
FRONT PROPAGATION FOR A TWO-DIMENSIONAL
PERIODIC MONOSTABLE LATTICE DYNAMICAL SYSTEM

JONG-SHENQ GUO AND CHANG-HONG WU

Abstract. We study the traveling wave front solutions for a two-dimensional periodic
lattice dynamical system with monostable nonlinearity. We first show that there is a minimal
speed such that a traveling wave solution exists if and only if its speed is above this minimal
speed. Then we prove that any wave profile is strictly monotone. Finally, we derive the
convergence of discretized minimal speed to the continuous minimal speed.

1. Introduction

Many mathematical models, such as chemical kinetic and biological invasions, are often

described by reaction-diffusion equations (see, e.g., [12]). A typical example is

ut = ∇ · (A(x)∇u) + f(x, u), x ∈ Rn, t > 0.(1.1)

In this paper, we are mainly concerned with the wave propagation in periodic media, i.e.,

the case when the diffusion matrix A and the reaction term f are periodic in x. The study of

wave propagation in reaction-diffusion equations in periodic media can be traced back to the

work of Gärtner and Freidlin [18] in 1979. See also the papers by Freidlin [14], Shigesada,

Kawasaki and Teramoto [24], Hudson and Zinner [21], Berestycki, Hamel and Roques [5, 6]

and the references cited therein. For reaction-diffusion-convection equations in quite general

domains with KPP type nonlinearity ([22]), we refer the reader to, e.g., [3, 4].

Recently, in [19], the authors study the traveling waves for one dimensional spatial discrete

version of (1.1) in periodic media. Among other things, they proved that a traveling front

solution exists if and only if the wave speed is above a positive minimal speed. In this paper,

we shall extend the work [19] in one dimensional case to the two dimensional spatial discrete

version of (1.1) in periodic media in which the diffusion matrix is assumed to be

A(x) =

[
p(x) 0

0 q(x)

]
, x ∈ R2.
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More precisely, we shall study the following problem (P ) for a two-dimensional lattice dy-

namical system:

u′
i,j(t) = pi+1,jui+1,j(t) + pi,jui−1,j(t) + qi,j+1ui,j+1(t) + qi,jui,j−1(t)(1.2)

−Di,jui,j(t) + f(i, j, ui,j(t)), t ∈ R, (i, j) ∈ Z2,

ui+N,j(t +
Nr

c
) = ui,j(t) = ui,j+N(t +

Ns

c
), t ∈ R, (i, j) ∈ Z2, c 6= 0,(1.3)

lim
ri+sj→−∞

ui,j(t) = 1, lim
ri+sj→+∞

ui,j(t) = 0, t ∈ R,(1.4)

0 ≤ ui,j(t) ≤ 1, t ∈ R, (i, j) ∈ Z2,(1.5)

where

Di,j := (pi+1,j + pi,j + qi,j+1 + qi,j), (i, j) ∈ Z2,

pi+N,j = pi,j = pi,j+N , qi+N,j = qi,j = qi,j+N , (i, j) ∈ Z2,

f(i + N, j, s) = f(i, j, s) = f(i, j + N, s), (i, j) ∈ Z2, s ∈ [0, 1]

for some positive integer N . Here c is the unknown wave speed and (r, s) := (cos θ, sin θ)

with θ ∈ [0, 2π) represents the direction of movement of wave. A solution of (P ) is called a

traveling wave in the direction θ and u(·) = {ui,j(·)} is called the wave profile.

We shall make the following further assumptions.

(A1) The coefficients pi,j and qi,j are bounded from above and below by two positive

constants for all (i, j) ∈ Z2.

(A2) f(i, j, 0) = f(i, j, 1) = 0 < f(i, j, s) for all (i, j, s) ∈ Z2 × (0, 1).

(A3) f(i, j, s) ≤ f ′
s(i, j, 0)s for all (i, j, s) ∈ Z2 × [0, 1].

(A4) There exists α > 0 and β ≥ 0 such that f(i, j, s) ≥ f ′
s(i, j, 0)s − βs1+α for all

(i, j, s) ∈ Z2 × [0, 1].

(A5) There exists ρ ∈ (0, 1) such that f(i, j, s2) ≤ f(i, j, s1), if ρ < s1 < s2 < 1, ∀(i, j).

Hereafter f ′
s(i, j, s) := (∂f/∂s)(i, j, s). Note that, by (A3), f ′

s(i, j, 0) > 0 for all (i, j) ∈ Z2.

Also, the assumption (A5) is valid if we have f ′
s(i, j, 1) < 0 for all (i, j) ∈ Z2.

Although the equation (1.2) is a spatial discrete version of (1.1) in two space dimension,

it can also arise directly in many biological models (cf., e.g., [25]). For related works to

(1.2) in homogeneous media with monostable or bistable nonlinearity for one dimensional

lattice dynamical system, we refer the reader to ([8],[9],[10],[11],[15],[16],[20],[28],[29]) and

the references cited therein. The two dimensional lattice dynamical system was treated in

[17] for the homogeneous media. In this paper, we extend the work [17] to the periodic

media.
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To state our main results, we first introduce the linear operator Lλ : RN2 → RN2
by

(Lλv)i,j := pi+1,je
−rλvi+1,j + pi,je

rλvi−1,j + qi,j+1e
−sλvi,j+1 + qi,je

sλvi,j−1(1.6)

−Di,jvi,j + f ′
s(i, j, 0)vi,j, i, j = 1, 2, · · · , N,

where v := (v1,1, v1,2, · · · , vN,N) ∈ RN2
with v0,j := vN,j, vi,0 := vi,N , vN+1,j := v1,j and

vi,N+1 := vi,1 for i, j = 1, · · · , N . We shall show that the largest real eigenvalue of the

operator Lλ exists, which we denote it by M(λ). Moreover, the constant

c∗ := min
λ>0

M(λ)

λ

exists and is positive. Indeed, this constant c∗ is the minimum speed as shown in the following

theorems.

We now state our main results as follows.

Theorem 1. Assume (A1)-(A4). For each c ≥ c∗, the problem (P) admits a solution.

Theorem 2. Assume (A1)-(A4). If (P) has a solution with c 6= 0, then c ≥ c∗.

Theorem 3. Assume (A1)-(A5). Let u := {ui,j} be a solution of (P) with c 6= 0. Then

the wave profile u(·) is strictly increasing in t.

Although some of the proofs of Theorems 1-3 are similar to the work [19] for the one

dimensional lattice dynamical system, there are certain different ideas in this paper from

those in [19]. For example, for the existence of traveling wave solutions, we use a different

approach from the one used in [19]. For a solution (c, u) of (P ) with c > 0, we introduce the

following transformation

(1.7) wi,j(ξ) := ui,j(t), ξ := ct − ri − sj.

Then we apply the monotone iteration method (cf. [1, 27, 9]) to the new system of equa-

tions satisfied by wi,j to derive the existence of traveling waves. The super-sub-solutions

constructed in [19] are useful in applying this method. It turns out that this approach is

much simpler than the method used in [19]. Indeed, the transformation (1.7) is reminiscent

of the so-called moving coordinates (cf. [13]). For the proof of the monotonicity of wave

profile, the transformation (1.7) is also proved to be very useful. By using w variable, the

proof of monotonicity becomes more transparent.

It is also interesting to see the dependence of the direction θ for the minimum speed. For

the continuous version, the authors in [3] announced that the minimum speed depends on

θ for reaction-diffusion-advection equation in the periodic framework. But, for the homoge-

neous case (with KPP assumption) the minimum speed of planar waves for reaction-diffusion

equation is independent of θ. In the discrete version we found that, even in the homogeneous
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case, the minimum speed depends on θ. To see this, we recall the minimum speed for the

homogeneous case with (r, s) = (cos θ, sin θ) (cf. [17]):

c∗(θ) = min
λ>0

{e−λr + eλr + e−λs + e−λs − 4 + f ′(0)

λ
}.

Take, for example, θ = 0, π/4. Then it is easy to check that c∗(0) > c∗(π/4). Therefore,

the minimum speed depends on the direction θ. Indeed, this phenomenon was also observed

before in [7] for the discrete bistable case.

Finally, from the numerical point of view, it is very important to see whether the discretized

minimum speeds converge to the continuous minimum speed as the mesh size tends to zero.

The answer to this question for 1D periodic case is positive (cf. [19]). Here we shall extend

this result to the 2D case.

For this, we assume the following.

(1) p, q and f are periodic with period L > 0, i.e.,

p(x1 + L, x2) = p(x1, x2) = p(x1, x2 + L),

q(x1 + L, x2) = q(x1, x2) = q(x1, x2 + L),

f(x1 + L, x2, s) = f(x1, x2, s) = f(x1, x2 + L, s).

(2) p, q ∈ C1,δ(R2) for some δ > 0 and

0 < inf
R2

p ≤ sup
R2

p < +∞, 0 < inf
R2

q ≤ sup
R2

q < +∞.

(3) the nonlinearity f : R2 × [0, 1] is monostable with KPP assumption (i.e., f satisfies

(A2),(A3),(A5) with (i, j) replacing by x ∈ R2) and there exists α > 0 and β ≥ 0

such that f(x1, x2, s) ≥ f ′
s(x1, x2, 0)s − βs1+α for all (x1, x2, s) ∈ R2 × [0, 1].

Then it is known from [2] that (1.1) has a pulsating traveling wave solution if and only if

γ ≥ γ∗ := min
λ>0

k(λ)

λ
> 0,

where k(λ) is the principal eigenvalue of the operator Pλ, where

Pλφ := ∇ · (A∇φ) − 2λeT A∇φ + [−λ∇ · (Ae) + λ2eT Ae + f ′
s(x1, x2, 0)]φ, e := (r, s)T ,

acting on the set

E := {φ ∈ C2(R2) | φ(x1 + L, x2) = φ(x1, x2) = φ(x1, x2 + L)}.

