Φ(x) =

{
ψ(x) if x � 0,
φ(c, x) if x > 0.

Since ψ(0) = U(0) = φ(c, 0) and

ψ′(x)
ψ(x)

= ω >
φ′(c, x)
φ(c, x)

∀x ∈ (−∞, 0) ∪ (0, 1],

φ < ψ in (0, 1] and ψ < φ ≡ U in (−∞, 0). That is,

Φ = min{φ , ψ} on (−∞, 1].

Consequently, considering separately x ∈ (−∞, 0), (0, 1] and (1,∞), we see that

cΦ′(x) � Φ(x+ 1) + Φ(x− 1) − 2Φ(x) + f(Φ(x)) ∀x ∈ (−∞, 0) ∪ (0,∞);

that is, Φ is a super-solution of wave speed c.
Thus, by Proposition 1 (iii), there is a traveling wave of speed c for some c < cmin,

contradicting the minimality of cmin. This proves the lemma. �
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Remark 2.2. If f ′(·) � 0 on [1 − δ, 1] for some δ > 0, then a constructive proof of

Lemma 2.3 can be obtained by taking

Φ(x) = [U(0) + ε]eωx ∀x � 0, Φ(x) = U(x+ ε− εe−kx) + ε ∀x > 0

where 0 < ε� ε� U(0) � 1 � k. We leave the verification to the interested reader.

3. Monotonicity of Wave Profiles

This section is dedicated to the proof of the monotonicity of any wave profile U . We
point out here that the limits in (1.5) are established without the knowledge of the
monotonicity of U so that we can use them here.

3.1. The method of sliding. This traditional method is to compare U(· + τ) and U(·)
by decreasing τ continuously from a large value down to zero, namely, to show that

inf {τ > 0 | U(· + τ) > U(·) on R } = 0.(3.1)

This implies U ′ � 0, and from an integral equation, U ′ > 0 on R. If we know U ′ > 0
near x = ±∞ (e.g. by (1.5) for the case µ < 0 < λ), then (3.1) follows easily from a
comparison principle (cf. [6]). When f ′(0) = 0, it is very difficult to show directly that
U ′ > 0 in a vicinity of x = −∞. Similar difficulty occurs near x = ∞ when f ′(1) = 0. To
overcome this difficulty, we use a modification of the method, stated in the third part of
the following

Lemma 3.1. (i) If [a, b] is an interval on which U ′ � 0, then b− a < 1.
(ii) If U ′ > 0 on [ξ, ξ + 1], then U(ξ) < U(x) for all x > ξ.
(iii) If U ′ > 0 on [ξ − 1, ξ + 1] ∪ [η − 1, η + 1] where ξ < η, then U ′ > 0 on [ξ, η].

Proof. (i) Let [a, b] be an interval on which U ′ � 0. We want to show that b− a < 1.
Suppose otherwise b − a � 1. Let x̂ ∈ [b,∞) be a point such that U(x̂) � U(x) for all
x � b. Then x̂ is a global minimum of U restricted on [a,∞), since U ′ � 0 on [a, b]. This
leads to the following contradiction

0 = cU ′(x̂) = U(x̂+ 1) + U(x̂− 1) − 2U(x̂) + f(U(x̂)) � f(U(x̂)) > 0.

(ii) Assume that U ′ > 0 on [ξ, ξ + 1]. Let x̂ � ξ + 1 be a point such that U(x̂) � U(x)
for all x � ξ + 1. Then U(ξ) < U(x̂) since otherwise x̂ � ξ + 1 is a point of global
minimum of U on [ξ,∞) and the same contradiction as above arises. Thus U(ξ) < U(x)
for all x > ξ.

(iii) Assume that U ′ > 0 on [ξ − 1, ξ + 1] ∪ [η − 1, η + 1] where ξ < η. By the second
assertion, U(η) > U(ξ), so that we can define

τ∗ := inf { τ ∈ (0, η − ξ] | U(·) < U(· + τ) on [ξ, η − τ ] }.
Clearly, τ∗ ∈ [0, η − ξ). We claim that τ∗ = 0. Suppose on the contrary that τ∗ > 0.
Then there exists x̂ ∈ [ξ, η − τ∗] such that,

U(x̂+ τ∗) − U(x̂) = 0 � U(x+ τ∗) − U(x) ∀x ∈ [ξ, η − τ∗].
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For x ∈ [ξ−1, ξ]: (i) if x+τ∗ ≤ ξ, then U(x+τ∗)−U(x) > 0 since U ′ > 0 on [ξ−1, ξ]; (ii)
if x+ τ∗ > ξ, by the second assertion, U(x+ τ∗) > U(ξ) ≥ U(x). Thus U(x+ τ∗) > U(x)
for all x ∈ [ξ − 1, ξ]. Similarly, U(x+ τ∗) > U(x) for all x ∈ [η − τ∗, η − τ∗ + 1]. Hence,

U(x̂+ τ∗) − U(x̂) = 0 � U(x+ τ∗) − U(x) ∀x ∈ [ξ − 1, η − τ∗ + 1].

Consequently, U ′(x̂+ τ∗) = U ′(x̂). Using the equation for U , we conclude that

U(x̂+ τ∗ + 1) + U(x̂+ τ∗ − 1) = U(x̂+ 1) + U(x̂− 1).

Since U(· + τ∗) � U(·) on [ξ − 1, η − τ∗ + 1], we see that U(x̂ + τ∗ ± 1) = U(x̂ ± 1). By
induction, U(x̂+ τ∗ + k) = U(x̂+ k) for all integer k satisfying x̂+ k ∈ [ξ− 1, η− τ∗ + 1].
But this is impossible since U(x+ τ∗) > U(x) for all x ∈ [ξ − 1, ξ]. Thus, τ∗ = 0.

