BLOWUP RATE ESTIMATE FOR A SYSTEM OF SEMILINEAR PARABOLIC EQUATIONS

JONG-SHENQ GUO, SATOSHI SASAYAMA, AND CHI-JEN WANG

Abstract. In this paper, we study the blowup rate estimate for a system of semilinear parabolic equations. The blowup rate depends on whether the two components of the solution of this system blow up simultaneously or not.

Keywords: parabolic system, blowup rate, simultaneous blowup, non-simultaneous blowup

AMS Subject Classifications: Primary, 35K55; Secondary, 35B40

1. Introduction

We consider the Cauchy problem for the following system of semilinear parabolic equations:

(1.1)
$$\begin{cases} u_t = \Delta u + u^{p_1} v^{q_1} & \text{in } \mathbf{R}^n \times (0, T), \\ v_t = \Delta v + u^{p_2} v^{q_2} & \text{in } \mathbf{R}^n \times (0, T) \end{cases}$$

with the initial condition

(1.2)
$$\begin{cases} u(x,0) = u_0(x) & \text{in } \mathbf{R}^n, \\ v(x,0) = v_0(x) & \text{in } \mathbf{R}^n, \end{cases}$$

where we assume that T > 0, all powers $p_i, q_i, i = 1, 2$, are positive, and initial data u_0 and v_0 are positive bounded smooth functions.

In this paper, we always assume that the solution (u, v) of (1.1) blows up at the finite time T in the sense that

$$\limsup_{t\to T}\{\sup_{x\in\mathbf{R}^n}u(x,t)+\sup_{x\in\mathbf{R}^n}v(x,t)\}=\infty.$$

It is well known that there exist solutions (u, v) of (1.1) that blow up at finite time T under certain conditions on the exponents p_1, p_2, q_1, q_2 . We refer to [4] for more details.

For a blowup solution (u, v) of (1.1), the sup norm of one of the components must tend to infinity as t tends to the blowup time T. In this paper we always assume that the sup norm of the component u tends to infinity as t tends to T. The case when ublows up and v remains bounded is called *non-simultaneous blowup*. We shall call the case when both components u and v blow up at the same time as *simultaneous blowup*.

Corresponding author: J.-S. Guo (Tel. number: 886-2-29309036, Fax number: 886-2-29332342).

The first author is partially supported by the National Science Council of the Republic of China under the grant NSC 95-2115-M-003-001. The second author is supported by the National Science Council of the Republic of China under the grant NSC 95-2811-M-003-013.

The purpose of this paper is to obtain the blowup rate estimates for both simultaneous and non-simultaneous blowup cases.

First, we shall assume the initial data satisfy the following conditions:

(1.3)
$$u_0 = u_0(r), v_0 = v_0(r), u_0'(r), v_0'(r) \le 0 \text{ for } r \ge 0, \quad r := |x|,$$

(1.4)
$$\Delta u_0 + u_0^{p_1} v_0^{q_1} \ge 0, \quad \Delta v_0 + u_0^{p_2} v_0^{q_2} \ge 0 \text{ in } \mathbf{R}^n.$$

Under these assumptions, we obtain the following upper bound estimate.

Theorem 1.1. Let (u, v) be a blowup solution of (1.1)-(1.2) such that (1.3) and (1.4) hold. Suppose that $p_1 > 1$ and $(n-2)p_1 < n+2$. Then there exists a positive constant C depending only on n, v_0, p_1, q_1 and T such that

(1.5)
$$u(x,t) \le C(T-t)^{-1/(p_1-1)} \quad \forall x \in \mathbf{R}^n, t \in (0,T).$$

We remark that the estimate (1.5) for the system (1.1) is the same as that for the scalar equation $u_t = \Delta u + u^{p_1}$, under the same assumption on p_1 . In the non-simultaneous blowup case, since u blows up in finite time T and v remains bounded, we also have the lower bound estimate

$$u(0,t) \ge c(T-t)^{-1/(p_1-1)}$$
 for $t \in (0,T)$

for some positive constant c. Indeed, this lower bound estimate follows from

$$u_t(0,t) \le \Delta u(0,t) + L^{q_1} u(0,t)^{p_1} \le L^{q_1} u(0,t)^{p_1}$$

and an integration, where L is an upper bound for v. This gives the blowup rate estimate with exponent $1/(p_1-1)$ for the blowup component u.

Indeed the upper bound estimate (1.5) is given in [11] without a detailed proof. We are not sure whether the classical method of Giga-Kohn [6] is applicable to this estimate. Here we provide a detailed proof by using a different approach. In [11], they shown that $p_1 > p_2 + 1$ (which implies $p_1 > 1$, since $p_2 \ge 0$) is a sufficient condition for the non-simultaneous blowup for (1.1) for some initial data. The proof of this result depends on the estimate (1.5). It is also shown in [11] that $p_1 > p_2 + 1$ is a necessary condition for the non-simultaneous blowup for (1.1).

Next, we consider the simultaneous blowup case. For this case, we assume that

$$(1.6) (p_1 - 1)(q_2 - 1) - p_2 q_1 \neq 0$$

and define the components

$$\alpha := \frac{q_2 - q_1 - 1}{(p_1 - 1)(q_2 - 1) - p_2 q_1}, \quad \beta := \frac{p_1 - p_2 - 1}{(p_1 - 1)(q_2 - 1) - p_2 q_1}.$$

Moreover, in addition to the assumption (1.3), we assume there exists a positive constant ε such that the initial data satisfy

(1.7)
$$\Delta u_0 + (1 - \varepsilon) u_0^{p_1} v_0^{q_1} \ge 0, \quad \Delta v_0 + (1 - \varepsilon) u_0^{p_2} v_0^{q_2} \ge 0 \text{ in } \mathbf{R}^n.$$

Then we have the following theorem on the blowup rate estimate.