We use the following discretized problem to approximate (1.1):

u′
i,j(t) =

1

h2
{p((i +

1

2
)h, jh)[ui+1,j(t) − ui,j(t)] − p((i − 1

2
)h, jh)[ui,j(t) − ui−1,j(t)]

+q(ih, (j +
1

2
)h)[ui,j+1(t) − ui,j(t)] − q(ih, (j − 1

2
)h)[ui,j(t) − ui,j−1(t)]}(1.8)

+f(ih, jh, ui,j(t)), t ∈ R, (i, j) ∈ Z2,
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where ui,j(t) := u(ih, jh, t) with h := L/N the mesh size for N ∈ N. If we define

ph
i,j :=

1

h2
p((i − 1

2
)h, jh) =

N2

L2
p((i − 1

2
)h, jh),

qh
i,j :=

1

h2
q(ih, (j − 1

2
)h) =

N2

L2
q(ih, (j − 1

2
)h),

fh(i, j, s) := f(ih, jh, s),

then it is easy to check ph
i+N,j = ph

i,j = ph
i,j+N , qh

i+N,j = qh
i,j = qh

i,j+N and fh(i + N, j, s) =

fh(i, j, s) = fh(i, j + N, s). For each N ∈ N, by Theorems 1 and 2, we know that (1.8) has

a traveling wave solution if and only if c ≥ c∗(h).

Theorem 4. Under the above notation, we have

hc∗(h) → γ∗ as N → +∞, where h =
L

N
.

This paper is organized as follows. In §2, we first give some basic properties of solutions

of (P ) and study the eigenvalue problem for the operator Lλ to characterize the minimum

speed c∗. Then we use the monotone iteration method with the help of a pair of super-sub-

solutions to prove Theorem 1. In §3, we first give a comparison principle and then give a

proof of Theorem 2. Next, we prove Theorem 3 by a sliding method in §4. Finally, we

follow a method of [19] to drive Theorem 4 in §5.

Although, in this paper, we treat only the case with monostable nonlinearity in a two-

dimensional lattice, our methods can be easily generalized to some other cases. For example,

the existence and monotonicity of traveling wave in the case of monostable nonlinearity can

be generalized to general N -dimensional lattice by taking the following transformation with

moving coordinates:

wi1,..,iN (ξ) := ui1,...,iN (t), ξ := ct −
N∑

k=1

ek · ik,

for a given direction of movement of wave e := (e1, ..., eN).

The uniqueness of traveling wave in the periodic monostable case is still an open problem,

due to lack of the information on asymptotic behaviors of wave profiles at tails. For other

nonlinearities, such as the bistable case, we refer the reader to the works [10] and [26]. It

is interesting to see whether the method of [10] can be generalized to the ignition type

nonlinearity. We leave it as an open problem.

2. Existence

In this section, we shall prove Theorem 1. First, we have some basic properties as follows.
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Lemma 2.1. Let u = {ui,j} be a solution of (P ) with c 6= 0. Then

(i) 0 < ui,j(t) < 1 for all (i, j, t) ∈ Z2 × R.

(ii) c > 0.

(iii) lim
t→∞

ui,j(t) = 1, lim
t→−∞

ui,j(t) = 0, and lim
t→±∞

u′
i,j(t) = 0 for all (i, j) ∈ Z2.

Proof. First, we show ui,j(t) > 0 for all (i, j, t) ∈ Z2 × R. For a contradiction, we sup-

pose that there exists (I, J, T ) ∈ Z2 × R such that uI,J(T ) = 0. Then u′
I,J(T ) = 0 =

f(I, J, uI,J(T )). By (1.2), we obtain

0 = pI+1,JuI+1,J(T ) + pI,JuI−1,J(T ) + qI,J+1uI,J+1(T ) + qI,JuI,J−1(T ).

Then uI±1,J(T ) = uI,J±1(T ) = 0 due to pi,j, qi,j and ui,j(T ) are nonnegative for all i, j. Also,

by induction, we have ui,j(T ) = 0 for all (i, j) ∈ Z2. This contradicts lim
ri+sj→−∞

ui,j(t) = 1

and so ui,j(t) > 0. Similarly, using the same argument, we obtain ui,j(t) < 1.

Next, we claim that c > 0. Integrating (1.2) over [a, b] with −∞ < a < b < ∞, we obtain

ui,j(b) − ui,j(a) =

∫ b

a

{pi+1,jui+1,j(t) + pi,jui−1,j(t) + qi,j+1ui,j+1(t) + qi,jui,j−1(t)

−Di,jui,j(t) + f(i, j, ui,j(t))}dt.

Sum over i, j = 1 to N , (1.3) and by the periodicity of pi,j and qi,j, we have

N∑
i,j=1

[ui,j(b) − ui,j(a)] =
N∑

j=1

p1,j

{∫ b+Nr
c

b

uN,j(t)dt −
∫ a+ Nr

c

a

uN,j(t)dt

+

∫ a+Nr
c

a

uN+1,j(t)dt −
∫ b+Nr

c

b

uN+1,j(t)dt
}

+
N∑

i=1

qi,1

{∫ b+Ns
c

b

ui,N(t)dt −
∫ a+Ns

c

a

ui,N(t)dt

+

∫ a+Ns
c

a

ui,N+1(t)dt −
∫ b+Ns

c

b

ui,N+1(t)dt
}

+
N∑

i,j=1

∫ b

a

f(i, j, ui,j(t))dt.

From (1.3) and (1.4), we have the following:

If c > 0, then lim
t→∞

ui,j(t) = 1, and lim
t→−∞

ui,j(t) = 0 for all (i, j, t) ∈ Z2 × R;

if c < 0, then lim
t→∞

ui,j(t) = 0, and lim
t→−∞

ui,j(t) = 1 for all (i, j, t) ∈ Z2 × R.

Letting b → +∞ and a → −∞, we obtain

N2 sgn(c) =
N∑

i,j=1

[ui,j(+∞) − ui,j(−∞)] =
N∑

i,j=1

∫ +∞

−∞
f(i, j, ui,j(t))dt > 0.
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Hence c > 0, ui,j(+∞) = 1 and ui,j(−∞) = 0 for all (i, j) ∈ Z2. Moreover, by (1.2), we have

u′
i,j(±∞) = 0 for all (i, j) ∈ Z2. This completes the proof. ¤
In order to characterize the minimum speed c∗, we recall from (1.6) the linear operator

Lλ : RN2 → RN2
defined by

(Lλv)i,j := pi+1,je
−rλvi+1,j + pi,je

rλvi−1,j + qi,j+1e
−sλvi,j+1 + qi,je

sλvi,j−1

−Di,jvi,j + f ′
s(i, j, 0)vi,j,

where v := (v1,1, v1,2, · · · , vN,N) ∈ RN2
. It is always understood that v0,j := vN,j, vi,0 := vi,N ,

vN+1,j := v1,j and vi,N+1 := vi,1 for i, j = 1, · · · , N . We also recall the following two results

in Krein-Rutman Theorem from [23].

(i) If a linear compact operator A, leaving invariant a cone K, has a nonzero eigenvalue,

then it has a positive eigenvalue ρ, not less in modulus than every other eigenvalue, and to

this number ρ it corresponds at least one eigenvector v ∈ K of the operator A.

(ii) Suppose that K is a cone with interior and that A is a compact linear operator which is

strongly positive with respect to K. Then A has one and only one unit eigenvector v interior

to K such that Av = ρv.

With Krein-Rutman Theorem, we have the following lemma for the spectrum of Lλ.

Lemma 2.2. Let the linear operator Lλ be defined above. Then

(i) The operator Lλ has a largest real eigenvalue M(λ) for all λ ∈ R.

(ii) M(·) is convex in R.

(iii) c∗ := min
λ>0

M(λ)

λ
exists and is positive.

Proof. Let

K := {φ = (φ1,1, φ1,2, · · · , φN,N) ∈ RN2 |φi,j > 0, i, j = 1, .., N}.

Note that K is a cone. By Krein-Rutman Theorem, for each λ ∈ R, when α > 0 large

enough, Lλ + αI has a largest positive and simple eigenvalue. Hence Lλ also has a largest

real simple eigenvalue, say M(λ).

Let ω = ω(λ) := (ω1,1, ω1,2, · · · , ωN,N) ∈ K be an eigenvector of Lλ corresponding to

M(λ), i.e.,

M(λ)ωi,j = pi+1,je
−rλωi+1,j + pi,je

rλωi−1,j + qi,j+1e
−sλωi,j+1 + qi,je

sλωi,j−1(2.1)

−Di,jωi,j + f ′
s(i, j, 0)ωi,j,
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for i, j = 1, · · · , N . Set ωI,J := min{ω1,1, ω1,2, · · · , ωN,N}. Then we have

M(λ) = pI+1,Je−rλ(
ωI+1,J

ωI,J

) + pI,Jerλ(
ωI−1,J

ωI,J

) + qI,J+1e
−sλ(

ωI,J+1

ωI,J

)

+qI,Jesλ(
ωI,J−1

ωI,J

) − DI,J + f ′
s(I, J, 0)(2.2)

≥ pI+1,Je−rλ + pI,Jerλ + qI,J+1e
−sλ + qI,Jesλ − DI,J + f ′

s(I, J, 0).

This implies M(0) ≥ f ′
s(I, J, 0) > 0.

Before we prove that M is convex in R, we first recall

M(λ) = inf
φ∈K

max
i,j∈{1,··· ,N}

(Lλφ)i,j

φi,j

.(2.3)

Set

Kper := {u = {ui,j} |ui,j > 0, ui+N,j = ui,j = ui,j+N for all (i, j) ∈ Z2},

g(λ, u, i, j) :=
(Lλu)i,j

ui,j

.

Then (2.3) can also be written as

M(λ) = inf
u∈Kper

max
(i,j)∈Z2

g(λ, u, i, j).

