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Abstract. We study entire solutions of a two-component competition system with Lotka-
Volterra type nonlinearity in a lattice. It is known that this system has traveling wave front
solutions and enjoys comparison principle. Based on these solutions, we construct some new
entire solutions which behave as two traveling wave fronts moving towards each other from
both sides of x-axis.

1. Introduction

We are concerned with the following Lotka-Volterra competition system in a one-dimensional

lattice: 
duj

dt
= d1(uj+1 + uj−1 − 2uj) + r1uj(1 − b1uj − a2vj),

dvj

dt
= d2(vj+1 + vj−1 − 2vj) + r2vj(1 − b2vj − a1uj),

(1.1)

where uj = uj(t), vj = vj(t), t ∈ R, j ∈ Z, the parameters ai, bi, di and ri are all positive

numbers for i = 1, 2. This model is often used to describe the competing interaction of

two species living in a discrete habitat. Here uj(t) and vj(t) stand for the populations of

two species at time t and niches j, respectively. Thus we only consider that both uj(t) and

vj(t) are nonnegative. The parameter ai is the competition coefficient, 1/bi is the carrying

capacity, di is the diffusion coefficient and ri is the birth rate of species i, i = 1, 2.

By a suitable rescaling,

d1t → t, b1uj → uj, b2vj → vj,

and by letting

a = r1/d1, b = r2/d1, d = d2/d1, k = a2/b2, h = a1/b1,
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the system (1.1) becomes the following system:
duj

dt
= (uj+1 + uj−1 − 2uj) + auj(1 − uj − kvj),

dvj

dt
= d(vj+1 + vj−1 − 2vj) + bvj(1 − vj − huj),

(1.2)

where t ∈ R, j ∈ Z and a, b, d, h, k > 0. Henceforth we shall consider the system (1.2)

throughout this paper.

For solutions (uj, vj) ≡ (u, v) for all j ∈ Z of (1.2), the system (1.2) is reduced to

du

dt
= au(1 − u − kv),

dv

dt
= bv(1 − v − hu).

Then by a phase plane analysis we have the following asymptotic behaviors as t → +∞:

(i) If 0 < k < 1 < h, then limt→+∞(u, v)(t) = (1, 0) (the species u wins).

(ii) If 0 < h < 1 < k, then limt→+∞(u, v)(t) = (0, 1) (the species v wins).

(iii) If h, k > 1, then limt→+∞(u, v)(t) = (0, 1) or (1, 0) (depending on the initial data).

(iv) If 0 < h, k < 1, then limt→+∞(u, v)(t) = ((1 − k)/(1 − hk), (1 − h)/(1 − hk)) (two

species coexist).

Note that the case (ii) can be reduced to the case (i) by exchanging the roles of u and v.

When 0 < k < 1 < h, the species u is stronger than v, hence the species u invades v

and eventually v will be extinct. It is interesting to know how the stronger species invades

the weaker one. To understand the invading phenomenon between two species, the study

of entire solutions is an important issue. Here an entire solution of (1.2) means a classical

solution defined for all (j, t) ∈ Z × R.

A solution {(uj, vj)} of (1.2) is called a traveling wave (front) solution of (1.2) connecting

(0, 1) and (1, 0) with speed c, if

(uj(t), vj(t)) = (U(ξ), V (ξ)), ξ := j + ct

for some function (U, V ) satisfying

cU ′(ξ) = D2[U(ξ)] + aU(ξ)[1 − U(ξ) − kV (ξ)], ξ ∈ R,

cV ′(ξ) = dD2[V (ξ)] + bV (ξ)[1 − V (ξ) − hU(ξ)], ξ ∈ R,

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0),

0 ≤ U, V ≤ 1 on R,

(1.3)

where D2[w(ξ)] := w(ξ + 1) + w(ξ − 1)− 2w(ξ) for w = U, V . The existence and uniqueness

of traveling wave solution of (1.2) has been established in [6] for the case (i). Note that

traveling wave solutions connecting (0, 1) and (1, 0) are entire solutions which provide the

invading phenomenon. The purpose of this article is to establish the existence of two-front
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entire solutions of (1.2) which behave as two traveling fronts moving towards each other from

both sides of space axis. This provides another invasion way of the stronger species to the

weaker one.