That τ∗ = 0 implies U(·+ τ) > U(·) on [ξ, η− τ ] along a sequence τ ↘ 0. In particular,
U ′(x) � 0 on [ξ, η]. Finally, for m = max0�s�1 |2 − f ′(s)| and every x ∈ [ξ, η],

cU ′′(x) = U ′(x+ 1) + U ′(x− 1) + [f ′(U) − 2]U ′(x) � −mU ′(x).

It follows that (U ′(x)emx/c)′ � 0 or U ′(x)emx/c � U ′(ξ)emξ/c > 0 for all x ∈ [ξ, η]. �

3.2. A linear equation from blow-up. To show that U ′ > 0 on R, we use Lemma
3.1(iii). For this, we need only to find a sequence {[ξj − 1, ξj + 1]} of intervals on which
U ′ > 0. To do this, we shall use a blow-up technique for the functions ρ = U ′/U and
σ = U ′/(U − 1), leading to the following two linear problems:


cR′(x) = R(x+ 1) +R(x− 1) − 2R(x) ∀x ≤ 1,

|R| ≤ 1 on (−∞, 2], |R(0)| = 1;
(3.2)




cR′(x) = R(x+ 1) +R(x− 1) − 2R(x) ∀x ≥ −1,

|R| ≤ 1 on [−2,∞), |R(0)| = 1.
(3.3)

Lemma 3.2. (i) If R solves (3.2), then |R| > 1/2 on [A− 1, A+ 1] for some A > 0.
(ii) Any solution of (3.3) satisfies |R| > 1/2 on [A− 1, A+ 1] for some A > 0.

Proof. (i) Suppose R solves (3.2). Then |R′| � 4/c on (−∞, 1]. Set z(x) :=
R′(x)/[R(x) + 2]. Dividing the ode in (3.2) by R(x) + 2 we obtain

c z(x) = e
∫ x+1

x z(t)dt + e−
∫ x

x−1
z(t)dt − 2, |z(x)| ≤ 4/c ∀x ≤ 1.

Following the argument used in the previous section, we conclude that limx→−∞ z(x)
exists. Since R is bounded, lim infx→−∞ |R′(x)| = 0. Thus, limx→−∞ z(x) = 0, which
implies that limx→−∞R′(x) = 0.

As R(0) is a global extremum of R restricted on (−∞, 1], R(j) = R(0) for all integer
j ≤ 1. Upon using limx→−∞R′(x) = 0, we derive that limx→−∞R(x) = R(0). Since
|R(0)| = 1, there exists A > 0 such that |R(·)| > 1/2 on [A − 1, A + 1]. This proves the
first assertion (i).
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(ii) The proof of the second assertion (ii) is analogous to the case (i) and therefore is
omitted. �

3.3. The monotonicity of wave profile. That U ′ > 0 follows from Lemma 3.1 (iii)
and the following

Lemma 3.3. There exists a sequence {ξi}i∈Z such that U ′ > 0 on [ξi − 1, ξi + 1] for each
i ∈ Z and limi→±∞ ξi = ±∞.

Proof. The sequence {ξi}i�0. Here we construct the sequence such that U ′ > 0 on
∪i�0[ξi − 1, ξi + 1] and limi→∞ ξi = −∞.

When f ′(0) > 0, limx→−∞U ′(x)/U(x) = λ > 0 so U ′(x) > 0 for all x� −1. Hence, we
need consider only the case f ′(0) = 0 and limx→−∞ ρ(x) = 0, where ρ(x) = U ′(x)/U(x).
Define

εj = max
x≤j

|ρ(x)| ∀ j < 0, θ = lim sup
j→−∞

εj−3

εj
∈ [0, 1].

We claim that θ = 1. Suppose not. Then, for θ̂ = (1 + θ)/2, there exists J < 0 such that
εj−3 ≤ θ̂εj for all j ≤ J . Hence, εJ−3k ≤ εJ θ̂

k for every integer k ≥ 0. Consequently,
|ρ(x)| ≤ εJ θ̂

(J−x)/3−1 for all x ≤ J . For y < J ,

ln
U(J)
U(y)

=
∫ J

y
ρ(x)dx �

∫ J

y
εJ θ̂

(J−x)/3−1dx � 3εJ
|θ̂ ln θ̂| .

Sending y → −∞ we obtain a contradiction. Hence θ = 1.
Let {jk}∞k=1 be a sequence such that limk→∞ jk = −∞ and limk→∞ εjk−3/εjk

= 1. Let
xk � jk − 3 be a point such that |ρ(xk)| = εjk−3. Define ρk(x) := ρ(xk +x)/|ρ(xk)|. Then
maxx≤3 |ρk(x)| ≤ εjk

/εjk−3, |ρk(0)| = 1, and

c ρ′k(x) = [ρk(x+ 1) − ρk(x)]eρ(xk)
∫ x+1
x ρk(z)dz +

[ρk(x− 1) − ρk(x)]e
−ρ(xk)

∫ x
x−1

ρk(z)dz + ρk(x)f1(U(xk + x))

where f1(s) = f ′(s)−f(s)/s→ 0 as s↘ 0. This equation implies that {ρk}∞k=1 is a family
of bounded and equi-continuous functions on (−∞, 2]. Hence, a subsequence which we
still denote by {ρk} converges to a limit R, uniformly in any compact subset of (−∞, 2].
Clearly, R satisfies (3.2).

By Lemma 3.2 (i), there exists a constant A < 0 such that either R � 1/2 on [A −
1, A+1] or R � −1/2 on [A− 1, A+1]. As limk→∞ ρk → R on [A− 1, A+1], there exists
an integer K > 0 such that for every integer k � K, either ρk > 0 on [A − 1, A + 1] or
ρk < 0 on [A− 1, A+ 1]. By Lemma 3.1 (i), the latter case is impossible. Thus ρk > 0 on
[A−1, A+1], i.e. U ′ > 0 on [xk +A−1, xk +A+1]. Define ξi = A+xK+|i| for all integer
i ≤ 0. Then limi→−∞ ξi = −∞ and U ′ > 0 on [ξi − 1, ξi + 1] for every integer i ≤ 0.

