
UNIQUENESS AND STABILITY OF TRAVELING WAVES
FOR PERIODIC MONOSTABLE LATTICE DYNAMICAL SYSTEM

JONG-SHENQ GUO AND CHIN-CHIN WU

Abstract. We study the traveling waves for a lattice dynamical system with monostable non-
linearity in periodic media. It is well-known that there exists a minimal wave speed such that a
traveling wave exists if and only if the wave speed is above this minimal wave speed. In this paper,
we first derive a stability theorem for certain waves of non-minimal speed. Moreover, we show that
wave profiles of a given speed are unique up to translations.

1. Introduction

We consider the following lattice dynamical system for unknown u = {uj}j∈Z:

(1.1) u′
j = dj+1uj+1 + djuj−1 − (dj+1 + dj)uj + fj(uj), j ∈ Z,

where fj ∈ C1+α[0, 1] for some α ∈ (0, 1) for j ∈ Z, fj+N = fj and dj+N = dj > 0 for all
j ∈ Z for some positive integer N . The equation (1.1) can be regarded as a spatial discrete
version of the following reaction-diffusion equation

ut = (d(x)ux)x + f(x, u),

where d(x) and f(x, u) are periodic in x. In biology, let uj denote the density of a certain
species in a periodic patchy environment. Assuming the species at site j can only interact
with those at the nearby sites, then the equation (1.1) describes the rate of change of density
of this species at each site j. It is equal to the sum of the source fj(uj) at site j and the
fluxes qj±1 from sites j ± 1 to site j:

qj+1 := dj+1[uj+1 − uj], qj−1 := dj[uj−1 − uj],

where dj, dj+1 are the diffusion constants. See [8, 15, 16] for more references and details.
It is trivial that for a given initial data {uj(0)} ∈ [0, 1] there exists a unique solution u to

(1.1) for t ≥ 0 such that 0 ≤ uj(t) ≤ 1 for all t ≥ 0 and j ∈ Z. We are interested in the wave
propagation phenomenon. In particular, we are interested in special solutions U of (1.1) for
t ∈ R satisfying the following conditions:

Uj(t + N/c) = Uj−N(t), t ∈ R, j ∈ Z,(1.2)

Uj(t) → 1 as j → −∞, Uj(t) → 0 as j → +∞, locally in t ∈ R,(1.3)
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for some nonzero constant c. We shall call a solution (c, U) of (1.1)-(1.3) as a traveling wave
solution. The constant c is the wave speed and U is the profile. In this paper, we shall
always assume that

(1.4) fj(0) = fj(1) = 0 ∀ j ∈ Z.

The study of traveling wave for lattice dynamical system has attracted a lot of attention
for past years, see, e.g., the works [1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 20]. The
main concerns are existence, uniqueness, and stability of traveling waves. Typically, there
are two different nonlinearities, namely, monostable and bistable cases. In the monostable
case, we have

(1.5) f ′
j(1) < 0 < f ′

j(0) ∀ j ∈ Z, fj(s) > 0 ∀ s ∈ (0, 1), j ∈ Z.

For the bistable case, we have f ′
j(0) < 0 and f ′

j(1) < 0 for all j ∈ Z. If N = 1, then fj+1 = fj

and dj+1 = dj for all j. This is the so-called homogeneous media case. In general, if N > 1,
then it is called the periodic case.

In this paper, we shall focus on the periodic monostable case. We refer the reader to the
work [5] and the references cited therein for the periodic bistable case. In [5], the existence,
uniqueness and stability of traveling waves for periodic bistable case are studied in detail.

The existence of traveling waves for monostable case in periodic media was first obtained
by Hudson and Zinner [11, 12] under the extra assumption

(1.6) f ′
j(0)s − Ms1+α ≤ fj(s) ≤ f ′

j(0)s, ∀ s ∈ [0, 1], j ∈ Z,

for some constants M > 0 and α ∈ (0, 1). Recently, one of the authors and Hamel [10] gave
a different approach to prove the existence of traveling waves for all speeds c ≥ c∗ for some
positive minimal speed c∗. Moreover, it is also shown in [10] that the condition c ≥ c∗ is not
only a sufficient condition but also a necessary condition for the existence of traveling waves.

For reader’s convenience, we recall some properties of traveling wave from [10]. Let (c, U)
be a traveling wave solution of (1.1)-(1.3) with c 6= 0. Then we have 0 < Uj(t) < 1 for all
(j, t) ∈ Z × R; Uj(t) → 0 as t → −∞; Uj(t) → 1 as t → ∞; U ′

j(t) > 0 for all t ∈ R and
U ′

j(t) → 0 as t → ±∞.
The aim of this paper is to study the uniqueness and stability of traveling waves in the

periodic monostable case. Hence we shall always assume that (1.4), (1.5) and (1.6) hold.
Recall from [10] that for each λ ∈ R there exists a unique v = {vj} with maxj∈Z vj = 1

and vj+N = vj > 0 for all j ∈ Z such that

(1.7) M(λ)vj = dj+1e
−λvj+1 + dje

λvj−1 − (dj+1 + dj)vj + f ′
j(0)vj

for all j ∈ Z, where M(λ) is the largest eigenvalue of (1.7). Moreover, there exists λ∗ > 0
such that c∗ = M(λ∗)/λ∗ and the mapping c = M(λ)/λ : (0, λ∗) 7→ c ∈ (c∗,∞) is strictly
decreasing.