In fact, the study of two-front entire solutions of reaction-diffusion equations can be traced

back to the works of Hamel-Nadirashvili [7] and Yagisita [18] (also see [3], [5], [1], [14]).

Among other things, these works established the existence of entire solutions with some

combinations of two traveling wave solutions. Here, again, an entire solution means a classical

solution defined for all (x, t) ∈ R2. Recently, Morita-Tachibana [15] extend the results of

scalar equations to a competition system. More precisely, under some conditions, they

prove that there are two-front entire solutions which behave as a traveling waves solution

(φ(x + c1t), ψ(x + c1t)) in the right x-axis and (φ(−x + c2t), ψ(−x + c2t)) in the left x-axis

when t → −∞ for the following competition system:

(1.4)

 ut = uxx + u(1 − u − kv), (x, t) ∈ R2,

vt = dvxx + bv(1 − v − hu), (x, t) ∈ R2

for the cases (i) through (iii). For the study of traveling wave solutions to (1.4), we refer the

reader to, e.g., [17, 4, 2, 16, 8, 9, 10, 11, 12, 13].

Motivated by the work of [15], it is very natural to expect that (1.2) also has two-front

entire solutions based on the existence of traveling wave solutions. Therefore, we are looking

for a solution {(uj(t), vj(t))} which is defined for all j ∈ Z and t ∈ R and is a combination

of two traveling wave front solutions of (1.2). For this, we embed the system (1.2) into a

larger one:  ut(x, t) = D2[u(x, t)] + au(x, t)[1 − u(x, t) − kv(x, t)],

vt(x, t) = dD2[v(x, t)] + bv(x, t)[1 − v(x, t) − hu(x, t)],
(1.5)

where (x, t) ∈ R2 and D2[w(x, t)] := w(x + 1, t) + w(x − 1, t) − 2w(x, t) for w = u, v. Note

that the traveling wave front solution of (1.2) and (1.5) are identical. In this paper, we shall

only focus on the case (i) and make the following assumption

(A1) 0 < k < 1 < h, a > 0, b > 0 and d > 0.

In [15], the following assumption is crucial in constructing two-front entire solutions,

namely, there is a positive number η0 such that

(1.6)
U(ξ)

1 − V (ξ)
≥ η0 for all ξ ≤ 0.

Also, they provide some conditions via the eigenvalues of the linearized system around equi-

libria (0, 1) and (1, 0) to assure (1.6) holds. Fortunately, the condition (1.6) also holds for
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our lattice dynamical system (1.2). Indeed, it is proved in [6] that the limit

l := lim
ξ→−∞

U(ξ)/[1 − V (ξ)]

exists and is equal to either 0 or a positive number. Moreover, under the extra condition

0 < d ≤ 1, we can be sure that l > 0 (see [6, Remark 3.1]). From now on, we shall only

consider the traveling wave solutions satisfying (1.6).

Since the comparison principle also holds for our competition system, we can apply the

same argument as in [15] to construct two-front entire solutions by the help of a pair of

super- and subsolution. We establish the following result.

Theorem 1. Assume (A1). Let (ci, Ui, Vi) be a solution of (1.3) satisfying (1.6) and let θi be

a given constant, i = 1, 2. Then there exists an entire solution (u(x, t), v(x, t)) ∈ (0, 1)×(0, 1)

of (1.5) such that

lim
t→−∞

sup
x≥(c2−c1)t/2

{|u(x, t) − U1(x + c1t + θ1)| + |v(x, t) − V1(x + c1t + θ1)|} = 0,(1.7)

lim
t→−∞

sup
x≤(c2−c1)t/2

{|u(x, t) − U2(−x + c2t + θ2)| + |v(x, t) − V2(−x + c2t + θ2)|} = 0,(1.8)

lim
t→+∞

sup
x∈R

{|1 − u(x, t)| + |v(x, t)|} = 0.(1.9)

We organize this article as follows. In the next section, we recall some results from [6]

on the asymptotic behaviors of traveling waves. With these asymptotic behaviors, the main

theorem will be proven in Section 3.