The sequence {ξi}i�1. When f ′(1) < 0, we have limx→∞U ′(x)/[1 − U(x)] > 0 so
U ′(x) > 0 for all x	 1. It remains to consider the case f ′(1) = 0. Define

σ(x) =
U ′(x)

U(x) − 1
, δj = max

x∈[j,∞)
|σ(x)|, θ = lim sup

j→∞
δj+3

δj
∈ [0, 1].
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With an analogous argument as before, we can show that θ = 1. Take a sequence {jk}∞k=1

satisfying limk→∞ jk = ∞ and limk→∞ δjk+3/δjk
= 1. Let xk ≥ jk + 3 be a point such

that δjk+3 = |σ(xk)|. Set σk(x) = σ(x + xk)/|σ(xk)|. Then |σk| ≤ δjk
/δjk+3 in [−3,∞).

Same as before, a subsequence of {σk}∞k=0 converges to a limit R satisfying (3.3). The
rest of the proof follows from an analogous argument as before. This completes the proof
of Lemma 3.3 and also the proof of Theorems 2 and 3. �

4. Uniqueness of Traveling Waves

In this section we prove Theorem 1. In the sequel, U and V are two traveling waves
with the same speed c. We want to show that U(·) ≡ V (· − ξ) for some ξ ∈ R.

4.1. A Comparison Principle. The sliding method applies on compact intervals.

Lemma 4.1. If V � U on [a− 1, a) ∪ (b, b+ 1] where a � b, then V � U on [a, b].

Proof. Let ξ be the number such that min[a−1,b+1]{U(·) − V (· − ξ)} = 0 and let
y ∈ [a− 1, b + 1] be the maximum value satisfying U(y) − V (y − ξ) = 0. Then y �∈ [a, b]
since otherwise U ′(y) = V ′(y − ξ) and the equations for U(·) and V (· − ξ) evaluated
at y would imply U(y ± 1) = V (y − ξ ± 1), contradicting the maximality of y. Thus,
y ∈ [a − 1, a) ∪ (b, b + 1], and by the assumption, V (y) � U(y) = V (y − ξ). Thus ξ � 0.
We conclude that U(·) � V (· − ξ) � V (·) on [a− 1, b+ 1]. �

The success of such a simple translation technique relies on (i) the existence of a
minimal translation ξ and (ii) the existence of a maximum y, both of which attribute to
the fact that a continuous function on a compact set attains its global extremes. When
the domain of interest is unbounded, neither ξ nor y may exist, and therefore different
techniques are needed.

4.2. Comparison near x = ∞. We shall compare traveling waves on the unbounded
domain [0,∞). Since simple translation technique does not work, we shall instead con-
struct a family of super-solutions for which translation technique works. If one is willing
to make the assumption f ′ � 0 on [1 − δ, 1] for some δ > 0, then for every ε > 0,

min{U + ε, 1} on [−1,∞)

is a super-solution on [0,∞) provided that U(−1) � 1− δ. In this manner, no asymptotic
behavior of U near x = ∞ is needed.

When only the assumption (A) is made, we construct a different family of super-
solutions obtained from the detailed asymptotic behavior of wave profiles and compression:

Z(�, x) := U([1 + �]x) ∀x ∈ [−1,∞), � ∈ (0, 1].

The idea here is that the rate of Z approaching 1 as x → ∞ is faster than that of any
wave profile, and therefore is strictly bigger than any wave profile for sufficiently large x.
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Since limx→∞U ′′(x)/U ′(x) = µ � 0 < c and U ′(x + h)/U ′(x) = e
∫ x+h

x U ′′(s)/U ′(s)ds, by
translation, we may assume that

sup
x�0, |h|�2

U ′′(x+ h)
U ′(x)

< c.(4.1)

For � ∈ (0, 1] and x � 0, writing y = (1 + �)x and Z(�, x) = Z(x), we calculate

LZ(x) := cZ ′(x) − Z(x+ 1) − Z(x− 1) + 2Z(x) − f(Z(x))

= c[1 + �]U ′(y) − U(y + 1 + �) − U(y − 1 − �) + 2U(y) − f(U(y))

= c �U ′(y) + U(y + 1) + U(y − 1) − U(y + 1 + �) − U(y − 1 − �)

= � U ′(y)
{
c−

∫ 1

0

∫ 1+	z

−1−	z

U ′′(y + h)
U ′(y)

dhdz
}
> 0.

This shows that for each � ∈ (0, 1], Z(�, ·) is a (strict) super-solution on [0,∞).

Lemma 4.2. Assume (4.1). Suppose V � U on [0, 1]. Then V � U on [0,∞).

Proof. Consider the function, for x � 0, ξ ∈ R, and � > 0,

Ψ(ξ, �, x) :=
∫ U([1+	]x)

V (x−ξ)

ds

f(s)
.

Note that

lim
x→∞

∂Ψ(ξ, �, x)
∂x

= lim
x→∞

((1 + �)U ′

f(U)
− V ′

f(V )

)
> 0 ∀ � > 0, ξ ∈ R;

inf
x≥0,ξ∈R,	∈[0,1]

∂Ψ
∂ξ

= inf
y∈R

V ′(y)
f(V (y))

> 0.

Thus limx→∞ Ψ(ξ, �, x) = ∞. For each fixed � ∈ (0, 1], there exists at least one ξ such
that Ψ(ξ, �, ·) � 0 on [0,∞). Let ξ(�) be the infimum of such numbers.

