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Abstract. This paper deals with entire solutions (classical solutions defined globally in time and

space) of a two-species strong competition model. For this system, it is well known that there

exist two-front entire solutions which behave as two traveling fronts moving towards each other

from both sides of the x-axis. In this paper, in terms of traveling fronts connecting two different

constant states from the coexistence state and the two semi-trivial states, we build entire solutions

originating from three and four fronts stuck between appropriate super and subsolutions. Moreover,

the non-existence of entire solutions originating from more than seven traveling fronts is proved.

1. Introduction

Competition between species is one of the fundamental features in ecology and occurs in virtually

every ecosystem in nature. It could often result in the survival of the fittest and may lead to

coexistence when species compete for the same resources. A typical competition model that has

been studied widely is the classical Lotka-Volterra type diffusion-competition model between two

species, which is described as follows:{
ut = d1uxx + r1u(1− c11u− c12v), x ∈ R, t ∈ R,
vt = d2vxx + r2v(1− c22u− c22v), x ∈ R, t ∈ R,

(1.1)

where u(x, t) and v(x, t) represent the population density of two competing species at the position

x and time t; d1, d2 are the diffusion coefficients of the two species; r1, r2 are the intrinsic growth

rates of the two species; c11 and c22 stand for self-regulation of each species and c12, c21 are the

(inter-specific) competition coefficients of species u and v, respectively. All parameters are assumed

to be positive.

By a suitable scaling (cf.[29]), system (1.1) can be reduced to the following dimensionless system{
ut = uxx + u(1− u− kv), x ∈ R, t ∈ R,
vt = Dvxx + rv(1− hu− v), x ∈ R, t ∈ R.

(1.2)

The dynamics for the related kinetic system (diffusion free) to (1.2) is well-known. It has at least

three non-negative equilibria:

(u, v) = E0 := (0, 0), Eu := (1, 0), Ev := (0, 1).

Furthermore, if either h, k > 1 or 0 < h, k < 1, there exists a unique positive equilibrium given by

E∗ = (u∗, v∗) :=
( 1− k

1− hk
,
1− h

1− hk

)
.(1.3)
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For any given non-negative initial data for the kinetic system (diffusion free) of (1.2), one can

classify the asymptotic behavior of solutions into four cases:

(A) If 0 < k < 1 < h, then limt→+∞(u, v)(t) = Eu.

(B) If 0 < h < 1 < k, then limt→+∞(u, v)(t) = Ev.

(C) If h, k > 1, then almost every trajectory tends to either Eu or Ev as t → +∞ depending

on the initial data. This is known as the strong competition case.

(D) If 0 < h, k < 1, then limt→+∞(u, v)(t) = E∗. This case is called the weak competition case.

Traveling front solutions play a fundamental role in understanding the interaction between species

and have been studied intensively over the past four decades. By a traveling front solution, we mean

a positive solution of (1.2) in the form u(t, x) = U(x+ct) and v(t, x) = V (x+ct) for some constant

c such that the limits (U, V )(±∞) exist and are unequal (in the sense that U(−∞) ̸= U(+∞) and

V (−∞) ̸= V (+∞)), where c is called the wave speed and (U, V )(±∞) ∈ {E0,Eu,Ev,E∗}. For

convenience, we call a traveling front solution an (Ei,Ej)-front if

(U, V )(−∞) = Ei, (U, V )(+∞) = Ej

for some i, j ∈ {0,u,v, ∗}. For the related works regarding system (1.2), we refer to, for example,

[6, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 41] and the references cited therein.

Morita and Tachibana [28] established the existence of two-front entire solutions (i.e., classical

solutions defined globally in time and space) which behave as two monotone waves approaching

from both sides of x-axis. This remarkable result suggests that a simple competition model (1.2)

may support rather complicated spatiotemporal patterns that exhibit the invasion process of the

superior species. Since there are several different (Ei,Ej)-fronts with i, j ∈ {0,u,v, ∗}, we may

expect that there should exist more complicated mechanisms for the invasion of the superior species.

A possible pattern may be the N (N ≥ 3) fronts entire solutions which behave as N waves

propagating from both sides of x-axis as t→ −∞. In fact, very recently, Chen, Guo, Ninomiya and

Yao [5] constructed entire solutions originating from three and four monotone fronts, respectively,

for the Allen-Cahn equation. More precisely, they considered

ut = uxx + f̃(u), x ∈ R, t ∈ R,

where f̃ ∈ C2(R) and satisfies some conditions such that its graph is similar to

f̃(u) = u(1− u)(u− a) for some a ∈ (0, 1/2).

Therein, an entire solution u originates from N traveling fronts {(cj , ϕj)| j = 1, · · · , N} if these

wave speeds satisfy c1 < c2 < · · · < cN and

lim
t→−∞

 N∑
j=1

sup
ωj−1(t)<x<ωj(t)

|u(x, t)− ϕj(x+ cjt+ θj)|

 = 0

for some θ1, · · · , θN ∈ R, where ωj(t) = −(cj+cj+1)t/2, ω0(t) := −∞ and ωN (t) = ∞. Among other

things, they also showed that entire solutions originating from N fronts for N ≥ 5 is impossible.

Our main goal in this paper is to generalize the work [5] on the Allen-Cahn equation to the

two-species strong competition model.

The importance of the study of entire solutions of reaction-diffusion equations is frequently

recalled in the literature. Since the pioneering works of Hamel and Nadirashvili [14, 15], there have

been tremendous advances in investigating the existence of entire solutions for various models. See,

for example, [2, 3, 4, 5, 8, 12, 13, 26, 27, 28, 33, 35, 36, 37, 38, 39, 40, 42] and the references cited

therein.
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In this paper, we shall focus on the strong competition case and always assume

(H1) h > 1 and k > 1.

Under assumption (H1), up to symmetry, one can expect that there are (Ei,Ej)-fronts with

i, j ∈ {u,v, ∗}. Waves connecting either Eu or Ev to E0, if they exist, are not of front type. It is

possible to have fronts connecting two equilibria E0 and E∗, since E∗ has a one-dimensional stable

manifold.

For the existence of traveling fronts, by the results of Gardner [9], Conley, Gardner [6] and

Kan-on [19], we see that an (Ev,Eu)-front of system (1.2) exists. More precisely, there exists a

unique (up to translations) bistable traveling front solution (u, v)(x, t) = (U1, V1)(x+ c1t) of (1.2)

satisfying 
c1U

′
1(ξ) = U ′′

1 (ξ) + U1(ξ)(1− U1 − kV1)(ξ), ξ ∈ R,
c1V1(ξ)

′ = DV ′′
1 (ξ) + rV1(ξ)(1− V1 − hU1)(ξ), ξ ∈ R,

(U1, V1)(−∞) = (0, 1), (U1, V1)(+∞) = (1, 0),

U ′
1 > 0, V ′

1 < 0 in R.

(1.4)

Note that the sign of c1 is not completely understood (depending on the parameters). We refer to

[10, 11, 19] for some discussions.

On the other hand, under assumption (H1) system (1.2) can support monostable traveling front

connecting some suitable equilibria. In fact, one can apply the theory of Li, Weinberger and

Lewis [25] to show that there exists c2,max < 0 such that a monotone traveling front (u, v)(x, t) =

(U2, V2)(x+c2t) of (1.2) connecting Ev and E∗ exists if and only if c2 ≤ c2,max; similarly, there exists

c3,min > 0 such that a monotone traveling front (u, v)(x, t) = (U3, V3)(x + c3t) of (1.2) connecting

E∗ and Eu exists if and only if c3 ≥ c3,min. More details can be found in section 2.

To construct multiple-front entire solutions for system (1.2), we need the following technical

assumption:

(H2) There exists ℓ > 0 such that

Ui(ξ)

1− Vi(ξ)
≥ ℓ for all ξ ≤ 0 and i = 1, 2.

This kind of technical assumption was first proposed in [28] and has been often used in the literature

in constructing super-sub-solutions for systems. Roughly speaking, (H2) is needed when we try

to connect (U1, V1) and (U2, V2) at Ev. On the other hand, since we will also connect (U3, V3) with

(U2, V2) at E∗, a parallel condition to (H2) is required. More precisely, we need to find ν > 0 such

that

U3(ξ)− u∗

v∗ − V3(ξ)
≥ ν,

u∗ − U2(−ξ)
V2(−ξ)− v∗

≥ ν for all ξ ≤ 0.

In fact, such a positive constant ν always exists. See Lemma 2.6(6) and (7).

In addition, without loss of generality we may assume that the species u is stronger than the

species v so that

(H3) c1 > 0.

Otherwise, we may exchange the roles of u and v. Note that, under (H3), from Lemma 2.3(1)

and Lemma 2.4(1) it follows that (H2) holds if λ+ju < λ+jv for j = 1, 2.

We now state the main results of this paper as follows.
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Theorem 1. Assume (H1), (H2) and (H3). Let (c1, U1, V1), (c2, U2, V2) and (c3, U3, V3) be an

(Ev,Eu)-front, (Ev,E∗)-front and (E∗,Eu)-front, respectively, such that

−c1 < c2 ≤ c2,max < 0.(1.5)

Then system (1.2) admits a three-front entire solution (u, v) satisfying

lim
t→−∞

{
sup

x<θ1(t)
|u(x, t)− U1(−x+ c1t+ ω)|+

3∑
j=2

sup
θj−1(t)<x<θj(t)

|u(x, t)− Uj(x+ cjt+ ω)|
}
= 0,

lim
t→−∞

{
sup

x<θ1(t)
|v(x, t)− V1(−x+ c1t+ ω)|+

3∑
j=2

sup
θj−1(t)<x<θj(t)

|v(x, t)− Vj(x+ cjt+ ω)|
}
= 0

for some ω ∈ R, where

θ1(t) := −
(−c1 + c2

2

)
t, θ2(t) := −

(c2 + c3
2

)
t, θ3(t) ≡ +∞.

Furthermore,

lim
t→∞

sup
x∈R

|u(x, t)− 1|+ sup
x∈R

|v(x, t)| = 0.(1.6)

Remark 1.1. We make some remarks as follows.

(i) The proof Theorem 1 is based on the construction of appropriate super and subsolutions.

For single equation case [27, 5], the authors constructed an auxiliary rational function, say

Q-function, which can help them further construct a suitable pair of super-sub solutions.

We may expect that this idea should be able to work on monotone systems if a vector-

valued Q-function can be found. Fortunately, we can make it by extending the key function

constructed in [5] to a vector-valued function. Besides, we need condition (H2) to establish

some crucial estimates which cannot be obtained directly from those in [5] since we face a

system rather than a single equation.

(ii) The crucial estimates rely on the asymptotical behavior of traveling fronts. The asymp-

totic behavior of (Ev,Eu) fronts has been established (see, e.g., [28]); while the asymptotic

behavior of (Ev,E∗)-fronts and (E∗,Eu)-fronts near Ev and Eu can be done similarly, re-

spectively. However, the asymptotic behavior of fronts near the coexistence state E∗ is more

complicated than other cases and needs to be investigated carefully. See Lemma 2.4.

(iii) We provide a condition such that (H1), (H2), (H3) and (1.5) hold simultaneously using

the results of [18] and [31]. By the main theorem of [18], there exists a monotone (Ev,E∗)-

front if c2 ≤ −2
√
k − 1 under the assumption D = 1. Next, we shall choose suitable

parameters such that an (Ev,Eu)-front exists for some c1 > 0 in terms of the existence of

exact solutions reported in [31], where they consider positive exact solutions of the following

system: 
cÛ ′ = Û ′′ + Û(1− Û − k̂V̂ ), ξ ∈ R,
cV̂ ′ = DV̂ ′′ + Û(a− V̂ − ĥÛ), ξ ∈ R,
(Û , V̂ )(−∞) = (0, a), (Û , V̂ )(∞) = (1, 0),

Û ′ > 0, V̂ ′ < 0 in R,

(1.7)

in which 1/k̂ < a < ĥ. To apply their result, we introduce the change of variables

a = r, k̂ =
k

r
, ĥ = rh, Û = U1, V̂ = rV1.
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Then system (1.7) is reduced to system (1.4) with 1/k < 1 < h. From [31, p.261], we see

that (1.4) has a solution with c1 = (2− k)/
√
2k if the following conditions hold:

D =
r

3k
, rh = 2 +

5r

3
− k, 6 + 2r − 3k > 0.(1.8)

Let us choose k ≈ 1, r = 3k (such that D = 1) and h = (2 + 4k)/3k such that (1.8)

holds. This implies the existence of an (Ev,Eu)-front with speed c1 ≈ 1/
√
2 and so (H1)

and (H3) hold. Also, one can choose c2 = −2
√
k − 1 such that (1.5) hold because k ≈ 1.