Now, we claim that M(λ) is convex in λ ∈ R. For any λ1, λ2 ∈ R, (u, v) ∈ Kper × Kper

and t ∈ [0, 1], we set λ := tλ1 + (1 − t)λ2 and U = {Ui,j} := {ut
i,jv

1−t
i,j }. Since U ∈ Kper, we

have

M(λ) ≤ max
(i,j)∈Z2

g(λ, U, i, j).

Since the function ex is convex in R and pi,j, qi,j > 0, we can easily show that

g(λ, U, i, j) ≤ tg(λ1, u, i, j) + (1 − t)g(λ2, v, i, j).

Hence we obtain that

M(λ) ≤ max
(i,j)∈Z2

{tg(λ1, u, i, j) + (1 − t)g(λ2, v, i, j)}

≤ t max
(i,j)∈Z2

g(λ1, u, i, j) + (1 − t) max
(i,j)∈Z2

g(λ2, v, i, j).

Taking the infimum over u,v ∈ Kper, it follows that M(λ) ≤ tM(λ1) + (1 − t)M(λ2) for all

t ∈ [0, 1]. Hence M(λ) is convex in R and then M(λ) is continuous in R. Also, by M(0) > 0

and (2.2), we obtain lim
λ→0+

M(λ)

λ
= +∞ and lim inf

λ→+∞

M(λ)

λ
= +∞, so min

λ>0

M(λ)

λ
exists.

Finally, we prove that min
λ>0

M(λ)

λ
is positive. If M ′(0) ≥ 0, then it follows from the

convexity of M that M(λ) > 0 for all λ > 0 and so min
λ>0

M(λ)

λ
is positive. Indeed we shall

prove that M ′(0) = 0.
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By Krein-Rutman Theorem, there exists a unique uλ ∈ Kper such that

‖uλ‖ := max
i,j=1,··· ,N

(uλ)i,j = 1

and

M(λ)(uλ)i,j = pi+1,je
−rλ(uλ)i+1,j + pi,je

rλ(uλ)i−1,j + qi,j+1e
−sλ(uλ)i,j+1(2.4)

+qi,je
sλ(uλ)i,j−1 − Di,j(uλ)i,j + f ′

s(i, j, 0)(uλ)i,j,

for i, j = 1, 2, · · · , N. Choose {λn} such λn ↘ 0 as n → ∞. Since {uλn} is a bounded

sequence in RN2
, there exists a subsequence {uλnk

} of {uλn} such that uλnk
→ z as k → ∞

for some z ∈ Kper with ‖z‖ = 1. Now, we replace λ by λnk
in (2.4) and take k → ∞, then

we obtain

M(0)zi,j = pi+1,jzi+1,j + pi,jzi−1,j + qi,j+1zi,j+1 + qi,jzi,j−1

−Di,jzi,j + f ′
s(i, j, 0)zi,j,

for i, j = 1, 2, · · · , N . This implies that z is the eigenvector of L0 corresponding to the

eigenvalue M(0) such that ‖z‖ = 1. We then conclude that uλn → z as n → ∞ for any

sequence {λn} which converges to 0 as n → ∞. Hence uλ → z as λ → 0.

Note that

(Lλuλ)i,jzi,j − (L0z)i,j(uλ)i,j = [M(λ) − M(0)](uλ)i,jzi,j ∀(i, j).

Summing over i, j = 1, · · · , N , we obtain

[M(λ) − M(0)]
N∑

i,j=1

(uλ)i,jzi,j

= (e−rλ − 1)
N∑

i,j=1

pi,j(uλ)i,jzi−1,j + (erλ − 1)
N∑

i,j=1

pi+1,j(uλ)i,jzi+1,j

+(e−sλ − 1)
N∑

i,j=1

qi,j(uλ)i,jzi,j−1 + (esλ − 1)
N∑

i,j=1

qi+1,j(uλ)i,jzi+1,j.

Dividing it by λ and taking λ → 0, also due to periodicity of zi,j, we have{
lim
λ→0

M(λ) − M(0)

λ

} N∑
i,j=1

(zi,j)
2

= −r(
N∑

i,j=1

pi,jzi−1,jzi,j) + r(
N∑

i,j=1

pi+1,jzi,jzi+1,j) − s(
N∑

i,j=1

qi,jzi,j−1zi,j)

+s(
N∑

i,j=1

pi,j+1zi,jzi,j+1) = 0.

It follows that M ′(0) = 0 and the lemma is proved. ¤
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For a given c > 0, let (c, u) be a solution of (P ). We set ξ := ct − ri − sj and introduce

wi,j(ξ) := ui,j(t) |ξ=ct−ri−sj= ui,j(
ξ + ri + sj

c
).

Then, by (1.3), we have

wi+N,j(ξ) = ui+N,j(
ξ + ri + sj + Nr

c
) = ui,j(

ξ + ri + sj

c
) = wi,j(ξ),

wi,j+N(ξ) = ui,j+N(
ξ + ri + sj + Ns

c
) = ui,j(

ξ + ri + sj

c
) = wi,j(ξ).

It follows that

wi+N,j(ξ) = wi,j(ξ) = wi,j+N(ξ) ∀ ξ ∈ R, (i, j) ∈ Z2.(2.5)

Next, (1.2) becomes

cw′
i,j(ξ) = pi+1,jwi+1,j(ξ − r) + pi,jwi−1,j(ξ + r) + qi,j+1wi,j+1(ξ − s)(2.6)

+qi,jwi,j−1(ξ + s) − Di,jwi,j(ξ) + f(i, j, wi,j(ξ)), ξ ∈ R, (i, j) ∈ Z2.

For each (i, j) ∈ Z2, by Lemma 2.1(iii),

wi,j(−∞) = 0, wi,j(+∞) = 1.(2.7)

Also, note that

0 ≤ wi,j(ξ) ≤ 1 ∀ (i, j, ξ) ∈ Z2 × R.(2.8)

We shall denote the problem (P ′) by the problem (2.5)-(2.8). From the above discussion,

we see that (c, w) is a solution of (P ′), if (c, u) is a solution of (P ). Conversely, if (c, w)

solves (P ′), by defining ui,j(t) := wi,j(ct− ri− sj) for all (i, j, t) ∈ Z2 ×R, then (c, u) solves

(P ). Therefore, we have established the following proposition.

Proposition 2.3. The problem (P ) admits a solution (c, u) if and only if the problem (P ′)

admits a solution (c, w).

Now, we define the operator H and the set Γ by

H(wi,j)(ξ) := νwi,j(ξ) +
1

c
[ pi+1,jwi+1,j(ξ − r) + pi,jwi−1,j(ξ + r) + qi,j+1wi,j+1(ξ − s)

+qi,jwi,j−1(ξ + s) − Di,jwi,j(ξ) + f(i, j, wi,j(ξ)) ],

Γ := {{wi,j} |wi,j(−∞) = 0 ≤ wi,j(ξ) ≤ 1 , wi+N,j(ξ) = wi,j(ξ) = wi,j+N(ξ)

∀ (i, j, ξ) ∈ Z2 × R},

where the constant ν > {max
i,j

|Di,j| + max
i,j

max
s∈[0,1]

|f ′
s(i, j, s)|}/c.

Due to the choice of ν, the following proposition can be easily derived.



TRAVELING WAVE 11

Proposition 2.4. Let H be defined as above. Then we have

(i) If wi,j(ξ) ≥ vi,j(ξ) for all (i, j, ξ) ∈ Z2 × R, then H(wi,j)(ξ) ≥ H(vi,j)(ξ) for all (i, j, ξ) ∈
Z2 × R.

(ii) If wi,j(·) is non-decreasing in R for all (i, j) ∈ Z2, then H(wi,j)(·) is also non-decreasing

in R for all (i, j) ∈ Z2.

Next, by the integrating factor eνξ, (2.6) becomes

wi,j(ξ) = e−νξ

∫ ξ

−∞
eνxH(wi,j(x))dx ∀ (i, j, t) ∈ Z2 × R.

We define

T c(wi,j)(ξ) := e−νξ

∫ ξ

−∞
eνxH(wi,j(x))dx.

Then, due to Proposition 2.4(i), we have the following important property:

T c(wi,j) ≤ T c(vi,j) if wi,j ≤ vi,j ∀(i, j) ∈ Z2.(2.9)

Moreover, we have

Lemma 2.5. A pair (c, w) ∈ R+ × Γ with wi,j(+∞) = 1 satisfies wi,j = T c(wi,j) for all

(i, j) ∈ Z2 if and only if it solves (P ′).

Proof. It follows from some direct calculations. ¤

We call φ± = {φ±
i,j} a super/sub-solution of (P ′), if

(i) φ+
i,j is non-decreasing and

c(φ+
i,j)

′(ξ) ≥ pi+1,jφ
+
i+1,j(ξ − r) + pi,jφ

+
i−1,j(ξ + r) + qi,j+1φ

+
i,j+1(ξ − s)(2.10)

+qi,jφ
+
i,j−1(ξ + s) − Di,jφ

+
i,j(ξ) + f(i, j, φ+

i,j(ξ))

a.e. in R for all (i, j) ∈ Z2;

(ii) φ−
i,j is differentiable a.e., φ−

i,j 6≡ 0 and

c(φ−
i,j)

′(ξ) ≤ pi+1,jφ
−
i+1,j(ξ − r) + pi,jφ

−
i−1,j(ξ + r) + qi,j+1φ

−
i,j+1(ξ − s)

+qi,jφ
−
i,j−1(ξ + s) − Di,jφ

−
i,j(ξ) + f(i, j, φ−

i,j(ξ))

a.e. in R for all (i, j) ∈ Z2.