We claim that ξ(�) � 0. Suppose otherwise. Since limx→∞ Ψ(ξ(�), �, x) = ∞, there
exists y ∈ [0,∞) such that Ψ(ξ(�), �, y) = 0. We must have y > 1, since V (· − ξ(�)) <
V (·) � U(·) � U([1 + �]·) on [0, 1]. Thus, for Z(x) = U([1 + �]x),

Z(y) = V (y − ξ(�)), V (· − ξ(�)) � Z(·) on [0,∞).

This implies V ′(y − ξ(�)) = Z ′(y) and a contradiction

0 = LV
∣∣∣
y−ξ(	)

≥ LZ
∣∣∣
y
> 0.

This contradiction shows that ξ(�) � 0, so that V (·) � V (·− ξ(�)) � U([1+ �]·) on [0,∞).
Sending �↘ 0, we obtain that V (·) � U(·) on [0,∞). �
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4.3. Comparison near x = −∞. In general, on the unbounded interval (−∞, 0], it is
vary hard to construct a family of super-solutions that can be used for the translation
argument, such as that in the previous two subsections; this is due to the fact that the
constant state 0 is unstable. Hence we compare directly two traveling waves. We shall
show that wave profiles are ordered (i.e. one is bigger than the other) near x = −∞, by
magnifying differences between any two wave profiles.

For every ξ ∈ R and x ∈ R, we define

W (ξ, x) =




∫ U(x)

V (x−ξ)

ds

f(s)
if c > cmin,

lnU(x) − lnV (x− ξ) if c = cmin.

Note that W (ξ, x) magnifies the differences between U and V . When c > cmin,

Wx(ξ, x) :=
∂W (ξ, x)

∂x
=

U ′

f(U)
− V ′

f(V )
−→ 0 as x→ ±∞.

This limit shows that the magnified difference between wave profiles changes slowly. The
conclusion for c = cmin is analogous.

Lemma 4.3. There exist ν > 0 and A ∈ [−∞,∞] such that

lim
x→−∞W (ξ, x) = A+ νξ ∀ ξ ∈ R.(4.2)

Consequently, near x = −∞, U < V (· − ξ) if A+ νξ < 0 and U > V (· − ξ) if A+ νξ > 0.

Proof. First, we consider the case c > cmin. Note that

lim
x→−∞

{
W (ξ, x) −W (0, x)

}
= lim

x→−∞

∫ x

x−ξ

V ′(y)dy
f(V (y)))

= νξ

where ν = 1/c when f ′(0) = 0 and ν = λ/f ′(0) otherwise. Suppose limx→−∞W (ξ, x)
does not exist. Then A := lim supx→−∞W (ξ, x) > B := lim infx→−∞W (ξ, x). Taking
an appropriate ξ, we can assume without loss of generality that A > 0 > B. Let α, β be
finite numbers satisfying B < β < 0 < α < A. Then there exist sequences {xi} and {yi}
satisfying

W (ξ, xi) = α, W (ξ, yi) = β, xi+1 < yi < xi, lim
i→∞

xi = −∞.

Since limx→−∞Wx(ξ, x) = 0, there exists a large integer i such that W (ξ, ·) > 0 in
[xi+1 − 1, xi+1] ∪ [xi, xi + 1] and W (ξ, yi) < 0. This implies that V (· − ξ) < U(·) on
[xi+1 − 1, xi+1] ∪ [xi, xi + 1] and V (yi − ξ) > U(yi) which is impossible by Lemma 4.1.
Thus A = B.

The case c = cmin is analogous. �



UNIQUENESS AND ASYMPTOTICS OF TRAVELING WAVES 19

4.4. Proof of Theorem 1. Let U and V be two traveling wave profiles with the same
speed c. By translation, we can assume that V (0) = U(0) and that U and V satisfy (4.1).
By exchanging the roles of U and V if necessary we can use Lemma 4.3 to conclude that
(4.2) holds with A ∈ [0,∞].

Let η � 0 be the unique value such that

min
x∈[0,1]

{U(x) − V (x− η)} = 0.

By Lemma 4.2, V (· − η) � U(·) on [0,∞). We claim that V (· − η) � U(·) on (−∞, 0].
Suppose not. Then infx∈RW (η, x) < 0. Since Wξ > 0 and W (η,±∞) � 0, there is a
unique value ξ > η such that minRW (ξ, ·) = 0. This implies that there exists y ∈ R such
that W (ξ, y) = 0 = minR W (ξ, ·). It further implies that V (· − ξ) � U(·) and V (y − ξ) =
U(y). A comparison principle shows that this is impossible. Hence, V (· − η) � U(·) on
R. Since min[0,1]{U(· − η) − V (·)} = 0, we must have η = 0 and U ≡ V . �

5. Asymptotic Expansions

Finally, we derive and verify asymptotic expansions for traveling wave profiles near
x = −∞, accurate enough to distinguish the translation differences. The idea is to
construct, on (−∞, 1], sub/super solutions having special tails near x = −∞ and slopes
on the interval [0, 1]. The comparison between a wave profile and a sub/super solution
near x = −∞ will be made by a result similar to (4.2) in Lemma 4.3. The comparison on
[0, 1] will be made in a manner similar to that in the proof of Lemma 2.3, Step 3.

5.1. Super/sub solutions. In the sequel, a Lipschitz continuous function defined on
[a− 1, b+ 1] is called a super/sub solution (of speed c) on [a, b] if

±L [φ](x) � 0 a.e. x ∈ (a, b).

where L [φ](x) := c φ′(x) − φ(x+ 1) − φ(x− 1) + 2φ(x) − f(φ(x)).

Lemma 5.1. Suppose φ is a subsolution (or supersolution) on [a, b] and φ < U (or
φ > U) on [a− 1, a) ∪ (b, b+ 1]. Then φ < U (or φ > U) on [a, b].

The proof is similar to that for Lemma 4.1 and is omitted.

