ENTIRE SOLUTIONS ORIGINATING FROM TRAVELING FRONTS
FOR A TWO-SPECIES COMPETITION-DIFFUSION SYSTEM

JONG-SHENQ GUO AND CHANG-HONG WU

ABSTRACT. This paper deals with entire solutions (classical solutions defined globally in time and
space) of a two-species strong competition model. For this system, it is well known that there
exist two-front entire solutions which behave as two traveling fronts moving towards each other
from both sides of the z-axis. In this paper, in terms of traveling fronts connecting two different
constant states from the coexistence state and the two semi-trivial states, we build entire solutions
originating from three and four fronts stuck between appropriate super and subsolutions. Moreover,
the non-existence of entire solutions originating from more than seven traveling fronts is proved.

1. INTRODUCTION

Competition between species is one of the fundamental features in ecology and occurs in virtually
every ecosystem in nature. It could often result in the survival of the fittest and may lead to
coexistence when species compete for the same resources. A typical competition model that has
been studied widely is the classical Lotka-Volterra type diffusion-competition model between two
species, which is described as follows:

(11) {ut = djugzy + r1u(l — cjqu — c1v), = €R, t € R,

vy = dovgy + Tov(1 — coou — c22v), = €R, t € R,

where u(z,t) and v(z,t) represent the population density of two competing species at the position
x and time t; di, do are the diffusion coefficients of the two species; r1, ro are the intrinsic growth
rates of the two species; ¢11 and coo stand for self-regulation of each species and ¢, co1 are the
(inter-specific) competition coefficients of species u and v, respectively. All parameters are assumed
to be positive.

By a suitable scaling (cf.[29]), system (1.1) can be reduced to the following dimensionless system

(12) {ut :uxx+u(1—u—k:v), X GR, tGR,

vy = Duge +1v(l —hu—wv), z€R, teR.

The dynamics for the related kinetic system (diffusion free) to (1.2) is well-known. It has at least
three non-negative equilibria:

(u,v) = Eg :=(0,0), E,:=(1,0), E,:=(0,1).
Furthermore, if either A,k > 1 or 0 < h, k < 1, there exists a unique positive equilibrium given by

1-k 1-h
1.3 E, = (u*,v") = <7 7>
(1.3) o= W) = (T Ty
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For any given non-negative initial data for the kinetic system (diffusion free) of (1.2), one can
classify the asymptotic behavior of solutions into four cases:
(A) f0 < k < 1< h, then limy_, 1 o (u, v)(t) = Ey.
(B) If 0 < h < 1 <k, then limy_,4 oo (u,v)(t) = Ey.
(C) If h,k > 1, then almost every trajectory tends to either E, or Ey as t — +oo depending
on the initial data. This is known as the strong competition case.
(D) If 0 < h,k < 1, then lim;—, 1 oo (u, v)(t) = E4. This case is called the weak competition case.

Traveling front solutions play a fundamental role in understanding the interaction between species
and have been studied intensively over the past four decades. By a traveling front solution, we mean
a positive solution of (1.2) in the form u(t,z) = U(x+ct) and v(t,z) = V(x+ct) for some constant
¢ such that the limits (U, V')(£o0) exist and are unequal (in the sense that U(—o0) # U(+00) and
V(—00) # V(+00)), where ¢ is called the wave speed and (U, V)(£o0) € {Eg, Ey, Ey,E,}. For
convenience, we call a traveling front solution an (E;, E;)-front if

(U,V)(=0) =E;, (U, V)(+o0) = E;j

for some i,j € {0,u, v, *}. For the related works regarding system (1.2), we refer to, for example,
[6,9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 41] and the references cited therein.

Morita and Tachibana [28] established the existence of two-front entire solutions (i.e., classical
solutions defined globally in time and space) which behave as two monotone waves approaching
from both sides of z-axis. This remarkable result suggests that a simple competition model (1.2)
may support rather complicated spatiotemporal patterns that exhibit the invasion process of the
superior species. Since there are several different (E;, E;)-fronts with i,j € {0,u,v,*}, we may
expect that there should exist more complicated mechanisms for the invasion of the superior species.

A possible pattern may be the N (N > 3) fronts entire solutions which behave as N waves
propagating from both sides of z-axis as t — —oo. In fact, very recently, Chen, Guo, Ninomiya and
Yao [5] constructed entire solutions originating from three and four monotone fronts, respectively,
for the Allen-Cahn equation. More precisely, they considered

ut:um%—f(u), reR, teR,
where f € C2(R) and satisfies some conditions such that its graph is similar to
f(u) =u(l —u)(u—a) for some a € (0,1/2).

Therein, an entire solution w originates from N traveling fronts {(c;,¢;)|j = 1,---, N} if these
wave speeds satisfy ¢; < cg < -+- < ¢y and

N
lim Z sup lu(z,t) — ¢j(z+cjt+6;)|| =0
t——co D1 wim1(t)<z<w;(t)
for some 01, - -+ ,0n € R, where w;(t) = —(¢j+c¢;j41)t/2, wo(t) := —oo and wy (t) = co. Among other
things, they also showed that entire solutions originating from N fronts for N > 5 is impossible.
Our main goal in this paper is to generalize the work [5] on the Allen-Cahn equation to the
two-species strong competition model.

The importance of the study of entire solutions of reaction-diffusion equations is frequently
recalled in the literature. Since the pioneering works of Hamel and Nadirashvili [14, 15], there have
been tremendous advances in investigating the existence of entire solutions for various models. See,
for example, [2, 3, 4, 5, 8, 12, 13, 26, 27, 28, 33, 35, 36, 37, 38, 39, 40, 42] and the references cited
therein.
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In this paper, we shall focus on the strong competition case and always assume
(H1) h>1and k> 1.

Under assumption (H1), up to symmetry, one can expect that there are (E;, Ej)-fronts with
i,j € {u,v,*}. Waves connecting either E, or E, to Eg, if they exist, are not of front type. It is
possible to have fronts connecting two equilibria Eg and E,, since E, has a one-dimensional stable
manifold.

For the existence of traveling fronts, by the results of Gardner [9], Conley, Gardner [6] and
Kan-on [19], we see that an (Ey,Ey)-front of system (1.2) exists. More precisely, there exists a
unique (up to translations) bistable traveling front solution (u,v)(x,t) = (U1, Vi)(x + c1t) of (1.2)
satisfying

alU{(&) =UT(E) + Ui(§) (1 — UL —kV1)(€), € €ER,
aVi(§) = DV{"(€) +rVi(§)(1 — Vi — hU1)(§), £ E€R,
(Ur,V1)(=00) = (0,1), (U1, V1)(+00) = (1,0),

U/ >0, V/<0 inR.

(1.4)

Note that the sign of ¢; is not completely understood (depending on the parameters). We refer to
[10, 11, 19] for some discussions.

On the other hand, under assumption (H1) system (1.2) can support monostable traveling front
connecting some suitable equilibria. In fact, one can apply the theory of Li, Weinberger and
Lewis [25] to show that there exists ¢2 max < 0 such that a monotone traveling front (u,v)(z,t) =
(U, Vo) (z+cat) of (1.2) connecting Ey and E, exists if and only if ¢ < ¢3 max; similarly, there exists
¢3min > 0 such that a monotone traveling front (u,v)(z,t) = (Us, V3)(x + cst) of (1.2) connecting
E, and E, exists if and only if c3 > ¢3 min. More details can be found in section 2.

To construct multiple-front entire solutions for system (1.2), we need the following technical
assumption:

(H2) There exists £ > 0 such that

Ui(§)
1-V;(¢)

This kind of technical assumption was first proposed in [28] and has been often used in the literature
in constructing super-sub-solutions for systems. Roughly speaking, (H2) is needed when we try
to connect (U1, V1) and (U, V2) at Ey. On the other hand, since we will also connect (Us, V3) with
(Us, Vo) at E,, a parallel condition to (H2) is required. More precisely, we need to find v > 0 such
that

>/f¢ forallé <O0andi=1,2.

Us(©) = |, u' = Us(=)
N G C

In fact, such a positive constant v always exists. See Lemma 2.6(6) and (7).

>v forall £ <0.

In addition, without loss of generality we may assume that the species u is stronger than the
species v so that
(H3) c1 > 0.

Otherwise, we may exchange the roles of v and v. Note that, under (H3), from Lemma 2.3(1)
and Lemma 2.4(1) it follows that (H2) holds if A;Z < )\jv for j =1,2.
We now state the main results of this paper as follows.
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Theorem 1. Assume (H1), (H2) and (H3). Let (c1,U1, V1), (c2,Usz, V2) and (c3,Us, V3) be an
(Ev, Ey)-front, (Ey, E,)-front and (E., Ey)-front, respectively, such that

(1.5) —c1 < ca < C2 max < 0.

Then system (1.2) admits a three-front entire solution (u,v) satisfying

3
lim { sup |u(z,t) — Ui(—z + c1t + w)| +Z sup |u(z,t) — Uj(x+cjt+w)|} =0,
t——o00 :E<91(t) ]:2 9j—1(t)<$<9j(t)
3
lim { sup |v(z,t) — Vi(—z + 1t + w)| +Z sup lv(x,t) —Vj(a:+cjt+w)|} =0
t——o00 <01 (t) =2 9‘7'_1(t)<1‘<9j(t)

for some w € R, where

01(t) := —(w)t, O5(t) == —(02 ; C3)t, 05(t) = +oc.

Furthermore,

(1.6) lim sup |u(zx,t) — 1| 4+ sup |v(z,t)| = 0.
100 R z€R

Remark 1.1. We make some remarks as follows.

(i) The proof Theorem 1 is based on the construction of appropriate super and subsolutions.
For single equation case [27, 5], the authors constructed an auziliary rational function, say
Q-function, which can help them further construct a suitable pair of super-sub solutions.
We may expect that this idea should be able to work on monotone systems if a vector-
valued Q-function can be found. Fortunately, we can make it by extending the key function
constructed in [5] to a vector-valued function. Besides, we need condition (H2) to establish
some crucial estimates which cannot be obtained directly from those in [5] since we face a
system rather than a single equation.