Lemma 2.6. Given c > 0. Let w± ∈ Γ be a super/sub-solution of (P ′) such that w−
i,j(ξ) ≤

w+
i,j(ξ) for all (i, j, ξ) ∈ Z2 × R. Then there exists w ∈ Γ such that wi,j(+∞) = 1 and

wi,j = T c(wi,j) for all (i, j) ∈ Z2.
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Proof. Define w1
i,j := T c(w+

i,j) for (i, j) ∈ Z2. Then w1
i+N,j(ξ) = w1

i,j(ξ) = w1
i,j+N(ξ) for all

(i, j, ξ) ∈ Z2 × R. By the definition of super-solution, we have w1
i,j(·) ≤ w+

i,j(·) in R. This

implies that w1
i,j(−∞) = 0 ≤ w1

i,j(ξ) ≤ 1 for all (i, j, ξ) ∈ Z2 × R. Hence {w1
i,j} ∈ Γ. Also,

by (2.9) and the definition of sub-solution, we obtain

w−
i,j ≤ T c(w−

i,j) ≤ T c(w+
i,j) = w1

i,j.

Moreover,

(w1
i,j)

′(ξ) = e−νξ

∫ ξ

−∞
eνx{H(wi,j(ξ)) − H(wi,j(x))}dx ≥ 0,

by Proposition 2.4(ii).

Next, we define wn+1
i,j = T c(wn

i,j) for each n ∈ N. Then, for any n ∈ N, by a similar

argument as above, we have {wn
i,j} ∈ Γ,

0 ≤ w−
i,j ≤ wn+1

i,j ≤ wn
i,j ≤ w+

i,j ≤ 1 and (wn
i,j)

′ ≥ 0 in R ∀ (i, j) ∈ Z2.

Hence wi,j(ξ) := lim
n→∞

wn
i,j(ξ) exists and 0 ≤ wi,j(·) ≤ 1 in R. Applying Lebesgue’s Dominated

Convergence Theorem, we obtain wi,j(ξ) = T c(wi,j)(ξ) in R for all (i, j) ∈ Z2. Moreover,

w′
i,j ≥ 0 in R.

Finally, we claim wi,j(−∞) = 0 and wi,j(+∞) = 1. Since w′
i,j(ξ) ≥ 0 and 0 ≤ wi,j(ξ) ≤ 1

for all (i, j, ξ) ∈ Z2 × R, wi,j(±∞) exists. By w+
i,j(−∞) = 0 and 0 ≤ wi,j ≤ w+

i,j, it follows

that wi,j(−∞) = 0. To derive wi,j(+∞) = 1, using l’Hospital’s rule, for any (i, j) ∈ Z2,

lim
ξ→∞

wi,j(ξ) = lim
ξ→∞

T c(wi,j)(ξ)

= lim
ξ→∞

{wi,j(ξ) +
1

cν
[pi+1,jwi+1,j(ξ − r) + pi,jwi−1,j(ξ + r)

+qi,j+1wi,j+1(ξ − s) + qi,jwi,j−1(ξ + s) − Di,jwi,j(ξ) + f(i, j, wi,j(ξ))]}.

This implies that

pi+1,jwi+1,j(+∞) + pi,jwi−1,j(+∞) + qi,j+1wi,j+1(+∞)

+qi,jwi,j−1(+∞) − Di,jwi,j(+∞) = −f(i, j, wi,j(+∞)).

Let

γ := min
(i,j)∈Z2

{wi,j(+∞)} = wI,J(+∞)

for some (I, J) ∈ Z2. Then

0 ≤ pI+1,J [wI+1,J(+∞) − γ] + pI,J [wI−1,J(+∞) − γ]

+qI,J+1[wI,J+1(+∞) − γ] + qI,J [wI,J−1(+∞) − γ]

= −f(I, J, γ) ≤ 0.
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It follows that f(I, J, γ) = 0 and so γ = 0 or 1. Also, note that wI,J(·) is non-decreasing and

w−
I,J(·) 6≡ 0 in R, so there exists ξ0 ∈ R such that

γ = wI,J(+∞) ≥ wI,J(ξ0) ≥ w−
I,J(ξ0) > 0.

Hence γ = 1. This implies that wi,j(+∞) = 1 for all (i, j) ∈ Z2 and the Lemma follows. ¤

Let g(λ) := M(λ)/λ for λ > 0. It follows from Lemma 2.2 that there exists a unique

λ∗ > 0 such that g(λ∗) = c∗ and g(λ) > c∗ for all λ ∈ (0, λ∗). Moreover, it follows from the

convexity of M(λ) that g is strictly decreasing in (0, λ∗). Therefore, for any c > c∗, there

exists a unique λ ∈ (0, λ∗) such that g(λ) = c. Also, for any c > c∗, we can find µ ∈ (λ, λ∗)

such that µ < λ(1 + α) and g(µ) < c, where α is the constant defined in (A4).

Now, we fix a c > c∗. Let {Ui,j} ∈ Kper be an eigenvector of L corresponding to λ

and {Vi,j} ∈ Kper be an eigenvector of L corresponding to µ. Then we can find a pair of

super-sub-solutions as follows.

Lemma 2.7. Fix a c > c∗. Let w+ = {w+
i,j} and w− = {w−

i,j} be defined by

w+
i,j(ξ) := min{eλξUi,j , 1},

w−
i,j(ξ) := max{eλξUi,j − AeµξVi,j , 0},

where A > 0 is large enough. Then w+ is a super-solution of (P ′) and w− is a sub-solution

of (P ′).

Proof. Since the constant 1 satisfies (2.6), it is enough to show eλξUi,j satisfies (2.10) when

eλξUi,j < 1. By the assumption

0 < f(i, j, s) ≤ f ′
s(i, j, 0)s ∀ (i, j, s) ∈ Z2 × [0, 1],

we can conclude that

c(w+
i,j)

′(ξ) − [pi+1,jw
+
i+1,j(ξ − r) + pi,jw

+
i−1,j(ξ + r) + qi,j+1w

+
i,j+1(ξ − s)

+qi,jw
+
i,j−1(ξ + s) − Di,jw

+
i,j(ξ) + f(i, j, w+

i,j(ξ))]

≥ cλeλξUi,j − [pi+1,je
(ξ−r)λUi+1,j + pi,je

(ξ+r)λUi−1,j + qi,j+1e
(ξ−s)λUi,j+1

+qi,je
(ξ+s)λUi,j−1 − Di,je

λξUi,j + f ′
s(i, j, 0)eλξUi,j]

= eλξ[cλ − M(λ)]Ui,j = 0.

Hence w+ is a super-solution of (P ′).

To prove w− is a sub-solution of (P ′), we first choose A > 0 large enough such that

βU1+α
i,j + A[M(µ) − cµ)]Vi,j ≤ 0
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for all (i, j) ∈ Z2, where α and β are constant defined in the assumption (A4), and w−
i,j(ξ) > 0

implies that ξ < 0. Then, by (A4),

c(w−
i,j)

′(ξ) − [pi+1,jw
−
i+1,j(ξ − r) + pi,jw

−
i−1,j(ξ + r) + qi,j+1w

−
i,j+1(ξ − s)

+qi,jw
−
i,j−1(ξ + s) − Di,jw

−
i,j(ξ) + f(i, j, w−

i,j(ξ))]

≤ AeµξVi,j[M(µ) − cµ] + β(eλξUi,j − AeµξVi,j)
1+α

≤ AeµξVi,j[M(µ) − cµ] + βeλ(1+α)ξU1+α
i,j ( since w−

i,j(ξ) > 0)

≤ eµξ{βU1+α
i,j + A[M(µ) − cµ]Vi,j} ( since µ < λ(1 + α) and ξ < 0)

≤ 0

for all (i, j) ∈ Z2 such that w−
i,j(ξ) > 0. Hence w− is a sub-solution of (P ′) and so the lemma

follows. ¤

Proof of Theorem 1. From Lemma 2.6 and Lemma 2.7, we conclude that (P ′) has a

solution for each c > c∗. Also, by Proposition 2.3, it follows that (P ) admits a solution for

each c > c∗.

For c = c∗, we first choose a sequence of solution {ck, w
k}∞k=1 of (P ′) such that ck ↓ c∗ and

wk is non-decreasing for all k. Applying Arzela-Ascoli Theorem, there exists a subsequence

{wkl}∞l=1 of {wk}∞k=1 and w∗ = {w∗
i,j} such that wkl(·) → w∗(·) in R as l → ∞ uniformly

on any compact subset of R. Moreover, w∗ satisfies w∗
i,j(ξ) = T c∗(w∗

i,j)(ξ) and w∗
i+N,j(ξ) =

w∗
i,j(ξ) = w∗

i,j+N(ξ) for all (i, j, ξ) ∈ Z2 × R.

Now, we claim w∗
i,j(+∞) = 1 and w∗

i,j(−∞) = 0. Fix (i, j) ∈ Z2. By appropriate

translation, we may assume wkl
i,j(0) = 1/2 for any l. Note that w∗

i,j is also non-decreasing

and 0 ≤ w∗
i,j(·) ≤ 1 in R, then w∗

i,j(±∞) exists and is between 0 and 1. Applying Fatou’s

Lemma, we have∫ +∞

−∞
f(i, j, w∗

i,j(ξ))dξ ≤ lim inf
l→∞

∫ +∞

−∞
f(i, j, wkl

i,j(ξ))dξ < +∞.

This implies that f(i, j, w∗(±∞)) = 0 and so w∗
i,j(±∞) ∈ {0, 1} for any (i, j) ∈ Z2.

Next, it follows from w∗
i,j(+∞) = T c∗(w∗

i,j)(+∞) that

pi+1,j[wi+1,j(+∞) − wi,j(+∞)] + pi,j[wi−1,j(+∞) − wi,j(+∞)]

+qi,j+1[wi,j+1(+∞) − wi,j(+∞)] + qi,j[wi,j−1(+∞) − wi,j(+∞)] = 0.

Then wi,j(+∞) = wi±1,j(+∞) = wi,j±1(+∞) for all i, j due to pi,j, qi,j > 0. Similarly, we

also have wi,j(−∞) = wi±1,j(−∞) = wi,j±1(−∞) for all i, j.
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On the other hand, by integrating (2.6) over (−∞, +∞) and summing over i, j from 1 to

N , we have

c∗

N∑
i,j=1

[w∗
i,j(+∞) − w∗

i,j(−∞)] =
N∑

i,j=1

∫ +∞

−∞
f(i, j, w∗

i,j(ξ))dξ > 0.