We shall focus our attention on those traveling waves (c, U), c > c∗, of (1.1)-(1.3) satisfying

(1.8) lim
j−ct→∞

Uj(t)

e−λ(j−ct)vj

= 1,

for some λ > 0 such that M(λ) = cλ and {vj} is the unique eigenvector of (1.7) corresponding
to λ such that maxj∈Z vj = 1 and vj+N = vj > 0 for all j ∈ Z.

We now state our stability theorem as follows.
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Theorem 1.1. Suppose that there exists a traveling wave (c, U) with c > c∗ such that (1.8)
holds for some λ ∈ (0, λ∗). Let u be the solution of (1.1) for t ≥ 0 with the initial value
{uj(0)} satisfying

0 ≤ uj(0) ≤ 1, uj(0) ≤ e−λ·jvj ∀j ∈ Z,(1.9)

lim inf
j→−∞

uj(0) > 0, lim
j→∞

uj(0)

e−λ·jvj

= 1.(1.10)

Then

lim
t→∞

sup
j
{|[uj(t)/Uj(t)] − 1|} = 0.

The proof of Theorem 1.1 is based on a method in [3] with some nontrivial modifications.
In [3], a lattice dynamical system in homogeneous media is studied. There the proof of
stability theorem is through a related continuum equation by extending the spatial variable
from j ∈ Z to x ∈ R. But, here we shall only use the original equation (1.1) to prove the
stability theorem. Moreover, there is only one wave profile for the homogeneous case in
[3]. In our periodic lattice dynamical system, there are N wave profiles. This makes the
stability analysis more complicated. To overcome this difficulty, we introduce the following
transformation

(1.11) Wj(x) := Uj([j − x]/c), equivalently Uj(t) = Wj(j − ct),

which is very useful in the periodic framework. Indeed, this transformation is reminiscent of
a similar transformation in the case of partial differential equation (cf. [9]).

By adapting a method used in [4], we have the following uniqueness theorem.

Theorem 1.2. Suppose that (c, U) and (c, U) are two traveling wave solutions of (1.1)-(1.3)
such that

(1.12) lim
j−ct→∞

Uj(t)

e−λ(j−ct)vj

= h, lim
j−ct→∞

U j(t)

e−λ(j−ct)vj

= h̄

for some positive constants λ, h and h̄ such that M(λ) = cλ, where {vj} is the eigenvector
of (1.7) corresponding to λ such that vj = vj+N > 0 for all j and max{vj} = 1. Then there
exists ξ ∈ R such that Uj(t) = U j(t + ξ) for all j ∈ Z, t ∈ R.

This paper is organized as follows. We shall give the proof of Theorem 1.1 in Section 2.
The proof of Theorem 1.2 is given in Section 3. In this paper, we shall use both functions
Uj and Wj defined in (1.11) alternatively from time to time.

2. Stability of traveling wave

This section is devoted to the proof of Theorem 1.1. First, we call a continuous function
w a super-solution of (1.1) in an interval I, if w is differentiable a.e. such that

(2.1) w′
j(t) ≥ A[wj](t) + fj(wj(t)) a.e. for t ∈ I, ∀ j ∈ Z,

where

A[wj](t) := dj+1wj+1(t) + djwj−1(t) − (dj + dj+1)wj(t).

The notion of sub-solution is defined similarly by reversing the inequality in (2.1).
Based on a traveling wave (c, U), we can construct the following super/sub-solution.
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Lemma 2.1. For each δ ∈ (0, 1) and η ∈ (0, infs∈(−δ,δ)[f(1−s)/s]), there exists l = l(δ, η) > 0
such that for any ε ∈ [0, δ] the function w± := {w±

j } defined by

w±
j (t) := (1 ± εe−ηt)Uj(t ∓ lεe−ηt), (j, t) ∈ Z × [0,∞)

is a super/sub-solution of (1.1).

Proof. We consider only the case of super-solution. The case of sub-solution is similar.
Set wj(t) := (1 + q)Uj(s), s := t − lεe−ηt and q := εe−ηt. Then we compute

w′
j(t) −A[wj](t) − fj(wj(t))

= −ηqUj(s) + (1 + q)(1 + lηq)U ′
j(s) − (1 + q)[U ′

j(s) − fj(Uj(s))] − fj((1 + q)Uj(s))

= −ηqUj(s) + lηq(1 + q)U ′
j(s) + (1 + q)fj(Uj(s)) − fj((1 + q)Uj(s)).