(ii) The crucial estimates rely on the asymptotical behavior of traveling fronts. The asymp-
totic behavior of (Ey,Ey) fronts has been established (see, e.g., [28]); while the asymptotic
behavior of (Ey, E,)-fronts and (E,, Ey)-fronts near Ey and Ey can be done similarly, re-
spectively. However, the asymptotic behavior of fronts near the coexistence state E, is more
complicated than other cases and needs to be investigated carefully. See Lemma 2.4.

(iii) We provide a condition such that (H1), (H2), (H3) and (1.5) hold simultaneously using
the results of [18] and [31]. By the main theorem of [18], there exists a monotone (Ey,E,)-
front if co < —2+/k —1 under the assumption D = 1. Next, we shall choose suitable
parameters such that an (Ey, Ey)-front exists for some ¢y > 0 in terms of the existence of
exact solutions reported in [31], where they consider positive exact solutions of the following

system:
' =0"+U1-U-kV), ¢€R,
V' =DV"+U(a—V —hU), €E€R,
U

(Ua V)(_OO) = (0,0,), ( 7V)(OO) = (170)3
U>0, V<0 mR,
in which 1//% <a<h. To apply their result, we introduce the change of variables
a=r, E:E, ﬁ:rh, ﬁ:Ul, 17:7“‘/1.

T
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Then system (1.7) is reduced to system (1.4) with 1/k <1 < h. From [31, p.261], we see
that (1.4) has a solution with c; = (2 — k)/v/2k if the following conditions hold:
(1.8) D:gik, rh:2+5§r—k, 6+ 2r — 3k > 0.

Let us choose k ~ 1, r = 3k (such that D = 1) and h = (2 + 4k)/3k such that (1.8)
holds. This implies the existence of an (Ey,Ey)-front with speed c¢1 ~ 1/4/2 and so (H1)
and (H3) hold. Also, one can choose co = —2+/k — 1 such that (1.5) hold because k ~ 1.
Moreover, it is clear that the above choice of D, k, h and r implies that )\;ZL < )\;;] forj=1,2
(see Lemma 2.3(1) and Lemma 2.4(2)). Hence, (H2) holds. Consequently, the hypothesis
of Theorem 1 is not void.

Following the approach used in the proof of Theorem 1 and some ideas from [5] with some
suitable changes, we can establish another type of three-front and a four-front entire solutions as
follows.

Theorem 2. Assume (H1), (H2) and (H3). Let (c1,U1,V1) be an (Ey,Ey)-front and both
(c2,Uz,Va) and (¢2,Uz, V) be (Ey,E,)-fronts such that (1.5) holds. Then system (1.2) admits
a three-front entire solution (u,v) satisfying

lim { sup |u(z,t) —Ui(—x +cit +wi)|+  sup  |u(z,t) — Us(z + cot + wi)|
t==o0 L a<o(t) 01 (t)<z<0a(t)

+ sup Ju(w,t) — Ua(—2 + ot — wo)| | = 0,
x>02(t)

lim { sup |v(z,t) —Vi(—x+cat+w)|+  sup  |u(z,t) — Va(x + cot + wi)]
t==00 L 2<01(t) 01 (t)<z<ba(t)

+osup |o(z,t) — Va(—x + 6t — wQ)|} =0
>62(t)
for some wi,ws € R, where
_ (Tatc o co —Co
01(t) = (72 )t, 0s(t) := ( > )t.
Furthermore, (u,v)(-,t) = (1,0) as t — oo uniformly in (—oo, L) for any L € R.
Theorem 3. Assume (H1), (H2) and (H3). Let (c1,U1, V1) be an (Ey, Ey)-front and (ca, Usa, V2)

be an (Ey,E,)-front such that (1.5) holds. Then system (1.2) admits a four-front entire solution
(u,v) satisfying

lim { sup |u(z,t) —Ur(—z +at+wi)[+ sup |u(z,t) — Us(z + cat + wo)|
t=—00 L <01 (t) 01 (t)<z<0

+  sup  |u(z,t) —Us(—z +cot +wo)|+ sup |u(z,t) —Ui(z+ it + wl)\} =0,

nggfel(t) xzfel(t)
lim { sup |v(z,t) = Vi(—z +ct+wi)|+ sup |v(z,t) — Va(x + cot + wa)
t==o0 L a<o(t) 01 (t)<z<0

+ sup  |u(x,t) — Va(—x 4+ cot +wo)| + sup |u(z,t) — Vi(x + it + wl)\} =0
0§x§791(t) z>—0 (t)

for some wi,was € R, where

01(t) == —(_017“2)7:.

Furthermore, the long time behavior (1.6) holds true.
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Finally, we show that there is no entire solution of (1.2) originating from N fronts if N > 7.

Theorem 4. For N > 7, there does not exist entire solution originating from N fronts {(c;,U;,V;) |
j=1,--- N} satisfying

(1.9) cr<cp<:---<CN

such that

N
(1.10) lim Z sup ‘u(w,t) —Uj(x—l—cjt—i—ﬁj)‘ =0,
2700 | i wim1 (O <e<w;(?)

N
(1.11) lim Z sup ‘v(m,t) —Vj(x—kcjt—k@j)‘ =0,
t—=—00 i1 wim1(t)<w<w;(t)
for some 6y,---,0n € R, where —cji1t < wj(t) < —cjt for j =1,--- N —1, wy(t) := —o0 and

wy(t) = 0.

We organize the rest of this article as follows. Section 2 is divided into four subsections. In §2.1,
we show the existence of monostable traveling fronts connecting different equilibria in terms of the
theory of Li, Weinberger and Lewis [25]. In §2.2, the asymptotic behavior of traveling fronts are
discussed. In §2.3, we construct a suitable Q-function for our system by extending the Q-function
constructed in [5] to a vector-valued function and recall some known results. In §2.4, we establish
some important estimates. In Section 3, we prove our main results. Finally, Section 4 is the
appendix in which a proof of Lemma 2.9 is given and some results from [12] are collected into a
lemma for the reader’s convenience.

2. PRELIMINARIES

By the standard transformation
w(z,t) :=1—v(x,t),

we can transfer (1.2) into the following cooperative system:

21) U = Ugy + flu,w), xR, tER,
‘ wy = Dwgy + g(u,w), xR, t R,
where
(2.2) flu,w)=u[l —u—Ek(1 —w)], glu,w):=r(1l—w)(hu—w).

Then ODE equilibria of (1.2): Ey = (0,1), E, = (1,0) and E, = (u*,v*) are transferred into
0:=(0,0), 1 :=(1,1) and the intermediate (coexistence) equilibrium

1—k h(l—k))

(2.3) Er = (u*,w") == (u*,1—v*)=(1_hk, —

respectively. Hereafter, we shall always use 0, 1 and Ej to be ODE equilibria of (2.1). Under
assumption (H1), 0 and 1 are stable; while Ej is unstable in the ODE sense.



ENTIRE SOLUTIONS 7

2.1. Monostable fronts. The existence of monostable traveling fronts for monotone systems has
been investigated extensively. Various approaches can be found in the literature. See, for examples,
the Leray-Schauder method [34], the continuation method [21], the upper-lower solution method [7],
the theory of monotone semiflows [25] and references therein. Here we shall construct monostable
fronts connecting different equilibria in terms of the theory of [25].

Let us recall the framework used in [25] as follows. Consider the reaction-diffusion system

{ut = duy, + F(u),

(2.4) u(z,0) =ug(z), z€R,

where u := (uy,u2) and F are 2-vectors; while d := diagonal(di, ds) is a constant diagonal matrix.

Some notation are listed as follows: u(z) > v(x) means that u;(x) > v;(z) for all ¢ and z; u > v
means that u;(x) > v;(x) for all i and z. For any given constant 2-vector 3 > 0, we define the
function space

Cp := {u(z)| u(x) is continuous and 0 < u(z) < B}.

For system (2.4), one can denote time-t maps Q; by Q¢[ug](z) := u(z,t), where @Q; takes the
initial value of u to the value of u at time ¢. Clearly, the family of Q; forms a semigroup. Then u
is a traveling front solution u(x,t) = U(x + ct) with speed ¢ if and only if Q;[U](z) = U(x + ct)
for all t > 0 with the limits U(%00) exist and are unequal.

The following result can be seen as a special case of [25, Theorem 4.2].

Proposition 1. Suppose that system (2.4) satisfies the following five conditions:

(i) F(0) = 0, and there is a 3> 0 such that F(3) = 0 which is minimal in the sense there is
no constant v other than 0 and B3 such that F(v) =0 and 0 < v < 3.

(ii) The system (2.4) is cooperative.

(iii) F does not depend explicitly on either x or t, and the diagonal matriz d is constant.

(iv) F(v) is continuous and has uniformly bounded piecewise continuous first partial derivatives
for 0 < v < B, and it is differentiable at 0. The Jacobian matriz F'(0), whose off-diagonal
entries are non-negative, has a positive eigenvalue whose eitgenvector has positive compo-
nents.

(v) The mobilities d;, which are the diagonal and only non-zero entries of d, are all positive.

Then there exists ¢* > 0 such that for every ¢ > c*, the system (2.4) has a non-decreasing traveling
wave solution U(z + ct) of speed ¢ with U(4+00) = B and U(—oc0) a zero of F other than .
If there is a traveling wave U(x + ct) with U(4+o00) = B such that for at least one component i
liminf, ,_o U;(z) =0, then ¢ > c*.

Remark 2.1. We remark that Proposition 1 is a partial result of Theorem 4.2 of [25]. Therein,
they considered more general models which can contain advection terms.

We can apply Proposition 1 to obtain the following result.

Lemma 2.1. There ezists c3min > 0 such that a non-decreasing traveling front (u,w)(z,t) =
(U3, W3)(x + c3t) of (2.1) connecting Ex and 1 exists if and only if c3 > €3 min-

Proof. In order to apply Proposition 1, we define

(2.5) (U, ) := (u—u*,w—w").
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Putting this form into (2.1), we see that (@, w) satisfies

26) {at:aerFl(a,w), r €R, tER,

Wy = Dby + Fo(1,1), 2 €R, teR,

where

Define F := (F},F) and B := (1 — u*,1 — w*). We now check that conditions (i)-(v) of

Proposition 1 hold. For (i), clearly, F(0) = F(8) = 0. Also, by (H1),
. e (k(1—=h) 1—h
B=l-wit-w) = (T g ) >0

Note that (2.1) has only two ODE equilibria Ey and 1 over {u := (u,w)|Er < u < 1}, it follows
that there is no constant v other than 0 and 3 such that F(v) = 0 and 0 < v < 3. Hence (i)
holds.