Moreover, it is clear that the above choice of D, k, h and r implies that λ+ju < λ+jv for j = 1, 2

(see Lemma 2.3(1) and Lemma 2.4(2)). Hence, (H2) holds. Consequently, the hypothesis

of Theorem 1 is not void.

Following the approach used in the proof of Theorem 1 and some ideas from [5] with some

suitable changes, we can establish another type of three-front and a four-front entire solutions as

follows.

Theorem 2. Assume (H1), (H2) and (H3). Let (c1, U1, V1) be an (Ev,Eu)-front and both

(c2, U2, V2) and (ĉ2, Û2, V̂2) be (Ev,E∗)-fronts such that (1.5) holds. Then system (1.2) admits

a three-front entire solution (u, v) satisfying

lim
t→−∞

{
sup

x≤θ1(t)
|u(x, t)− U1(−x+ c1t+ ω1)|+ sup

θ1(t)<x<θ2(t)
|u(x, t)− U2(x+ c2t+ ω1)|

+ sup
x≥θ2(t)

|u(x, t)− Û2(−x+ ĉ2t− ω2)|
}
= 0,

lim
t→−∞

{
sup

x≤θ1(t)
|v(x, t)− V1(−x+ c1t+ ω1)|+ sup

θ1(t)<x<θ2(t)
|v(x, t)− V2(x+ c2t+ ω1)|

+ sup
x≥θ2(t)

|v(x, t)− V̂2(−x+ ĉ2t− ω2)|
}
= 0

for some ω1, ω2 ∈ R, where

θ1(t) := −
(−c1 + c2

2

)
t, θ2(t) := −

(c2 − ĉ2
2

)
t.

Furthermore, (u, v)(·, t) → (1, 0) as t→ ∞ uniformly in (−∞, L) for any L ∈ R.

Theorem 3. Assume (H1), (H2) and (H3). Let (c1, U1, V1) be an (Ev,Eu)-front and (c2, U2, V2)

be an (Ev,E∗)-front such that (1.5) holds. Then system (1.2) admits a four-front entire solution

(u, v) satisfying

lim
t→−∞

{
sup

x≤θ1(t)
|u(x, t)− U1(−x+ c1t+ ω1)|+ sup

θ1(t)≤x≤0
|u(x, t)− U2(x+ c2t+ ω2)|

+ sup
0≤x≤−θ1(t)

|u(x, t)− U2(−x+ c2t+ ω2)|+ sup
x≥−θ1(t)

|u(x, t)− U1(x+ c1t+ ω1)|
}
= 0,

lim
t→−∞

{
sup

x≤θ1(t)
|v(x, t)− V1(−x+ c1t+ ω1)|+ sup

θ1(t)≤x≤0
|v(x, t)− V2(x+ c2t+ ω2)|

+ sup
0≤x≤−θ1(t)

|v(x, t)− V2(−x+ c2t+ ω2)|+ sup
x≥−θ1(t)

|v(x, t)− V1(x+ c1t+ ω1)|
}
= 0

for some ω1, ω2 ∈ R, where

θ1(t) := −
(−c1 + c2

2

)
t.

Furthermore, the long time behavior (1.6) holds true.
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Finally, we show that there is no entire solution of (1.2) originating from N fronts if N ≥ 7.

Theorem 4. For N ≥ 7, there does not exist entire solution originating from N fronts {(cj , U j , V j) |
j = 1, · · · , N} satisfying

c1 < c2 < · · · < cN(1.9)

such that

lim
t→−∞

 N∑
j=1

sup
ωj−1(t)<x<ωj(t)

∣∣∣u(x, t)− U j(x+ cjt+ θj)
∣∣∣
 = 0,(1.10)

lim
t→−∞

 N∑
j=1

sup
ωj−1(t)<x<ωj(t)

∣∣∣v(x, t)− V j(x+ cjt+ θj)
∣∣∣
 = 0,(1.11)

for some θ1, · · · , θN ∈ R, where −cj+1t < ωj(t) < −cjt for j = 1, · · · , N − 1, ω0(t) := −∞ and

ωN (t) = ∞.

We organize the rest of this article as follows. Section 2 is divided into four subsections. In §2.1,
we show the existence of monostable traveling fronts connecting different equilibria in terms of the

theory of Li, Weinberger and Lewis [25]. In §2.2, the asymptotic behavior of traveling fronts are

discussed. In §2.3, we construct a suitable Q-function for our system by extending the Q-function

constructed in [5] to a vector-valued function and recall some known results. In §2.4, we establish

some important estimates. In Section 3, we prove our main results. Finally, Section 4 is the

appendix in which a proof of Lemma 2.9 is given and some results from [12] are collected into a

lemma for the reader’s convenience.

2. Preliminaries

By the standard transformation

w(x, t) := 1− v(x, t),

we can transfer (1.2) into the following cooperative system:{
ut = uxx + f(u,w), x ∈ R, t ∈ R,
wt = Dwxx + g(u,w), x ∈ R, t ∈ R,

(2.1)

where

f(u,w) = u[1− u− k(1− w)], g(u,w) := r(1− w)(hu− w).(2.2)

Then ODE equilibria of (1.2): Ev = (0, 1), Eu = (1, 0) and E∗ = (u∗, v∗) are transferred into

0 := (0, 0), 1 := (1, 1) and the intermediate (coexistence) equilibrium

EI = (u∗, w∗) := (u∗, 1− v∗) =
( 1− k

1− hk
,
h(1− k)

1− hk

)
,(2.3)

respectively. Hereafter, we shall always use 0, 1 and EI to be ODE equilibria of (2.1). Under

assumption (H1), 0 and 1 are stable; while EI is unstable in the ODE sense.



ENTIRE SOLUTIONS 7

2.1. Monostable fronts. The existence of monostable traveling fronts for monotone systems has

been investigated extensively. Various approaches can be found in the literature. See, for examples,

the Leray-Schauder method [34], the continuation method [21], the upper-lower solution method [7],

the theory of monotone semiflows [25] and references therein. Here we shall construct monostable

fronts connecting different equilibria in terms of the theory of [25].

Let us recall the framework used in [25] as follows. Consider the reaction-diffusion system{
ut = duxx + F(u),

u(x, 0) = u0(x), x ∈ R,
(2.4)

where u := (u1, u2) and F are 2-vectors; while d := diagonal(d1, d2) is a constant diagonal matrix.

Some notation are listed as follows: u(x) ≥ v(x) means that ui(x) ≥ vi(x) for all i and x; u ≫ v

means that ui(x) > vi(x) for all i and x. For any given constant 2-vector β ≫ 0, we define the

function space

Cβ := {u(x)|u(x) is continuous and 0 ≤ u(x) ≤ β}.

For system (2.4), one can denote time-t maps Qt by Qt[u0](x) := u(x, t), where Qt takes the

initial value of u to the value of u at time t. Clearly, the family of Qt forms a semigroup. Then u

is a traveling front solution u(x, t) = U(x+ ct) with speed c if and only if Qt[U](x) = U(x+ ct)

for all t > 0 with the limits U(±∞) exist and are unequal.

The following result can be seen as a special case of [25, Theorem 4.2].

Proposition 1. Suppose that system (2.4) satisfies the following five conditions:

(i) F(0) = 0, and there is a β ≫ 0 such that F(β) = 0 which is minimal in the sense there is

no constant v other than 0 and β such that F(v) = 0 and 0 ≪ v ≪ β.

(ii) The system (2.4) is cooperative.

(iii) F does not depend explicitly on either x or t, and the diagonal matrix d is constant.

(iv) F(v) is continuous and has uniformly bounded piecewise continuous first partial derivatives

for 0 ≪ v ≪ β, and it is differentiable at 0. The Jacobian matrix F′(0), whose off-diagonal

entries are non-negative, has a positive eigenvalue whose eigenvector has positive compo-

nents.

(v) The mobilities di, which are the diagonal and only non-zero entries of d, are all positive.

Then there exists c∗ > 0 such that for every c ≥ c∗, the system (2.4) has a non-decreasing traveling

wave solution U(x + ct) of speed c with U(+∞) = β and U(−∞) a zero of F other than β.

If there is a traveling wave U(x + ct) with U(+∞) = β such that for at least one component i

lim infx→−∞ Ui(x) = 0, then c ≥ c∗.

Remark 2.1. We remark that Proposition 1 is a partial result of Theorem 4.2 of [25]. Therein,

they considered more general models which can contain advection terms.

We can apply Proposition 1 to obtain the following result.

Lemma 2.1. There exists c3,min > 0 such that a non-decreasing traveling front (u,w)(x, t) =

(U3,W3)(x+ c3t) of (2.1) connecting EI and 1 exists if and only if c3 ≥ c3,min.

Proof. In order to apply Proposition 1, we define

(û, ŵ) := (u− u∗, w − w∗).(2.5)
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Putting this form into (2.1), we see that (û, ŵ) satisfies{
ût = ûxx + F1(û, ŵ), x ∈ R, t ∈ R,
ŵt = Dŵxx + F2(û, ŵ), x ∈ R, t ∈ R,

(2.6)

where

F1(û, ŵ) := (û+ u∗)[1− û− u∗ − k(1− ŵ − w∗)],

F2(û, ŵ) := r(1− ŵ − w∗)[h(û+ u∗)− ŵ − w∗].

Define F := (F1, F2) and β := (1 − u∗, 1 − w∗). We now check that conditions (i)-(v) of

Proposition 1 hold. For (i), clearly, F(0) = F(β) = 0. Also, by (H1),

β = (1− u∗, 1− w∗) =
(k(1− h)

1− hk
,
1− h

1− hk

)
≫ 0.

Note that (2.1) has only two ODE equilibria EI and 1 over {u := (u,w)|EI ≤ u ≤ 1}, it follows

that there is no constant v other than 0 and β such that F(v) = 0 and 0 ≪ v ≪ β. Hence (i)

holds.

Since ∂F1/∂ŵ ≥ 0 and ∂F2/∂û ≥ 0 in {0 ≤ (û, ŵ) ≤ β}, we see that (ii) follows. From (2.6), it

is easy to see that (iii) and (v) hold. For (iv), one can calculate

F′(0) =

(
−u∗ ku∗

hr(1− w∗) −r(1− w∗)

)
.

By (H1) we have

detF′(0) = (1− hk)ru∗(1− w∗) < 0,

which means that F′(0) has a positive eigenvalue. It is easy to check that all conditions in (iv) are

satisfied. Hence conditions (i)-(v) hold for system (2.1). Moreover, there is no non-negative ODE

equilibrium except 0 and β in Cβ. By Proposition 1, there exists c3,min > 0 such that there is a

non-decreasing traveling front (u,w)(x, t) = (U3,W3)(x+ c3t) of (2.1) connecting EI and 1 if and

only if c3 ≥ c3,min. This completes the proof. �

By Lemma 2.1, for any c3 ≥ c3,min, there exists (c3, U3,W3) such that
c3U

′
3 = U ′′

3 + U3[1− U3 − k(1−W3)], ξ ∈ R,
c3W

′
3 = DW ′′

3 + r(1−W3)(hU3 −W3), ξ ∈ R,
(U3,W3)(−∞) = EI, (U3,W3)(+∞) = 1,

U ′
3 > 0, W ′

3 > 0 in R.

(2.7)

Note that the strict monotonicity of U3 and W3 follows from the strong maximum principle.

Similarly, one can establish the existence of (0,EI)-fronts to system (2.1). Indeed, instead of

using the transformation (2.5), we define

(ũ, w̃) := (−u+ u∗,−w + w∗).

Again putting this form into (2.1), then (ũ, w̃) satisfies{
ũt = ũxx + F1(ũ, w̃), x ∈ R, t ∈ R,
w̃t = Dw̃xx + F2(ũ, w̃), x ∈ R, t ∈ R,
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where

F1(ũ, w̃) := (ũ− u∗)[1 + ũ− u∗ − k(1 + w̃ − w∗)],

F2(ũ, w̃) := r(1 + w̃ − w∗)[h(ũ− u∗)− w̃ + w∗].