Notice that

(1 + q)fj(Uj) − fj((1 + q)Uj) =

∫ q

0

[fj(Uj) − Ujf
′
j((1 + p)Uj)]dp

= qfj(Uj) − Ujfj(1 + q) − Uj

∫ q

0

[f ′
j((1 + p)Uj) − f ′

j(1 + p)]dp

≥ −Ujfj(1 + q) − Uj

∫ q

0

[f ′
j((1 + p)Uj) − f ′

j(1 + p)]dp.

Since fj ∈ C1+α([0, 1]), fj can be suitably extended so that fj ∈ C1+α([−1, 2]). Then we
have ∣∣∣∣∫ q

0

[f ′
j((1 + p)Uj) − f ′

j(1 + p)]dp

∣∣∣∣ ≤ 2qK(1 − Uj)
α,

where

K := max
j∈Z

max
−1≤s<t≤2

|f ′
j(t) − f ′

j(s)|
|t − s|α

.

It follows that
1

q
{w′

j(t) −A[wj](t) − fj(wj(t))}

≥ lη(1 + q)U ′
j(s) − ηUj(s) − [fj(1 + q)/q]Uj(s) − 2K(1 − Uj(s))

αUj(s).

Now, for a given δ > 0, we set

ηδ := inf
j∈Z,−δ<s<δ

[fj(1 − s)/s].

Note that ηδ > 0, since f ′
j(1) < 0. Choose η ∈ (0, ηδ). Since limj−ct→−∞ Uj(t) = 1, there

exists ξ0 such that 2K(1 − Uj(s))
α ≤ ηδ − η for all j − cs ≤ ξ0. Recall from Lemma 2.5 of

[10] that U ′
j > 0 in R for all j ∈ Z. Hence

w′
j(t) −A[wj](t) − fj(wj(t)) ≥ 0 ∀j − cs ≤ ξ0.(2.2)

On the other hand, since Uj(t) → 0 as j − ct → ∞, it follows from Lemma 2.4 of [10] that

lim inf
j−ct→∞

U ′
j(t)

Uj(t)
= lim inf

(j,t)∈Z×R,Uj(t)→0

U ′
j(t)

Uj(t)
> 0.

Hence, if we choose

l :=
2K

η(1 − δ)
sup

j−cs≥ξ0

Uj(s)

U ′
j(s)

,
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then l > 0 and we obtain

w′
j(t) −A[wj](t) − f(wj(t)) ≥ 0 ∀j − cs ≥ ξ0.(2.3)

Combining (2.2) and (2.3), we obtain that w := {wj} is a super-solution of (1.1). ¤

Recall the following standard comparison principle. Since the proof is standard, we omit
it here (see also [3]).

Proposition 2.2. Given two bounded continuous functions u, v on [t0,∞) for some t0 ≥ 0
such that u, v are differentiable a.e. in [t0,∞). Suppose that

u′
j(t) −A[uj](t) − f(uj(t)) ≥ v′

j(t) −A[vj](t) − f(vj(t)) ∀ t ≥ t0, j ∈ Z,

and uj(t0) ≥ vj(t0) for all j ∈ Z. Then uj(t) ≥ vj(t) for all t ≥ t0, j ∈ Z. Moreover, if,
besides the above assumptions, uk(t0) > vk(t0) for some k ∈ Z, then uj(t) > vj(t) for all
t > t0, j ∈ Z.

Given any c > c∗. Let λ ∈ (0, λ∗) be such that M(λ) = cλ and let {vj} be the eigenvector
of (1.7) corresponding to λ such that maxj∈Z vj = 1 and vj+N = vj > 0 for all j ∈ Z. Then
it is easy to check that the function ū = (ūj)j∈Z defined by

(2.4) ūj(t) = min{e−λ(j−ct)vj, 1} ∀ (j, t) ∈ Z × R

is a super-solution of (1.1). Moreover, we can choose µ ∈ (λ, λ∗) such that µ < (1 + α)λ and
M(µ) < cµ, where α is the constant defined in (1.6). Let {wj} be the eigenvector of (1.7)
corresponding to µ such that maxj∈Z wj = 1 and wj+N = wj > 0 for all j ∈ Z. Then the
function u = (uj)j∈Z defined by

(2.5) uj(t) = max{e−λ(j−ct)vj − Ae−µ(j−ct)wj, 0} ∀ (j, t) ∈ Z × R

is a sub-solution of (1.1), if A is large enough.
Note that the traveling wave solution, denoted by {Uj}, obtained by an iteration starting

from the above super-sub-solutions satisfies (1.8) for some λ ∈ (0, λ∗). To see this, we first
note from [10] that

(2.6) uj(t) ≤ Uj(t) ≤ ūj(t) ∀ (j, t) ∈ Z × R.

For j − ct À 1, we have

(2.7) ūj(t) = e−λ(j−ct)vj, uj(t) = e−λ(j−ct)vj − Ae−µ(j−ct)wj.

Writing

uj(t) = e−λ(j−ct)vj[1 − Ae−(µ−λ)(j−ct)wj/vj]

and using the fact µ ∈ (λ, λ∗), then (1.8) follows from (2.6) and (2.7).
From now on, we assume that u is the solution of (1.1) for t ≥ 0 with the initial value

{uj(0)} satisfying (1.9) and (1.10) for a traveling wave (c, U) with c > c∗ satisfying (1.8) for
some λ ∈ (0, λ∗). Also, for a a given c > c∗, we fix the corresponding λ, µ,A, vj, wj defined
as above in the following.