Since 0F; /0w > 0 and 0F>/0u > 0 in {0 < (4,w) < B}, we see that (ii) follows. From (2.6), it
is easy to see that (iii) and (v) hold. For (iv), one can calculate

F/(0) = < hr(l_g*UJ*) —r(fu—*w*) ) '

By (H1) we have
detF’(0) = (1 — hk)ru*(1 — w*) < 0,

which means that F/(0) has a positive eigenvalue. It is easy to check that all conditions in (iv) are
satisfied. Hence conditions (i)-(v) hold for system (2.1). Moreover, there is no non-negative ODE
equilibrium except 0 and 3 in Cg. By Proposition 1, there exists c3min > 0 such that there is a
non-decreasing traveling front (u,w)(x,t) = (Us, W3)(x 4 cst) of (2.1) connecting Ey and 1 if and
only if ¢3 > ¢3 min. This completes the proof. ]

By Lemma 2.1, for any ¢3 > ¢3 min, there exists (c3, Us, W3) such that
CgUé = U?/)’ + U3[1 —U; — /{(1 — W3)], EeR,
CgWé = DWé’ + 7”(1 — Wg)(hU3 — Wg), £ EeR,

(Us,W3)(—00) = E1, (U3, W3)(400) =1,
U3 >0, W3>0 inR.

(2.7)

Note that the strict monotonicity of Us and W3 follows from the strong maximum principle.
Similarly, one can establish the existence of (0, Ejp)-fronts to system (2.1). Indeed, instead of
using the transformation (2.5), we define

(U, W) := (—u+u*, —w + w").
Again putting this form into (2.1), then (@, w) satisfies

Gy = lige + F1(0,0), z€R, teR,
Wy = DWyy + Fo(u,w), z€R, teR,
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where
Fl (ﬂ’a
F2 (ﬂa

<,

J=(—u)l+a—u" —k(1+w—w"),
)i =r(1+w—w")h(a—u") -0+ w".

£

Define F := (Fy, F3) and 8 := (u*,w*). Using a similar process to that of the proof of Lemma 2.1,
we can obtain the following result. The detailed proof is omitted.

Lemma 2.2. There exists comax < 0 such that a non-decreasing traveling front (u,w)(z,t) =
(Ua, Wa)(x + cat) of (2.1) connecting 0 and Eg exists if and only if ca < ¢2 max-

From Lemma 2.2, for any ¢z < ¢2 max, there exists (c2, Uz, Wa) which satisfies
CQUé = Ué’ + UQ[l — Uy — k‘(l — WQ)], EeR,

CQW2/ = DWQH -+ T'(l — WQ)(hUQ — WQ), £ eR,

(UQ, Wg)(—oo) =0, (U, V)(+oo) = Eg,

Uy>0, W3>0 inR.

(2.8)

2.2. Asymptotic behavior of traveling fronts. In this subsection, we provide the asymptotic
behavior of (Ey,E,) fronts, (Ey, E,)-fronts and (E., E,)-fronts near £ = +o0, respectively. The
following result can be found in [28].

Lemma 2.3 ([28] The asymptotic behavior of (Ey, Ey) fronts at { = +00). Let (¢1,U1, V1) be a
solution of (1.4) with ¢; > 0. Then the following hold:

(1) Define X, and X, as the positive root of
M A+ (1—k)=0and DN —c A —r =0,

respectively. Then

Ul(g) 1_‘/1(5)):(A+ A—li_v)

m
£5—00 (exfuf TR tuw

for some positive constants AT and AT, where

1lu 1v’

0 if A, # A

Fo=min{A] A}, 4 = L
e {Muw Al m 1 AR = AT
(2) Define A\, and A}, as the negative root of

M Ad—1=0and DX —cA+7(1—h)=0,

respectively. Then

i (L2000 VI©) ey

Eortoo \ g efr € Mt e
for some positive constants A}, and Aj, , where
0 if A\, # AL,
Br=max{An, AL} = 7 A
1 if AL, = AL,

Next, we provide the asymptotic behavior of (Ey, E,)-fronts at £ = +00.
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Lemma 2.4 (The Asymptotic behavior of (Ey, E,)-fronts at £ = £00). Let (c2, Uz, Va) be a solution
of (2.8) with ca < ¢ max < 0. Then the following hold:

(1) Define NS, and N, as the positive root of
N — oA+ (1— k) =0 and DA2 — eod —7 = 0,

respectively. Then
(D29 12400
E——o00

Al ¢z B2 €

) = (48, 43,)

for some positive constants A;u and A;v, where

0 if A}, # AL,

= min{\} , ]}, =
B { 2u 21)} Y2 {1 i )‘;ru:)‘;v'

(2) Define the characteristic equation
Py(\) := (A% — co\ — u*)(DA? — co\ — 10*) — rhku*v* =0
Then
(2.9)

W UE) VO vy _ e gy

11m
£—>+oo< ‘51756/\55 |€[72 era € 2w

for some positive constants A, and A, , where u* and v* are given in (1.3), A\, is some
negative zero of Ps, and

_ 0 if Ay is a simple zero of P,
’}/ =
2 0 orl if Ay is a double zero of Ps.

Proof. Since the proof of (1) is similar to that of [28, Lemma 2.3], we omit the proof. We now deal
with (2). Let us write

Py(\) = Ry(\)Ro(N) — rhku™v*,
where
Ri(\) :== A2 —cph—u*,  Ro(N) := DA% — e\ — 10™,
Note that Ry (resp., R2) has one positive zero py (resp., o) and one negative zero u_ (resp., o_),

where
co £ \/c3 + 4u* _ cp £ /3 + 4Drv*
2D '

M+ = 2 5 04 =

To locate the zeros of P, we divide R into six disjoint intervals
I := (—oo,min{u_,o_}], Ip:(min{p_,o_}, max{u_,o_}],
I3 := (max{p_,o_},0), Ij:=[0,min{py,o04}),
I5 := [min{py, 04}, max{puy,04}), le := [max{ps, 04}, 00).
Some simple facts are given as follows:
(i) P2(0) = ru*v*(1 — hk) < 0 (since h,k > 1) and Py(p+) = Pa(04) = —ru*v*hk < 0.
(ii) P» is decreasing in I; and is increasing in I with Ps(+00) = oo.
(iii) Po(N) < —ru*v*hk < 0 for all A € Iy U I5.
)

(iv Pg is decreasing in 4, since c2 < 0 implies R}(-) > 0 in [0,00) for j = 1,2, it follows that
R/ Ry + RlR/ < 0in Iy.
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By (i) and (ii), we see that P, has exactly one negative zero in I; (say 1) and exactly one positive
zero in Ig (say k4). From (i), (iii) and (iv), it follows that P, has no zero in Iy U Iy U I5. Also, since
P, has at most four real zeros, we have the following three possibilities:

(a) P» has four simple zeros k1 < ko < k3 < 0 < kg with ko, k3 € I3.
(b) P; has four zeros k1 < ko = k3 < 0 < k4 with one double zero ko € I3.
(c¢) P, has only two real zeros, i.e., k1 € I} and k4 € I, and has two conjugate complex zeros.

We now define
(X17 X27 X37 X4)(£) = (U27 Ué> VY27 VQI)(g)

Then by the first two equations of (2.8), we have

/

X1 X2
X9 c2 X2 —f(leXS)
2.1 =
(2.10) X, X,
X4 2 Xy — 59(X1,73)
By considering the linearized system of (2.10) at (X1, Xs, X3, X4) = (u*,0,v*,0), we have
v\’ 0O 1 0 0 Y Yy
YQ u* C2 kv* 0 Y2 }/2
2.11 = =J
( ) Ys 0 0 0 1 Ys Ys
Y, L Yy Yy

By cofactor expansion, the characteristic polynomial of J is
det(J — AI) = Po(A) = R1(N)Ra(\) — rhku™v™.

Note that we have located the zeros of P5 above. See (a)-(c) above.
Case 1 : assume that (a) holds. Namely, J has four distinct real eigenvalues k1 < k2 < k3 < 0 <
k4. By some simple calculations, we can find an eigenvector

Rl(/ﬂ) E'Rl(%i)>T
ku* " ku*

with respect to eigenvalue k; (i = 1,2, 3,4). It follows that every solution of (2.11) that approaches

to 0 as £ — oo can be represented by

(2.12) Vi = (1,/-%7

Y1 ,
Yo | _ Rl
Ys = Z Ciesv;
Y,
for some constants C;, ¢ = 1,2,3. By the unstable manifold theorem, as & — oo, we have
Us(€) X1(8) WY 10 e*’"@
Us(8) X5(¢) i, Cimie"
2.13 2 = = iy . + h.o.t.
(219 % (€) Xa(6) vy, Gl o
Vi(6) X4 (6) S8 Gy Tl g,

for some constants C; (i = 1,2,3).
Next, we show that 022 + C’§ # 0. For contradiction we assume that Co = C3 = 0. Then from
(2.13), we see that
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oo ef1€ ku*

(2.14) im 228 o gy 2O Rls) A
£—o0 er1é 13

Since Ry(r1) > 0, we see from (2.14) that U’ and V' have the same sign for all large &, which
contradicts the fact that U} > 0 and V§ < 0 in R. Hence, C2 4+ C2 # 0. Then we obtain (2.9) with
v, = 0 and either A, = ko (if C5 = 0) or Ay = kg (if Cs #0).