2. Preliminaries

For convenience, we set w(x, t) := 1 − v(x, t). Thus (1.5) becomes the following (P):

ut = D2[u] + au[1 − u − k(1 − w)],

wt = dD2[w] + b(1 − w)(hu − w).

Then, by setting W := 1 − V , (1.3) is equivalent to

cU ′ = D2[U ] + aU [1 − U − k(1 − W )],

cW ′ = dD2[W ] + b(1 − W )(hU − W ),

(U,W )(−∞) = (0, 0), (U,W )(+∞) = (1, 1),

0 ≤ U,W ≤ 1.

(2.1)

In [6], we proved that there is a minimal speed cmin > 0 such that (2.1) admits a solution

(U,W ) if and only if c ≥ cmin. Thus, both c1 and c2 in Theorem 1 are positive. Moreover,
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any wave profile is strictly monotone. That is, U ′
i > 0 and W ′

i > 0 on R for i = 1, 2. On the

other hand, we also derive the asymptotic behavior of the traveling wave front of (2.1).

Define

Φ1(c, λ) := cλ − [(eλ + e−λ − 2) + a(1 − k)].(2.2)

It is easy to see that for each

c > c∗ := min
λ>0

{
eλ + e−λ − 2 + a(1 − k)

λ

}
> 0,

the equation Φ1(c, λ) = 0 has exactly two real roots λi(c), i = 1, 2, with 0 < λ1(c) < λ2(c);

for c = c∗, Φ1(c, λ) = 0 has a unique real root λ∗ > 0. Next, we also define

Ψ1(c, λ) := cλ − d(eλ + e−λ − 2) − b(1 − h),

Ψ2(c, λ) := cλ − (eλ + e−λ − 2) + a.

For any c > 0, Ψ1(c, λ) = 0 has only one negative root, denoted by ν1(c); Ψ2(c, λ) = 0 also

has only one negative root for any c > 0, denoted by ν2(c).

Lemma 2.1. Assume (A1) and let (c, U,W ) be a solution of (2.1) satisfying (1.6). Then

lim
ξ→−∞

W ′(ξ)

W (ξ)
= Λ(c) = lim

ξ→−∞

U ′(ξ)

U(ξ)
,(2.3)

lim
ξ→+∞

W ′(ξ)

1 − W (ξ)
= −ν1(c),(2.4)

lim
ξ→+∞

U ′(ξ)

1 − U(ξ)
= −ν0(c),(2.5)

1 − W (ξ)

1 − U(ξ)
≤ K for all ξ ∈ R for some K > 0,(2.6)

where Λ(c) ∈ {λ1(c), λ2(c)} and ν0(c) ∈ {ν1(c), ν2(c)}.

The proof of Lemma 2.1 can be found in [6, Lemmas 3.2 and 3.4 through 3.7]. As a

consequence, we get the following estimates which we need in the proof of Theorem 1.
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Lemma 2.2. Assume (A1) and let (ci, Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2.