Our asymptotic expansion for a wave profile is expressed in terms of a constructed
function φ such that, for some x0 ∈ R,

U(x+ x0) = φ(x+ o(1)) ∀x � 0 where lim
x→−∞ o(1) = 0.(5.1)

For this, we shall use the same idea as that of Lemma 4.3. Consider the case λ �= 0.
Suppose φ is either a sub-solution or a super-solution on (−∞, 0] and

lim
x→−∞

φ′(x)
φ(x)

= lim
x→−∞

U ′(x)
U(x)

= λ > 0.(5.2)
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Consider the function, for ξ ∈ R and x � 0,

W (ξ, x) =
∫ U(x+ξ)

φ(x)

ds

s
= ln

U(x+ ξ)
φ(x)

.(5.3)

Lemma 5.2. Suppose φ satisfies (5.2) and is either a super-solution or a sub-solution on
(−∞, 0]. Let W be defined as in (5.3). Then (4.2) holds for some A ∈ [−∞,∞].

The proof is similar to that for Lemma 4.3 and therefore is omitted.

Suppose A is shown to be finite. Then for x0 := −A/ν, every ε > 0, and all x � −1,
W (x0 − ε, x) < 0 < W (x0 + ε, x); that is, φ(x− ε) < U(x+x0) < φ(x+ ε) for every ε > 0
and all x � −1. Hence (5.1) holds. To construct sup/super solutions and to show that
A is finite, we shall assume that

(B) |f(u) − f ′(0)u| ≤Mu1+α for all u ∈ [0, 1] and some positive constants M and α.

In most cases, we shall construct sub/super solutions via linear combinations of expo-
nential functions. Note that for φ = aeωx, Lφ = P (ω)φ+ [f ′(0)φ− f(φ)], where

P (ω) := c ω − eω − e−ω + 2 − f ′(0).

Observe that P (·) is concave, positive between its two roots, and negative outside of these
two roots. Denote by λ and Λ, where 0 � λ � Λ, the two roots of P (·) = 0. Among all
possibilities, we divide them into four cases:

(i) c = cmin and (1.6) has two real roots;
(ii) c = cmin and (1.6) has only one real root;
(iii) c > cmin and f ′(0) > 0;
(iv) c > cmin and f ′(0) = 0.

Note that limx→−∞{U ′(x)/U(x)} > 0 in the cases (i)–(iii). For the last case (iv), λ = 0
so that sub/super solutions have to be constructed by non-exponential functions. For this,
we need extra assumptions on f .

5.2. The case c = cmin and (1.6) has two real roots. Assume that c = cmin is the
minimum wave speed and that the characteristic equation cminz = ez + e−z − 2 + f ′(0)
has two real roots. Let λ be the smaller real root and Λ be the large real root. Then
λ < Λ and

lim
x→−∞

U ′(x)
U(x)

= Λ > 0 =⇒ U(x)
U(0)

= e
∫ x
0 U ′/U = eΛx+o(x).

Choose ω1 and ω2 satisfying

λ < ω1 < Λ < ω2, ω2 < (1 + α)Λ.

Then P (ω1) > 0 = P (Λ) > P (ω2). Consider, for ε ∈ [0, 1] and small δ > 0,

φ±(ε, δ, x) := δ
{
eΛx ± ε(eω1x − eΛx) ± δα/2(eΛx − eω2x)

}
.

Note that when ε > 0 and x� −1, φ+ 	 U and φ− < 0. Also, for all x � 0,

L [φ+] = δ
{
εP (ω1)eω1x − P (ω2)δα/2eω2x +O(1)δα[ε1+αe(1+α)ω1x + e(1+α)Λx]

}
> 0
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if ε ∈ [0, 1] and δ ∈ (0, δ0] for some δ0 > 0. Similarly, for every ε ∈ [0, 1] and δ ∈ (0, δ0],
max{0, φ−(ε, δ, ·)} is a sub-solution on (−∞, 0]. Taking δ0 small enough we can assume
that φ±x > 0 for all x ∈ [0, 1], ε ∈ [0, 1] and δ ∈ [0, δ0].

Take ξ negatively large such that δ := U(ξ) < δ0. Comparing U(·+ξ−1) with φ+(ε, δ, ·)
on (−∞, 0] for every ε ∈ (0, 1], we see that U(x+ ξ − 1) ≤ φ+(ε, δ, x) for all x ≤ 0. Here
the positivity of ε guarantees that φ+ > U near x = −∞. Now sending ε↘ 0 we conclude
that U(x+ ξ − 1) ≤ δ[1 + δα/2]eΛx for all x � 0. Similarly, U(x+ ξ + 1) > δ[1 − δα/2]eΛx

for all x � 0.
Now applying Lemma 5.2 to φ = φ+(0, δ0, x), we see that there is the limit

A = lim
x→−∞

{
lnU(x) − lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x) − Λx

}
− ln[δ0(1 + δ

α/2
0 )].

From the estimate in the previous paragraph, A must be finite. Hence we proved the
following:

Theorem 5.1. Assume (A) and (B). Let (cmin, U) be a traveling wave of the minimum
speed where the characteristic equation has two roots λ,Λ, λ < Λ. Then, for some x0 ∈ R,

U(x) = eΛ[x+x0+o(1)] ∀x � −1 where lim
x→−∞ o(1) = 0.

5.3. The case c = cmin and (1.6) has only one real root. Let P (z) = cminz − [ez +
e−z − 2 + f ′(0)] be the characteristic function at 0. That P (·) = 0 has only one real root,
denoted by λ, implies that P (λ) = P ′(λ) = 0; that is,

cmin = eλ − e−λ, f ′(0) = λ(eλ − e−λ) + (2 − eλ − e−λ).(5.4)

Take ω ∈ (λ, [1 + α]λ) and consider the function, for small δ > 0,

φ∗(δ, x) = δ[−xeλx − δα/2(eλx − eωx)].(5.5)

Note that φ∗ > 0 in (−∞, 0) and φ∗ < 0 in (0,∞). Since P (ω) < 0, for x ≤ 0,

Lφ∗ = δ
{
δα/2P (ω)eωx +O(1)δα[|x| + 1]1+αe(1+α)λx]

}
< 0.