Define F := (F1, F2) and β := (u∗, w∗). Using a similar process to that of the proof of Lemma 2.1,

we can obtain the following result. The detailed proof is omitted.

Lemma 2.2. There exists c2,max < 0 such that a non-decreasing traveling front (u,w)(x, t) =

(U2,W2)(x+ c2t) of (2.1) connecting 0 and EI exists if and only if c2 ≤ c2,max.

From Lemma 2.2, for any c2 ≤ c2,max, there exists (c2, U2,W2) which satisfies
c2U

′
2 = U ′′

2 + U2[1− U2 − k(1−W2)], ξ ∈ R,
c2W

′
2 = DW ′′

2 + r(1−W2)(hU2 −W2), ξ ∈ R,
(U2,W2)(−∞) = 0, (U, V )(+∞) = EI,

U ′
2 > 0, W ′

2 > 0 in R.

(2.8)

2.2. Asymptotic behavior of traveling fronts. In this subsection, we provide the asymptotic

behavior of (Ev,Eu) fronts, (Ev,E∗)-fronts and (E∗,Eu)-fronts near ξ = ±∞, respectively. The

following result can be found in [28].

Lemma 2.3 ([28] The asymptotic behavior of (Ev,Eu) fronts at ξ = ±∞). Let (c1, U1, V1) be a

solution of (1.4) with c1 > 0. Then the following hold:

(1) Define λ+1u and λ+1v as the positive root of

λ2 − c1λ+ (1− k) = 0 and Dλ2 − c1λ− r = 0,

respectively. Then

lim
ξ→−∞

(U1(ξ)

eλ
+
1uξ

,
1− V1(ξ)

|ξ|γ+
1 eβ

+
1 ξ

)
= (A+

1u, A
+
1v)

for some positive constants A+
1u and A+

1v, where

β+1 := min{λ+1u, λ
+
1v}, γ+1 =

{
0 if λ+1u ≠ λ+1v,

1 if λ+1u = λ+1v.

(2) Define λ−1u and λ−1v as the negative root of

λ2 − c1λ− 1 = 0 and Dλ2 − c1λ+ r(1− h) = 0,

respectively. Then

lim
ξ→+∞

(1− U1(ξ)

|ξ|γ−
1 eβ

−
1 ξ
,
V1(ξ)

eλ
−
1vξ

)
= (A−

1u, A
−
1v)

for some positive constants A−
1u and A−

1v, where

β−1 := max{λ−1u, λ
−
1v}, γ−1 =

{
0 if λ−1u ̸= λ−1v,

1 if λ−1u = λ−1v.

Next, we provide the asymptotic behavior of (Ev,E∗)-fronts at ξ = ±∞.
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Lemma 2.4 (The Asymptotic behavior of (Ev,E∗)-fronts at ξ = ±∞). Let (c2, U2, V2) be a solution

of (2.8) with c2 ≤ c2,max < 0. Then the following hold:

(1) Define λ+2u and λ+2v as the positive root of

λ2 − c2λ+ (1− k) = 0 and Dλ2 − c2λ− r = 0,

respectively. Then

lim
ξ→−∞

(U2(ξ)

eλ
+
2uξ

,
1− V2(ξ)

|ξ|γ+
2 eβ

+
2 ξ

)
= (A+

2u, A
+
2v)

for some positive constants A+
2u and A+

2v, where

β+2 := min{λ+2u, λ
+
2v}, γ+2 =

{
0 if λ+2u ≠ λ+2v,

1 if λ+2u = λ+2v.

(2) Define the characteristic equation

P2(λ) := (λ2 − c2λ− u∗)(Dλ2 − c2λ− rv∗)− rhku∗v∗ = 0

Then

lim
ξ→+∞

(u∗ − U2(ξ)

|ξ|γ−
2 eλ

−
2 ξ

,
V2(ξ)− v∗

|ξ|γ−
2 eλ

−
2 ξ

)
= (A−

2u, A
−
2v)(2.9)

for some positive constants A−
2u and A−

2v, where u
∗ and v∗ are given in (1.3), λ−2 is some

negative zero of P2, and

γ−2 =

{
0 if λ−2 is a simple zero of P2,

0 or 1 if λ−2 is a double zero of P2.

Proof. Since the proof of (1) is similar to that of [28, Lemma 2.3], we omit the proof. We now deal

with (2). Let us write

P2(λ) = R1(λ)R2(λ)− rhku∗v∗,

where

R1(λ) := λ2 − c2λ− u∗, R2(λ) := Dλ2 − c2λ− rv∗.

Note that R1 (resp., R2) has one positive zero µ+ (resp., σ+) and one negative zero µ− (resp., σ−),

where

µ± =
c2 ±

√
c22 + 4u∗

2
, σ± =

c2 ±
√
c22 + 4Drv∗

2D
.

To locate the zeros of P2, we divide R into six disjoint intervals

I1 := (−∞,min{µ−, σ−}], I2 : (min{µ−, σ−},max{µ−, σ−}],
I3 := (max{µ−, σ−}, 0), I4 := [0,min{µ+, σ+}),
I5 := [min{µ+, σ+},max{µ+, σ+}), I6 := [max{µ+, σ+},∞).

Some simple facts are given as follows:

(i) P2(0) = ru∗v∗(1− hk) < 0 (since h, k > 1) and P2(µ±) = P2(σ±) = −ru∗v∗hk < 0.

(ii) P2 is decreasing in I1 and is increasing in I6 with P2(±∞) = ∞.

(iii) P2(λ) < −ru∗v∗hk < 0 for all λ ∈ I2 ∪ I5.
(iv) P2 is decreasing in I4, since c2 < 0 implies R′

j(·) > 0 in [0,∞) for j = 1, 2, it follows that

P ′
2 = R′

1R2 +R1R
′
2 < 0 in I4.
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By (i) and (ii), we see that P2 has exactly one negative zero in I1 (say κ1) and exactly one positive

zero in I6 (say κ4). From (i), (iii) and (iv), it follows that P2 has no zero in I2 ∪ I4 ∪ I5. Also, since
P2 has at most four real zeros, we have the following three possibilities:

(a) P2 has four simple zeros κ1 < κ2 < κ3 < 0 < κ4 with κ2, κ3 ∈ I3.

(b) P2 has four zeros κ1 < κ2 = κ3 < 0 < κ4 with one double zero κ2 ∈ I3.

(c) P2 has only two real zeros, i.e., κ1 ∈ I1 and κ4 ∈ I6, and has two conjugate complex zeros.

We now define

(X1, X2, X3, X4)(ξ) = (U2, U
′
2, V2, V

′
2)(ξ).

Then by the first two equations of (2.8), we have
X1

X2

X3

X4


′

=


X2

c2X2 − f(X1, X3)

X4
c2
DX4 − 1

Dg(X1, x3)

(2.10)

By considering the linearized system of (2.10) at (X1, X2, X3, X4) = (u∗, 0, v∗, 0), we have
Y1
Y2
Y3
Y4


′

=


0 1 0 0

u∗ c2 kv∗ 0

0 0 0 1
rh
D v

∗ 0 r
Dv

∗ c2
D




Y1
Y2
Y3
Y4

 := J


Y1
Y2
Y3
Y4

 .(2.11)

By cofactor expansion, the characteristic polynomial of J is

det(J − λI) = P2(λ) = R1(λ)R2(λ)− rhku∗v∗.

Note that we have located the zeros of P2 above. See (a)-(c) above.

Case 1 : assume that (a) holds. Namely, J has four distinct real eigenvalues κ1 < κ2 < κ3 < 0 <

κ4. By some simple calculations, we can find an eigenvector

vi :=
(
1, κi,

R1(κi)

ku∗
, κi

R1(κi)

ku∗

)T
(2.12)

with respect to eigenvalue κi (i = 1, 2, 3, 4). It follows that every solution of (2.11) that approaches

to 0 as ξ → ∞ can be represented by
Y1
Y2
Y3
Y4

 =

3∑
i=1

Cie
κiξvi

for some constants Ci, i = 1, 2, 3. By the unstable manifold theorem, as ξ → ∞, we have
U2(ξ)

U ′
2(ξ)

V2(ξ)

V ′
2(ξ)

 =


X1(ξ)

X2(ξ)

X3(ξ)

X4(ξ)

 =


u∗ +

∑3
i=1 Ĉie

κiξ.∑3
i=1 Ĉiκie

κiξ

v∗ +
∑3

i=1 Ĉi
R1(κi)
ku∗ eκiξ∑3

i=1 Ĉiκi
R1(κi)
ku∗ eκiξ.

+ h.o.t.(2.13)

for some constants Ĉi (i = 1, 2, 3).

Next, we show that Ĉ2
2 + Ĉ2

3 ̸= 0. For contradiction we assume that Ĉ2 = Ĉ3 = 0. Then from

(2.13), we see that
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lim
ξ→∞

U ′
2(ξ)

eκ1ξ
= κ1Ĉ1, lim

ξ→∞

V ′
2(ξ)

eκ1ξ
=
R1(κ1)

ku∗
κ1Ĉ1.(2.14)

Since R1(κ1) > 0, we see from (2.14) that U ′ and V ′ have the same sign for all large ξ, which

contradicts the fact that U ′
2 > 0 and V ′

2 < 0 in R. Hence, Ĉ2
2 + Ĉ2

3 ≠ 0. Then we obtain (2.9) with

γ−2 = 0 and either λ−2 = κ2 (if Ĉ3 = 0) or λ−2 = κ3 (if Ĉ3 ̸= 0).

Case 2 : assume that (b) holds. Namely, J has real eigenvalues κ1 < κ2 = κ3 < 0 < κ4. Since

the dimension of the generalized eigenspace corresponding to eigenvalue λ = κ2 is two, by some

calculations, J has a generalized eigenvector

v̂ :=
(
1, 1 + λ, ν, κ2ν +

R1(κ2)

ku∗

)T

for some constant ν. Hence, every solution of (2.11) that approaches to 0 as ξ → ∞ can be

represented by 
Y1
Y2
Y3
Y4

 = C1e
κ1ξv1 + C2e

κ2ξv2 + C3e
κ2ξ(v2ξ + v̂),

where vi, i = 1, 2, are given in (2.12) and Ci, i = 1, 2, 3, are some constants. By the unstable

manifold theorem, as ξ → ∞, we have
U2(ξ)

U ′
2(ξ)

V2(ξ)

V ′
2(ξ)

 =


u∗ +

∑2
i=1 Ĉie

κiξ + Ĉ3e
κ2ξ(ξ + 1).∑2

i=1 Ĉiκie
κiξ + Ĉ3e

κ2ξ(κ2ξ + 1 + κ2)

v∗ +
∑2

i=1 Ĉi
R1(κi)
ku∗ eκiξ + Ĉ3e

κ2ξ(ξR1(κi)
ku∗ + κ2ν).∑2

i=1 Ĉiκi
R1(κi)
ku∗ eκiξ + Ĉ3e

κ2ξ(κ2ξ
R1(κi)
ku∗ + κ2ν +

R1(κ2)
ku∗ ).

+ h.o.t.

for some constants Ĉi (i = 1, 2, 3). Similar to the discussion in Case 1, if Ĉ2
2 + Ĉ2

3 = 0, U ′ and V ′

must have the same sign for all large ξ, which leads to a contradiction since U ′
2 > 0 and V ′

2 < 0 in

R. Hence Ĉ2
2 + Ĉ2

3 ̸= 0, which implies (2.9) with λ−2 = κ2 and either γ−2 = 0 (if Ĉ3 = 0) or γ−2 = 1

(if Ĉ3 ̸= 0).

Case 3 assume that (c) holds. Since J already has two real eigenvalues κ1 < 0 < κ4, the complex

eigenvalues are conjugate pairs a±bi (b > 0). By simple calculations, we have P2(bi) ̸= 0. It follows

that a ̸= 0. If a > 0, then J has only one eigenvalue with negative real part. By the unstable

manifold theorem, we again have (2.14). Recall that R1(κ1) > 0. Again, it contradicts the fact

that U ′
2 > 0 and V ′

2 < 0 in R. Hence, a > 0 is impossible. If a < 0, then every solution of (2.11)

that approaches to 0 as ξ → ∞ is represented by
Y1
Y2
Y3
Y4

 = C1e
κ1ξv1 + C2e

aξ


cos bξ

w2

w3

w4

+ C3e
aξ


sin bξ

z2
z3
z4

 ,

where v1 is given in (2.12) and Ci, wi, zi ∈ R. Since a < 0, by the unstable manifold theorem, as

ξ → ∞, {
U(ξ) = u∗ + Ĉ1e

κ1ξ + Ĉ2e
aξ cos bξ + Ĉ3e

aξ sin bξ + h.o.t.,

V (ξ) = v∗ + Ĉ1
R1(κi)
ku∗ eκ1ξ + Ĉ2e

aξw3 + Ĉ3e
aξz3 + h.o.t.,

(2.15)
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for some Ĉi ∈ R for i = 1, 2, 3.