Then there exist positive numbers µ1, m and M such that

0 < Ui(ξ) ≤ Meµ1ξ, for all ξ ≤ 1,(2.7)

0 < Wi(ξ) ≤ Meµ1ξ, for all ξ ≤ 1,(2.8)

m ≤ U ′
i(ξ)

Ui(ξ)
≤ M, for all ξ ≤ 1,(2.9)

m ≤ W ′
i (ξ)

Wi(ξ)
≤ M, for all ξ ≤ 1,(2.10)

m ≤ U ′
i(ξ)

1 − Ui(ξ)
≤ M, for all ξ ≥ −1,(2.11)

m ≤ W ′
i (ξ)

1 − Wi(ξ)
≤ M, for all ξ ≥ −1.(2.12)

Proof. (2.7) through (2.10) follow from (2.3). By (2.4) and (2.5), we obtain (2.11) and

(2.12). ¤

Note that (2.11) and (Ui, U
′
i)(−∞) = (0, 0) imply that there exists η > 0 such that

1 − Ui(ξ + s)

1 − Ui(ξ)
≤ η, i = 1, 2(2.13)

for all ξ ∈ R and s ∈ [−1, 1], since we have

1 − U(ξ + s)

1 − U(ξ)
= exp

{
−

∫ ξ+s

ξ

U ′(x)

1 − U(x)
dx

}
, i = 1, 2.

Similarly, there exists γ > 0 such that

Ui(ξ + s)

Ui(ξ)
≤ γ, i = 1, 2(2.14)

for all ξ ∈ R and s ∈ [−1, 1]. Note that, in (2.13) and (2.14), Ui can be replaced by Wi,

i = 1, 2.

3. Proof of Theorem 1

The following three lemmas are key steps in the proof of Theorem 1.

Lemma 3.1. Let (ci, Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2, and define

A(y, p) := U1(y + p)W2(−y + p)[1 − U2(−y + p)][1 − W1(y + p)],

B(y, p) := U2(−y + p)W1(−y + p)[1 − U1(y + p)][1 − W2(−y + p)],

C(y, p) := U ′
1(y + p)[1 − U2(−y + p)] + U ′

2(−y + p)[1 − U1(y + p)].
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Then there exists N > 0 such that, for any given p < 0,

A(y, p) ≤ Neµ1pC(y, p) for every y ∈ R,(3.1)

B(y, p) ≤ Neµ1pC(y, p) for every y ∈ R.(3.2)

Proof. Since the proofs of (3.1) and (3.2) are similar, we only show (3.1). We divide R into

four intervals, (−∞, p], [p, 0], [0,−p] and [−p, +∞). For y ∈ (−∞, p], by using (2.6), (2.11)

and (2.7), we obtain

A(y, p)

C(y, p)
≤ A(y, p)

U ′
2(−y + p)[1 − U1(y + p)]

≤ 1 − W1(y + p)

1 − U1(y + p)

1 − U2(−y + p)

U ′
2(−y + p)

W2(−y + p)U1(y + p)

≤ N1U1(y + p) ≤ N2e
µ1p

for some N1, N2 > 0.

For y ∈ [p, 0], by (2.6), (1.6), (2.9) and (2.7), we have

A(y, p)

C(y, p)
≤ A(y, p)

U ′
2(−y + p)[1 − U1(y + p)]

=
1 − W1(y + p)

1 − U1(y + p)

W2(−y + p)

U2(−y + p)

U2(−y + p)

U ′
2(−y + p)

[1 − U2(−y + p)]U1(y + p)

≤ N3U1(y + p) ≤ N4e
µ1p

for some N3, N4 > 0.

For y ∈ [0,−p], using (2.9) and (2.8), we obtain

A(y, p)

C(y, p)
≤ A(y, p)

U ′
1(y + p)[1 − U2(−y + p)]

≤ N5W2(−y + p) ≤ N6e
µ1p

for some N5, N6 > 0.