The last inequality holds, since w∗
i,j(0) = 1/2 for some i, j. Then w∗

i,j(+∞) = 1 and

w∗
i,j(−∞) = 0 for any (i, j) ∈ Z2, thereby completing the proof of Theorem 1. ¤

3. Existence of the minimum speed

This section is devoted to the proof of Theorem 2. Throughout this section, the periodicity

of f in (i, j) and pi,j, qi,j are in force. First, we define

Fu(i, j, t) := u′
i,j(t) − [ pi+1,jui+1,j(t) + pi,jui−1,j(t) + qi,j+1ui,j+1(t)(3.1)

+qi,jui,j−1(t) − Di,jui,j(t) + f(i, j, ui,j(t)) ].

We have the following comparison principle. The proof is standard so we omit it.

Lemma 3.1. Let t0 ∈ R. Assume that u(t) = {ui,j(t)} and v(t) = {vi,j(t)} are continuously

differentiable on [t0,∞) and bounded for (i, j, t) ∈ Z2 × [t0,∞). If

Fu(i, j, t) ≥ Fv(i, j, t) ∀(i, j, t) ∈ Z2 × [t0,∞), ui,j(t0) ≥ vi,j(t0) ∀(i, j) ∈ Z2,

then ui,j(t) ≥ vi,j(t) for all (i, j, t) ∈ Z2×[t0,∞). Moreover, if the condition ui,j(t0) ≥ vi,j(t0)

is replaced by ui,j(t0) > vi,j(t0), then ui,j(t) > vi,j(t) for all (i, j, t) ∈ Z2 × [t0,∞).

Remark 3.1. If {pi,j} and {qi,j} are replaced by {pi,j(t)} and {qi,j(t)} such that 0 <

pi,j(t), qi,j(t) ≤ M for some M > 0 and for all (i, j, t) ∈ Z2 × [t0,∞), then Lemma 3.1

also holds.

Lemma 3.2. Let u = {ui,j} be a solution of (P ) with c 6= 0. Then for any bounded interval

E and any (m, n) ∈ Z2 we have

(3.2) sup

{
ui+m,j+n(t)

ui,j(t + η)

∣∣∣ (i, j, t) ∈ Z2 × R, η ∈ E

}
< ∞.

Moreover, we have

(3.3) sup

{ |u′
i,j(t)|

ui,j(t)

∣∣∣ (i, j, t) ∈ Z2 × R
}

< ∞.

Proof. Recall (r, s) := (cos θ, sin θ). Without loss of generality, we may assume r > 0 and,

by (1.3), only consider the case when E = [0, rN/c].

First, we choose any (i0, j0, t0, η0) ∈ Z2 × R × E. Let v = {vi,j} be the solution of

v′
i,j(t) = pi+1,jvi+1,j(t) + pi,jvi−1,j(t) + qi,j+1vi,j+1(t) + qi,jvi,j−1(t) − Di,jvi,j(t),(3.4)
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for (i, j, t) ∈ Z2 × [t0,∞) with the initial condition vi0+m,j0+n(t0) = ui0+m,j0+n(t0) and

vi,j(t0) = 0 for all (i, j) 6= (i0 + m, j0 + n). Note that this initial value problem is equivalent

to the integral equation

vi,j(t) = vi,j(t0)e
−µ(t−t0) +

∫ t

t0

e−µ(t−s)H(vi,j)(s)ds,

where µ > max
(i,j)∈Z2

Di,j and

H(vi,j) := (µ − Di,j)vi,j + pi+1,jvi+1,j + pi,jvi−1,j + qi,j+1vi,j+1 + qi,jvi,j−1.

Furthermore, the existence of v can be derived by using the following Picard’s iteration:

v
(0)
i,j (t) := vi,j(t0)e

−µ(t−t0), t ≥ t0

v
(n)
i,j (t) := v

(0)
i,j (t) +

∫ t

t0

e−µ(t−s)H(v
(n−1)
i,j )(s)ds, t ≥ t0, n ∈ N,

together with the monotonicity of {vi,j} 7→ {H(vi,j)}. Moreover, since 0 ≤ v
(0)
i,j (t) ≤ 1 for all

(i, j, t) ∈ Z2 × [t0,∞) and due to monotonicity of the operator H in v again, we obtain

0 ≤ v
(n)
i,j (t) ≤ 1 ∀ (i, j, t) ∈ Z2 × [t0,∞), ∀ n ∈ N.

Hence 0 ≤ vi,j(t) ≤ 1 for all (i, j, t) ∈ Z2 × [t0,∞).

Now, since Fu(i, j, t) = 0 ≥ −f(i, j, vi,j) = Fv(i, j, t) for any (i, j, t) ∈ Z × [t0,∞) and

ui,j(t0) ≥ vi,j(t0), it follows from the comparison principle that

ui,j(t) ≥ vi,j(t) ∀ (i, j, t) ∈ Z2 × [t0,∞).

In particular,

ui0+N,j0(t0 + η0 +
rN

c
) ≥ vi0+N,j0(t0 + η0 +

rN

c
).(3.5)

Next, for each (h, k) ∈ Z2, let z(·) = {zi,j(· ; h, k)} be the solution of (3.4) for t ≥ 0 with

the initial condition zh+m,k+n(0; h, k) = 1 and zi,j(0; h, k) = 0 for (i, j) 6= (h + m, k + n).

Note that we also have 0 ≤ zi,j(t; h, k) ≤ 1 for all (i, j, t) ∈ Z2 × [0,∞). We claim that

(3.6) zh+N,k(
rN

c
+ η0; h, k) > 0 ∀ (h, k) ∈ Z2.

For a contradiction, we suppose that there exists (h̄, k̄) ∈ Z2 such that

zh̄+N,k̄(
rN

c
+ η0; h̄, k̄) = 0.

Then z′
h̄+N,k̄

(rN/c + η0; h̄, k̄) = 0. Therefore, by (3.4), we obtain

zh̄±1+N,k̄(
rN

c
+ η0; h̄, k̄) = 0 = zh̄+N,k̄±1(

rN

c
+ η0; h̄, k̄).

By induction, we can conclude that

zi,j(
rN

c
+ η0; h̄, k̄) = 0 ∀ (i, j) ∈ Z2.(3.7)
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On the other hand, since z satisfies (3.4), we have

z′h+m,k+n(t; h, k) ≥ −4Mzh+m,k+n(t; h, k), M := max
i,j

{pi,j, qi,j}.

By integrating over [0, rN/c + η0] and using zh+m,k+n(0; h, k) = 1, we obtain

zh+m,k+n(
rN

c
+ η0; h, k) ≥ exp{−4M(

rN

c
+ η0)} > 0.

This contradicts (3.7) and the claim (3.6) follows.

By the periodicity of pi,j and qi,j, we have

z(h+N)+N,k(
rN

c
+ η0; h + N, k) = zh+N,k(

rN

c
+ η0; h, k)

= zh+N,k+N(
rN

c
+ η0; h, k + N).

Thus the number

A := min{zh+N,k(
rN

c
+ η0; h, k) | (h, k) ∈ Z2, η0 ∈ E}

is well-defined and A > 0. Note that the constant A is independent of i0, j0, t0 and η0.

Finally, since (3.4) is linear and the initial values vi,j(t0) = ui0+m,j0+n(t0)zi,j(0; i0, j0), we

have

vi0+N,j0(t0 +
rN

c
+ η0) = ui0+m,j0+n(t0)zi0+N,j0(

rN

c
+ η0; i0, j0)

≥ ui0+m,j0+n(t0)A.

From (3.5) it follows that

ui0+m,j0+n(t0)

ui0+N,j0(t0 + rN
c

+ η0)
≤ ui0+m,j0+n(t0)

vi0+N,j0(t0 + rN
c

+ η0)
≤ 1

A
.

Since

ui0,j0(t0 + η0) = ui0+N,j0(t0 +
rN

c
+ η0),

(3.2) follows. Moreover, (3.3) follows from (1.2) and (3.2). Hence the lemma is proved. ¤

Proof of Theorem 2. Let (c, u) be a solution of P with c 6= 0. By (3.3), the limit

µi,j := lim inf
t→−∞

u′
i,j(t)

ui,j(t)

exists and is finite for (i, j) ∈ Z2. Also from (1.3) we know µi+N = µi,j = µi,j+N . Hence

µ := min
(i,j)∈Z2

µi,j exists and we may assume lim inf
t→−∞

u′
I,J(t)

uI,J(t)
= µ for some I, J ∈ {1, · · · , N}.

Given any fixed (i, j) ∈ Z2. We consider the sequence of functions

{
ui,j(t + tn)

uI,J(tn)

}
, where

{tn} is a sequence such that
u′

I,J(tn)

uI,J(tn)
→ µ and tn → −∞ as n → ∞. For each κ ∈ N, by
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(3.2),

{
ui,j(t + tn)

uI,J(tn)

}
is uniformly bounded for t ∈ [−κ, κ] and n ∈ N. Next, for t, t̃ ∈ [−κ, κ],

applying the mean value theorem, there exists some ξ between t and t̃ such that∣∣∣∣ui,j(t + tn)

uI,J(tn)
− ui,j(t̃ + tn)

uI,J(tn)

∣∣∣∣ =
|u′

i,j(ξ + tn)|
|uI,J(tn)|

|t − t̃|.

Hence, by Lemma 3.2, we have∣∣∣∣ui,j(t + tn)

uI,J(tn)
− ui,j(t̃ + tn)

uI,J(tn)

∣∣∣∣ =
|u′

i,j(ξ + tn)|
|ui,j(ξ + tn)|

|ui,j(ξ + tn)|
|uI,J(tn)|

|t − t̃| ≤ C|t − t̃|

for some positive constant C. It follows that

{
ui,j(t + tn)

uI,J(tn)

}
is equi-continuous on [−κ, κ].