We now show that a = κ1. For contradiction we assume that a ̸= κ1. If a > κ1, we can obtain

Ĉ2
2 + Ĉ2

3 ̸= 0. Otherwise, from (2.15) we have

lim
ξ→∞

U(ξ)− u∗

eκ1ξ
= Ĉ1, lim

ξ→∞

V (ξ)− v∗

eκ1ξ
= Ĉ1

R1(κi)

ku∗
,(2.16)

which contradicts the fact that U < u∗ and v∗ < V in R. Hence we have Ĉ2
2 + Ĉ

2
3 ̸= 0. Then due to

the assumption 0 > a > κ1, u
∗ − U(ξ) must change sign infinitely many times for all ξ ≫ 1, which

is impossible since U < u∗ in R. It follows that a ≤ κ1. If a < κ1, from (2.15) we see that (2.16)

holds, which again contradicts the fact that U < u∗ and v∗ < V in R. Consequently, we must have

a = κ1. Clearly, (2.15) implies (2.9) with λ−2 = κ1 and γ−2 = 0. This completes the proof. �

Finally, we provide the asymptotic behavior of (E∗,Eu)-fronts at ξ = ±∞. Since the proof is

similar that of Lemma 2.4, we shall omit the proof here.

Lemma 2.5 (The Asymptotic behavior of (E∗,Eu)-fronts at ξ = ±∞). Let (c3, U3, V3) be a solution

of (2.8) with c3 ≥ c3,min > 0. Then the following hold:

(1) Define the characteristic equation

P3(λ) := (λ2 − c3λ− u∗)(Dλ2 − c3λ− rv∗)− rhku∗v∗ = 0

Then

lim
ξ→−∞

(U3(ξ)− u∗

|ξ|γ+
3 eλ

+
3 ξ

,
v∗ − V3(ξ)

|ξ|γ+
3 eλ

+
3 ξ

)
= (A+

3u, A
+
3v)

for some positive constants A+
32u and A+

3v, where λ
+
3 is some positive zero of P3 and

γ+3 =

{
0 if λ+3 is a simple zero of P3,

0 or 1 if λ+3 is a double zero of P3.

(2) Define λ−3u and λ−3v as the negative roots of

λ2 − c3λ− 1 = 0 and Dλ2 − c3λ+ r(1− h) = 0,

respectively. Then

lim
ξ→+∞

(1− U3(ξ)

|ξ|γ−
3 eβ

−
3 ξ
,
1− V2(ξ)

|ξ|eβ
−
3vξ

)
= (A−

3u, A
−
3v)

for some positive constants A−
3u and A−

3v, where

β−3 := max{λ−3u, λ
−
3v}, γ−3 =

{
0 if λ−3u ̸= λ−3v,

1 if λ−3u = λ−3v.

As a corollary, we have the following estimates on (Ui,Wi), i = 1, 2, 3, at ξ = ±∞.
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Lemma 2.6. There exist αi > 0, βi > 0, i = 1, 2, 3, and Kj, j = 1, · · · , 9, such that for any given

p ≤ 0,

(1) |U ′
i(x+ p)|+ |W ′

i (x+ p)| ≤ K1e
αi(x+p) for x ≤ −p, i = 1, 2, 3,

(2) |U ′
i(x− p)|+ |W ′

i (x− p)| ≤ K2e
−βi(x−p) for x ≥ p, i = 1, 2, 3,

(3)
|U1(x− p)|
|U ′

1(x− p)|
+

|W1(x− p)|
|W ′

1(x− p)|
≤ K3 for x ≤ p,

(4)
|1− U1(x− p)|
|U ′

1(x− p)|
+

|1−W1(x− p)|
|W ′

1(x− p)|
≤ K4 for x ≥ p,

(5)
|U2(x+ p)|
|U ′

2(x+ p)|
+

|W2(x+ p)|
|W ′

2(x+ p)|
≤ K5 for x ≤ −p,

(6)
|W2(x+ p)− w∗|
|U2(x+ p)− u∗|

+
|U2(x+ p)− u∗|

|U ′
2(x+ p)|

+
|W2(x+ p)− w∗|

|W ′
2(x+ p)|

≤ K6 for x ≥ −p,

(7)
|W3(x+ p)− w∗|
|U3(x+ p)− u∗|

+
|U3(x+ p)− u∗|

|U ′
3(x+ p)|

+
|W3(x+ p)− w∗|

|W ′
3(x+ p)|

≤ K7 for x ≤ −p,

(8)
|U3(x+ p)− 1|
|U ′

3(x+ p)|
+

|W3(x+ p)− 1|
|W ′

3(x+ p)|
≤ K8 for x ≥ −p,

(9)
|1−W1(x− p)|
|1− U1(x− p)|

+
|1−W3(x− p)|
|1− U3(x− p)|

≤ K9 for x ∈ R.

Proof. These results immediately follow from Lemma 2.3, Lemma 2.4 and Lemma 2.5. �

2.3. The construction of Q-function. In this subsection, we shall introduce the Q-function

which plays a crucial role in the construction of a pair of super-sub-solution.

The Q-function for the two-species system is a vector-valued function with two components,

which is defined by Q(y, z, η) := (Q1, Q2)(y, z, η). For each component, we adopt the form con-

structed by Chen et al. [5]:

Qi(y, z, η) = z + (1− z)
(1− y)z(η − ai) + y(ai − z)(1− η)

(1− y)z(1− ai) + (ai − z)(1− η)
, i = 1, 2,(2.17)

defined on Di for i = 1, 2, where a1 := u∗, a2 := w∗ and

Di := [0, 1]× [0, ai]× [ai, 1] \ (J1
i ∪ J2

i ∪ J3
i ),(2.18)

J1
i := {(y, 0, 1)| 0 ≤ y ≤ 1}, J2

i := {(1, z, 1)| 0 ≤ z ≤ ai}, J3
i := {(1, ai, η)| ai ≤ η ≤ 1}.(2.19)

With the same calculations as in [5], the first and second derivatives of Qi satisfy some properties

which are listed in the following two lemmas. See the proof of [5, Lemma 3.1].

Lemma 2.7. It holds that

Qiy =
ai(1− z)(ai − z)(1− η)2

[(1− y)z(1− ai) + (ai − z)(1− η)]2
,

Qiz =
(1− ai)ai(1− y)(1− η)(η − y)

[(1− y)z(1− ai) + (ai − z)(1− η)]2
,

Qiη =
ai(1− ai)(1− y)2z(1− z)

[(1− y)z(1− ai) + (ai − z)(1− η)]2
,
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and

Qiyy =
2(1− ai)aiz(1− z)(ai − z)(1− η)2

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

Qizz = −2(1− ai)ai(1− y)(1− η)(η − y)[η − ai − y(1− ai)]

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

Qiηη =
2(1− ai)ai(1− y)2z(ai − z)(1− z)

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

Qiyz = −(1− ai)ai(1− η)2[(y − η)z + ai(1− 2y − z + η + yz)]

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

Qiyη = −2(1− ai)ai(1− y)z(ai − z)(1− z)(1− η)

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

Qizη = −(1− ai)ai(1− y)2[(η − y)z + ai(−1 + η + z − 2zη + yz)]

[(1− y)z(1− ai) + (ai − z)(1− η)]3
,

where i = 1, 2.

Lemma 2.8. Let Q := (Q1, Q2) be defined in (2.17). Then the following results hold:

(1) Qi, i = 1, 2, can be rewritten as

Qi(y, z, η) = y + (1− y)z
(1− ai)(η − y)

(1− y)z(1− ai) + (ai − z)(1− η)
,

Qi(y, z, η) = w + (ai − z)(1− η)
y − η

(1− y)z(1− ai) + (ai − z)(1− η)
.

(2) There exist functions Qij, i = 1, 2, j = 1, 2, 3, such that

Qiy(y, z, η) = (ai − z)(1− η)Qi1(y, z, η),

Qiz(y, z, η) = (1− y)(1− η)Qi2(y, z, η),

Qiη(y, z, η) = (1− y)zQi3(y, z, η).

(3) There exist functions Q̂ij(y, z, η), i = 1, 2, j = 1, · · · , 16, such that

Qiyy(y, z, η) = zQ̂i1 = (ai − z)Q̂i2 = (1− η)Q̂i3,

Qizz(y, z, η) = (1− y)Q̂i4 = (1− η)Q̂i5 = yQ̂i6 + (η − ai)Q̂i7,

Qiηη(y, z, η) = (1− y)Q̂i8 = zQ̂i9 = (ai − z)Q̂i10,

Qiyz(y, z, η) = (1− η)Q̂i11, Qizη(y, z, η) = (1− y)Q̂i12,

Qiyη(y, z, η) = (1− y)Q̂i13 = zQ̂i14 = (ai − z)Q̂i15 = (1− η)Q̂i16.

2.4. Super-sub-solutions and crucial estimates. In this section, we extend the approach used

in [27, 5] to the current two-species competition model.

For convenience, we introduce notation σi and (ϕi, ψi), i = 1, 2, 3, to be wave speeds and wave

profiles, respectively, of traveling fronts as follows. Define

σ1 := −c1, σ2 := c2 ≤ c2,max, σ3 := c3 ≥ c3,min(2.20)
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and (ϕi, ψi)(x+ σit) as a traveling fronts of (2.1) satisfying
σiϕ

′
i = ϕ′′i + f(ϕi, ψi), ξ ∈ R,

σiψ
′
i = Dψ′′

i + g(ϕi, ψi), ξ ∈ R,
(ϕi, ψi)(−∞) = Li, (ϕi, ψi)(+∞) = Ri,

for i = 1, 2, 3. Here we shall give a detailed argument for the case when

(L1, R1, L2, R2, L3, R3) := (1,0,0,EI,EI,1),

so that we have

(ϕ1, ψ1)(ξ) = (U1,W1)(−ξ), (ϕi, ψi)(ξ) = (Ui,Wi)(ξ) for i = 2, 3.

Using the boundary conditions of (ϕi, ψi) at ±∞ and the strict monotonicity of (ϕi, ψi), by

suitable translations (shifting to the right enough), we may assume that
(
u∗

2
,
w∗

2
) ≤ (ϕ1, ψ1)(0) ≤ 1,

0 ≤ (ϕ2, ψ2)(0) ≤ (
u∗

2
,
w∗

2
),

(u∗, w∗) ≤ (ϕ3, ψ3)(0) ≤ (
1 + u∗

2
,
1 + w∗

2
).

(2.21)

Recall that w(x, t) := 1− v(x, t) and set

(u(x, t), w(x, t)) := (U(ξ, t),W (ξ, t)), ξ := x+ σ̄t, σ̄ :=
σ1 + σ2

2
.

Then we have {
Ut = Uξξ − σ̄Uξ + f(U,W ), ξ, t ∈ R,
Wt = DWξξ − σ̄Wξ + g(U,W ), ξ, t ∈ R,

(2.22)

where f and g are defined by (2.2).

By direct computation, we can easily see that (2.22) has the following traveling front solutions:

(U,W )(ξ, t) = (ϕ1, ψ1)(ξ − s1t), (ϕ2, ψ2)(ξ + s1t), (ϕ3, ψ3)(ξ + s2t),

where

s1 :=
σ2 − σ1

2
> 0, s2 := σ3 − σ̄ =

2σ3 − σ1 − σ2
2

>
−σ1 − σ2

2
> s1.(2.23)

Next, we introduce some auxiliary smooth functions qi, i = 1, 2, 3, defined on I := (−∞, 0) such

that

q1(t) ≤ 0 ≤ −q2(t) ≤ −q3(t), t ∈ I.

These functions will be given precisely later.

Define {
N1[U,W ](ξ, t) := Ut − Uξξ + σ̄Uξ + f(U,W ),

N2[U,W ](ξ, t) :=Wt −DWξξ + σ̄Wξ + g(U,W ).