Lemma 2.3. For any ε > 0, there exists a constant ξ1(ε) > 1 such that

uj(t − 2ε) ≤ Uj(t) ≤ uj(t + 2ε) ∀ j − ct ≥ ξ1(ε), t ≥ 2ε.(2.8)
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Proof. Given any ε > 0. First, we derive the second inequality in (2.8). By (1.10), there
exists j0 depending on ε such that

e−λ(j+cε)vj < uj(0) < e−λ(j−cε)vj ∀j ≥ j0.(2.9)

Choose A ≥ e(µ−λ)(j0+cε)[max{vj}/min{wj}] large enough so that (2.5) is a sub-solution of
(1.1). Then

e−λ(j+cε)vj − Ae−µ(j+cε)wj ≤ 0 ∀j ≤ j0.(2.10)

Hence, from (2.9) and (2.10),

uj(0) ≥ max{e−λ(j+cε)vj − Ae−µ(j+cε)wj, 0} ∀j ∈ Z.

By the comparison principle,

uj(t) ≥ e−λ(j−c(t−ε))vj − Ae−µ(j−c(t−ε))wj ∀j ∈ Z, t ≥ 0,

i.e.,

uj(t + ε) ≥ e−λ(j−ct)vj − Ae−µ(j−ct)wj ∀j ∈ Z, t ≥ 0.(2.11)

Moreover, by (1.8), there exists a constant x1(ε) > 1 such that

(2.12) e−λ(j−c(t+ε))vj − Ae−µ(j−c(t+ε))wj ≥ Uj(t) ∀j − ct ≥ x1(ε).

From (2.11) and (2.12) it follows that

uj(t + 2ε) ≥ Uj(t) ∀j − ct ≥ x1(ε), t ≥ 0.

Next, we derive the first inequality in (2.8). By (1.9), we have

uj(0) ≤ min{e−λ·jvj, 1} ∀j ∈ Z.

By comparison,

uj(t) ≤ min{e−λ(j−ct)vj, 1} ∀j ∈ Z, t ≥ 0.(2.13)

On the other hand, from (1.8), we have

lim
j−ct→∞

Uj(t)

e−λ(j−c(t−2ε))vj

= e2λcε > 1.

Hence there exists a constant x2(ε) > 1 such that

e−λ(j−c(t−2ε))vj < Uj(t) ∀j − ct ≥ x2(ε).

From (2.13) it follows that

uj(t − 2ε) ≤ min{e−λ(j−c(t−2ε))vj, 1} ≤ Uj(t) ∀j − ct ≥ x2(ε), t ≥ 2ε.

Then the lemma follows by taking ξ1(ε) = max{x1(ε), x2(ε)}. ¤

Next, we have the following positivity lemma.

Lemma 2.4. There exist continuous functions {ψj}j∈Z from (0, 1] × (0,∞) to (0, 1) such
that if uk(0) > 0 for some k ∈ Z then uk+n(t) ≥ ψn(uk(0), t) > 0 for all n ∈ Z, t > 0.
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Proof. Note that 0 ≤ uj(t) ≤ 1 for all t ≥ 0 for all j ∈ Z. Choose σ > 0 so that
σ > 2 max{dj}. From (1.1) it follows that

uj(t) = e−σtuj(0) +

∫ t

0

eσ(s−t){dj+1uj+1(s) + djuj−1(s)(2.14)

+[σ − (dj+1 + dj)]uj(s) + f(uj(s))}ds.

This gives uk(t) ≥ e−σtuk(0) > 0 for all t > 0.
Set q := min{dj}. Then q > 0. Moreover, from (2.14) it follows that

uj(t) ≥ q

∫ t

0

eσ(s−t)uj±1(s)ds.

Set ψ0(y, t) := ye−σt and define recursively

ψ−n(y, t) = ψn(y, t) := q

∫ t

0

eσ(s−t)ψn−1(y, s)ds, y ∈ (0, 1], t > 0, n ∈ N.

The lemma follows. ¤
Note that

ψ±n(y, t) =
yqntne−σt

n(n − 1) · · · 1
for all n ∈ N.

Lemma 2.5. There exist constants δ ∈ (0, 1), η > 0, l > 0, z0 > 0 and t0 ≥ 4 such that

(1 − δe−ηt)Uj(t − z0 + lδe−ηt) ≤ uj(t) ≤ (1 + δe−ηt)Uj(t + z0 − lδe−ηt)

for all j ∈ Z, t ≥ t0.

Proof. We first consider the lower bound of uj. Fix a t0 ≥ 4. From Lemma 2.3 with ε = 1,
there exists a constant ξ1(1) such that

uj(t0) ≥ Uj(t0 − 2) ∀j − ct0 ≥ ξ1(1).