Case 2 : assume that (b) holds. Namely, J has real eigenvalues k; < ko = k3 < 0 < k4. Since
the dimension of the generalized eigenspace corresponding to eigenvalue A = ko is two, by some
calculations, J has a generalized eigenvector

Ri(k2)\T
)
for some constant v. Hence, every solution of (2.11) that approaches to 0 as & — oo can be
represented by

(1 14+ A\ v, kov +

Y1
Yo
Y3
Yy

= Cle“1£v1 + CQ€K2§V2 + Cge’w&(VQg + G),

where v;, i = 1,2, are given in (2.12) and C;, i = 1,2,3, are some constants. By the unstable
manifold theorem, as £ — oo, we have

Us(€) w4+ 3F, Cieri€ 4 Cyem(§+ 1),

Us€) | _ Yoi Cikieti€ + Cae™ (126 + 1 + kp) o
‘/‘2(&') v* _I_EZQ 107,R]i(m) NZ&—FC 652€(£R1(m) T ko I/) .0.T.
V5(8) 2 Cikg R,ig?) ri€ 4 036“25(525 4 kv + R}C('?)).

for some constants C’Z- (i =1,2,3). Similar to the discussion in Case 1, if 022 + CA’% =0,U" and V'
must have the same sign for all large &, which leads to a contradiction since Uj > 0 and Vj < 0 in
R. Hence C2 + C2 # 0, which implies (2.9) with A; = k2 and either v; = 0 (if C5 = 0) or v; = 1
(if Cs # 0).

Case 3 assume that (c) holds. Since J already has two real eigenvalues k1 < 0 < k4, the complex
eigenvalues are conjugate pairs a+bi (b > 0). By simple calculations, we have Py(bi) # 0. It follows
that a # 0. If a > 0, then J has only one eigenvalue with negative real part. By the unstable
manifold theorem, we again have (2.14). Recall that Ri(k1) > 0. Again, it contradicts the fact
that U) > 0 and Vj < 0 in R. Hence, a > 0 is impossible. If a < 0, then every solution of (2.11)
that approaches to 0 as £ — oo is represented by

Y1 cos b& sin b§
Y-
21 = Cre™8vy + Coe w2 + Cze® 2 ,
Ys w3 Z3
Yy wy 24

where vy is given in (2.12) and Cj,w;, z; € R. Since a < 0, by the unstable manifold theorem, as
§ — 00,

(2.15) {U (€) = u* + Cremit + Che€ cos b + Cae sinbg + hoo.t.,

V(E)=v"+ (/j\ Rl(nl) e 4 626“511)3 + 636‘1623 + h.o.t.,
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for some @ eRfori=1,2,3.
We now show that a = ;. For contradiction we assume that a # k1. If a > k1, we can obtain
C3 + C3 # 0. Otherwise, from (2.15) we have

(2.16) lim U) —u _ Gy, lim V() —v" & Ry (ki)

500 efé 500 efté ku*

which contradicts the fact that U < u* and v* < V in R. Hence we have 6’22 + 6:3 # 0. Then due to
the assumption 0 > a > k1, u* — U(§) must change sign infinitely many times for all £ > 1, which
is impossible since U < u* in R. It follows that a < k;. If a < Ky, from (2.15) we see that (2.16)
holds, which again contradicts the fact that U < «* and v* < V in R. Consequently, we must have
a = k1. Clearly, (2.15) implies (2.9) with A\; = k1 and v, = 0. This completes the proof. O

Finally, we provide the asymptotic behavior of (E,, Ey)-fronts at £ = +oo. Since the proof is
similar that of Lemma 2.4, we shall omit the proof here.

Lemma 2.5 (The Asymptotic behavior of (E,, Ey)-fronts at £ = +00). Let (c3,Us, V3) be a solution
of (2.8) with c3 > c3min > 0. Then the following hold:

(1) Define the characteristic equation
P3(\) = (A% — 3\ — u*)(DA? — c3\ — rv*) — rhku*v* =0

Then

o (Us(§) —ut vt —V5(8)
égan ( F Fe F ot ): (A;U’Ag_v)
oo \ g7 ers € |g]s ets €

for some positive constants A;Qu and A;Q), where )\;{ 18 some positive zero of Ps3 and

+ _
0orl af )\;' is a double zero of Ps.

{0 if /\; is a simple zero of Ps,
Y3 =

(2) Define Ag, and X3, as the negative roots of
A —c3A—1=0and D\? —c3A +7(1 —h) =0,

respectively. Then

{—+o0 |§’73 ebs & |§’eﬂ3v€

for some positive constants Az, and As, , where

0 if Ay, # Ay

By i=max{A;,, A3}, V3 =
3 Paw Az ks 73 1 if Ap, = A3,

As a corollary, we have the following estimates on (U;, W;), i = 1,2, 3, at £ = +o0.
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Lemma 2.6. There exist a; >0, 8; >0,1=1,2,3, and K;, j=1,---
p<0,

,9, such that for any given

1,2,3,

< K¢ forxz=—p,

< Ky forx < —p,

) Ul +p)| + W +p)| < Kae®CP  forz< —pi=

@) [U(r—p) +|W.(e —p)| < Kae P @D forz>p,i=1,23,
|Ui(z —p)| . [Wi(xz —p)|

O GG T W) S Ko forass
- Uie—p)| | [1- Wi —p)

W el T Wi =K frezp
\Ua(x +p)| . [Wa(x+ p)|

O Terpl T W@ ST fresor

(6) Wa(z +p) —w*|  |Ua(x+p)—u*| |[Wa(z+p) —w*|
\Us(x + p) — u*| |Us(x + p) |W5(x + p)|

(7) (Wa(x+p) —w*|  |Us(z+p)—u*| |[Wi(xz+p) —w
\Us(x + p) — u*| \Us(x + p)| |W5(x + p)|
\Us(zx +p) — 1|  |[W3(z+p)—1]

®) el T Wit =N fre=-p
- Wiz —p)|  [1- Walz—p)|

(9) =0 =) = Us(a = )’_Kg for x € R.

Proof. These results immediately follow from Lemma 2.3, Lemma 2.4 and Lemma 2.5.

2.3. The construction of Q-function. In this subsection, we shall

introduce the Q-function

which plays a crucial role in the construction of a pair of super-sub-solution.
The Q-function for the two-species system is a vector-valued function with two components,

which is defined by Q(y, z,7) =
structed by Chen et al. [5]:

(Qla Q2)(ya 2 77)'

(1 —y)z(n —a;) +yla; — 2)(1
(1—y)z(1 —a;) + (a; — 2)(1

defined on D; for ¢ = 1,2, where a1 := u*, a9 := w* and

— 1)

(2.17) -

Qily,z,n) =z+ (1 —2)

Y

(2.18)
(2.19)

D; :=[0,1] x [0, a;] x [as, 1]\ (JEU JZ U J}),

With the same calculations as in [5], the first and second derivatives of

For each component, we adopt the form con-

i=1,2,

Jil = {(yvoal)’OSyS 1}7 Jzz = {(17z71)’0§2§ai}7 JE’ = {(Laz‘ﬂ])’ai <n< 1}’

Q; satisfy some properties

which are listed in the following two lemmas. See the proof of [5, Lemma 3.1].

Lemma 2.7. It holds that

o — all= 2=

Y = y)z(1 = @) + (4 — 2)(1 =)
0; (1 —a)ai(l —y)(1 —n)(n—y)

1 = y)z(1 = @) + (@ — 2) (1= )]
Qi = ai(1—a;)(1 —y)%z(1 — 2)

T = y)z(1 = a) + (@ = 2) (1 =)
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and
Oy — 2(1 — a;)a;z(1 — 2)(a; — 2)(1 — n)?
Wy [(1 — ) (1 — al) + (aZ Z)( 77)}37
0,.. — 2= aail =y =n)n = y)ln —ai = y(1 — @)
- [(1=9)2(1—a;) + (a; — 2)(1 — )]’ )
O = 2(1 — ag)ai(1 — y)*z(a; — 2)(1 — z)
1 = y)z(1 = a;) + (a; — 2)(1— )P
Qi :_(1_ai)ai(l_77)2[(3/—7])Z+ai(1_2y—2+n+yz)]
v [(1—y)z(1 —a;) + (a; — 2)(1 — n)]3 )
Qi = _2(1 —a;)a;(1 —y)z(a; —2)(1 — 2)(1 —n)
v (1 =y)z(l —a;) + (a; —2)(L=n)]*
Qiy = — (1 —ag)ai(1 —)2[(n —y)z + ai(—1 4+ 0+ z — 221 + y=2)]

(1 =y)z(1 — ai) + (i — 2)(1 —n)P? ’

where i =1, 2.

Lemma 2.8. Let Q := (Q1,Q2) be defined in (2.17). Then the following results hold:

(1) Qi, i = 1,2, can be rewritten as

(o n _ s (1—ai)(n—y)
Qz(yv 77’) er(l y) (1—y)z(1—al) (az_ )( )

. z = w a; — 2 - L '
Qily,zm) =w (e =) =) G S T @ = =)

(2) There exist functions Q;j, i = 1,2, j =1,2,3, such that

Qiy(yazW) = (a’i - Z)(l - T])Qil(y)zvn)v
Qiz(?h Z?ﬁ) = (1 - y)(l - W)QZQ(% 2777),
Qin(y,z,m) = (1 — y)2Qis(y, z,1).

(3) There ezist functions @ i(y,z,m),1=1,2, 5=1,---,16, such that

Qiyy(ys 2,1) = 2Qi1 = (a; — 2)Qi2 = (1 — 1) Qi3

Qi==(y, 2:m) = (1 — 1) Qi = (1 — n)Qis = yQis + (n — a;)Qir,
Qimn(y, 2,1) = (1 — y)Qis = 2Qis = (a; — 2)Qiro,

Qiy=(y,2m) = 1= Qint,  Qizy(y, 2,1) = (1 — y)Qi12,

Qiyn(y: 2,1) = (1 = Y)Qirz = 2Qina = (a; — 2)Qirs = (1 — n)Qite-

2.4. Super-sub-solutions and crucial estimates. In this section, we extend the approach used
in [27, 5] to the current two-species competition model.