It follows that φ− := max{φ∗, 0} is a sub-solution for every δ ∈ (0, δ0], where δ0 > 0.
From Lemma 5.2, there exists the limit

A = lim
x→−∞

{
lnU(x) − λx− ln |x|

}
.(5.6)

We claim that A < ∞. Suppose A = ∞. Then for each fixed ξ ∈ R, U(x+ ξ) > φ−(δ, x)
for all x � −1. Since φ− = 0 on [0,∞) and φ− is a sub-solution, a comparison gives
U(x+ ξ) > φ−(δ, x) for all x ∈ R. This is impossible for every ξ ∈ R. Thus A <∞.

We now consider the lower bound of A. Since P (·) is a concave function, that λ is a
double root to P (·) = 0 implies that P (ω) < 0 for every ω �= λ. It is then very hard
to construct super-solutions. As the existence of a super-solution implies the existence
of a traveling wave, the construction of a super-solution is equivalent to find cmin which
is not totally determined by the local behavior of f(s) near s = 0. That cmin is the
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solution of (5.4) which is uniquely determined by f ′(0) requires special properties on the
non-linearity on f . The whole non-linear structure of f on [0, 1] determines whether A is
bounded from below. As will be seen in a moment, the answer to whether A is bounded
is all we need to determine uniquely the asymptotic behavior of U as x → −∞, i.e., the
alternatives in (1.11).

Case (1) A > −∞. Then A is finite, so from (5.6), the first alternative in (1.11) holds.
Case (2) A = −∞. Fix ω ∈ (λ, (1 + α)λ). Consider, for ε ∈ [0, 1] and small δ > 0,

φ+(ε, δ, x) = δ{[1 − εx]eλx − δα/2eωx}.

Direct calculation shows that φ+ is a super-solution on (−∞, 0] for every ε ∈ [0, 1] and
δ ∈ (0, δ0]. Fix a translation such that U(1) ≤ δ0/2. For every ε ∈ (0, 1] we compare U(·)
and φ+(ε, δ0, ·) on (−∞, 0]. When x ∈ [0, 1], U(x) ≤ U(1) < δ0/2 < φ(ε, δ0, x). Since
A = −∞, we see that U < φ for all x � −1. It then follows that U(·) < φ(ε, δ0, ·) on
(−∞, 1]. Sending ε↘ 0 we obtain U(x) ≤ δ0e

λx for all x ∈ (−∞, 0].
Also, by Lemma 5.2, there exists the limit

Ã := lim
x→−∞

{
lnU(x) − lnφ+(0, δ0, x)

}
= lim

x→−∞

{
lnU(x) − λx

}
− ln δ0.

In addition, since U(x) ≤ δ0e
λx for all x ∈ (−∞, 0], Ã ≤ 0.

Next we show that Ã > −∞. To do this, for every ω1 ∈ [λ, ω], consider the function
φ−(ω1, δ, x) := δ[eω1x + eωx]. It is easy to show that φ− is a sub-solution on (−∞, 0] for
every ω1 ∈ [λ, ω] and every δ ∈ (0, δ0].

Fix a translation such that U(−1) > 2δ0. For every ω1 ∈ (λ, ω], by comparing U and
φ−(ω1, δ0, x), we see that U > φ−(ω1, δ0, x), since ω1 > λ implies U > φ− for all x� −1.
Now sending ω1 ↘ λ we see that U(x) ≥ δ0e

λx for all x ≤ 0. Thus Ã is finite; namely,
the second alternative in (1.11) holds.

Finally, we provide two examples showing that both alternatives in (1.11) can happen.

Example 1. This example provides the second alternative in (1.11). We define

U(x) =
ex

1 + ex
, λ = 1, c = e− 1

e
,

f(u) =
u(1 − u)(e− 1)[2(1 − u)2 + 2eu2 + (e2 + 1)(e+ 1)u(1 − u)/e]

e(1 − u)2 + eu2 + u(1 − u)(e2 + 1)
.

Using ex = U(x)/[1 − U(x)], one can verify that (c, U) is a traveling wave. Since f ′(0) =
2 − 2/e, λ = 1 is a double root of the characteristic equation cω = eω + e−ω − 2 + f ′(0).
Consequently, cmin = e− 1/e.

Example 2. We show that the first alternative in (1.11) holds if

f ∈ C1+α([0, 1]), f(0) = f(1) = 0 < f(u) � f ′(0)u ∀u ∈ (0, 1).(5.7)
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First of all, define (cmin, λ) as in (5.4), one can show that min{1, eλx} is a super-solution
with c = cmin, so that there is a traveling wave of speed cmin. Consequently, the minimum
wave speed is given by the solution of (5.4); see, for example, [5, 6, 27].

Also, there is a super-solution given by

φ+(x) = [1 − λ
1+λ x]e

λx ∀x < 0, φ+(x) = 1 for x � 0.

Note that, for a large constant M , φ+(x +M) > φ∗(δ0, x) on R, where φ∗ is as in (5.5).
Following the existence proof of [5], (max{φ∗, 0}, φ+) sandwiches a solution which satisfies
the first alternative in (1.11).

We conclude the following:

Theorem 5.2. Assume (A) and (B). Suppose c = cmin and the characteristic equation
has a root λ of multiplicity 2, i.e. (5.4) holds. Then there is the alternative (1.11). In
addition, under (5.7), only the first alternative in (1.11) holds.

5.4. The case c > cmin and f ′(0) > 0. Let λ and Λ, λ < Λ, be two roots of the
characteristic equation P (·) = 0 where P (z) = c z − [ez + e−z − 2 + f ′(0)]. Pick ω such
that λ < ω < min{Λ, (1 + α)λ}. Then P (ω) > 0. For each ε ∈ (0, e−ω ] and small δ,
consider functions

φ±(ε, δ, x) := δ([1 ∓ ε]eλx ± εeωx), x � 1.