Since lim infj→−∞ uj(0) > 0, there exist j0 ∈ Z and δ0 > 0 such that uj(0) > δ0 for all j ≤ j0.
By Lemma 2.4, there exist δ ∈ (0, 1) and η ∈ (0, ηδ) such that

uj(t0) ≥ 1 − δe−ηt0 ∀j − ct0 ≤ ξ1(1).

Thus

uj(t0) ≥ (1 − δe−ηt0)Uj(t0 − 2)

= (1 − δe−ηt0)Uj(t0 − (2 + lδe−ηt0) + lδe−ηt0) ∀ j ∈ Z,

where l = l(δ, η) > 0 is the constant defined in Lemma 2.1. It follows from the comparison
principle that

(2.15) uj(t) ≥ (1 − δe−ηt)Uj(t − z∗ + lδe−ηt) ∀ t ≥ t0, j ∈ Z,

where z∗ = 2 + lδe−ηt0 .
For the upper bound, again by Lemma 2.3, we have

uj(t0) ≤ Uj(t0 + 2) ∀j − ct0 ≥ ξ1(1).

For j − ct0 ≤ ξ1(1), we consider the function

(2.16) Wj(x) := Uj((j − x)/c), j ∈ Z, x ∈ R.
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Then, by (1.2), Wj = Wj+N for all j ∈ Z, Wj(∞) = 0 and Wj(−∞) = 1. Therefore, we can
choose x̂ À 1 such that Wj(x) ≥ 1/(1 + δe−ηt0) for all j ∈ Z for all x ≤ −x̂. Choose a large
enough t̂ so that j − c(t0 + 2 + t̂) ≤ −x̂ for all j with j − ct0 ≤ ξ1(1). Then

Uj(t0 + 2 + t̂) = Wj(j − c[t0 + 2 + t̂])

and so

uj(t0) ≤ 1 ≤ (1 + δe−ηt0)Uj(t0 + 2 + t̂) ∀j − ct0 ≤ ξ1(1).

Hence, using U ′
j > 0, we obtain that

uj(t0) ≤ (1 + δe−ηt0)Uj(t0 + 2 + t̂) ∀j ∈ Z.

By the comparison principle, we deduce that

uj(t) ≤ (1 + δe−ηt)Uj(t + z∗ − lδe−ηt) ∀ t ≥ t0, j ∈ Z,(2.17)

where z∗ = 2 + t̂ + lδe−ηt0 . The lemma follows by combining (2.15) and (2.17). ¤

Lemma 2.6. Let δ, l be two positive constants. Then there exists a positive constant M0

depending on δ and l such that for all ε ∈ (0, δ]

(1 − ε)Uj(t + 3lε) ≤ Uj(t) ≤ (1 + ε)Uj(t − 3lε) ∀j − ct ≤ −M0.

Proof. Recall the definition of W in (2.16). Note that W ′
j(±∞) = 0 and Wj(−∞) = 1 for

all j ∈ Z. We compute that

d

ds
{(1 + s)Wj(x + 3cls)} = Wj(x + 3cls) + 3cl(1 + s)W ′

j(x + 3cls).

Hence, noting that Wj = Wj+N for all j, there exists M0 > 0 such that

d

ds
{(1 + s)Wj(x + 3cls)} > 0 ∀ x ≤ −M0, j ∈ Z, s ∈ [−δ, δ].

This implies that

d

ds
{(1 + s)Uj(t − 3ls)} > 0 ∀ s ∈ [−δ, δ], j − ct ≤ −M0.

Hence the lemma is proved. ¤
In the sequel, the constants δ, l, η,M0 are fixed as in Lemmas 2.5 and 2.6.

Lemma 2.7. Let z > 0, t1 ≥ 0 and M ∈ R. Suppose that w±
j (·; t1) is the solution of (1.1)

for t ≥ 0 with initial value:

(2.18) w±
j (0; t1) = Uj(t1 ± z)φ(j − ct1 − M) + Uj(t1 ± 2z)[1 − φ(j − ct1 − M)] ∀j ∈ Z,

where φ(s) = 0 for s ≤ 0 and φ(s) = 1 for s > 0. Then there exists ε ∈ (0, min{δ, z/(3l)}),
depending only on M and z (independent of t1), such that

w+
j (1; t1) ≤ (1 + ε)Uj(t1 + 1 + 2z − 3lε),

w−
j (1; t1) ≥ (1 − ε)Uj(t1 + 1 − 2z + 3lε)

for all j ∈ Z with j − ct1 ≤ M + c(1 + 2z).
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Proof. First, we consider w+
j . Note that w+

j (0; t1) = Uj(t1 + 2z) for all j − ct1 ≤ M and

w+
j (0; t1) = Uj(t1 + z) < Uj(t1 +2z) for all j− ct1 > M . By the strong comparison principle,

(2.19) w+
j (1; t1) < Uj(t1 + 1 + 2z) ∀ j ∈ Z.