For y ∈ [−p, +∞), by (2.6), (2.11) and (2.8), we have

A(y, p)

C(y, p)
≤ A(y, p)

U ′
1(y + p)[1 − U2(−y + p)]

=
1 − W1(y + p)

1 − U1(y + p)

1 − U1(y + p)

U ′
1(y + p)

U1(y + p)W2(−y + p)

≤ N7W2(−y + p) ≤ N8e
µ1p

for some N7, N8 > 0. Then (3.1) follows by taking N = max{N2, N4, N6, N8} and the lemma

follows. ¤

Lemma 3.2. Let (ci, Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2. We define

D(y, p) := [U1(y + 1 + p) − U1(y + p)][U2(−y + p) − U2(−y − 1 + p)],

E(y, p) := [U1(y + p) − U1(y − 1 + p)][U2(−y + 1 + p) − U2(−y + p)]
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while we define C(y, p) as in Lemma 3.1. Then there exists N0 > 0 such that, for any given

p < 0, we have

D(y, p) ≤ N0e
µ1pC(y, p) for every y ∈ R,(3.3)

E(y, p) ≤ N0e
µ1pC(y, p) for every y ∈ R.(3.4)

Proof. Since the proofs (3.3) and (3.4) are similar, we only prove (3.3). For y ≥ −p, there

are η1(y), η2(y) ∈ (0, 1) and L1 > 0 such that

D(y, p)

C(y, p)
=

U ′
1(y + η1 + p)U ′

2(−y − η2 + p)

C(y, p)
≤ U ′

1(y + η1 + p)

U ′
1(y + p)

U ′
2(−y − η2 + p)

1 − U2(−y + p)

≤
{

U ′
1(y + η1 + p)

1 − U1(y + η1 + p)

1 − U1(y + η1 + p)

1 − U1(y + p)

1 − U1(y + p)

U ′
1(y + p)

}
U ′

2(−y − η2 + p)

1 − U2(0)

≤ L1U
′
2(−y − η2 + p),

where the last inequality follows from (2.11) and (2.13). It then follows from (2.7) and (2.9)

that

D(y, p)

C(y, p)
≤ L1U

′
2(−y − η2 + p) ≤ L1L2Meµ1p.

For y ∈ [0,−p], there exists L3 > 0 such that

D(y, p)

C(y, p)
=

U ′
1(y + η1 + p)U ′

2(−y − η2 + p)

C(y, p)

≤
{

U ′
1(y + η1 + p)

U1(y + η1 + p)

U1(y + η1 + p)

U1(y + p)

U1(y + p)

U ′
1(y + p)

}
U ′

2(−y − η2 + p)

1 − U2(0)

≤ L3U
′
2(−y − η2 + p),

where the last inequality follows from (2.9) and (2.14). Again, by (2.7) and (2.9), we obtain

D(y, p)/C(y, p) ≤ L4Meµp for some L4 > 0. Thus, (3.3) holds for all y ≥ 0.

For y ≤ 0, we divide it to the cases y ∈ [p, 0] and y ∈ (−∞, p]. By using the same

argument, (3.3) also holds for all y ≤ 0. Thus, we complete the proof of this lemma. ¤

Lemma 3.3. Let (ci, Ui, Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2. Then there

exists N1 > 0 such that, for any given p < 0, we have

F (y, p), G(y, p), H(y, p) ≤ N1e
µ1pI(y, p) for every y ∈ R,

where

F (y, p) := [W1(y + 1 + p) − W1(y + p)][W2(−y + p) − W2(−y − 1 + p)],

G(y, p) := [W1(y + p) − W1(y − 1 + p)][W2(−y + 1 + p) − W2(−y + p)],

H(y, p) := W1(y + p)W2(−y + p)[1 − W1(y + p)][1 − W2(−y + p)],

I(y, p) := W ′
1(y + p)[1 − W2(−y + p)] + W ′

2(−y + p)[1 − W1(y + p)].
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Proof. This lemma is proved by using Lemma 2.2. Since the proof is similar to those of

Lemmas 3.1 and 3.2, we omit the details. ¤
By the transformation y = x + (c1 − c2)t/2, we define (u(y, t), w(y, t)) := (u(x, t), w(x, t)).