For convenience, we introduce notation o; and (¢;,v;), ¢ = 1,2,3, to be wave speeds and wave
profiles, respectively, of traveling fronts as follows. Define

(220) 01:=—c, 02:=C < C2max;, 03 1= C3 > C3,min
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and (¢;, ;) (z + o;t) as a traveling fronts of (2.1) satisfying

O—l¢;, = ¢;,/ + f<¢zaw’b)7 € € R7
(¢i, i) (—o0) = Liy (91, 9i)(+00) = Ry,

for i = 1,2,3. Here we shall give a detailed argument for the case when

(Ltha L27 R27 L37 R3) = (17 07 07 EIvEL 1)7

so that we have
(01,91)(€) = (U, W1)(=8),  (¢i,¥i)(§) = (Ui, W;)(§) fori=2,3.
Using the boundary conditions of (¢;, ;) at 00 and the strict monotonicity of (¢;, ;)
suitable translations (shifting to the right enough), we may assume that

*

) < e <1,
(221) 0% (om0 < 2.9,
(' 0%) < (85,05)(0) < (50, ),
Recall that w(z,t) := 1 — v(z,t) and set
(u(z, 1), w(z, 1) = (U(E ), W(E, ), €=+, 5= ‘; 72

Then we have
EteER,

U =Ug —aUc+ f(U W),
§,tER,

(2.22)
Wi =DWee —aWe + g(U,W),

where f and g are defined by (2.2).
By direct computation, we can easily see that (2.22) has the following traveling front solutions

(U W)(E, 1) = (¢1, 1) (§ = s1t), (P2, 92)(§ + s1), (¢3,93)(§ + s2t),
—01 — 02
2

where
09 — 0O 203 —01—0O
(2.23) 51 1= 22 L>0, spi=o3—5="22 21 2 > 51,
Next, we introduce some auxiliary smooth functions ¢;, i = 1,2, 3, defined on I := (—o00,0) such

that
tel.

@1(t) <0< —qa(t) < —g3(t),

These functions will be given precisely later.

Define
—Uge +0Ue + f(U W),

NiU,W](E,1) == Uy
No[U, W](£, 1) := Wy — DWee + 6We + g(U, W).

(Q1,Q2) constructed in the previous subsection and put
U t) = Qi(d1(§ — (1)), p2(€ + q2(1)), #3(€ + g3(1))),
W(& 1) = Qa(v1(€ — qu(t)), Ya(€ + a2(1)), ¥3(€ + g3(1)))

Recall Q :=
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into the operators N7 and No. Then by some calculations we have

(2.24) N1[Q1(01, 2, ¢3), Q2(Y1, Y2, 93)]
= —Quy#1(q1 — 51) + Q205(q5 — 51) + Quyd3(q3 — s2)
_Gl (¢17 ¢27 ¢3) - Hl((bla @2, (1)3)7

where

G = Qlyy(ﬁﬁ,l)Q + lez(‘blz)Q + ann(¢é)2 + Z[Qlyz<25/1¢l2 + Qlyndﬂ?g + len¢l2¢g];
Hy = f(Q) — Quyf(®1) — Q12f(P2) — Quy f(P3),

where, for convenience, we write

(225) (I)z = (gbl,wz), 1= 1, 2, 3.
and ¢; = ¢;(€ — qi(t)), i = Vi (€ — ¢;(t)) for i = 1,2, 3. Similarly, we have
(2.26) No[Q1(01, b2, ¢3), Q2(V1, Y2, 13)]

= —Qay¥5(q1 — 51) + Q2:05(dh — s1) + Quy¥3(d5 — 52)
_G2(¢1,¢2a¢3) - HQ(q)l?(I)Q?(I)?))a

where

Gy = Qayy (V1)? + Q22 (¥h)? + Qo (15)” + 2[Qay=t 9% + Qayythi Vs + Quanbyth],
Hy = g(Q) — Q2y9(P1) — Q2:9(P2) — Q29(P3).

Set
DH = D1 X DQ,
where Dj is defined in (2.18), 7 = 1,2. Then we have

Lemma 2.9. The following results hold true.

(i) It holds that

H;(1,x9,x3) = H;(x1,0,x3) = Hij(x1,E[,x3) = Hi(x1,%2,1) = H;(0,x2,Ef) =0

ort=1,2.
(ii) J;here exist some continuous functions ﬁi(Xl,XQ,Xg), 1=1,2, such that
H;(x1,%2,%3) = [|1 = x1]| x [xa]| x |[Ex = x| x [|1 = xs[| x Hi(x1,%2,%3),
where
(2.27) Hy(x1,%9,%3) := x1 - (Hi1, Hiz) + (x3 — Ex) - (Hi3, Hys)
for some continuous functions flij, i=1,2, j=1,2,3,4, defined on Dy, and || - || denotes

the standard Euclidean norm.

Lemma 2.9(ii) plays a crucial role in establishing key estimates. The proof is presented in the
appendix.
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Lemma 2.10. There exist positive constants My and m1 such that

m1 < Quy(1(€ — 1), 92(§ + q2), #3(§ + q3)) < My for § € (—00, —¢a],
m1 < Qay(V1(§ — q1),¥V2(€ + q2), ¥3(§ + g3)) < My for § € (=00, —q2],
m1 < Q1z(01(§ — q1), 92(€ + q2), 93(§ +q3)) < My for € € [q1, —g3],
m1 < Qo (V1(€§ — q1),¥2(§ + q2), ¥3(§ 4+ q3)) < My for & € [q1, —gs],
m1 < Quy(d1(€ — q1), d2(§ + q2), ¢3(§ +q3)) < My for § € [—ga,00),
m1 < Qay(Y1(§ — q1), V2§ + q2), ¥3(E+q3)) < My for € € [—q2,00),
for any given ¢1 < 0 < —q2 < —qs3.

Proof. We divide R into four intervals: (—oo, ¢1], [q1, —¢2], [—q2, —g3] and [—g3,00). By (2.21) and
the monotonicity of the wave profile, we see that for all £ € (—o0, q1],

(2.2 < ()€ —a) <1
0< (@nua)E + ) < (5.0,
(' u) < (60, 0)(€ + a) < (0 1Y
Similarly, for & € [q1, —q2],
0 < (¢1,91)(€ — @1) < (61,91)(0),
0< (6o )+ ) < (400
(' ) < (65, ) (€ +a) < (5 TED
For € € [~q2, —g3],
0 < (¢1,91)(§ — q1) < (¢1,¢1)(0),
(¢2,¥2)(0) < (¢2,92)(§ + q2) < (v, w"),
| 0%) < (6. 0) (€ +ap) < (0 2ET

2 72

For £ € [~g3,00),
0 < (¢1,91)(§ — q1) < (¢1,41)(0),
(02,92)(0) < (d2,92)(§ + q2) < (u”,w"),
(03,93)(0) < (#3,93)(§ +¢3) < 1.

From the above inequalities, we can easily check that (¢1, @2, ¢3) (resp., (¥1,12,%3)) is far away

from J¥ (resp., J§) for k = 1,2,3 (JF is defined by (2.19)). In fact, we see that the denominator
and the numerator of Q;y, Q. and Qs (see Lemma 2.7), i = 1, 2, satisfy

0 < (1 —u")(1—¢1)p2 + (u* — g2)(1 —d3) < Lo, EER,
b3 < (1 —w*)(1 —91)hg + (w* —Pa)(1 —P3) < Ly, EER,
(2.98) U5 < (1= o) (u* — ¢2)(1 — 43)* < L, &€ (—00,—qa],
Uy < (1 —ahg)(w* — 2) (1 —tp3)> < b, & € (—o0, —qa,
lg < (1 —wi1)(l —ws)(wz —w2) <lyo, E€[q,—aq3], wi= i,
(1 < (1 —w1)?we(l —ws) < lyg, € E€[—qa,0), w;= i,
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for all ¢; satisfying ¢1 < 0 < —g2 < —g3, where £1,--- , {12 are some positive constants. Hence the
proof of Lemma 2.10 is completed. O

By Lemma 2.8, Lemma 2.9 and Lemma 2.10, we obtain the following result.

Lemma 2.11. Let ﬁij(Xl,X?,Xg), i=1,2,7=1,---,4, be given in (2.27) and ®; be defined in
(2.25). Then there exists My > 0 such that

|Hij(D1(€ — q1), ®a(€ + ), B3(€ + g3))| < My
for all £ € R for any given g1 <0< —qo < —q3.
Next, we introduce two functions:

Fi(¢1(€ = q1), 2(E + q2), 93(E + q3)) := —Quyd (§ — q1) + Q1205(€ + @2) + Qund5(E + g3),
Foy(1(§ — q1), ¥2(€ + @2), ¥3(€ + q3)) := —Qoy¥1 (€ — q1) + Q2:05(E + q2) + Qayth5(€ + g3),

where

Q1o = Quo(#1(§ — q1), $2(§ + q2), P3(€ + 03))5
Q20 = Q20(V1(€§ — 1), ¥2(§ + q2),v3(§ +q3)), 0=y, 2,

Lemma 2.12. There exists 6 > 1 such that

Fi(¢1(§ —q1), 92(& + q2), 93(§ +q3)) > 0

for all € € R for any 1 < =0 < 9§ < —q2 < —q3. Moreover,

Fi 2 SQuléh(€—an)l, €€ (o0

Fi > JQuldh (€ — )l + Quidh(E + @], €€ o, —aal
Fi 2 S[Quildh(€ + )| + Quldh(E + @), € € [, —as),
Fi 2 SQuldh(€+a)l, €€ [~a3,00),

forany g1 < =6 < < —q2 < —qs.