Consider first when t1 ∈ [0, T ), where T := N/c. Then by the equi-continuity of {w+
j (· ; t1)}

in [0,∞) and {Uj} in R, there exists ε ∈ (0, min{δ, z/(3l)}) such that for any initial time
t1 ∈ [0, T )

(2.20) w+
j (1; t1) < Uj(t1 + 1 + 2z − 3lε) if j − c(t1 + 1 + 2z) ∈ [−M0,M ].

For t1 ≥ T , we can rewrite t1 = t0 + kT for some k ∈ N and t0 ∈ [0, T ). From (2.18) we
have

w+
j (0; t1) = Uj(t0 + kT + z)φ(j − c(t0 + kT ) − M)

+Uj(t0 + kT + 2z)[1 − φ(j − c(t0 + kT ) − M)]

= Uj−kN(t0 + z)φ(j − kN − ct0 − M)

+Uj−kN(t0 + 2z)[1 − φ(j − kN − ct0 − M)

= w+
j−kN(0; t0).

Hence w+
j+kN(t; t1) = w+

j (t; t0) for all t ≥ 0. In particular,

(2.21) w+
j+kN(1; t1) = w+

j (1; t0).

For any integer j1 with j1 − c(t1 + 1 + 2z) ∈ [−M0,M ], i.e.,

j1 ∈ [−M0 + c(t0 + 1 + 2z) + kN,M + c(t0 + 1 + 2z) + kN ],

we can write j1 = j0 + kN for a unique integer j0 such that

j0 − c(t0 + 1 + 2z) ∈ [−M0,M ].

Hence, by (2.21) and (2.20) with t1 replaced by t0 and j = j0, we have

w+
j1

(1; t1) = w+
j0

(1; t0) < Uj0(t0 + 1 + 2z − 3lε) = Uj1(t1 + 1 + 2z − 3lε)

for any integer j1 with j1 − c(t1 + 1 + 2z) ∈ [−M0,M ]. Here the periodicity of U was used.
Moreover, it follows from Lemma 2.6 that

(2.22) Uj(t1 + 1 + 2z) ≤ (1 + ε)Uj(t1 + 1 + 2z − 3lε) ∀j − c(t1 + 1 + 2z) ≤ −M0.

This proves the inequality for w+
j (· ; t1) for all t1 ≥ 0.

The case for w−
j is similar. Hence the lemma follows. ¤

Proof of Theorem 1.1. Define z± := inf A±, where

A+ := {z ≥ 0 | lim sup
t→∞

sup
j

[uj(t)/Uj(t + 2z)] ≤ 1},

A− := {z ≥ 0 | lim inf
t→∞

inf
j

[uj(t)/Uj(t − 2z)] ≥ 1}.

From Lemma 2.5, z0/2 ∈ A±. Hence z± are well defined and z± ∈ [0, z0/2]. It suffices to
prove that z+ = z− = 0.
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For contradiction, we suppose that z+ > 0. Recall the constant ξ1(z
+/2) defined in

Lemma 2.3. Let ε ∈ (0, min{δ, z+/(3l)}) be the constant obtained in Lemma 2.7 with
z = z+ and M := ξ1(z

+/2) + cz+. Since z+ ∈ A+, we have

lim sup
t→∞

sup
j

uj(t)

Uj(t + 2z+)
≤ 1.

Hence there exists t0 ≥ 4 such that

sup
j

uj(t0)

Uj(t0 + 2z+)
≤ 1 + ε̂,

where

ε̂ := εe−K min
j∈{1,2,...,N}

Wj(M + 3clε), Uj(t) = Wj(j − ct),

and K := max{‖f ′
j‖L∞}. Then

uj(t0) ≤ Uj(t0 + 2z+) + ε̂ ∀ j ∈ Z.

Now, let w±
j (· ; t0) be the solution of (1.1) for t ≥ 0 with initial value given by

w±
j (0; t0) = Uj(t0 ± z)φ(j − ct0 − M) + Uj(t0 ± 2z)[1 − φ(j − ct0 − M)] ∀j ∈ Z.

Then w+
j (0; t0) = Uj(t0 + 2z+) for all j − ct0 ≤ M and so

uj(t0) ≤ w+
j (0; t0) + ε̂ ∀ j − ct0 ≤ M.

Moreover, from Lemma 2.3, uj(t0) ≤ Uj(t0 + z+) if j − c(t0 + z+) ≥ ξ1(z
+/2). Since

j − c(t0 + z+) ≥ ξ1(z
+/2) if j − ct0 ≥ M , we obtain from (2.18) that

uj(t0) ≤ w+
j (0; t0) + ε̂ ∀ j − ct0 ≥ M.

We conclude that

uj(t0) ≤ w+
j (0; t0) + ε̂ ∀ j ∈ Z.

It is easy to check that {w+
j (t; t0) + ε̂eKt} is a super-solution of (1.1). By comparison,

uj(t0 + 1) ≤ w+
j (1; t0) + ε̂eK for all j ∈ Z. Then, by Lemma 2.7,

uj(t0 + 1) ≤ (1 + ε)Uj(t0 + 1 + 2z+ − 3lε) + ε̂eK if j − ct0 ≤ M + c(1 + 2z+).