Recall Q := (Q1, Q2) constructed in the previous subsection and put

U(ξ, t) = Q1(ϕ1(ξ − q1(t)), ϕ2(ξ + q2(t)), ϕ3(ξ + q3(t))),

W (ξ, t) = Q2(ψ1(ξ − q1(t)), ψ2(ξ + q2(t)), ψ3(ξ + q3(t)))
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into the operators N1 and N2. Then by some calculations we have

N1[Q1(ϕ1, ϕ2, ϕ3), Q2(ψ1, ψ2, ψ3)](2.24)

= −Q1yϕ
′
1(q

′
1 − s1) +Q1zϕ

′
2(q

′
2 − s1) +Q1ηϕ

′
3(q

′
3 − s2)

−G1(ϕ1, ϕ2, ϕ3)−H1(Φ1,Φ2,Φ3),

where

G1 = Q1yy(ϕ
′
1)

2 +Q1zz(ϕ
′
2)

2 +Q1ηη(ϕ
′
3)

2 + 2[Q1yzϕ
′
1ϕ

′
2 +Q1yηϕ

′
1ϕ

′
3 +Q1zηϕ

′
2ϕ

′
3],

H1 = f(Q)−Q1yf(Φ1)−Q1zf(Φ2)−Q1ηf(Φ3),

where, for convenience, we write

Φi := (ϕi, ψi), i = 1, 2, 3.(2.25)

and ϕi = ϕi(ξ − qi(t)), ψi = ψi(ξ − qi(t)) for i = 1, 2, 3. Similarly, we have

N2[Q1(ϕ1, ϕ2, ϕ3), Q2(ψ1, ψ2, ψ3)](2.26)

= −Q2yψ
′
2(q

′
1 − s1) +Q2zψ

′
2(q

′
2 − s1) +Q1ηψ

′
3(q

′
3 − s2)

−G2(ψ1, ψ2, ψ3)−H2(Φ1,Φ2,Φ3),

where

G2 = Q2yy(ψ
′
1)

2 +Q2zz(ψ
′
2)

2 +Q2ηη(ψ
′
3)

2 + 2[Q2yzψ
′
1ψ

′
2 +Q2yηψ

′
1ψ

′
3 +Q2zηψ

′
2ψ

′
3],

H2 = g(Q)−Q2yg(Φ1)−Q2zg(Φ2)−Q2ηg(Φ3).

Set

DH := D1 ×D2,

where Di is defined in (2.18), i = 1, 2. Then we have

Lemma 2.9. The following results hold true.

(i) It holds that

Hi(1,x2,x3) = Hi(x1,0,x3) = Hi(x1,EI ,x3) = Hi(x1,x2,1) = Hi(0,x2,EI) = 0

for i = 1, 2.

(ii) There exist some continuous functions Ĥi(x1,x2,x3), i = 1, 2, such that

Hi(x1,x2,x3) = ∥1− x1∥ × ∥x2∥ × ∥EI − x2∥ × ∥1− x3∥ × Ĥi(x1,x2,x3),

where

Ĥi(x1,x2,x3) := x1 · (Ĥi1, Ĥi2) + (x3 −EI) · (Ĥi3, Ĥi4)(2.27)

for some continuous functions Ĥij, i = 1, 2, j = 1, 2, 3, 4, defined on DH , and ∥ · ∥ denotes

the standard Euclidean norm.

Lemma 2.9(ii) plays a crucial role in establishing key estimates. The proof is presented in the

appendix.
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Lemma 2.10. There exist positive constants M1 and m1 such that

m1 ≤ Q1y(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)) ≤M1 for ξ ∈ (−∞,−q2],
m1 ≤ Q2y(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)) ≤M1 for ξ ∈ (−∞,−q2],
m1 ≤ Q1z(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)) ≤M1 for ξ ∈ [q1,−q3],
m1 ≤ Q2z(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)) ≤M1 for ξ ∈ [q1,−q3],
m1 ≤ Q1η(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)) ≤M1 for ξ ∈ [−q2,∞),

m1 ≤ Q2η(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)) ≤M1 for ξ ∈ [−q2,∞),

for any given q1 < 0 < −q2 ≤ −q3.

Proof. We divide R into four intervals: (−∞, q1], [q1,−q2], [−q2,−q3] and [−q3,∞). By (2.21) and

the monotonicity of the wave profile, we see that for all ξ ∈ (−∞, q1],
(
u∗

2
,
w∗

2
) ≤ (ϕ1, ψ1)(ξ − q1) ≤ 1,

0 ≤ (ϕ2, ψ2)(ξ + q2) ≤ (
u∗

2
,
w∗

2
),

(u∗, w∗) ≤ (ϕ3, ψ3)(ξ + q3) ≤ (
1 + u∗

2
,
1 + w∗

2
).

Similarly, for ξ ∈ [q1,−q2],
0 ≤ (ϕ1, ψ1)(ξ − q1) ≤ (ϕ1, ψ1)(0),

0 ≤ (ϕ2, ψ2)(ξ + q2) ≤ (
u∗

2
,
w∗

2
),

(u∗, w∗) ≤ (ϕ3, ψ3)(ξ + q3) ≤ (
1 + u∗

2
,
1 + w∗

2
).

For ξ ∈ [−q2,−q3], 
0 ≤ (ϕ1, ψ1)(ξ − q1) ≤ (ϕ1, ψ1)(0),

(ϕ2, ψ2)(0) ≤ (ϕ2, ψ2)(ξ + q2) ≤ (u∗, w∗),

(u∗, w∗) ≤ (ϕ3, ψ3)(ξ + q3) ≤ (
1 + u∗

2
,
1 + w∗

2
).

For ξ ∈ [−q3,∞), 
0 ≤ (ϕ1, ψ1)(ξ − q1) ≤ (ϕ1, ψ1)(0),

(ϕ2, ψ2)(0) ≤ (ϕ2, ψ2)(ξ + q2) ≤ (u∗, w∗),

(ϕ3, ψ3)(0) ≤ (ϕ3, ψ3)(ξ + q3) ≤ 1.

From the above inequalities, we can easily check that (ϕ1, ϕ2, ϕ3) (resp., (ψ1, ψ2, ψ3)) is far away

from Jk
1 (resp., Jk

2 ) for k = 1, 2, 3 (Jk
i is defined by (2.19)). In fact, we see that the denominator

and the numerator of Qiy, Qiz and Qiη (see Lemma 2.7), i = 1, 2, satisfy

ℓ1 ≤ (1− u∗)(1− ϕ1)ϕ2 + (u∗ − ϕ2)(1− ϕ3) ≤ ℓ2, ξ ∈ R,
ℓ3 ≤ (1− w∗)(1− ψ1)ψ2 + (w∗ − ψ2)(1− ψ3) ≤ ℓ4, ξ ∈ R,
ℓ5 ≤ (1− ϕ2)(u

∗ − ϕ2)(1− ϕ3)
2 ≤ ℓ6, ξ ∈ (−∞,−q2],

ℓ7 ≤ (1− ψ2)(w
∗ − ψ2)(1− ψ3)

2 ≤ ℓ8, ξ ∈ (−∞,−q2],
ℓ9 ≤ (1− ω1)(1− ω3)(ω3 − ω2) ≤ ℓ10, ξ ∈ [q1,−q3], ωi = ϕi, ψi,

ℓ11 ≤ (1− ω1)
2ω2(1− ω2) ≤ ℓ12, ξ ∈ [−q2,∞), ωi = ϕi, ψi

(2.28)
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for all qi satisfying q1 < 0 < −q2 ≤ −q3, where ℓ1, · · · , ℓ12 are some positive constants. Hence the

proof of Lemma 2.10 is completed. �

By Lemma 2.8, Lemma 2.9 and Lemma 2.10, we obtain the following result.

Lemma 2.11. Let Ĥij(x1,x2,x3), i = 1, 2, j = 1, · · · , 4, be given in (2.27) and Φi be defined in

(2.25). Then there exists M0 > 0 such that

|Ĥij(Φ1(ξ − q1),Φ2(ξ + q2),Φ3(ξ + q3))| ≤M0

for all ξ ∈ R for any given q1 ≤ 0 ≤ −q2 ≤ −q3.

Next, we introduce two functions:

F1(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)) := −Q1yϕ
′
1(ξ − q1) +Q1zϕ

′
2(ξ + q2) +Q1ηϕ

′
3(ξ + q3),

F2(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)) := −Q2yψ
′
1(ξ − q1) +Q2zψ

′
2(ξ + q2) +Q2ηψ

′
3(ξ + q3),

where

Q1θ := Q1θ(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)),

Q2θ := Q2θ(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)), θ = y, z, η.

Lemma 2.12. There exists δ ≫ 1 such that

F1(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3)) > 0

for all ξ ∈ R for any q1 < −δ < δ < −q2 ≤ −q3. Moreover,

F1 ≥
1

2
Q1y|ϕ′1(ξ − q1)|, ξ ∈ (−∞, q1],

F1 ≥
1

2
[Q1y|ϕ′1(ξ − q1)|+Q1z|ϕ′2(ξ + q2)|], ξ ∈ [q1,−q2],

F1 ≥
1

2
[Q1z|ϕ′2(ξ + q2)|+Q1η|ϕ′3(ξ + q3)|), ξ ∈ [−q2,−q3],

F1 ≥
1

2
Q1η|ϕ′3(ξ + q3)|, ξ ∈ [−q3,∞),

for any q1 < −δ < δ < −q2 ≤ −q3.

Proof. By the form of the second partial derivatives of Qi (Lemma 2.7) and (2.28), there exists a

positive constant C such that for any given q1 ≤ 0 ≤ −q2 ≤ −q3,

|Q̂1j(ϕ1(ξ − q1), ϕ2(ξ + q2), ϕ3(ξ + q3))| ≤ C for all ξ ∈ R and i = 1, · · · 16,

where Q̂1j is defined in Lemma 2.8. It follows that the proof of [5, Lemma 3.3] can be applied

directly to show the desired result. We shall not repeat it again. �

Similarly, we have

Lemma 2.13. There exists δ ≫ 1 such that

F2(ψ1(ξ − q1), ψ2(ξ + q2), ψ3(ξ + q3)) > 0
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for all ξ ∈ R for any q1 < −δ < δ < −q2 ≤ −q3. Moreover,

F2 ≥
1

2
Q2y|ψ′

1(ξ − q1)|, ξ ∈ (−∞, q1],

F2 ≥
1

2
[Q2y|ψ′

1(ξ − q1)|+Q2z|ψ′
2(ξ + q2)|], ξ ∈ [q1,−q2],

F2 ≥
1

2
[Q2z|ψ′

2(ξ + q2)|+Q2η|ψ′
3(ξ + q3)|], ξ ∈ [−q2,−q3],

F2 ≥
1

2
Q2η|ψ′

3(ξ + q3)|, ξ ∈ [−q3,∞),

for any q1 < −δ < δ < −q2 ≤ −q3.

Due to the form of Q-function, we have the following key estimates:

Lemma 2.14. Let δ ≫ 1 such that Lemma 2.12 holds. Then there exists M > 0 such that

∣∣∣H1(Φ1,Φ2,Φ3)

F1(ϕ1, ϕ2, ϕ3)

∣∣∣ ≤

M(|ϕ′2|+ |ϕ′3|), ξ ∈ (−∞, 0],

M(|ϕ′1|+ |ϕ′3|), ξ ∈ [0,− q2+q3
2 ],

M(|ϕ′1|+ |ϕ′2|), ξ ∈ [− q2+q3
2 ,∞),

for any given q1 < −δ < δ < −q2 ≤ −q3.

Proof. Recall from Lemma 2.9 that

Hi(Φ1,Φ2,Φ3) = ∥1− Φ1∥ × ∥Φ2∥ × ∥EI − Φ2∥ × ∥1− Φ3∥ × Ĥi(Φ1,Φ2,Φ3),

Ĥi(Φ1,Φ2,Φ3) := Φ1 · (Ĥi1, Ĥi2) + (Φ3 −EI) · (Ĥi3, Ĥi4),

where (x1,x2,x3) ∈ DH .