Note that

min
0�x�1

φ+
x (ε, δ, x)
φ+(ε, δ, x)

= λ+ ε(ω − λ), max
0�x�1

φ−x (ε, δ, x)
φ−(ε, δ, x)

= λ− ε(ω − λ).

In addition, for all x � 0, ε ∈ (0, 1], and δ ∈ (0, 1], using |f(u) − f ′(0)u| ≤ Mu1+α and
0 < φ± ≤ 2δeλx we obtain

±L [φ±δ] = δεP (ω)eωx ± [f(φ±δ) − f ′(0)φ±δ]

� δeωx{εP (ω) − 21+αMδαe[(1+α)λ−ω]x}.
Hence, we have the following:

(i) For every ε ∈ (0, e−ω ], there exists xε � 0 such that φ±(ε, 1, ·) is a super/sub solution
on (−∞, xε].

(ii) For every ε ∈ (0, e−ω ], there exists δε > 0 such that for every δ ∈ (0, δε], φ±(ε, δ, ·)
is a super/sub solution on (−∞, 0].

Indeed, we need only take

xε := min
{

0,
ln[εP (ω)] − ln[21+αM ]

(1 + α)λ− ω

}
, δε = min

{
1,

( εP (ω)
21+αM

)1/α}
.

Theorem 5.3. Assume (A), (B), and f ′(0) > 0. Let (c, U) be a traveling wave with
speed c > cmin. Then U(x) = eλ(x+x0+o(1)) for some x0 ∈ R where limx→−∞ o(1) = 0.
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Proof. First of all, note that (4.2) holds for W defined as in (5.3) with φ = φ+(ε, 1, x).
We show that A > −∞. Suppose A = −∞. Fix ε = e−ω. Since

lim
x→∞U ′(x)/U(x) = λ,

there exists ξ < 0 such that U ′(x)/U(x) < λ+ε(ω−λ) for all x < ξ+2. Now we compare
U(·+ξ) with φ := φ+(ε, U(ξ), ·) on (−∞, 0]. By taking negatively large ξ, we may assume
that U(ξ) < δε so that φ is a super-solution on (−∞, 0].

Note that φ(0) = U(0 + ξ) and

φ′(x)
φ(x)

> λ+ ε(ω − λ) >
U ′(x+ ξ)
U(x+ ξ)

∀x ∈ [0, 1]

so that U(· + ξ) < φ(·) on (0, 1]. Also, limx→−∞[lnφ(x) − lnU(x + ξ)] = ∞. It follows
by comparison that φ(·) > U(· + ξ) on (−∞, 0], contradicting φ(0) = U(0 + ξ). Thus
A > −∞.

Similarly, by using the sub-solution φ−, one can show that A < ∞. Thus A =
limx→−∞{lnU(x) − λx} exists and is finite. This completes the proof. �

5.5. The case c > cmin and f ′(0) = 0. When c > cmin, λ := limx→−∞U ′(x)/U(x) is the
smaller root to the characteristic equation cz = ez + e−z − 2 + f ′(0). When f ′(0) = 0, we
have λ = 0. Thus as x → −∞, U(x) does not decay to 0 exponentially fast. To find the
precise rate of decay, we shall assume the following:

(B1) 0 � ff ′′ � Mf ′2 on (0, ε] for some ε > 0 and M > 0;
∫ ε
0 f

′2(s)/f(s)ds <∞.

Simple examples of such functions are

f(u) = κu1+q(1 − u)p, f(u) = κe−1/u(1 − u)p (κ > 0, q > 0, p � 1).

Theorem 5.4. Assume (A), (B1), and f ′(0) = 0. Let (c, U) be a traveling wave with
non-minimum speed c. Then (1.12) holds for some x0 ∈ R.

Proof. 1. The idea. The proof is based on the following formal calculation.
When f ′(0) = 0 and c > cmin, it follows from Theorem 3 that cU ′ ≈ f(U). Then at
least formally we should have c2U ′′ ≈ cf ′(U)U ′ ≈ f(U)f ′(U). Since by the mean value
theorem U(x+ 1) + U(x− 1) − 2U(x) = U ′′(y) ≈ U ′′(x), we obtain that

cU ′ ≈ U ′′ + f(U) ≈ f(U)f ′(U)/c2 + f(U) = f(U)[1 + f ′(U)/c2].

This suggests that sub/super solutions can be obtained from solutions of ODEs of the
form c φ′ = f(φ)[1 + f ′(φ)/c2]± o(1), where o(1) is a small positive term large enough to
offset the error of the approximation U(x+ 1) + U(x− 1) − 2U(x) = U ′′(y) ≈ U ′′(x).

2. Construction of super/sub solutions. Let δ0 be a small enough constant and
be fixed. For every δ ∈ (0, δ0] and K ∈ [1, 1/(4f ′2(δ))], let φ be the solution of

c φ′ = f(φ) { 1 + f ′(φ)/c2 ±Kf ′2(φ) } on (−∞, 1], φ(0) = δ.(5.8)
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The solution is given implicitly by∫ φ(x)

δ

ds

f(s)[1 + f ′(s)/c2 ±Kf ′2(s)]
=
x

c
∀x � 1.

When δ0 is small, we have φ ≤ δ[1 + o(1)] and cφ′ = f(φ)[1 + o(1)] on (−∞, 1]. In the
sequel, O(1) is a quantity bounded by a constant independent of K and δ.

Write (5.8) as c φ′ = (1 + g(φ))f(φ) where g := f ′/c2 ± Kf ′2. In the sequel, the
arguments of f , f ′, f ′′, and g are evaluated at φ(x), if not specified. Since f ′′ � 0 and
ff ′′ = O(1)f ′2 on the interval of interest, we see that

|g| + |g′f/f ′| = O(f ′) +O(f ′2)K.