It follows from the choice of ε̂ and W ′
j < 0 that

uj(t0 + 1) ≤ (1 + 2ε)Uj(t0 + 1 + 2z+ − 3lε) if j − ct0 ≤ M + c(1 + 2z+).

On the other hand, from Lemma 2.3,

uj(t0 + 1) ≤ Uj(t0 + 1 + z+) if j − c(t0 + 1 + z+) ≥ ξ1(z
+/2).

Since 0 < ε < z+/(3l) and U ′
j > 0, we obtain that

uj(t0 + 1) < (1 + 2ε)Uj(t0 + 1 + 2z+ − 3lε) if j − ct0 ≥ M + c.

Hence

uj(t0 + 1) ≤ (1 + 2ε)Uj(t0 + 1 + 2z+ − 3lε) ∀ j ∈ Z.

By comparison,

(2.23) uj(t + t0 + 1) ≤ (1 + 2εe−ηt)Uj(t + t0 + 1 + 2z+ − 2lε − lεe−ηt) ∀ t ≥ 0, j ∈ Z.
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By taking t → ∞ in (2.23), we obtain that z+ − lε ∈ A+ which contradicts the definition of
z+. Hence we must have z+ = 0.

Similarly, we can also prove that z− = 0. This completes the proof of Theorem 1.1. ¤

3. Uniqueness of wave profile

In this section, we shall study the uniqueness of wave profiles for a given wave speed and
give a proof of Theorem 1.2.

Suppose that (c, U) and (c, U) are two traveling wave solutions of (1.1)-(1.3) such that
(1.12) holds for some positive constants λ, h and h̄ such that M(λ) = cλ, where {vj} is the
eigenvector of (1.7) corresponding to λ such that vj = vj+N > 0 for all j and max{vj} = 1.
By a suitable translation, we may assume that h = h̄ = 1. Therefore, (1.8) holds for both
(c, U) and (c, U). Then, using (1.1) and (1.7), it is easy to show that

(3.1) lim
j−ct→∞

U ′
j(t)

Uj(t)
= Λ = lim

j−ct→∞

U
′
j(t)

U j(t)
, Λ := M(λ) = cλ.

First, we consider the function

gj(s, u) := fj([1 + s]u) − (1 + s)fj(u), s ≥ 0, u ∈ [0, 1].

Then dgj(s, u)/ds = uf ′
j([1 + s]u) − fj(u). Since f ′

j(1) < 0 and fj(1) = 0 for all j, by the
periodicity of fj, there exists ε0 ∈ (0, 1) such that

(3.2) fj([1 + ε]u) < (1 + ε)fj(u) ∀ u ∈ (1 − ε0, 1]

for any ε ∈ (0, ε0], where we have extended fj(u) to be negative for all u ∈ (1, 2].
We next define the number

(3.3) l0 = l0(U) := sup{Wj(x)/|cW ′
j(x)| : Wj(x) ≤ 1 − ε0, j ∈ Z}

for a wave profile {Wj}. Note that l0 ∈ (0,∞), since Wj(x),W ′
j(x) → 0 as x → ∞,

−c lim
x→∞

W ′
j(x)

Wj(x)
= lim

j−ct→∞

U ′
j(t)

Uj(t)
= Λ > 0,

and W ′
j < 0 for all j ∈ Z.

Lemma 3.1. Let (c, U) and (c, U) be two traveling wave solutions of (1.1)-(1.3). Let ε0 and
l0 = l0(U) be the constants defined in (3.2) and (3.3). If there exists a constant ε ∈ (0, ε0]
such that (1 + ε)Uj(t − l0ε) ≥ U j(t) for all t ∈ R, j ∈ Z, then Uj(t) ≥ U j(t) for all t ∈ R,
j ∈ Z.

Proof. To prove the lemma, it is equivalent to prove that if

(3.4) (1 + ε)Wj(x + cl0ε) ≥ W j(x) ∀ x ∈ R, j ∈ Z,

for some ε ∈ (0, ε0], then Wj(x) ≥ W j(x) for all x ∈ R, j ∈ Z. For this, we define

wj(q, x) := (1 + q)Wj(x + cl0q) − W j(x), q > 0, x ∈ R,

q∗ := inf{q > 0 | wj(q, x) ≥ 0 ∀ x ∈ R, j ∈ Z}.

By continuity, wj(q
∗, x) ≥ 0 for all x ∈ R, j ∈ Z.



12 JONG-SHENQ GUO AND CHIN-CHIN WU

We claim that q∗ = 0. For contradiction, we suppose that q∗ ∈ (0, ε0]. Since, by the
definition of l0,

d

dq
wj(q

∗, x) = Wj(x + cl0q
∗) + cl0(1 + q∗)W ′

j(x + cl0q
∗) < 0

for all x with Wj(x+ cl0q
∗) ≤ 1− ε0 and j ∈ Z, we can find x0 ∈ R and k ∈ {1, · · · , N} with

Wk(y0) > 1 − ε0, y0 := x0 + cl0q
∗, such that

wk(q
∗, x0) =

dwk

dx
(q∗, x0) = 0,

i.e.,

(1 + q∗)Wk(y0) = W k(x0), (1 + q∗)W ′
k(y0) = W

′
k(x0).