Then (P) becomes (Q):

ut +

(
c1 − c2

2

)
uy = D2[u] + f(u,w), (y, t) ∈ R2,

wt +

(
c1 − c2

2

)
wy = dD2[w] + g(u,w), (y, t) ∈ R2,

where f(u,w) := au[1 − u − k(1 − w)] and g(u,w) := b(1 − w)(hu − w).

We call (u−, w−) a subsolution of (Q) for (y, t) ∈ R × [T1, T2] if F1(u
−, w−) ≤ 0 and

F2(u
−, w−) ≤ 0 for all (y, t) ∈ R × [T1, T2], where

F1(u,w) := ut +

(
c1 − c2

2

)
uy − D2[u] − f(u,w),

F2(u,w) := wt +

(
c1 − c2

2

)
wy − dD2[w] − g(u,w).

Similarly, a supersolution (u+, w+) is defined by reversing the above inequalities.

Next, we introduce the following initial value problem:

p′(t) =

(
c1 + c2

2

)
+ Leµ1p(t), t ≤ 0,

p(0) = p0 < 0,

where µ1 > 0 is defined in Lemma 2.2 and L > 0 is to be determined. Then the solution can

be easily obtained as

p(t) = p0 +

(
c1 + c2

2

)
t − 1

µ1

ln

{
1 +

2L

(c1 + c2)
eµ1p0(1 − e(c1+c2)µ1t/2)

}
< 0, t ≤ 0.

Note that

lim
t→−∞

{
p(t) −

(
c1 + c2

2

)
t

}
= − 1

µ1

ln

{
e−µ1p0 +

2L

c1 + c2

}
< 0.

The following equalities are useful in the subsequent estimates:

f(u1 + u2 − u1u2, w1 + w2 − w1w2) − (1 − u2)f(u1, w1) − (1 − u1)f(u2, w2)

= a(u1 + u2 − u1u2)[(1 − u1)(1 − u2) − k(1 − w1)(1 − w2)]

−au1(1 − u2)[1 − u1 − k(1 − w1)] − au2(1 − u1)[1 − u2 − k(1 − w2)]

= a{−u1u2(1 − u2)(1 − u2) − k(u1 + u2 − u1u2)(1 − w1)(1 − w2)

+ku1(1 − u2)(1 − w1) + ku2(1 − u1)(1 − w2)},

(3.5)
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g(u1 + u2 − u1u2, w1 + w2 − w1w2) − (1 − w2)g(u1, w1) − (1 − w1)g(u2, w2)(3.6)

= bw1w2(1 − w1)(1 − w2) − bhu1u2(1 − w1)(1 − w2).

Proof of Theorem 1. Without loss of generality, it suffices to consider the case when

θ1 = θ2 = δ, where

δ := − 1

µ1

ln

{
e−µ1p0 +

2L

c1 + c2

}
< 0,(3.7)

µ1 > 0 is defined in Lemma 2.2 and L > 0 is to be determined. Indeed, the case for general

θ1 and θ2 can be reduced by a suitable space and time shift to the case θ1 = θ2 = δ. The

detail can be seen in [5].

We now claim that (u+, w+) defined by

u+(y, t) := U1(y + p(t)) + U2(−y + p(t)) − U1(y + p(t))U2(−y + p(t)),

w+(y, t) := W1(y + p(t)) + W2(−y + p(t)) − W1(y + p(t))W2(−y + p(t))

is a supersolution of (Q) for y ∈ R and t ≤ 0, where (Ui,Wi) solves (2.1), i = 1, 2.

Note that

F1(u
+, w+)

= p′(t)[(1 − U2)U
′
1 + (1 − U1)U

′
2] +

(
c1 − c2

2

)
[(1 − U2)U

′
1 − (1 − U1)U

′
2]

−D2[U1] − D2[U2] + D2[U1U2] − f(U1 + U2 − U1U2,W1 + W2 − W1W2)

=

{
p′(t) −

(
c1 + c2

2

)}
[(1 − U2)U

′
1 + (1 − U1)U

′
2]

+[U1(y + 1 + p(t)) − U1(y + p(t))][U2(−y − 1 + p(t)) − U2(−y + p(t))]

+[U1(y + p(t)) − U1(y − 1 + p(t))][U2(−y + p(t)) − U2(−y + 1 + p(t))]

−f(U1 + U2 − U1U2, W1 + W2 − W1W2)

+(1 − U2)f(U1,W1) + (1 − U1)f(U2,W2).