Proof. By the form of the second partial derivatives of @); (Lemma 2.7) and (2.28), there exists a
positive constant C' such that for any given ¢; <0 < —go < —gs,

Q1 (¢1(€ — @1), 62 (6 + q2), d3(E +3))| < C forall ¢ cRandi=1,---16,

where @13' is defined in Lemma 2.8. It follows that the proof of [5, Lemma 3.3] can be applied
directly to show the desired result. We shall not repeat it again. O

Similarly, we have

Lemma 2.13. There exists 6 > 1 such that

Fy(1(§ — q1),¥2(§ + q2),¥3(E +q3)) > 0
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for all € € R for any ¢1 < —6 < 0 < —q2 < —q3. Moreover,

B2 Qi -a)l, €€ (-o0a)
Fo > LQulUA(€ — @)l + Quelth(€ + )l € € o, —as),
Fy 2 L[Quelth(6 + )| + QulvhE + as)ll, € € [-a—as),
Fo2 SQulth(e+a)l, € € [a,00),

forany g < =6 < < —q2 < —qs.
Due to the form of Q-function, we have the following key estimates:
Lemma 2.14. Let 6 > 1 such that Lemma 2.12 holds. Then there exists M > 0 such that

H, (@1, B, B3) M(|¢5] +|5]), & € (—o0,0],
1(P1, $2, $3
1000080 < Ml + I € < 0,42
M(|¢7| +1d5]), € € [~ 252, 00),
for any given 1 < —6 < § < —qo < —qs3.
Proof. Recall from Lemma 2.9 that
H(®1, @9, 3) = [[1 = @1| x | @a| x [[Bx — Bl x |1 — D3]] x Hy(®1, s, D3),
Hi(®1, ®g, @3) := @1 - (Hy1, Hiz) + (P3 — Ex) - (Hiz, His),
where (x1,%2,%x3) € Dp.
We first prepare some estimates for later use. From Lemma 2.6(9) we see that for £ € (—o0, 0],

|1 — 1
. — <|1— —y=1— <|1— Ko ).
(229) [1=®f[ <1 =+ [L=¢n]=]1 ¢1\(1+’1_¢1|)_!1 ¢1!<1+ 9)
Again, using Lemma 2.6(9) we obtain that for £ € [0, c0),
|1 — 93]

(230) 1= @]l < 1 ] + 1~ | = [1 - 6] (1+ ) < 11— o5l (1+ Ko).

11— ¢3]
By (H2) and Lemma 2.6(3), for £ € [—q1,00),

31 @l < forl+ ol = bonl (14 I20) < el (14 7) < Kalgh (14 7).

|1 ¢
By (H2) and Lemma 2.6(5), for £ € (—o0, —qa],
, 1
@32 0l <1+ lal = feal(1+ 22) <laal (14 ) < Kslebl (14 7).
By Lemma 2.6(6), for £ € [—g2,0),
* *| ’1/12—71)*’ ‘(ZSQ u |
(2:33) 92~ Bl < 12wl — | = (14 ) 6k
< (14 Ke) Kol
By Lemma 2.6(7), for £ € (—o0, —¢2],
@38 BB < o= ] = (1 ) B

< (14 K7)K7|¢5]
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By Lemma 2.11, for £ € R,
(2.35) |Hi (D1, Dy, B3)| < ||P1]|v2Mo + || P53 — Ex||[vV2M.

We now divide our discussion into several cases.
(i) £ € (—o0,q1]. By Lemma 2.10 and Lemma 2.12, we have

m1|¢1|

(2.36) |Fy| > 5

By (2.34) and (2.35), we have
(2.37) |Hy(®1, B2, ®3)| < V2V2My + (1 + K1) K7|¢|vV2Mo.
Using (2.29), (2.32), (2.36) and (2.37), there exists C' > 0 such that

H, ’1_¢1‘ / /

By Lemma 2.6(4) and the boundedness of |¢}|, there exists M > 0 such that

H, / /
— < —00 .
(ii) € € [q1,0]. By Lemma 2.10 and Lemma 2.12, we have

ma|gy| | maldy|
2 * 2
Then using (2.38) and (2.35), we obtain

ﬂ‘ o 1= @afl| Pl Ex] [ 1[]]]®1]v/2M5

(2.38) || > € [q1, —ql.

1y ma|dy|/2
1= 2Pl [[L]1][ D5 — ]/ 2Mg
ma|dhl/2
Thanks to (2.29), (2.32) and (2.34), there exists C' > 0 such that for £ € [g1,0],
Hl‘ 11— ¢l
Al < ¢ + I6])-
F1 ( |¢/‘ |¢2| |¢3|

By Lemma 2.6(3), there exists M > 0 such that

H / /
Tl <M (15 +164)). €€ a0
(iii) £ € [0, —¢2]. Using (2.38), (2.35) and (2.34),
my I e (1 + (1 KKl ) 20
71’ - ma|¢h|/2
Then using (2.31) and (2.32),
IRl + DIl [Kslohl1 + §) + (0 + KoKl 20
Rl < AT

Hence there exists M > 0 such that

1;11‘ < M(|¢h|+1¢4]), €€ 0.l
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(iv) € € [~q2, —(27%)]. By Lemma 2.10 and Lemma 2.12, we have

(2.39) R )
Then using (2.39), (2.33), (2.30), (2.35) and (2.31),
my VNS R4+ =L+ F)s 16| V/20G + 1B | /2005 |
Rl = ENEATE
< cl=anlien] + 1) = Bl i

< CKs(|¢]1¢5] +[5])

for some C' > 0 and we have used Lemma 2.6(8). By the boundedness of ¢4, we obtain the existence
of M.
(v) £ € [—(258), —gs). Using (2.39) and (2.35), we obtain

Hl‘ < 1@ B = Dof[|L]]]| ]| /205

4 m|¢h|/2
IR 1Er — Pof[|[1[]]]Ps — Byl /20,
mi|¢s|/2

Thanks to (2.30), (2.31) and (2.33), there exists M > 0 such that

H / /
o < (el 165). €€ -2 ), ~al

2
(vi) € € [—¢3,00). By Lemma 2.10 and Lemma 2.12, we have

/

(2.40) 7| > %!
By (2.31) and (2.35), we have

~ 1
(2.41) [H1 (@1, @, @3)| < Kslh|(1+ 5 ) V2Mo + |Br | V2 M.
Using (2.40), (2.30), (2.33) and (2 41), there exists C' > 0 such that

— o3
2 <ol 111951+ 1), €€ [as00)
3

By the boundedness of |¢}| and Lemma 2.6(8), there exists M > 0 such that

2 <2 (ol +164). €€ a0
Combining (i)-(vi), the proof is completed. O
The following lemma is exactly the same as Lemma 3.4 in [5].

Lemma 2.15. Let 6 > 1 such that Lemma 2.12 holds. Then there exists M > 0 such that

M(gh| + |4)). € € (~o0,0],
< Mot 414D, € € fo,~5m)
M6+ 16aD), € € [~ 25, 00),

for any given 1 < —6 < § < —q2 < —q3.

G1(¢1, P2, 93)
Fi(¢1, 92, ¢3)

Using the arguments in Lemma 2.14 and Lemma 2.15, we can obtain the following result:
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Lemma 2.16. Let 6 > 1 such that Lemma 2.13 holds. Then there exists M > 0 such that
M(|95] + |95]), € € (—00,0],
|Ho(®1, @2, @3)[ | |Ga(¥1, 92, 93)]

/ / q2+q3
o v bo)| [ Faltor, oy )] | MRS, €0 ’q+q i
M([{1] + [5]), € € [-85%, 00).

3. THE PROOF OF MAIN RESULTS

In this section, we prove the main results by constructing a pair of super-sub-solutions. For this,
we consider the following ODEs used in the literature widely (e.g., [12, 27, 5]):

(3.1) pi= s+ Le™, t € (—00,0), pi(0)=po<0, i=1,2
(3.2) 7y =s; — Le™, t € (—00,0), 73(0)=7r9<0, i=1,2

for some large L > 0 and small x > 0 which are to be determined later, where s; is defined in (2.23).
The fundamental properties of the above ODEs can be found in [12]. For the reader’s convenience,
we collect some results for later use in the appendix (Lemma A).

Let 0 > 0 such that Lemma 2.12 and Lemma 2.13 hold. Also, take

7o < min {po,ilog(il)} < pg < —0.
Then, by Lemma A, we have
(3.3) 0 < p1(t) — r1(t) = pa(t) — r2(t) < 2Rpe™, ¢ <0.
We can construct a pair of super-sub-solutions to system (2.22).

Lemma 3.1. Define

U(&,t) = Qu(d1(€ — pi(t), p2(& + pu(t)), d3(€ + pa(t))),
W(E,t) = Qa(v1(€ = pi(t)), ¥2(€ + pr(t)), Y3 (€ + pa(t))),
U(&,t) = Qu(d1(§ —11(t)), d2(E + 11(t)), ¢3(€ + r2(t))),
W(&,t) = Qa(¥1(§ — 71(1)), Y2 + 71(1)), ¥3(€ + 12(2)))-

Then there exists to < 0 such that (U, W) and (U, W) are a pair of supersolution and subsolution
to system (2.22) for t < tg, respectively, satisfying

(3.4) (U W)(&t) = (U W) 1) for§ €R andt < to,

(3.5) sup [T(&,8) — U(&, )] + sup [W(€, £) — W(E, 1) < Ce™ fort <ty
EER ¢eR

for some positive constants C' and k.

Proof. We first show that there exists 79 < 0 such that (U, W) is a pair of supersolution for ¢ < 7.
To do so, we apply Lemma 2.14, Lemma 2.15 and Lemma 2.6(1)(2) with (q1, ¢2,93) = (p1,p1,D2)
and K := max{Kj, K3} to conclude that for all £ <0,

G101, 02, 65) |+ [Hi(@1, 82, @5)| < Fi(61, 62, 00) KM (e726571) o eoaletm )

S F1(¢17 ¢27 ¢3)KM (eanl + ea3p2> )



24 JONG-SHENQ GUO AND CHANG-HONG WU

For 0 < ¢ < —(p1+1p2)/2,
G1(61, bo, d3)| + |H1 (D1, g, D3)| < F1(¢1,¢2,¢3)KM(6*/51(§*I)1) —i—eas(fﬂaz))

< Fi(¢r, ¢, ¢3)KM(651P1 + 6013(192—191)/2)'
For £ > —(p1 +p2)/2,
|G1(01, b2, P3)| + | H1(P1, Do, P3)| < F1(¢>1,¢2,¢3)KM<€*51(57101) + 67,82(5+p1))
< Fi(¢1, 92, 03) KM <eﬁ1p1 + eﬁQ(pz—p1)/2).