We first prepare some estimates for later use. From Lemma 2.6(9) we see that for ξ ∈ (−∞, 0],

∥1− Φ1∥ ≤ |1− ϕ1|+ |1− ψ1| = |1− ϕ1|
(
1 +

|1− ψ1|
|1− ϕ1|

)
≤ |1− ϕ1|

(
1 +K9

)
.(2.29)

Again, using Lemma 2.6(9) we obtain that for ξ ∈ [0,∞),

∥1− Φ3∥ ≤ |1− ϕ3|+ |1− ψ3| = |1− ϕ3|
(
1 +

|1− ψ3|
|1− ϕ3|

)
≤ |1− ϕ3|

(
1 +K9

)
.(2.30)

By (H2) and Lemma 2.6(3), for ξ ∈ [−q1,∞),

∥Φ1∥ ≤ |ϕ1|+ |ψ1| = |ϕ1|
(
1 +

|ψ1|
|ϕ1|

)
≤ |ϕ1|

(
1 +

1

ℓ

)
≤ K3|ϕ′1|

(
1 +

1

ℓ

)
.(2.31)

By (H2) and Lemma 2.6(5), for ξ ∈ (−∞,−q2],

∥Φ2∥ ≤ |ϕ2|+ |ψ2| = |ϕ2|
(
1 +

|ψ2|
|ϕ2|

)
≤ |ϕ2|

(
1 +

1

ℓ

)
≤ K5|ϕ′2|

(
1 +

1

ℓ

)
.(2.32)

By Lemma 2.6(6), for ξ ∈ [−q2,∞),

∥Φ2 −EI∥ ≤ |ϕ2 − u∗|+ |ψ2 − w∗| =
(
1 +

|ψ2 − w∗|
|ϕ2 − u∗|

) |ϕ2 − u∗|
|ϕ′2|

|ϕ′2|(2.33)

≤ (1 +K6)K6|ϕ′2|

By Lemma 2.6(7), for ξ ∈ (−∞,−q2],

∥Φ3 −EI∥ ≤ |ϕ3 − u∗|+ |ψ3 − w∗| =
(
1 +

|ψ3 − w∗|
|ϕ3 − u∗|

) |ϕ3 − u∗|
|ϕ′3|

|ϕ′3|(2.34)

≤ (1 +K7)K7|ϕ′3|
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By Lemma 2.11, for ξ ∈ R,

|Ĥi(Φ1,Φ2,Φ3)| ≤ ∥Φ1∥
√
2M0 + ∥Φ3 −EI∥

√
2M0.(2.35)

We now divide our discussion into several cases.

(i) ξ ∈ (−∞, q1]. By Lemma 2.10 and Lemma 2.12, we have

|F1| ≥
m1|ϕ′1|

2
.(2.36)

By (2.34) and (2.35), we have

|Ĥ1(Φ1,Φ2,Φ3)| ≤
√
2
√
2M0 + (1 +K7)K7|ϕ′3|

√
2M0.(2.37)

Using (2.29), (2.32), (2.36) and (2.37), there exists C > 0 such that∣∣∣H1

F1

∣∣∣ ≤ C
|1− ϕ1|
|ϕ′1|

|ϕ′2|
(
1 + |ϕ′3|

)
, ξ ∈ (−∞, q1].

By Lemma 2.6(4) and the boundedness of |ϕ′2|, there exists M > 0 such that∣∣∣H1

F1

∣∣∣ ≤M
(
|ϕ′2|+ |ϕ′3|

)
, ξ ∈ (−∞, q1].

(ii) ξ ∈ [q1, 0]. By Lemma 2.10 and Lemma 2.12, we have

|F1| ≥
m1|ϕ′1|

2
+
m1|ϕ′2|

2
, ξ ∈ [q1,−q2].(2.38)

Then using (2.38) and (2.35), we obtain∣∣∣H1

F1

∣∣∣ ≤ ∥1− Φ1∥∥Φ2∥∥EI∥∥1∥∥Φ1∥
√

2M2
0

m1|ϕ′1|/2

+
∥1− Φ1∥∥Φ2∥∥EI∥∥1∥∥Φ3 −EI∥

√
2M2

0

m1|ϕ′2|/2
.

Thanks to (2.29), (2.32) and (2.34), there exists C > 0 such that for ξ ∈ [q1, 0],∣∣∣H1

F1

∣∣∣ ≤ C
( |1− ϕ1|

|ϕ′1|
|ϕ′2|+ |ϕ′3|

)
.

By Lemma 2.6(3), there exists M > 0 such that∣∣∣H1

F1

∣∣∣ ≤M
(
|ϕ′2|+ |ϕ′3|

)
, ξ ∈ [q1, 0].

(iii) ξ ∈ [0,−q2]. Using (2.38), (2.35) and (2.34),

∣∣∣H1

F1

∣∣∣ ≤
∥1− Φ1∥∥Φ2∥∥EI∥∥1∥

(
∥Φ1∥+ (1 +K7)K7|ϕ′3|

)√
2M2

0

m1|ϕ′2|/2

Then using (2.31) and (2.32),

∣∣∣H1

F1

∣∣∣ ≤
∥1∥

[
K5|ϕ′2|(1 + 1

ℓ )
]
∥EI∥∥1∥

[
K3|ϕ′1|(1 + 1

ℓ ) + (1 +K7)K7|ϕ′3|
]√

2M2
0

m1|ϕ′2|/2
Hence there exists M > 0 such that∣∣∣H1

F1

∣∣∣ ≤M
(
|ϕ′1|+ |ϕ′3|

)
, ξ ∈ [0,−q2].
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(iv) ξ ∈ [−q2,−( q2+q3
2 )]. By Lemma 2.10 and Lemma 2.12, we have

|F1| ≥
m1|ϕ′2|

2
+
m1|ϕ′3|

2
, ξ ∈ [−q2,−q3].(2.39)

Then using (2.39), (2.33), (2.30), (2.35) and (2.31),∣∣∣H1

F1

∣∣∣ ≤
∥1∥∥Φ2∥(1 +K6)K6|ϕ′2|(1 +K9)|1− ϕ3|

[
(1 + 1

ℓ )K3|ϕ′1|
√
2M2

0 + ∥EI∥
√

2M2
0

]
m1|ϕ′2|/2

≤ C|1− ϕ3|(|ϕ′1|+ 1) = C
|1− ϕ3|
|ϕ′3|

(|ϕ′1|+ 1)|ϕ′3|

≤ CK8(|ϕ′1||ϕ′3|+ |ϕ′3|)

for some C > 0 and we have used Lemma 2.6(8). By the boundedness of ϕ′3, we obtain the existence

of M .

(v) ξ ∈ [−( q2+q3
2 ),−q3]. Using (2.39) and (2.35), we obtain∣∣∣H1

F1

∣∣∣ ≤ ∥1∥∥Φ2∥∥EI − Φ2∥∥1∥∥Φ1∥
√

2M2
0

m1|ϕ′2|/2

+
∥1∥∥Φ2∥∥EI − Φ2∥∥1∥∥Φ3 −EI∥

√
2M2

0

m1|ϕ′3|/2
.

Thanks to (2.30), (2.31) and (2.33), there exists M > 0 such that∣∣∣H1

F1

∣∣∣ ≤M
(
|ϕ′2|+ |ϕ′3|

)
, ξ ∈ [−(

q2 + q3
2

),−q3].

(vi) ξ ∈ [−q3,∞). By Lemma 2.10 and Lemma 2.12, we have

|F1| ≥
m1|ϕ′3|

2
.(2.40)

By (2.31) and (2.35), we have

|Ĥ1(Φ1,Φ2,Φ3)| ≤ K3|ϕ′1|
(
1 +

1

ℓ

)√
2M0 + ∥EI∥

√
2M0.(2.41)

Using (2.40), (2.30), (2.33) and (2.41), there exists C > 0 such that∣∣∣H1

F1

∣∣∣ ≤ C
|1− ϕ3|
|ϕ′3|

|ϕ′2|
(
|ϕ′1|+ 1

)
, ξ ∈ [−q3,∞).

By the boundedness of |ϕ′2| and Lemma 2.6(8), there exists M > 0 such that∣∣∣H1

F1

∣∣∣ ≤M
(
|ϕ′1|+ |ϕ′2|

)
, ξ ∈ [−q3,∞).

Combining (i)-(vi), the proof is completed. �

The following lemma is exactly the same as Lemma 3.4 in [5].

Lemma 2.15. Let δ ≫ 1 such that Lemma 2.12 holds. Then there exists M > 0 such that

∣∣∣G1(ϕ1, ϕ2, ϕ3)

F1(ϕ1, ϕ2, ϕ3)

∣∣∣ ≤

M(|ϕ′2|+ |ϕ′3|), ξ ∈ (−∞, 0],

M(|ϕ′1|+ |ϕ′3|), ξ ∈ [0,− q2+q3
2 ],

M(|ϕ′1|+ |ϕ′2|), ξ ∈ [− q2+q3
2 ,∞),

for any given q1 < −δ < δ < −q2 ≤ −q3.

Using the arguments in Lemma 2.14 and Lemma 2.15, we can obtain the following result:
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Lemma 2.16. Let δ ≫ 1 such that Lemma 2.13 holds. Then there exists M > 0 such that

|H2(Φ1,Φ2,Φ3)|
|F2(ψ1, ψ2, ψ3)|

+
|G2(ψ1, ψ2, ψ3)|
|F2(ψ1, ψ2, ψ3)|

≤


M(|ψ′

2|+ |ψ′
3|), ξ ∈ (−∞, 0],

M(|ψ′
1|+ |ψ′

3|), ξ ∈ [0,− q2+q3
2 ],

M(|ψ′
1|+ |ψ′

2|), ξ ∈ [− q2+q3
2 ,∞).

3. The proof of main results

In this section, we prove the main results by constructing a pair of super-sub-solutions. For this,

we consider the following ODEs used in the literature widely (e.g., [12, 27, 5]):

ṗi = si + Leκpi , t ∈ (−∞, 0), pi(0) = p0 < 0, i = 1, 2,(3.1)

ṙi = si − Leκri , t ∈ (−∞, 0), ri(0) = r0 < 0, i = 1, 2(3.2)

for some large L > 0 and small κ > 0 which are to be determined later, where si is defined in (2.23).

The fundamental properties of the above ODEs can be found in [12]. For the reader’s convenience,

we collect some results for later use in the appendix (Lemma A).

Let δ > 0 such that Lemma 2.12 and Lemma 2.13 hold. Also, take

r0 < min

{
p0,

1

κ
log(

s1
L
)

}
< p0 < −δ.

Then, by Lemma A, we have

0 < p1(t)− r1(t) = p2(t)− r2(t) ≤ 2R0e
κs1t, t ≤ 0.(3.3)

We can construct a pair of super-sub-solutions to system (2.22).

Lemma 3.1. Define

U(ξ, t) = Q1(ϕ1(ξ − p1(t)), ϕ2(ξ + p1(t)), ϕ3(ξ + p2(t))),

W (ξ, t) = Q2(ψ1(ξ − p1(t)), ψ2(ξ + p1(t)), ψ3(ξ + p2(t))),

U(ξ, t) = Q1(ϕ1(ξ − r1(t)), ϕ2(ξ + r1(t)), ϕ3(ξ + r2(t))),

W (ξ, t) = Q2(ψ1(ξ − r1(t)), ψ2(ξ + r1(t)), ψ3(ξ + r2(t))).

Then there exists t0 < 0 such that (U,W ) and (U,W ) are a pair of supersolution and subsolution

to system (2.22) for t ≤ t0, respectively, satisfying

(U,W )(ξ, t) ≥ (U,W )(ξ, t) for ξ ∈ R and t ≤ t0,(3.4)

sup
ξ∈R

|U(ξ, t)− U(ξ, t)|+ sup
ξ∈R

|W (ξ, t)−W (ξ, t)| ≤ Ceκs1t for t ≤ t0(3.5)

for some positive constants C and κ.

Proof. We first show that there exists τ0 < 0 such that (U,W ) is a pair of supersolution for t ≤ τ0.

To do so, we apply Lemma 2.14, Lemma 2.15 and Lemma 2.6(1)(2) with (q1, q2, q3) = (p1, p1, p2)

and K := max{K1,K2} to conclude that for all ξ ≤ 0,

|G1(ϕ1, ϕ2, ϕ3)|+ |H1(Φ1,Φ2,Φ3)| ≤ F1(ϕ1, ϕ2, ϕ3)KM
(
eα2(ξ+p1) + eα3(ξ+p2)

)
≤ F1(ϕ1, ϕ2, ϕ3)KM

(
eα2p1 + eα3p2

)
.
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For 0 ≤ ξ ≤ −(p1 + p2)/2,

|G1(ϕ1, ϕ2, ϕ3)|+ |H1(Φ1,Φ2,Φ3)| ≤ F1(ϕ1, ϕ2, ϕ3)KM
(
e−β1(ξ−p1) + eα3(ξ+p2)

)
≤ F1(ϕ1, ϕ2, ϕ3)KM

(
eβ1p1 + eα3(p2−p1)/2

)
.