Therefore, by applying Arzela-Ascoli Theorem and using a diagonal process, we conclude that

there exists a subsequnece

{
ui,j(t + tnk

)

uI,J(tnk
)

}
of

{
ui,j(t + tn)

uI,J(tn)

}
such that

ui,j(t + tnk
)

uI,J(tnk
)

→ vi,j(t)

in R as k → ∞ uniformly in any compact subset of R. Moreover, the limit vi,j satisfies

v′
i,j(t) = pi+1,jvi+1,j(t) + pi,jvi−1,j(t) + qi,j+1vi,j+1(t) + qi,jvi,j−1(t)(3.8)

−Di,jvi,j(t) + f ′
s(i, j, 0)vi,j(t).

Now, we claim vi,j(t) > 0 for all (i, j, t) ∈ Z2 × R. Note that vi,j(t) ≥ 0 and vI,J(0) = 1.

If there is (i0, j0) ∈ Z2 such that vi0,j0(0) = 0, then v′
i0,j0

(0) = 0. It follows from (3.8) that

0 = pi0+1,j0vi0+1,j0(0) + pi0,j0vi0−1,j0(0) + qi0,j0+1vi0,j0+1(0) + qi0,j0vi0,j0−1(0).

Hence vi0±1,j0(0) = vi0,j0±1(0) = 0, since pi,j, qi,j > 0. By induction, we obtain that vi,j(0) = 0

for all (i, j) ∈ Z2. This contradicts vI,J(0) = 1. Therefore, vi,j(0) > 0 for all (i, j) ∈ Z2.

Thus the comparison principle implies that vi,j(t) > 0 for all (i, j, t) ∈ Z2× [0,∞). Moreover,

since v also satisfies (1.3), vi,j(t) > 0 for all (i, j, t) ∈ Z2 × R.

Define zi,j(t) :=
v′

i,j(t)

vi,j(t)
, we shall show that zi,j(t) = µ for all (i, j, t) ∈ Z2 × R, where

µ := min
i,j

{
lim inf
t→−∞

u′
i,j(t)

ui,j(t)

}
.

Note that zi,j(t) ≥ µ for all (i, j, t) ∈ Z2 × R by the definition of µ. We write

z′i,j(t) =
[
pi+1,j

vi+1,j(t)

vi,j(t)

]
zi+1,j(t) +

[
pi,j

vi−1,j(t)

vi,j(t)

]
zi−1,j(t)

+
[
qi,j+1

vi,j+1(t)

vi,j(t)

]
zi,j+1(t) +

[
qi,j

vi,j−1(t)

vi,j(t)

]
zi,j−1(t)

−
[
pi+1,j

vi+1,j(t)

vi,j(t)
+ pi,j

vi−1,j(t)

vi,j(t)
+ qi,j+1

vi,j+1(t)

vi,j(t)
+ qi,j

vi,j−1(t)

vi,j(t)

]
zi,j(t).

Let ẑ(·) = {ẑi,j(·)} = {µ} and note that

|zi,j(t)| =
∣∣∣v′

i,j(t)

vi,j(t)

∣∣∣ ≤ sup
i,j,t

∣∣∣v′
i,j(t)

vi,j(t)

∣∣∣ < ∞.
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By the comparison principle (see Remark 3.1) and noting that zi,j satisfies (1.3), we conclude

zi,j(t) = µ for all (i, j, t) ∈ Z2 × R.

Finally, we prove that there exists Λ > 0 such that M(Λ) = cΛ. Since
v′

i,j(t)

vi,j(t)
= zi,j(t) = µ

for all (i, j, t) ∈ Z2 × R. we obtain

vi,j(t) = vi,j(0)eµt = Ui,je
µt−(µ/c)(ri+sj),

where Ui,j = vi,j(0)e(µ/c)(ri+sj). Then, by using (1.3), it is easy to see that Ui,j ∈ Kper. By

(3.8), Ui,j satisfies

µUi,j = pi+1,je
−rµ/cUi+1,j + pi,je

rµ/cUi−1,j + qi,j+1e
−sµ/cUi,j+1

+qi,je
sµ/cUi,j−1 − Di,jUi,j + f ′

s(i, j, 0)Ui,j.

Then M(µ/c) ≥ µ. On the other hand, recalling

M(λ) = inf
φ∈Kper

max
(i,j)∈Z2

(Lλφ)i,j

φi,j

,

so we have µ ≥ M(µ/c). It follows that M(Λ) = cΛ, where Λ := µ/c. Therefore, the theorem

is proved. ¤
Therefore, we have proved the sufficient and necessary condition for existence of solution

of (P ).

4. Monotonicity of wave profile

In this section, we shall prove that any wave profile of (P ) is strictly increasing in t under

the assumptions (A1)-(A5). Recall

(A5) there exists ρ ∈ (0, 1) such that f(i, j, s2) ≤ f(i, j, s1), if ρ < s1 < s2 < 1, ∀(i, j).

First, we have the following lemma.

Lemma 4.1. If (c, u) is a solution of (P ) with c 6= 0 and u′
i,j(t) ≥ 0 for all (i, j, t) ∈ Z2 ×R,

then u′
i,j(t) > 0 for all (i, j, t) ∈ Z2 × R.

Proof. Differentiating (1.2) with respect to t and using a contradiction argument as in the

proof of Lemma 2.1(i), we can easily prove this lemma. The detail is omitted. ¤

Lemma 4.2. Let (c, u) be a solution of (P ) with c 6= 0. Then, given any ε ∈ (0, 1), there

exist constants K1 and K2 such that

(1) ε < ui,j(t) < 1 for all (i, j, t) ∈ Z2 × R with ct − ri − sj ≥ K1,

(2) 0 < ui,j(t) < ε for all (i, j, t) ∈ Z2 × R with ct − ri − sj ≤ K2.
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Moreover, there exists a constant K3 such that

u′
i,j(t) > 0 for all (i, j, t) ∈ Z2 × R with ct − ri − sj ≤ K3.

Proof. Given ε ∈ (0, 1). For each (i, j) ∈ Z2, since ui,j(+∞) = 1 and ui,j(−∞) = 0, there

exists real numbers τi,j and κi,j such that

ε < ui,j(t) < 1 ∀ t ≥ τi,j, 0 < ui,j(t) < ε ∀ t ≤ κi,j.

Define

K1 := max
i,j∈{1,··· ,N}

{cτi,j − ri − sj} , K2 := min
i,j∈{1,··· ,N}

{cκi,j − ri − sj} .

Then (1) and (2) follows from (1.3).

Next, recall

µ := min
i,j

{
lim inf
t→−∞

u′
i,j(t)

ui,j(t)

}
> 0.

For each fixed i, j ∈ {1, .., N}, there exists Ti,j < 0 such that

u′
i,j(t)

ui,j(t)
>

µ

2
> 0 ∀ t ≤ Ti,j.

Since ui,j(t) > 0 for all (i, j, t) ∈ Z2 × R, we obtain that u′
i,j(t) > 0 for all t ≤ Ti,j. Now, we

define

K3 := min
i,j∈{1,··· ,N}

{cTi,j − ri − sj}

and use (1.3), it follows that u′
i,j(t) > 0 for all (i, j, t) ∈ Z2×R with ct−ri−sj ≤ K3. Hence

the lemma is proved. ¤

As a corollary of Lemma 4.2, by using

ui,j(t) = wi,j(ct − ri − sj),

we have

Corollary 4.3. Let (c, w) be a solution of (P ′) with c 6= 0. Then, given any ε ∈ (0, 1), there

exist constants K1 and K2 such that ε < wi,j(ξ) < 1 for all ξ ≥ K1 and 0 < wi,j(ξ) < ε for

all ξ ≤ K2 for any (i, j) ∈ Z2. Moreover, there exists a constant K3 such that w′
i,j(ξ) > 0

for all ξ ≤ K3 for any (i, j) ∈ Z2.

To derive the monotonicity of u in t, we use a sliding method. It is more convenient to

consider the function w than u. We set

A := {τ > 0 | wi,j(ξ + T ) ≥ wi,j(ξ) ∀ i, j ∈ {1, · · · , N}, ξ ∈ R, T ≥ τ}.

Then we have the following lemma.

Lemma 4.4. A 6= ∅.
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Proof. Let ρ be the constant defined in (A5). Then, by Corollary 4.3, we can choose D ≥ 1

such that

ρ < wi,j(ξ) < 1 ∀ (i, j) ∈ Z2, ξ ≥ D,(4.1)

0 < wi,j(ξ) < ρ, w′
i,j(ξ) > 0 ∀ (i, j) ∈ Z2, ξ ≤ −D + 1.(4.2)

Note that the constant

(4.3) η := min{wi,j(ξ) | ξ ∈ [−D,D], i, j ∈ {1, · · · , N}}

is positive. Since wi,j(−∞) = 0, we can choose a constant T0 ≥ 2D such that wi,j(ξ) < η for

all ξ ≤ D − T0 for all i, j ∈ {1, · · · , N}. For any T ≥ T0 and ξ ≤ −D, since

ξ + T ≥ D, if ξ ≥ D − T ;

ξ + T ∈ [−D,D], if ξ ∈ [−D − T,D − T ];

ξ + T ≤ −D, if ξ ≤ −D − T ,

it follows from (4.1)-(4.3) that

wi,j(ξ + T ) > ρ > wi,j(ξ), if −D ≥ ξ ≥ D − T ;

wi,j(ξ + T ) ≥ η > wi,j(ξ), if ξ ∈ [−D − T,D − T ];

wi,j(ξ + T ) > wi,j(ξ), if ξ ≤ −D − T ,

where the last inequality follows from the fact w′
i,j > 0 in (−∞,−D +1]. Therefore, we have

(4.4) wi,j(ξ + T ) > wi,j(ξ) ∀ ξ ≤ −D,T ≥ T0, i, j ∈ {1, · · · , N}.

Now, we set

σ := max{wi,j(ξ) | ξ ∈ [−D,D + 1], i, j ∈ {1, · · · , N}}.