Combining the above three inequalities with the fact that p;(¢) = s;t + o(t) as t — —o0, i = 1,2,
and so > s1, one can pick kK = k1 > 0 sufficiently small and ¢; with —¢; > 1 such that

(3.6) |G1(¢1, P2, 93)| + |H1(P1, P2, P3)| < Fi(d1, d2, ¢p3) K M
for all £ € R and ¢t <¢;. Using (2.24), (3.1) and (3.6), one can take L > KM such that
(37) NU W] = —Quy@\Le™P + QuzghLe™ P! + Qupy Le™P"

—G1(91, P2, #3) — H1(P1, P2, P3)
> Fi(¢1,¢2,¢3)(L — KM)e™P* >0, (cR, t<t.

Paralleling to the process described above (but replacing Lemma 2.14 and Lemma 2.15 by
Lemma 2.16), one can choose k = kg > 0 sufficiently small and to with —to > 1 such that

(3.8) |Ga (Y1, P2, 93)| + [Ho(P1, P2, 3)[ < Fa(¢hn, b2, ¥3) K Me™P
for all £ € R and t < to. Hence, by (2.26), (3.1) and (3.8) one can take L > KM such that
(39) NolU, W] = QoL + Quuth L™ + Qo Lo

—Go (1,2, 93) — Ha(P1, Po, $3)
> FQ(w17¢27w3)(L_KM)en2pl ZO) €ER7 tSt?

Combining (3.7) and (3.9) and re-choosing x := min{x1, x2}, we see that (U, W) is a pair of
supersolution for ¢t < g := min{t1,¢2}.

Similarly, we can show that there exists t3 < 0 such that (U, W) is a subsolution for ¢t < t3.
Indeed, using the above argument, there exists k3 > 0 sufficiently small and t3 with —t3 > 1 such
that

(310) ‘Gi(¢17¢27¢3)| + |Hi(®17q)27q)3)| S E(¢17¢27¢)3)KM6K3PI

forall € € R, t <t3 and i =1,2. Using (2.24), (2.26), (3.2) with k = k3 and (3.10), one can take
L > KM such that

MU W] = QudiLe™™ — QroghLe™™ — QuyeiLe™"
—G1(¢1, 92, ¢3) — Hi(P1, Do, P3)

< —Fi(¢1,02,¢3)(L — KM)e™™ <0, £eR, t<ts.
and
No[U, W] = Qayth) Le™™ — QazthyLe"™"™ — Qi Le™"
—Ga(P1, 12, 93) — Ha(®P1, Do, P3)
< —Fh(Yr, e, ¥3) (L — KM)e™™ <0, §eR, t <t
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It follows that (U, W) is a subsolution for ¢ < 3.

Taking to = min{7p, *3} and again re-choosing  := min{k1, k2, k3 }, then (U, W) and (U, W) are
a pair of supersolution and subsolution to system (2.22) for ¢ < ¢y, respectively.

For (3.4) and (3.5), we apply the mean value theorem twice to conclude that

U(f? t) - Q(&a t) = 0(5’ t) [pl (t) -n (t)]

for some bounded function C'(&,t) > 0 defined for £ € R and ¢ < ¢y, where we have used Lemma 2.7,
the fact that p; —r1 = pa — 2 and ¢} < 0 and ¢; > 0, i = 2,3. By (3.3), we have

(3.11) 0<UEt) — U t) < 2R||C|peoe™, ¢ < to.
Similarly, we can obtain
(3.12) 0 < W(Et) —W(E,t) < Coe™tt,  t < ty.

for some constant Cy > 0. Therefore, (3.4) and (3.5) follows and then the proof of Lemma 3.1 is
completed. O

We are ready to prove Theorem 1.

Proof of Theorem 1. Thanks to Lemma 3.1, we can apply the standard super-sub-solution method
to conclude that (2.1) has a unique entire solution (u(x,t),w(z,t)) which satisfies

U, W)(x + at,t) < (u,v)(x,t) < (U,W)(x + at,t)

for x € R and t < tg, where U, W, U and W are defined in Lemma 3.1. We refer to e.g., [28] for
the standard process.

Next, we show the behavior of the solution at ¢t = £oo. For the asymptotic behavior of the
solution as t — oo, we can apply [1, Theorem 1] to derive (1.6). On the other hand, set

1 L
(3.13) w:=ry— —log [1 + —em”o]
KR S1
By Lemma A, we have
—Roe"™" < ri(t) — sit —w <0, t<0.

Hence, together with (3.11) and (3.12), one can use the argument similar to that in [5, Theorem
4.3] to derive the asymptotic behavior of the solution as ¢ — —oo. Since the process is standard in
the literature, we omit the details. This completes the proof. ]

Next, we show Theorem 2 as follows.

Proof of Theorem 2. This result can be done by following the proof of Theorem 1 and using some
ideas in [5, Theorem 1.2] with some modifications. We only give a sketch of the proof.
Replace (2.20) by
o1:=—c1, 02:=02 < Cmax, 03 := —C2 > —C2max > 0,

and let

(¢1,91)(€) = (U1, W) (=€), (d2,12)(€) = (Ua, W)(&)  (¢3,3)(€) = (U, Wa)(—).
Next, inspired by [5], we replace Q-function in (2.17) by

(1 —y)z(ai —n)(=2) +ylai — 2)n(1 — 2)

(3.14) Qi(y, 2,m) =z + (1= y)za; + (a; — 2)n

, 1=1,2
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defined on D; for ¢ = 1,2, where a1 := u*, as := w* and
D; :=[0,1] x [0, a;] x [as, 1]\ (J} U JZ U J3),
Ji = {(y.0,0)0 <y <1},
J2:=1{(1,2,0)]0 < z < a},
I = {(1,a,m)|0 <1 < a;}.
For super-sub-solutions, we define

U(&,t) = Qu(d1(€ — pi(t)), p2(€ + pi(t)), 3 (€ + pa(t))),
W(E,t) = Qa(v1(€ = pi(t)), ¥2(€ + pr(1)), Y3 (€ + pa(t))),
U(&,t) = Qu(d1(§ —11(2)), d2(E + 11(t)), ¢3(€ + 2(1))),
W(&,t) = Qa(¥1(§ — 71(1)), Y2(§ + 11(D)), ¥3(§ + 12(1))),
where
p1 =81+ LefPt, t € (—
71 =81 — Le, t € (—00,0), r1(0)=rg<O0,
(
(

(3.15)
0 ) p2(0) =79 < 07

Pg =89 — Le"P2 t € (—

8\_/\—/8

To = 89+ Le2, t € (—

for some large L > 0 and small &, pgy,rg > 0.
Following the same process as in proving Theorem 1 with some minor modifications, one can
show Theorem 2. We leave details to the reader. O

Proof of Theorem 8. The proof can be finished similarly as the proof of Theorem 1 with suitable
modifications. So we only give a sketch of the proof and point out the differences as follows.
Recall that

o1:=—c1, 02:=0C2 < Comax, 0 := (014 02)/2.
In order to obtain the asymptotic behavior as ¢ ~ —oo, our supersolution (U, W) has to be even
in x for all ¢ with —¢ > 1. For this purpose, it is not appropriate to introduce the new variable
& := x + at. We divide our proof into several steps.
Step 1. The construction of a supersolution.
Inspired by [5, Theorem 1.3], we define
U™(z,t) = Qi(¢1(z + 0t — p1()), g2(x + ot + p1(t)), u"),
W*(z,t) = Q2(t1(x + ot — p1(t)), Yo (x + at + p1(t)), w™),
where Q; is given in (2.17), i = 1,2, and p(¢) satisfies (3.1).
In short, we write ¢; := ¢;(z + at — p1(t)) for i = 1,2. From (2.24) and (2.26) we see that
Nl [Q1(¢1a ¢2a U*)a Q2(¢1> wQa W*)](ma t)
= [-Quy¢) + Qu5| (P (t) — s1) — G1(¢1, P2, u™) — Hy(P1, P2, Eq),
Similar to the proof of Lemma 3.1, one can pick x > 0 sufficiently small, ¢t; with —¢; > 1 and a
positive constant C'y such that

|G1(91, b2, u™)| + |Hi(P1, P2, Ey)| < Fi(o1, dp2, u”)Cre™
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for all z € R and ¢t < t;. Then one has

MU W (z,t) = [-Quyd) + Q95| Le™ — G1(¢1, da,u”) — Hi(P1, o, Ex)
Z F1(¢1,¢2,u*)(L_Cl)efip1 205 gGR, tgtla
as long as L > (. Similarly, we have No[U*, W*|(z,t) > 0 for all z € R and ¢ with —¢ > 1 as long
as L is chosen large enough. Hence, one can choose L > 1 such that (U*, W*) is a supersolution
for all t with —¢ > 1.

In order to get the asymptotic behavior as t — —oo, we need to modify the supersolution as an
even function in z. For this, we define

(W) (a,1) = {(U*’W*)(x’t) Heso

(U*,W*)(—=z,t) ifz>0.
In order to show (U, W)(x,t) is a (weak) supersolution, it suffices to show that

(3.16) +(07,1) <0,

U, (0%, t) >0,
(3.17) W.(07,t) <0,

U,
U, (07,t) >0

for all —t > 1.
For (3.16), we consider x < 0 and the left derivative U, (z,t). By straightforward calculation,

(3.18) Ug(z,t) = Quy(dr, d2,u”)d) + Q1:(d1, d2, u*) Py

= & W%wu(m,@, -
2

Recall from (2.7) that

u*(1— ut —
Qunlon 02 0) =5 ¢§)2<u(f§3(+ <u*¢_2)¢2>2’

By Lemma 2.6 and the fact that

p1(ot —p1(t)) = 0, ¢2(0t —p1(t)) = u* ast— —oo,

u*(1—¢1)(u* — 1)
(1 —1)2(u)? + (u* — ¢2)?

Q12(¢1, P2, u*) =

we have for z = 0,

Quy(b1, d2,u7) o _ u*(1 = ¢2) (u* —¢2) ,
%% e+ (w62 4
and Q1,(¢1, g2, u*) — 1 as t — —oo. Also, using ¢} > 0, from (3.18) we see that U,(07,¢) < 0
for all —t > 1. Since U is even in x, U,(0",t) > 0 for all —t > 1. Hence (3.16) holds. The
above process can be applied to show (3.17) and so we omit the details. Therefore, (U, W)(x,t) is
a (weak) supersolution for all —t > 1 and then Step 1 is completed.