For ξ ≥ −(p1 + p2)/2,

|G1(ϕ1, ϕ2, ϕ3)|+ |H1(Φ1,Φ2,Φ3)| ≤ F1(ϕ1, ϕ2, ϕ3)KM
(
e−β1(ξ−p1) + e−β2(ξ+p1)

)
≤ F1(ϕ1, ϕ2, ϕ3)KM

(
eβ1p1 + eβ2(p2−p1)/2

)
.

Combining the above three inequalities with the fact that pi(t) = sit + o(t) as t → −∞, i = 1, 2,

and s2 > s1, one can pick κ = κ1 > 0 sufficiently small and t1 with −t1 ≫ 1 such that

|G1(ϕ1, ϕ2, ϕ3)|+ |H1(Φ1,Φ2,Φ3)| ≤ F1(ϕ1, ϕ2, ϕ3)KMeκ1p1(3.6)

for all ξ ∈ R and t ≤ t1. Using (2.24), (3.1) and (3.6), one can take L > KM such that

N1[U,W ] = −Q1yϕ
′
1Le

κ1p1 +Q1zϕ
′
2Le

κ1p1 +Q1ηϕ
′
3Le

κ1p1(3.7)

−G1(ϕ1, ϕ2, ϕ3)−H1(Φ1,Φ2,Φ3)

≥ F1(ϕ1, ϕ2, ϕ3)(L−KM)eκ1p1 ≥ 0, ξ ∈ R, t ≤ t1.

Paralleling to the process described above (but replacing Lemma 2.14 and Lemma 2.15 by

Lemma 2.16), one can choose κ = κ2 > 0 sufficiently small and t2 with −t2 ≫ 1 such that

|G2(ψ1, ψ2, ψ3)|+ |H2(Φ1,Φ2,Φ3)| ≤ F2(ψ1, ψ2, ψ3)KMeκ2p1(3.8)

for all ξ ∈ R and t ≤ t2. Hence, by (2.26), (3.1) and (3.8) one can take L > KM such that

N2[U,W ] = −Q2yψ
′
1Le

κ2p1 +Q2zψ
′
2Le

κ2p1 +Q2ηψ
′
3Le

κ2p1(3.9)

−G2(ψ1, ψ2, ψ3)−H2(Φ1,Φ2,Φ3)

≥ F2(ψ1, ψ2, ψ3)(L−KM)eκ2p1 ≥ 0, ξ ∈ R, t ≤ t2.

Combining (3.7) and (3.9) and re-choosing κ := min{κ1, κ2}, we see that (U,W ) is a pair of

supersolution for t ≤ τ0 := min{t1, t2}.
Similarly, we can show that there exists t3 < 0 such that (U,W ) is a subsolution for t ≤ t3.

Indeed, using the above argument, there exists κ3 > 0 sufficiently small and t3 with −t3 ≫ 1 such

that

|Gi(ϕ1, ϕ2, ϕ3)|+ |Hi(Φ1,Φ2,Φ3)| ≤ Fi(ϕ1, ϕ2, ϕ3)KMeκ3p1(3.10)

for all ξ ∈ R, t ≤ t3 and i = 1, 2. Using (2.24), (2.26), (3.2) with κ = κ3 and (3.10), one can take

L > KM such that

N1[U,W ] = Q1yϕ
′
1Le

κ3r1 −Q1zϕ
′
2Le

κ3r1 −Q1ηϕ
′
3Le

κ3r1

−G1(ϕ1, ϕ2, ϕ3)−H1(Φ1,Φ2,Φ3)

≤ −F1(ϕ1, ϕ2, ϕ3)(L−KM)eκ1r1 ≤ 0, ξ ∈ R, t ≤ t3.

and

N2[U,W ] = Q2yψ
′
1Le

κ3r1 −Q2zψ
′
2Le

κ3r1 −Q1ηψ
′
3Le

κ3r1

−G2(ψ1, ψ2, ψ3)−H2(Φ1,Φ2,Φ3)

≤ −F2(ψ1, ψ2, ψ3)(L−KM)eκ1r1 ≤ 0, ξ ∈ R, t ≤ t3.
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It follows that (U,W ) is a subsolution for t ≤ t3.

Taking t0 = min{τ0, t3} and again re-choosing κ := min{κ1, κ2, κ3}, then (U,W ) and (U,W ) are

a pair of supersolution and subsolution to system (2.22) for t ≤ t0, respectively.

For (3.4) and (3.5), we apply the mean value theorem twice to conclude that

U(ξ, t)− U(ξ, t) = C(ξ, t)[p1(t)− r1(t)]

for some bounded function C(ξ, t) > 0 defined for ξ ∈ R and t ≤ t0, where we have used Lemma 2.7,

the fact that p1 − r1 = p2 − r2 and ϕ′1 < 0 and ϕ′i > 0, i = 2, 3. By (3.3), we have

0 < U(ξ, t)− U(ξ, t) ≤ 2R0∥C∥L∞eκs1t, t ≤ t0.(3.11)

Similarly, we can obtain

0 < W (ξ, t)−W (ξ, t) ≤ C0e
κs1t, t ≤ t0.(3.12)

for some constant C0 > 0. Therefore, (3.4) and (3.5) follows and then the proof of Lemma 3.1 is

completed. �

We are ready to prove Theorem 1.

Proof of Theorem 1. Thanks to Lemma 3.1, we can apply the standard super-sub-solution method

to conclude that (2.1) has a unique entire solution (u(x, t), w(x, t)) which satisfies

(U,W )(x+ σ̄t, t) ≤ (u, v)(x, t) ≤ (U,W )(x+ σ̄t, t)

for x ∈ R and t ≤ t0, where U , W , U and W are defined in Lemma 3.1. We refer to e.g., [28] for

the standard process.

Next, we show the behavior of the solution at t = ±∞. For the asymptotic behavior of the

solution as t→ ∞, we can apply [1, Theorem 1] to derive (1.6). On the other hand, set

ω := r0 −
1

κ
log

[
1 +

L

s1
eκr0

]
.(3.13)

By Lemma A, we have

−R0e
κs1t < ri(t)− sit− ω ≤ 0, t ≤ 0.

Hence, together with (3.11) and (3.12), one can use the argument similar to that in [5, Theorem

4.3] to derive the asymptotic behavior of the solution as t→ −∞. Since the process is standard in

the literature, we omit the details. This completes the proof. �

Next, we show Theorem 2 as follows.

Proof of Theorem 2. This result can be done by following the proof of Theorem 1 and using some

ideas in [5, Theorem 1.2] with some modifications. We only give a sketch of the proof.

Replace (2.20) by

σ1 := −c1, σ2 := c2 ≤ c2,max, σ3 := −ĉ2 ≥ −c2,max > 0,

and let

(ϕ1, ψ1)(ξ) = (U1,W1)(−ξ), (ϕ2, ψ2)(ξ) = (U2,W2)(ξ) (ϕ3, ψ3)(ξ) = (Û2, Ŵ2)(−ξ).

Next, inspired by [5], we replace Q-function in (2.17) by

Qi(y, z, η) = z +
(1− y)z(ai − η)(−z) + y(ai − z)η(1− z)

(1− y)zai + (ai − z)η
, i = 1, 2,(3.14)
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defined on Di for i = 1, 2, where a1 := u∗, a2 := w∗ and

Di := [0, 1]× [0, ai]× [ai, 1] \ (J1
i ∪ J2

i ∪ J3
i ),

J1
i := {(y, 0, 0)| 0 ≤ y ≤ 1},
J2
i := {(1, z, 0)| 0 ≤ z ≤ a},
J3
i := {(1, ai, η)| 0 ≤ η ≤ ai}.

For super-sub-solutions, we define

U(ξ, t) = Q1(ϕ1(ξ − p1(t)), ϕ2(ξ + p1(t)), ϕ3(ξ + p2(t))),

W (ξ, t) = Q2(ψ1(ξ − p1(t)), ψ2(ξ + p1(t)), ψ3(ξ + p2(t))),

U(ξ, t) = Q1(ϕ1(ξ − r1(t)), ϕ2(ξ + r1(t)), ϕ3(ξ + r2(t))),

W (ξ, t) = Q2(ψ1(ξ − r1(t)), ψ2(ξ + r1(t)), ψ3(ξ + r2(t))),

where 
ṗ1 = s1 + Leκp1 , t ∈ (−∞, 0), p1(0) = p0 < 0,

ṙ1 = s1 − Leκr1 , t ∈ (−∞, 0), r1(0) = r0 < 0,

ṗ2 = s2 − Leκp2 , t ∈ (−∞, 0), p2(0) = r0 < 0,

ṙ2 = s2 + Leκr2 , t ∈ (−∞, 0), r2(0) = p0 < 0,

(3.15)

for some large L > 0 and small κ, p0, r0 > 0.

Following the same process as in proving Theorem 1 with some minor modifications, one can

show Theorem 2. We leave details to the reader. �

Proof of Theorem 3. The proof can be finished similarly as the proof of Theorem 1 with suitable

modifications. So we only give a sketch of the proof and point out the differences as follows.

Recall that

σ1 := −c1, σ2 := c2 ≤ c2,max, σ̄ := (σ1 + σ2)/2.

In order to obtain the asymptotic behavior as t ≈ −∞, our supersolution (U,W ) has to be even

in x for all t with −t ≫ 1. For this purpose, it is not appropriate to introduce the new variable

ξ := x+ σ̄t. We divide our proof into several steps.

Step 1. The construction of a supersolution.

Inspired by [5, Theorem 1.3], we define

U∗(x, t) = Q1(ϕ1(x+ σ̄t− p1(t)), ϕ2(x+ σ̄t+ p1(t)), u
∗),

W ∗(x, t) = Q2(ψ1(x+ σ̄t− p1(t)), ψ2(x+ σ̄t+ p1(t)), w
∗),

where Qi is given in (2.17), i = 1, 2, and p1(t) satisfies (3.1).

In short, we write ϕi := ϕi(x+ σ̄t− p1(t)) for i = 1, 2. From (2.24) and (2.26) we see that

N1[Q1(ϕ1, ϕ2, u
∗), Q2(ψ1, ψ2, w

∗)](x, t)

= [−Q1yϕ
′
1 +Q1zϕ

′
2](p

′
1(t)− s1)−G1(ϕ1, ϕ2, u

∗)−H1(Φ1,Φ2,EI),

Similar to the proof of Lemma 3.1, one can pick κ > 0 sufficiently small, t1 with −t1 ≫ 1 and a

positive constant C1 such that

|G1(ϕ1, ϕ2, u
∗)|+ |H1(Φ1,Φ2,EI)| ≤ F1(ϕ1, ϕ2, u

∗)C1e
κp1
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for all x ∈ R and t ≤ t1. Then one has

N1[U
∗,W ∗](x, t) = [−Q1yϕ

′
1 +Q1zϕ

′
2]Le

κp1 −G1(ϕ1, ϕ2, u
∗)−H1(Φ1,Φ2,EI)

≥ F1(ϕ1, ϕ2, u
∗)(L− C1)e

κp1 ≥ 0, ξ ∈ R, t ≤ t1,

as long as L ≥ C1. Similarly, we have N2[U
∗,W ∗](x, t) ≥ 0 for all x ∈ R and t with −t≫ 1 as long

as L is chosen large enough. Hence, one can choose L ≫ 1 such that (U∗,W ∗) is a supersolution

for all t with −t≫ 1.

In order to get the asymptotic behavior as t→ −∞, we need to modify the supersolution as an

even function in x. For this, we define

(U,W )(x, t) =

{
(U∗,W ∗)(x, t) if x ≤ 0,

(U∗,W ∗)(−x, t) if x ≥ 0.

In order to show (U,W )(x, t) is a (weak) supersolution, it suffices to show that

Ux(0
−, t) ≤ 0, Ux(0

+, t) ≥ 0,(3.16)

W x(0
−, t) ≤ 0, Ux(0

+, t) ≥ 0(3.17)

for all −t≫ 1.