Then, using (3.2), we have

0 = cW
′
k(x0) + dk+1W k+1(x0 + 1) + dkW k−1(x0 − 1)

−(dk + dk+1)W k(x0) + fk(W k(x0))

≤ (1 + q∗){cW ′
k(y0) + dk+1Wk+1(y0 + 1) + dkWk−1(y0 − 1)

−(dk + dk+1)Wk(y0)} + fk([1 + q∗]Wk(y0))

= −(1 + q∗)fk(Wk(y0)) + fk([1 + q∗]Wk(y0)) < 0,

a contradiction. Hence q∗ = 0 and so Wj(x) ≥ W j(x) for all x ∈ R and j ∈ Z. ¤
In the sequel, we fix the constants ε0, l0 as above. Recall from the proof of Lemma 2.6

that there exists M0(ε0, l0) > 0 such that

(3.5) (1 − q)Uj(t + 2l0q) ≤ Uj(t) ≤ (1 + q)Uj(t − 2l0q) ∀ j − ct ≤ −M0,

for all q ∈ (0, ε0].

Proof of Theorem 1.2. By (1.8), we have

lim
j−ct→∞

Uj(t + 1)

U j(t)
= lim

j−ct→∞

{
Uj(t + 1)

e−λ(j−c(t+1))vj

· e−λ(j−ct)vj

U j(t)
· eλc

}
= eλc > 1.

Hence there exists x1 such that Uj(t + 1) > U j(t) if j − ct ≥ x1. Since limj−ct→−∞ Uj(t) = 1,
we can find x2 À 1 such that

Uj(t) ≥ 1/(1 + ε0) ∀ j − ct ≤ −x2.

It follows that

U j(t) ≤ 1 ≤ (1 + ε0)Uj(t) ∀ j − ct ≤ −x2.

Since

η := max{W j(x) | x ∈ [−x2, x1], j ∈ Z} ∈ (0, 1)

and Wj(−∞) = 1, there exists x3 À 1 such that

Wj(x) ≥ η ∀ x ≤ −x3, j ∈ Z.

Set t̂ := (x1 + x3)/c. Then, for x = j − ct ∈ [−x2, x1], we have

Uj(t + t̂) = Wj(j − c(t + t̂)) = Wj(x − x1 − x3) ≥ η ≥ W j(x) = U j(t).
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Choosing T := 1 + t̂ + l0ε0 and using the monotonicity of wave profile, we conclude that

(1 + ε0)Uj(t + T − l0ε0) ≥ U j(t) ∀ t ∈ R, j ∈ Z.

It then follows from Lemma 3.1 that Uj(t + T ) ≥ U j(t) for all j ∈ Z and t ∈ R.
Now we set

ξ∗ := inf{h > 0|Uj(t + h) ≥ U j(t) ∀ j ∈ Z, t ∈ R}.
Claim that ξ∗ = 0. If not, then ξ∗ > 0 and we have Uj(t + ξ∗) ≥ U j(t). By (1.8) again, we
have

lim
j−ct→∞

Uj(t + ξ∗/2)

U j(t)
= lim

j−ct→∞

{
Uj(t + ξ∗/2)

e−λ(j−c(t+ξ∗/2))vj

· e−λ(j−ct)vj

U j(t)
· eλcξ∗/2

}
= eλcξ∗/2 > 1.

Hence there exists x4 such that

Uj(t + ξ∗/2) ≥ U j(t) ∀ j − ct ≥ x4.(3.6)

Moreover from (3.5) for any q ∈ (0, ε0],

(1 + q)Uj(t + ξ∗ − 2l0q) ≥ Uj(t + ξ∗) ≥ U j(t) ∀ j − ct ≤ −M := −M0 + cξ∗(3.7)

Note that Uj(t + ξ∗) > U j(t) for j − ct ≥ x4, by (3.6) and the monotonicity of U . It follows
from the strong comparison principle that Uj(t + ξ∗) > U j(t) for all (j, t) ∈ Z × R. Hence,
by continuity, we can find ε ∈ (0, min{ε0, ξ

∗/(4l0)}) such that

Uj(t + ξ∗ − 2l0ε) ≥ U j(t) ∀ j − ct ∈ [−M,x4].(3.8)

Combining (3.6), (3.7) and (3.8), we have

(1 + ε)Uj(t + ξ∗ − 2l0ε) ≥ U j(t)

for all (j, t) ∈ Z × R. Using Lemma 3.1, we obtain that

Uj(t + ξ∗ − l0ε) ≥ U j(t)

for all (j, t) ∈ Z × R. This contradicts the definition of ξ∗. Hence ξ∗ = 0 and Uj(t) ≥ U j(t)
for all (j, t) ∈ Z × R.

Interchanging the role of U and U , we obtain that Uj(t) ≤ U j(t) for all (j, t) ∈ Z × R.
Hence U = U . The proof is completed. ¤
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