We now estimate the last three terms of the above equality. From (3.5),

f(U1 + U2 − U1U2,W1 + W2 − W1W2) − (1 − U2)f(U1,W1) − (1 − U1)f(U2,W2)

≤ ak[U1(1 − U2)(1 − W1) + U2(1 − U1)(1 − W2) − (U1 + U2 − U1U2)(1 − W1)(1 − W2)]

= ak[U1W2(1 − W1)(1 − U2) + U2W1(1 − U1)(1 − W2) − U1U2(1 − W1)(1 − W2)]

≤ ak[U1W2(1 − W1)(1 − U2) + U2W1(1 − U1)(1 − W2)].
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It follows that

F1(u
+, w+)

≥ Leµ1p(t)[(1 − U2)U
′
1 + (1 − U1)U

′
2] − D(y, p(t)) − E(y, p(t))

−ak[U1W2(1 − W1)(1 − U2) + U2W1(1 − U1)(1 − W2)]

= C(y, p(t))

{
Leµ1p(t) − D(y, p(t)) + E(y, p(t))

C(y, p(t))
− ak

A(y, p(t)) + B(y, p(t))

C(y, p(t))

}
,

where A, B, C, D and E are defined as in Lemmas 3.1 and 3.2. Therefore, by Lemmas 3.1

and 3.2, there exist N > 0 such that

F1(u
+, w+) ≥ C(y, p(t)){Leµ1p(t) − 2Neµ1p(t) − 2akNeµ1p(t)}

for all y ∈ R and t ≤ 0. Therefore, by choosing L ≥ 2N + 2akN , we obtain F1(u
+, w+) ≥ 0

for all y ∈ R and t ≤ 0. Next, by Lemma 3.3, (3.6) and by choosing L À 1, we can derive

that F2(u
+, w+) ≥ 0 for y ∈ R and t ≤ 0 by the same argument as above. Hence (u+, w+)

is a supersolution of (Q) for a fixed large L > 0.

Similarly, the pair (u−, w−) defined by

u−(y, t) := max{U1(y +
c1 + c2

2
t + δ), U2(−y +

c1 + c2

2
t + δ)},

w−(y, t) := max{W1(y +
c1 + c2

2
t + δ),W2(−y +

c1 + c2

2
t + δ)}

is a subsolution of (Q), where δ is defined in (3.7) and L is fixed as in the supersolution.

Note that u−(y, t) ≤ u+(y, t) and w−(y, t) ≤ w+(y, t) for all y ∈ R and t ≤ 0. Moreover, we

have

lim
t→−∞

sup
y∈R

[u+(y, t) − u−(y, t)] = 0 = lim
t→−∞

sup
y∈R

[w+(y, t) − w−(y, t)].

Since our system enjoys the comparison principle, we can apply the method in [15] to find a

solution (u(y, t), w(y, t)) such that u− ≤ u ≤ u+ and w− ≤ w ≤ w+ for all y ∈ R and t ≤ 0.

Then the asymptotic behaviors (1.7) and (1.8) hold, since (u(y, t), w(y, t)) is still a solution

after time shift. Finally, note that the subsolution (u−, w−) is defined for all t ∈ R and

lim
t→+∞

sup
y∈R

[1 − u−(y, t)] = 0 = lim
t→+∞

sup
y∈R

[1 − w−(y, t)].

Therefore, since (u,w) can be extended to all t > 0, we can derive (1.9) and the proof of

Theorem 1 is completed. ¤
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