Then σ ∈ (0, 1). Since wi,j(∞) = 1, there exists M À 1 such that wi,j(ξ) > σ for all ξ ≥ M

for all i, j ∈ {1, · · · , N}. Taking a larger T0 so that T0 ≥ max{2D,D + M}, we obtain that

(4.5) wi,j(ξ + T ) > σ ≥ wi,j(ξ) ∀ ξ ∈ [−D,D + 1], T ≥ T0, i, j ∈ {1, · · · , N}.

Finally, for the same T0 as above, we claim that

(4.6) wi,j(ξ + T ) ≥ wi,j(ξ) ∀ ξ ≥ D, T ≥ T0, i, j ∈ {1, · · · , N}.

To prove (4.6), we consider the function

Wi,j(ξ) = Wi,j(ξ; δ) := wi,j(ξ + T ) − wi,j(ξ) + δ, ξ ∈ R,

where the constants δ, T are given so that δ ∈ (0, 2) and T ≥ T0. Since wi,j < 1, we have

Wi,j(ξ; δ) > 0 for all ξ, if δ > 1. Moreover, for any δ > 0, Wi,j(ξ; δ) > 0, if ξ À 1, since

wi,j(∞) = 1. Recall that Wi,j(ξ; δ) > 0 for any δ > 0, ξ ≤ D + 1, T ≥ T0, i, j ∈ {1, · · · , N}.
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We claim that Wi,j(ξ; δ) > 0 for all ξ ≥ D, i, j ∈ {1, · · · , N}, for any δ > 0. For

contradiction, suppose that there exist δ0 ∈ (0, 1], y ≥ D + 1 (by (4.5)), I, J ∈ {1, · · · , N}
such that WI,J(y; δ0) = 0 and Wi,j(ξ; δ) > 0 for any ξ ≥ D, δ ∈ (δ0, 2), i, j ∈ {1, · · · , N}.
Then Wi,j(ξ; δ0) ≥ 0 for all ξ ≥ D, i, j ∈ {1, · · · , N}. Since W ′

I,J(y; δ0) = 0, we have

0 = pI+1,JWI+1,J(y − r) + pI,JWI−1,J(y + r) + qI,J+1WI,J+1(y − s)

+qI,JWI,J−1(y + s) − DI,JWI,J(y) + f(I, J, wI,J(y + T )) − f(I, J, wI,J(y)),

by using (2.6). Hereafter we suppress the dependence of δ0. Since WI,J(y) = 0, we have

wI,J(y + T ) = wI,J(y) − δ0 < wI,J(y). Also, y + T > y ≥ D, it follows from (4.1) that

wI,J(y) > wI,J(y + T ) > ρ. Then the assumption (A5) implies that

0 ≥ pI+1,JWI+1,J(y − r) + pI,JWI−1,J(y + r)

+qI,J+1WI,J+1(y − s) + qI,JWI,J−1(y + s).

Note that r, s ∈ [−1, 1]. Also, recall that y ≥ D + 1. Hence

WI+1,J(y − r) = WI−1,J(y + r) = WI,J+1(y − s) = WI,J−1(y + s) = 0.

Without loss of generality, we may assume that r > 0. Starting with WI−1,J(y + r) = 0,

by induction, we can show that WI−K,J(y + Kr) = 0 for any K ∈ N. In particular, for

K = kN , we have WI,J(y + kNr) = WI−kN,J(y + kNr) = 0. But, this is a contradiction

to wi,j(∞) = 1, if we let k → ∞. We thus have proved that Wi,j(ξ; δ) > 0 for all ξ ≥ D,

T ≥ T0, i, j ∈ {1, · · · , N}, δ > 0. Taking δ ↓ 0, (4.6) follows.

Combining (4.4)-(4.6), we see that T0 ∈ A. This completes the proof of the lemma. ¤

Proof of Theorem 3. It follows from Lemma 4.4 that the number T ∗ := inf A is well-

defined and T ∗ ≥ 0. If T ∗ = 0, then we have wi,j(ξ + T ) ≥ wi,j(ξ) for all ξ ∈ R, T > 0, and

i, j ∈ Z. Hence w′
i,j(ξ) ≥ 0 for all ξ ∈ R and i, j ∈ Z. Since u′

i,j(t) = cw′
i,j(ct − ri − sj) and

c > 0, we have u′
i,j(t) ≥ 0 for all t ∈ R and i, j ∈ Z. It then follows from Lemma 4.1 that

u′
i,j(t) > 0 for all t ∈ R and i, j ∈ Z. Hence the theorem is proved. Therefore, it suffices to

prove that T ∗ = 0.

To prove T ∗ = 0, we use a contradiction argument. Suppose that T ∗ > 0. Then

wi,j(ξ + T ∗) ≥ wi,j(ξ) ∀ ξ ∈ R, i, j ∈ Z.

We shall follow a similar argument as in Lemma 4.4. Set

Wi,j(ξ; T ) := wi,j(ξ + T ) − wi,j(ξ), ξ ∈ R, i, j ∈ Z, T > 0.

Note that Wi,j(· ; T ∗) ≥ 0. We claim that Wi,j(ξ; T
∗) > 0 for all ξ ∈ R, i, j ∈ Z. Otherwise,

there exists (I, J, y) ∈ Z2×R such that WI,J(y; T ∗) = 0. Then W ′
I,J(y; T ∗) = 0 and it follows
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from (2.6) that

pI+1,JWI+1,J(y − r; T ∗) + pI,JWI−1,J(y + r; T ∗)

+qI,J+1WI,J+1(y − s; T ∗) + qI,JWI,J−1(y + s; T ∗) = 0.

Hence

WI+1,J(y − r; T ∗) = WI−1,J(y + r; T ∗) = WI,J+1(y − s; T ∗) = WI,J−1(y + s; T ∗) = 0.

This leads to a contradiction by the same argument as in the proof of Lemma 4.4. Hence we

obtain that Wi,j(ξ; T
∗) > 0 for all ξ ∈ R, i, j ∈ Z.

Now, for the constant D defined in (4.1)-(4.2), we set

κ := min{Wi,j(ξ; T
∗) | ξ ∈ [−D − T ∗, D + 1]}.

Then κ is well-defined and κ > 0. Also, by the continuity of wi,j, there exists a constant

τ ∈ (0, T ∗) such that Wi,j(ξ; T ) > κ/2 for all ξ ∈ [−D − T ∗, D + 1], i, j ∈ Z, T ∈ [τ, T ∗].

Hence for T ∈ [τ, T ∗] we have

(4.7) wi,j(ξ + T ) > wi,j(ξ) ∀ ξ ∈ [−D − T ∗, D + 1], i, j ∈ Z.

For ξ ≤ −D − T ∗, since ξ < ξ + T ≤ −D < −D + 1 for T ∈ [τ, T ∗], it follows from (4.2)

that

(4.8) wi,j(ξ + T ) > wi,j(ξ) ∀ ξ ≤ −D − T ∗, i, j ∈ Z, T ∈ [τ, T ∗].

Finally, as in the proof of Lemma 4.4, we can also show that

(4.9) wi,j(ξ + T ) ≥ wi,j(ξ) ∀ ξ ≥ D, i, j ∈ Z, T ∈ [τ, T ∗].

Combining (4.7)-(4.9), we conclude that τ ∈ A, a contradiction to the definition of T ∗.

Hence we must have T ∗ = 0 and the theorem is proved. ¤

5. Convergence of the discretized minimal speed

In this section, we shall follow the idea of [19] to prove Theorem 4. Since the proof is

quite similar to the one given in [19], we shall omit some details.

First note that

hc∗(h) = min
λ>0

LMh(λ)

λ
, (h =

L

N
)

where Mh(λ) is the largest real number such that there exists φ ∈ Kper satisfying

Mh(λ)φi,j = ph
i+1,je

−rλ/Nφi+1,j + ph
i,je

rλ/Nφi−1,j + qh
i,j+1e

−sλ/Nφi,j+1(5.1)

+qh
i,je

sλ/Nφi,j−1 − Dh
i,jφi,j + (fh)′s(i, j, 0)φi,j,

for all i, j ∈ Z with Dh
i,j := ph

i+1,j + ph
i,j + qh

i,j+1 + qh
i,j.

The proof of the following lemma is similar to that of Lemma 4.1 in [19].
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Lemma 5.1. lim sup
N→+∞

[hc∗(h)] < +∞, where h = L/N .

Next, we set γ := lim inf
N→+∞

[hc∗(h)]. By Lemma 5.1, γ ∈ [0, +∞). Let {hk} = {L/Nk} be a

sequence such that Nk → +∞ and hkc∗(hk) → γ as k → +∞. For each k, we define λk > 0

such that

LMhk(λk)

λk

= min
λ>0

LMhk(λ)

λ
= hkc∗(hk).

Lemma 5.2. There are two positive numbers A and B such that

0 < A ≤ λk ≤ B < +∞.

Proof. By (2.2), Mhk(λk) ≥ min
i,j

(fhk)′s(i, j, 0) ≥ min
R2

f ′
s(x, y, 0) > 0. If there exists {λkj

}
such that λkj

→ 0 as j → +∞, then γ = +∞, a contradiction. This proves a uniformly

positive lower bound for {λk}.
To find an upper bound B, we set

lim sup
k→+∞

λk

Nk

:= κ ∈ [0, +∞].

Then by the same argument as the proof of Lemma 4.2 in [19] we can conclude that κ = 0

and so

lim
k→+∞

λk

Nk

= 0.