Step 2. The construction of a subsolution.
Define

¢y —0 ast— —oco

U(z,t) = Qi(¢1(z + 0t —ri(1)), d2(x + 0t + 71(t)), d2(—2 — 6t — 7r3(1))),

W(z,t) = Q2(¢1(z + 0t — r1(1)), v2(x + &t + r1(t)), Y2~z — ot — r3(1))),
where Q; is defined in (3.14), r3(t) := ra(t) — £y for some ¢y > 1 and r;(t) is defined in (3.15) for
i =1,2. Similar to the proof of Lemma 3.1 (with ¢3(() = ¢2(—()), one can show that (U, W) is a

subsolution for all —¢ > 1 (with suitable ¢p).
Step 3. Complete the proof.
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Now we can take Ty > 1 such that (U, W)(z,t) is a (weak) supersolution and (U, W) is a
subsolution for all ¢+ < —Tj. Next, following the argument used in [5, Theorem1.3] with minor
changes, we can obtain

(U,W)(x,t) > (U, W)(x,t), xR, t<-Tp

for some T > Tj.
Denote the solution of (2.1) with initial data (ug,wo) by (u,w)(z,t;up, wo). For any given
W(, -

T > Ty, define (u”,w")(z,t) := (u,w)(z,t + T;U(-, =T), T)). By comparison,

(U, W) (z,t) < (ul,wh)(z,t) < (U, W)(x,t), zeR, t<-T.

Note that by comparison, {u’} and {w’} is decreasing in 7. It follows that the limit function
(u™, w>®) := limg_ o0 (u”, w?) is well-defined in the whole space and time such that

(U, W)(x,t) < (u®,w>®)(z,t) < (U,W)(x,t), z€R, teR.
Moreover, since (U, W) is even in z, (u”,w”)(z,t) is also even in = for € R and t < —T and so
does (u™,w>®)(x,t) for z,t € R.
To finish the proof, we need to show that (u®, w™) satisfies the desired asymptotic behavior as
t — to00. For this, we first use a similar procedure as that in [5, Theorem 1.3] to derive the estimate
(3.5) for all ¢ with —¢ > 1. Then the asymptotic behavior of (4>, w*) can be done by using the

same process as used in Theorem 1. We leave the details for the reader. Hence, we complete the
proof of Theorem 3. O

Proof of Theorem 4. Set w(x,t) := 1 —wv(x,t) and W := 1—V. Then we see that an entire solution
(u,w) originates from N fronts if and only if there exists (¢j,Uj, W;) for j = 1,---, N satisfying
(1.9), (1.10) and (1.11) with v and V replaced by w and W, respectively, where (c;j, U;, W) satisfies

c]U = U + f(U;,W;), EE€R,
c]W—DW+(U W) ¢ eR,
(U, Wi)(=00) :=Li,  (Uj,W;)(+00) :=R;, i=1,--,N,
where L;, R; € {1,0,E, Eg} and Eg := (0, 1). Reducing to this form allows us to use the argument
in [5] to prove desired result.

Given an entire solution (u, w) originating from NN fronts, one can define the sequence of boundary
conditions

AN = {LlaRleQ)R27"' 7LN7RN}

with 2N terms describing (Uj, W;)(+oc0), 1 < j < N. Since entire solutions are continuous and
satisfy (1.10) and (1.11) (with v and V replaced by w and W), we must have

(3.19) Rj = Lj+1 for all j = 1,‘ e ,N — 1.

Under the above setting, we see that the corresponding sequences to Theorem 1, Theorem 2 and
Theorem 3 are

{1707 O’ EI’EI7 1}’ {1707 O’ EI’E:[?O}’ {1)07 07 EI’E:[?O?O? 1}7

respectively.
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We say that Ay is non-extendable if there is no entire solution (u,w) originating from N + 1
fronts with the corresponding sequence Apn 41 such that the first 2V terms of Ay are exactly the
same as Apn. Then one can observe that Ay is non-extendable if
(3.20) (LN,RN) = (0, 1) or (EI, 1)

Indeed, if (3.20) occurs, by (3.19), we must have Lyy; = 1. Then Ryi; = 0 or Ej. Since
both (1,0)-front and (1, Ej)-front move to the right, we have ¢yy1 < 0 < ¢y, which reaches a
contradiction with (1.9).

Note that system (1.2) may admit an (Eg, Eg)-front as we have mentioned in the introduction
section. The sign of the wave speed plays an important role to determine all possible non-extendable
sequences. Suppose that an (Eg, Ep)-front (¢, U, V) exists. Then

cU'(§) =U"() +UE)1-U—-kV)(E), E€R,
(3.21) V'(§) =DV"(§) +rV((1 -V —hU)(E), §ER,

(U, V)(—0) =(0,0), (U,V)(4o00) = (u*,v*).
We now show that ¢ > 0. Note that the monotonicity of wave profiles is not known. However, by a
similar argument as in section 2.2, we see that both U and V decay exponentially near —oco. Thus,

there exists &y > 1 such that U'(§) > 0 and V'(§) > 0 for all £ < —&). Together with the boundary
condition at £ = —oo, we may further assume that

1
U)A-U-kV)(E) > §U(§)a § < —&o-
Integrating the first equation of (3.21) over (—o0,§) with £ < —&p, we have

3
U(E) = U'(€) + /

—0o0

Uls)(1— U — kV)(s) > %U(f) > 0.

Thus, ¢ > 0 if an (Ep, Ep)-front (¢,U, V) exists. Together with (3.20), one can list all possible
non-extendable sequences corresponding to entire solutions originating from N fronts:
When L; = Eg, the possible longest non-extendable sequence is

{Ep,E,E,0,0,1},
which corresponds to 3 fronts. When L = Ey, the possible longest non-extendable sequence is
{E,EB,EB,E1,E[,0,0,1},
which corresponds to 4 fronts. When L; = 0, the possible longest non-extendable sequence is
{0,E1,E;,Ep,Ep,E[,E;,0,0,1},
which corresponds to 5 fronts. When L; = 1, the possible longest non-extendable sequence is
{1,0,0,E1,E[,Ep,Ep,E[,Ef,0,0,1},

which corresponds to 6 fronts. Consequently, there does not exist a sequence corresponding to
entire solutions originating from N fronts for N > 7. This completes the proof. g

Remark 3.1. In [5], the authors showed that for the Allan-Cahn equation, there is no entire
solution originating from N fronts if N > 5. The dynamics of competition systems may become
more complicated due to the increment of the number of equilibria. Theorem 4 suggests that the
bistable competition system (1.2) may support entire solutions originating from 5 fronts and 6 fronts.
It will be of interest to show that 5 fronts and 6 fronts entire solutions do exist. We leave this issue
to a future work.
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4. APPENDIX
We provide a proof of Lemma 2.9 as follows:

Proof of Lemma 2.9. We first deal with (i). From Lemma 2.8, we see that

(41) Q12<1727n) :an(laz7n) :Qi(lazan) 207 = 172
Let us write x; = (x;1, xi2) for i = 1,2, 3. It follows that
Hi(1,x2,x3) = f(Q1(1,221,231),Q2(1, 222, 223)) — Q14(1, w21, 231) f(1,1)

—Q1:(1, w21, w31) f (w21, 231) — Q1y(1, 2,m) f (231, T32)
— 0,

where we have used (4.1) and the fact f(1,1) = 0. The other cases in (i) can be shown in a similar
way. We omit the details here.

We next prove (ii) by using the mean value theorem several times. Given i € {1,2}. Since
H;(1,x2,x3) =0 (from (i)), the mean value theorem implies that

OH; O0H;
(4.2) Hi(x1,%2,%3) = (63:-1’ 8x»2) (x1—1)
1 (3

= b= 1[(gr ) o)

where x; := (x;1, z;2). Define

Vi1 (X1, X2,X3) 1= (

8HZ' 6H,> x1—1
89@1 ’ 8.%'2'2 ‘

x1 -1
Clearly, v;1 is a smooth function defined on Dy.

Next, since H;(x1,0,x3) = 0, we have v41(x1,0,x3) = 0. By the mean value theorem as above,
there exists a smooth function v;5 such that

vi1(x1,X2,X3) = ||x2]|vi2(x1, X2, X3).

From H;(x1,Er,x3) = 0, we see that v;2(x1,Er,x3) = 0. Again, by the mean value theorem as
above, there exists a smooth function v;3 such that

Vin(x1,%2,x3) = ||Er — x2||viz(x1, X2, X3).

From H;(x1,x2,1) = 0, we see that v;3(x1,%2,1) = 0. By the mean value theorem as above, there
exists a smooth function v;4 such that

vi(x1,%2,%x3) = [|1 — x3||via(x1, %2, X3).
Putting v;;, 7 = 1,2, 3,4, into (4.2), we obtain
Hy(x1,%9,%3) = [|[1 = x1]| x [|x2]| x | Ex = xof| x |1 = x| x Hi(x1,x2,%3)
with .FAIZ = Vyy.
Finally, from H;(0,x2,E;) = 0 we see that H;(0,x2,E;) = 0. Then the mean value theorem
gives (2.27). This completes the proof. O
Lemma A. ([12]) Consider

P(t)=s+Le™D  fort <0, p(0):=po
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for some constants s > 0 and k > 0. Then
1 L K. skt
p(t) = po + st — —log [1—1——6 Po(l1—e )], t<O0.
K s
Moreover, the following hold:
(i) If L > 0, then p is increasing in (—oo, 0] and
0 < p(t) — st —w < Roe™, ¢ <0,
for some constant Ry > 0, where
1 L
(4.3) w:=po — —log [1 + —e“po}.
K s
(ii) If L <0 and po < (1/k)log(—s/L), then p is increasing in (—oo,0] and
—Roe* < p(t) —st —w <0, t<0,

for some constant Ry > 0, where w is given in (4.3).
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