For (3.16), we consider x ≤ 0 and the left derivative Ux(x, t). By straightforward calculation,

Ux(x, t) = Q1y(ϕ1, ϕ2, u
∗)ϕ′1 +Q1z(ϕ1, ϕ2, u

∗)ϕ′2(3.18)

= ϕ′2

[
Q1y(ϕ1, ϕ2, u

∗)

ϕ′2
ϕ′1 +Q1z(ϕ1, ϕ2, u

∗)

]
.

Recall from (2.7) that

Q1y(ϕ1, ϕ2, u
∗) =

u∗(1− ϕ2)(u
∗ − ϕ2)

(1− ϕ1)2(u∗)2 + (u∗ − ϕ2)2
, Q1z(ϕ1, ϕ2, u

∗) =
u∗(1− ϕ1)(u

∗ − ϕ1)

(1− ϕ1)2(u∗)2 + (u∗ − ϕ2)2
.

By Lemma 2.6 and the fact that

ϕ1(σ̄t− p1(t)) → 0, ϕ2(σ̄t− p1(t)) → u∗ as t→ −∞,

we have for x = 0,

Q1y(ϕ1, ϕ2, u
∗)

ϕ′2
ϕ′1 =

u∗(1− ϕ2)

(1− ϕ1)2(u∗)2 + (u∗ − ϕ2)2
(u∗ − ϕ2)

ϕ′2
ϕ′1 → 0 as t→ −∞

and Q1z(ϕ1, ϕ2, u
∗) → 1 as t → −∞. Also, using ϕ′2 > 0, from (3.18) we see that Ux(0

−, t) ≤ 0

for all −t ≫ 1. Since U is even in x, Ux(0
+, t) ≥ 0 for all −t ≫ 1. Hence (3.16) holds. The

above process can be applied to show (3.17) and so we omit the details. Therefore, (U,W )(x, t) is

a (weak) supersolution for all −t≫ 1 and then Step 1 is completed.

Step 2. The construction of a subsolution.

Define

U(x, t) = Q1(ϕ1(x+ σ̄t− r1(t)), ϕ2(x+ σ̄t+ r1(t)), ϕ2(−x− σ̄t− r3(t))),

W (x, t) = Q2(ψ1(x+ σ̄t− r1(t)), ψ2(x+ σ̄t+ r1(t)), ψ2(−x− σ̄t− r3(t))),

where Qi is defined in (3.14), r3(t) := r2(t) − ℓ0 for some ℓ0 ≫ 1 and ri(t) is defined in (3.15) for

i = 1, 2. Similar to the proof of Lemma 3.1 (with ϕ3(ζ) = ϕ2(−ζ)), one can show that (U,W ) is a

subsolution for all −t≫ 1 (with suitable ℓ0).

Step 3. Complete the proof.
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Now we can take T1 ≫ 1 such that (U,W )(x, t) is a (weak) supersolution and (U,W ) is a

subsolution for all t ≤ −T1. Next, following the argument used in [5, Theorem1.3] with minor

changes, we can obtain

(U,W )(x, t) ≥ (U,W )(x, t), x ∈ R, t ≤ −T2

for some T2 ≥ T1.

Denote the solution of (2.1) with initial data (u0, w0) by (u,w)(x, t;u0, w0). For any given

T > T2, define (uT , wT )(x, t) := (u,w)(x, t+ T ;U(·,−T ),W (·,−T )). By comparison,

(U,W )(x, t) ≤ (uT , wT )(x, t) ≤ (U,W )(x, t), x ∈ R, t ≤ −T.

Note that by comparison, {uT } and {wT } is decreasing in T . It follows that the limit function

(u∞, w∞) := limT→∞(uT , wT ) is well-defined in the whole space and time such that

(U,W )(x, t) ≤ (u∞, w∞)(x, t) ≤ (U,W )(x, t), x ∈ R, t ∈ R.

Moreover, since (U,W ) is even in x, (uT , wT )(x, t) is also even in x for x ∈ R and t ≤ −T and so

does (u∞, w∞)(x, t) for x, t ∈ R.
To finish the proof, we need to show that (u∞, w∞) satisfies the desired asymptotic behavior as

t→ ±∞. For this, we first use a similar procedure as that in [5, Theorem 1.3] to derive the estimate

(3.5) for all t with −t ≫ 1. Then the asymptotic behavior of (u∞, w∞) can be done by using the

same process as used in Theorem 1. We leave the details for the reader. Hence, we complete the

proof of Theorem 3. �

Proof of Theorem 4. Set w(x, t) := 1−v(x, t) and W := 1−V . Then we see that an entire solution

(u,w) originates from N fronts if and only if there exists (cj , U j ,W j) for j = 1, · · · , N satisfying

(1.9), (1.10) and (1.11) with v and V replaced by w andW , respectively, where (cj , U j ,W j) satisfies
cjU

′
j = U

′′
j + f(U j ,W j), ξ ∈ R,

cjW
′
j = DW

′′
j + g(U j ,W j), ξ ∈ R,

(U j ,W j)(−∞) := Li, (U j ,W j)(+∞) := Ri, i = 1, · · · , N,

where Li, Ri ∈ {1,0,EI,EB} and EB := (0, 1). Reducing to this form allows us to use the argument

in [5] to prove desired result.

Given an entire solution (u,w) originating fromN fronts, one can define the sequence of boundary

conditions

AN := {L1, R1, L2, R2, · · · , LN , RN}

with 2N terms describing (U j ,W j)(±∞), 1 ≤ j ≤ N . Since entire solutions are continuous and

satisfy (1.10) and (1.11) (with v and V replaced by w and W ), we must have

Rj = Lj+1 for all j = 1, · · · , N − 1.(3.19)

Under the above setting, we see that the corresponding sequences to Theorem 1, Theorem 2 and

Theorem 3 are

{1,0,0,EI,EI,1}, {1,0,0,EI,EI,0}, {1,0,0,EI,EI,0,0,1},

respectively.
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We say that AN is non-extendable if there is no entire solution (u,w) originating from N + 1

fronts with the corresponding sequence AN+1 such that the first 2N terms of AN+1 are exactly the

same as AN . Then one can observe that AN is non-extendable if

(LN , RN ) = (0,1) or (EI,1)(3.20)

Indeed, if (3.20) occurs, by (3.19), we must have LN+1 = 1. Then RN+1 = 0 or EI. Since

both (1,0)-front and (1,EI)-front move to the right, we have cN+1 < 0 < cN , which reaches a

contradiction with (1.9).

Note that system (1.2) may admit an (EB,EI)-front as we have mentioned in the introduction

section. The sign of the wave speed plays an important role to determine all possible non-extendable

sequences. Suppose that an (EB,EI)-front (c, U, V ) exists. Then
cU ′(ξ) = U ′′(ξ) + U(ξ)(1− U − kV )(ξ), ξ ∈ R,
cV ′(ξ) = DV ′′(ξ) + rV (ξ)(1− V − hU)(ξ), ξ ∈ R,
(U, V )(−∞) = (0, 0), (U, V )(+∞) = (u∗, v∗).

(3.21)

We now show that c > 0. Note that the monotonicity of wave profiles is not known. However, by a

similar argument as in section 2.2, we see that both U and V decay exponentially near −∞. Thus,

there exists ξ0 ≫ 1 such that U ′(ξ) > 0 and V ′(ξ) > 0 for all ξ ≤ −ξ0. Together with the boundary

condition at ξ = −∞, we may further assume that

U(ξ)(1− U − kV )(ξ) >
1

2
U(ξ), ξ ≤ −ξ0.

Integrating the first equation of (3.21) over (−∞, ξ) with ξ < −ξ0, we have

cU(ξ) = U ′(ξ) +

∫ ξ

−∞
U(s)(1− U − kV )(s) >

1

2
U(ξ) > 0.

Thus, c > 0 if an (EB,EI)-front (c, U, V ) exists. Together with (3.20), one can list all possible

non-extendable sequences corresponding to entire solutions originating from N fronts:

When L1 = EB, the possible longest non-extendable sequence is

{EB,EI,EI,0,0,1},

which corresponds to 3 fronts. When L1 = EI, the possible longest non-extendable sequence is

{EI,EB,EB,EI,EI,0,0,1},

which corresponds to 4 fronts. When L1 = 0, the possible longest non-extendable sequence is

{0,EI,EI,EB,EB,EI,EI,0,0,1},

which corresponds to 5 fronts. When L1 = 1, the possible longest non-extendable sequence is

{1,0,0,EI,EI,EB,EB,EI,EI,0,0,1},

which corresponds to 6 fronts. Consequently, there does not exist a sequence corresponding to

entire solutions originating from N fronts for N ≥ 7. This completes the proof. �
Remark 3.1. In [5], the authors showed that for the Allan-Cahn equation, there is no entire

solution originating from N fronts if N ≥ 5. The dynamics of competition systems may become

more complicated due to the increment of the number of equilibria. Theorem 4 suggests that the

bistable competition system (1.2) may support entire solutions originating from 5 fronts and 6 fronts.

It will be of interest to show that 5 fronts and 6 fronts entire solutions do exist. We leave this issue

to a future work.
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4. Appendix

We provide a proof of Lemma 2.9 as follows:

Proof of Lemma 2.9. We first deal with (i). From Lemma 2.8, we see that

Q1z(1, z, η) = Q1η(1, z, η) = Qi(1, z, η) = 0, i = 1, 2.(4.1)

Let us write xi = (xi1, xi2) for i = 1, 2, 3. It follows that

H1(1,x2,x3) = f(Q1(1, x21, x31), Q2(1, x22, x23))−Q1y(1, x21, x31)f(1, 1)

−Q1z(1, x21, x31)f(x21, x31)−Q1η(1, z, η)f(x31, x32)

= 0,

where we have used (4.1) and the fact f(1, 1) = 0. The other cases in (i) can be shown in a similar

way. We omit the details here.

We next prove (ii) by using the mean value theorem several times. Given i ∈ {1, 2}. Since

Hi(1,x2,x3) = 0 (from (i)), the mean value theorem implies that

Hi(x1,x2,x3) =
( ∂Hi

∂xi1
,
∂Hi

∂xi2

)
· (x1 − 1)(4.2)

= ∥x1 − 1∥
[( ∂Hi

∂xi1
,
∂Hi

∂xi2

)
· x1 − 1

∥x1 − 1∥

]
where xi := (xi1, xi2). Define

νi1(x1,x2,x3) :=
( ∂Hi

∂xi1
,
∂Hi

∂xi2

)
· x1 − 1

∥x1 − 1∥
.

Clearly, νi1 is a smooth function defined on DH .

Next, since Hi(x1,0,x3) = 0, we have νi1(x1,0,x3) = 0. By the mean value theorem as above,

there exists a smooth function νi2 such that

νi1(x1,x2,x3) = ∥x2∥νi2(x1,x2,x3).

From Hi(x1,EI ,x3) = 0, we see that νi2(x1,EI ,x3) = 0. Again, by the mean value theorem as

above, there exists a smooth function νi3 such that

νi2(x1,x2,x3) = ∥EI − x2∥νi3(x1,x2,x3).

From Hi(x1,x2,1) = 0, we see that νi3(x1,x2,1) = 0. By the mean value theorem as above, there

exists a smooth function νi4 such that

νi3(x1,x2,x3) = ∥1− x3∥νi4(x1,x2,x3).

Putting νij , j = 1, 2, 3, 4, into (4.2), we obtain

Hi(x1,x2,x3) = ∥1− x1∥ × ∥x2∥ × ∥EI − x2∥ × ∥1− x3∥ × Ĥi(x1,x2,x3)

with Ĥi := νi4.

Finally, from Hi(0,x2,EI) = 0 we see that Ĥi(0,x2,EI) = 0. Then the mean value theorem

gives (2.27). This completes the proof. �

Lemma A. ([12]) Consider

p′(t) = s+ Leκp(t) for t < 0, p(0) := p0
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for some constants s > 0 and κ > 0. Then

p(t) = p0 + st− 1

κ
log

[
1 +

L

s
eκp0(1− esκt)

]
, t ≤ 0.

Moreover, the following hold:

(i) If L > 0, then p is increasing in (−∞, 0] and

0 < p(t)− st− ω ≤ R0e
sκt, t ≤ 0,

for some constant R0 > 0, where

ω := p0 −
1

κ
log

[
1 +

L

s
eκp0

]
.(4.3)

(ii) If L < 0 and p0 < (1/κ) log(−s/L), then p is increasing in (−∞, 0] and

−R0e
sκt < p(t)− st− ω < 0, t ≤ 0,

for some constant R0 > 0, where ω is given in (4.3).
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