Consequently,

c2φ′′(x) = {(1 + g)f ′ + fg′}(1 + g)f = ff ′{1 +O(f ′) +O(f ′2)K}.

Also by the mean value theorem,

φ(x+ 1) + φ(x− 1) − 2φ(x) = φ′′(y) for some y ∈ [x− 1, x+ 1],

f ′(φ(y))
f ′(φ(x))

= exp
(∫ y

x

(1 + g)ff ′′

cf ′
)

= exp
(∫ y

x
O(f ′(φ(z))dz

)
.

This implies that

f ′(φ(y)) = [1 +O(f ′(φ(x)))]f ′(φ(x)).

Similarly,

f(φ(y)) = [1 +O(f ′(φ(x)))]f(φ(x)).

This follows that

c2φ′′(y) = f ′f{1 +O(f ′) +O(f ′2)K}
∣∣∣
φ(x)

.

Hence, for all x � 1,

L [φ](x) = cφ′ − f − f ′f
{
c−2 +O(f ′) +O(f ′2)K

}
= ff ′2

{
±K +O(1) +O(f ′)K

}
.

Thus we have the following

Lemma 5.3. There exist a small positive constant δ0 and a large constant K0 such that
for every δ ∈ (0, δ0] and every K ∈ [K0, 1/(4f ′2(δ))], the solution φ±(δ, x) := φ(x) of (5.8)
is a super/sub solution on (−∞, 0].

3. The comparison. Consider the function

W±(ξ, x) =
∫ U(x+ξ)

φ±(δ,x)

ds

f(s)[1 + f ′(s)/c2]
x ≤ 1, ξ ∈ R.
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Following a proof similar to that for Lemma 4.3, we can show that (4.2) holds with
W = W±, A = A± ∈ [−∞,∞] and ν = 1/c. Note that

W+ −W− =
∫ δ

φ+

{ 1
f [1 + f ′/c2]

− 1
f [1 + f ′/c2 +Kf ′2]

}
ds

−
∫ δ

φ−

{ 1
f [1 + f ′/c2]

− 1
f [1 + f ′/c2 −Kf ′2]

}
ds,

since the two integrals involving K cancel each other. Sending x → −∞ and using
φ±(−∞) = 0 and

∫ ε
0 f

′2(s)/f(s)ds <∞, we then obtain

lim
x→−∞{W+(ξ, x) −W−(ξ, x)} =

∫ δ

0

2Kf ′2

f{[1 + f ′/c2]2 − [Kf ′2]2} ds <∞.

We now show that A+ > −∞. Suppose on the contrary that A+ = −∞. For each
δ ∈ (0, δ0], taking K = 1/(4f ′(δ)2) we see that

φ+′(x)
f(φ+(x))

=
1
c
− f ′(φ+)

c3
+
f ′2(φ+)
4cf ′2(δ)

� 1
c

+
1
8c

∀x ∈ [0, 1]

if δ0 is small enough. As we know that limx→−∞U ′/f(U) = 1/c, there exits ξ < 0 such
that U ′/f(U) < 1/c + 1/(8c) for all x ≤ ξ + 1. Now set δ = U(ξ) and compare U(ξ + ·)
and φ+(δ, ·) on (−∞, 0].

As φ+′/f(φ+) > U ′/f(U) on [0, 1] and φ(0) = U(ξ + 0), we have φ+(·) > U(ξ + ·) on
(0, 1]. Also, A+ = −∞ implies that φ+(x) > U(ξ + x) for all x � −1. By comparison,
φ+ > U on (−∞, 0], contradicting φ+(0) = U(ξ + 0). Thus A+ > −∞. Similarly, using
φ−, we can show that A− <∞. Hence A± are finite.

Finally, we observe that

lim
x→−∞W+(0, x) = lim

x→−∞

{ ∫ U(x)

δ

ds

f(s)[1 + f ′(s)/c2]
− x

c

}

−
∫ δ

0

{ 1
1 + f ′(s)/c2

− 1
1 + f ′(s)/c2 +Kf ′2(s)

} ds

f(s)
,

the assertion of the Theorem, i.e. (1.12) thus follows. �

As an illustration, we consider the case when

f(u) = κu2(1 − u)p (κ > 0, p � 1).

Then for some integral constant a∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
= − 1

κu
+

( p
κ
− 2
c2

)
lnu+ a+O(u) as u→ 0.

After translation, we see that, as x→ −∞,

− 1
κU(x)

+
( p
κ
− 2
c2

)
lnU(x) =

x

c
+ o(1)

This implies that, as x→ −∞,

1
U(x)

=
κ|x|
c

+O(ln |x|) =
κ|x|
c

(
1 + o(1)

)
, lnU(x) = ln

c

κ|x| + o(1).
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Thus, after another translation,

U(x) =
c

κ[|x| − x0 + o(1)] + (p c− 2κ/c) ln |x|

=
c

κ|x| −
(pc2 − 2κ) ln |x|

κ2x2
− cx0 + o(1)

κx2
as x→ −∞.

Note that the translation is distinguished by the third term in the Taylor’s expansion.

Finally, observe that∫ u

1/2

ds

f(s)[1 + f ′(s)/c2]
=

∫ u

1/2

ds

f(s)
− ln f(u)

c2
+ a+ o(1) as u→ 0.

In particular, if f(u) = κu1+q[1+o(1)] for some q > 0, then U ∝ |x|−1/q so that ln f(U) ≈
−b ln |x| + B + o(1) for some b > 0 and B ∈ R. Therefore, it is generic that for some
constants b > 0 and x0 ∈ R,∫ U(x)

1/2

ds

f(s)
=
c[x+ x0 + o(1)] − b ln |x|

c2
.

In a similar manner, we can establish an asymptotic expansion near ∞. We omit the
details.
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