By using the fact lim
x→0

(ex − 1 − x)/x2 = 1/2, we have

e±rλk/Nk − 1 > ±rλk

Nk

+
1

4
(±rλk

Nk

)2 and e±sλk/Nk − 1 > ±sλk

Nk

+
1

4
(±sλk

Nk

)2

for all sufficiently large k. Also, as in (2.2), we obtain that

LMhk(λk)

λk

>
L

λk

{phk
Ik+1,Jk

(−rλk

Nk

+
1

4
(
rλk

Nk

)2) + phk
Ik,Jk

(
rλk

Nk

+
1

4
(
rλk

Nk

)2)

+qhk
Ik,Jk+1(−

sλk

Nk

+
1

4
(
sλk

Nk

)2) + qhk
Ik,Jk

(
sλk

Nk

+
1

4
(
sλk

Nk

)2)}

for all k large enough. Hence we can find two positive constants C1 and C2 such that

λk ≤ C1
Mhk(λk)

λk

+ C2

for all sufficiently large k. Since

LMhk(λk)

λk

→ γ as k → +∞,

we obtain an upper bound estimate for λk. Hence the lemma follows. ¤
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Recall the operator P and the set E defined in §1:

Pλφ := ∇ · (A∇φ) − 2λeT A∇φ + [−λ∇ · (Ae) + λ2eT Ae + f ′
s(x1, x2, 0)]φ,

E := {φ ∈ C2(R2) | φ(x1 + L, x2) = φ(x1, x2) = φ(x1, x2 + L)}.

By Lemma 5.2, there is a number Λ ∈ (0, +∞) such that λk → Λ as k → +∞ (up to some

subsequence of {λk}). Thus, we have

Mhk(λk) → γΛ/L as k → +∞.(5.2)

Now, we define a function space

H1
per := {ψ ∈ H1

loc(R2) | ψ(x1 + L, x2) = ψ(x1, x2) = ψ(x1, x2 + L)}

with the H1 norm in (0, L) × (0, L).

Lemma 5.3. There exists φ ∈ E such that φ > 0 and Pµφ = µγφ, where µ := Λ/L > 0.

Proof. For each k, there exists uk ∈ Kper such that

Mhk(λk)u
k
i,j = phk

i+1,je
−rλk/Nkuk

i+1,j + phk
i,je

rλk/Nkuk
i−1,j + qhk

i,j+1e
−sλk/Nkuk

i,j+1(5.3)

+qhk
i,j e

sλk/Nkuk
i,j−1 − Dhk

i,ju
k
i,j + (fhk)′s(i, j, 0)uk

i,j, ∀i, j.

With this uk, we define φk : R2 → R by

φk(x1, x2) = uk
i,j if (x1, x2) = (ihk, jhk) for some i, j ∈ Z;

φk(x1, x2) =
(uk

i+1,j − uk
i,j

hk

)
x1 +

(uk
i,j+1 − uk

i,j

hk

)
x2

+uk
i,j − i(uk

i+1,j − uk
i,j) − j(uk

i,j+1 − uk
i,j),

if x1 ≥ ihk, x2 ≥ jhk and x1 + x2 ≤ (i + j + 1)hk for some i, j ∈ Z;

φk(x1, x2) =
(uk

i+1,j+1 − uk
i,j+1

hk

)
x1 +

(uk
i+1,j+1 − uk

i+1,j

hk

)
x2

+uk
i+1,j+1 − (i + 1)(uk

i+1,j+1 − uk
i,j+1) − (j + 1)(uk

i+1,j+1 − uk
i+1,j),

if x1 ≤ (i + 1)hk, x2 ≤ (j + 1)hk and x1 + x2 ≥ (i + j + 1)hk

for some i, j ∈ Z.

Set D := (0, L)× (0, L). Since (5.3) is linear, without loss of generality, we may assume that

||φk||2L2(D) = 1 for all k. Note that φk ∈ H1
per for all k.
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We claim that {φk} is bounded in H1
per. Multiplying (5.3) by uk

i,jh
2
k and summing over

i, j = 1, ..., Nk, due to the periodicity of dhk
i,j and uk

i,j, we have

h2
k

Nk∑
i,j=1

Mhk(λk)(u
k
i,j)

2

= h2
k

{ Nk∑
i,j=1

phk
i,ju

k
i−1,ju

k
i,j(e

−rλk/Nk + erλk/Nk)

+

Nk∑
i,j=1

qhk
i,j u

k
i,j−1u

k
i,j(e

−sλk/Nk + esλk/Nk)(5.4)

−
Nk∑

i,j=1

phk
i,j [(u

k
i−1,j)

2 + (uk
i,j)

2] −
Nk∑

i,j=1

qhk
i,j [(u

k
i,j−1)

2 + (uk
i,j)

2]

+

Nk∑
i,j=1

(fhk)′s(ihk, jhk, 0)(uk
i,j)

2
}
.

It follows from the definition of φk and (5.4) that∫
D

[(φk)x1 ]
2 + [(φk)x2 ]

2dx1dx2

≤ C1(hk)
2
{ Nk∑

i,j=1

phk
i,ju

k
i−1,ju

k
i,j[e

−rλk/Nk + erλk/Nk − 2]

+

Nk∑
i,j=1

qhk
i,j u

k
i,j−1u

k
i,j[e

−sλk/Nk + esλk/Nk − 2](5.5)

+

Nk∑
i,j=1

(fhk)′s(ihk, jhk, 0)(uk
i,j)

2 −
Nk∑

i,j=1

Mhk(λk)(u
k
i,j)

2
}

≤ C2(hk)
2

Nk∑
i,j=1

(uk
i,j)

2,

for some positive constants C1 and C2. On the other hand, by the definition of φk we can

easily calculate that

1 = ||φk||2L2(D) ≥ C3(hk)
2

Nk∑
i,j=1

(uk
i,j)

2 for all k

for some positive constant C3. It follows from (5.5) that {φk} is uniformly bounded in H1
per.

Up to some subsequence, there exists φ ∈ H1
per such that φk ⇀ φ in H1

per weakly and φk → φ

in L2. Note that we have φ 6≡ 0, since ||φ||2L2(D) = 1. Also, without loss of generality, we

may assume φk → φ a.e. for the same sequence.
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Finally, we claim that

µγ

∫
D

φψ = −
∫

D

pφx1ψx1 −
∫

D

qφx2ψx2 − µ

∫
D

(rpφx1 + sqφx2)ψ + µ

∫
D

rpφψx1
(5.6)

+µ

∫
D

sqφψx2 + µ2

∫
D

(r2p + s2q)φψ +

∫
D

f ′
s(x1, x2, 0)φψ

for any smooth test function ψ. Multiplying (5.3) by h2
kψ(ihk, jhk), we write

Nk∑
i,j=1

h2
kM

hk(λk)φk(ihk, jhk)ψ(ihk, jhk) = Ak + Bk + Ck + Dk,

where

Ak :=

Nk∑
i,j=1

h2
k(f

hk)′s(ihk, jhk, 0)φk(ihk, jhk)ψ(ihk, jhk),

Bk := −
Nk∑

i,j=1

h2
kp

hk
i,j(φk(ihk, jhk) − φk((i − 1)hk, jhk))(ψ(ihk, jhk) − ψ((i − 1)hk, jhk))

−
Nk∑

i,j=1

h2
kq

hk
i,j (φk(ihk, jhk) − φk(ihk, (j − 1)hk))(ψ(ihk, jhk) − ψ(ihk, (j − 1)hk)),

Ck :=

Nk∑
i,j=1

h2
kp

hk
i,j [(e

−rλk/Nk − 1)φk(ihk, jhk)ψ((i − 1)hk, jhk)

+(erλk/Nk − 1)φk((i − 1)hk, jhk)ψ(ihk, jhk)],

Dk :=

Nk∑
i,j=1

h2
kq

hk
i,j [(e

−sλk/Nk − 1)φk(ihk, jhk)ψ(ihk, (j − 1)hk)

+(esλk/Nk − 1)φk(ihk, (j − 1)hk)ψ(ihk, jhk)].

Passing to the limit, we can derive (cf. [19]) that

Nk∑
i,j=1

h2
kM

hk(λk)φk(ihk, jhk)ψ(ihk, jhk) → µγ

∫
D

φψdx1dx2 as k → +∞,

Ak →
∫

D

f ′
s(x, 0)φψdx1dx2 as k → +∞,

Bk → −
∫

D

pφx1ψx1dx1dx2 −
∫

D

qφx2ψx2dx1dx2 as k → +∞,

Ck → µ

∫
D

pr(−φx1ψ + φψx1)dx1dx2 + µ2r2

∫
D

pφψdx1dx2 as k → +∞,

Dk → µ

∫
D

qs(−φx2ψ + φψx2)dx1dx2 + µ2s2

∫
D

qφψdx1dx2 as k → +∞.
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Therefore, (5.6) is proved. Moreover, by p, q ∈ C1,δ(R2) and using the elliptic regularity

theory, φ ∈ C2,δ(R2) such that Pµφ = µγφ. Finally, by the strong maximum principle, we

have φ > 0. Hence the lemma follows. ¤

Proof of Theorem 4. By Lemma 5.3, we conclude that k(µ) = γµ and so

lim inf
N→+∞

[hc∗(h)] = γ ≥ min
λ>0

k(λ)/λ := γ∗.

On the other hand, we define

κ := lim sup
N→+∞

[hc∗(h)].

Note that 0 ≤ κ < +∞, by Lemma 5.1. Then there exists a sequence {hk} = {L/Nk} such

that Nk → +∞ and hkc∗(hk) → κ as k → +∞.

Now, we choose any positive real number ν. Then we know

hkc∗(hk) := min
λ>0

LMhk(λ)

λ
≤ LMhk(ν)

ν
.(5.7)

As in the proof of Lemma 5.1, we know

{
LMhk(ν)

ν

}
is uniformly bounded in k. Since

Mhk(ν) ≥ min
R2

f ′
s(x, y, 0) > 0 for all k,

there is a positive real number ρ such that (up to some subsequence)

LMhk(ν)

ν
→ ρ as k → +∞.

Next, following the same argument as in the proof of Lemma 5.3, we can derive that

k(ν/L) = ρν/L.

Then, by taking k → +∞ in (5.7), we obtain

κ ≤ ρ =
k(ν/L)

ν/L
.

Since ν > 0 is arbitrary, we have

lim sup
N→+∞

[hc∗(h)] := κ ≤ γ∗.

This completes the proof of Theorem 4. ¤
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