Theorem 1.2. Let (u, v) be a blowup solution of (1.1)-(1.2) such that (1.3), (1.6) and (1.7) are in force. If $p_i, q_i > 1$ (i = 1, 2), $p_2 - p_1 + 1 > 0$ and $q_1 - q_2 + 1 > 0$, then u and v blow up simultaneously. Moreover, there exist positive constants c and C depending only on p_1, p_2, q_1, q_2, u_0 and v_0 such that

$$c(T-t)^{-\alpha} \le u(0,t) \le C(T-t)^{-\alpha}, \quad c(T-t)^{-\beta} \le v(0,t) \le C(T-t)^{-\beta}$$

for all $t \in [0,T)$.

Note that Theorem 1.2 gives a sufficient condition for simultaneous blowup. We also remark that a similar blowup rate estimate was obtained by Wang [13] for the initial boundary value problem for the same system (1.1). For some of the recent studies of blowup for parabolic systems, we refer the reader to, e.g., [1, 2, 3, 9, 10, 14, 15, 16, 17, 18].

We organize this paper as follows. In Section 2, we study the blowup rate estimate for the non-simultaneous blowup case. We shall derive the upper bound estimate for the blowup rate and give a proof of Theorem 1.1. Then, in Section 3, we give a proof of Theorem 1.2 for the blowup rate estimate in the simultaneous blowup case. Finally, in Section 4, we discuss the criteria for simultaneous and non-simultaneous blowup for the corresponding ODE system.

2. Non-simultaneous Blowup Rate

In this section, we shall prove Theorem 1.1 for the blowup rate estimate in the case of non-simultaneous blowup.

Since the solution is positive, it is easy to derive the following linear estimate (cf. [8]).

Lemma 2.1. (Linear estimate) Let (u, v) be a solution of the system (1.1) with positive initial data u_0 and v_0 . Then there exists a positive constant C depending only on n, u_0 and v_0 such that

$$u(x,t) \geq C(1+t)^{-n/2} \exp\left(-\frac{|x|^2}{2t}\right),$$

$$v(x,t) \geq C(1+t)^{-n/2} \exp\left(-\frac{|x|^2}{2t}\right)$$

for all t > 0.

By this linear estimate, Lemma 2.1, we obtain the following inequality:

$$u_t \ge \Delta u + C^{q_1} (1+T)^{-nq_1/2} \exp\left(-\frac{q_1|x|^2}{2t}\right) u^{p_1}$$

in $(x,t) \in \mathbf{R}^n \times (0,T)$. Using assumptions (1.3) and (1.4), it follows from the maximum principle that

$$u_r, v_r \leq 0$$
 and $u_t, v_t > 0$

in $\mathbf{R} \times (0,T)$. Therefore, (0,t) is the maximum point of u(x,t) and v(x,t).

We set a positive constant $K := C(1+T)^{-nq_1/2} \exp\{-q_1R^2/(2t_1)\}$, where R and $t_1 < T$ are some positive constants. Then we have the following uniform lower bound for v:

$$v(x,t) \ge K^{1/q_1} \text{ in } (x,t) \in B_R \times (t_1,T),$$

where B_R is the open ball of radius R centered at the origin in \mathbf{R}^n . Hence u satisfies

$$u_t > \Delta u + K u^{p_1}$$

in $B_R \times (t_1, T)$.

Now, we define a function

$$w(y,t) := \frac{u(K^{-1/2}\alpha^{-1}(t)y,t)}{u(0,t)} \text{ for } (y,t) \in B_{K^{1/2}\alpha(t)R} \times (t_1,T),$$

where $\alpha(t) = u(0, t)^{(p_1-1)/2}$. Then

$$\Delta w + w^{p_1} = K^{-1} \frac{\Delta u(K^{-1/2}\alpha^{-1}(t)y, t)}{u(0, t)^{p_1}} + \frac{u(K^{-1/2}\alpha^{-1}(t)y, t)^{p_1}}{u(0, t)^{p_1}}.$$

Note that w is radial and decreasing with respect to r := |y|, since u is radial and decreasing with respect to r. Therefore, we can easily get the following inequality

(2.1)
$$w_{rr} + \frac{n-1}{r} w_r + w^{p_1} \le \frac{u_t(K^{-1/2}\alpha^{-1}(t)r, t)}{u(0, t)^{p_1}} K^{-1}.$$

Next, we define a function

$$z(r,t) := \frac{1}{\bar{t} - t} \int_{t}^{t} w(r,s) ds,$$

where $\bar{t} = (t+T)/2$, for $t_1 < t < T$ and $0 \le r < K^{1/2}\alpha(t)R$. By Hölder's inequality, we obtain

$$z(r,t) \leq \frac{1}{\bar{t}-t} \left(\int_{t}^{\bar{t}} 1 ds \right)^{(p_{1}-1)/p_{1}} \left(\int_{t}^{\bar{t}} w(r,s)^{p_{1}} ds \right)^{1/p_{1}}$$
$$= \frac{1}{(\bar{t}-t)^{1/p_{1}}} \left(\int_{t}^{\bar{t}} w(r,s)^{p_{1}} ds \right)^{1/p_{1}}.$$

Integrating (2.1) over (t, \bar{t}) , we obtain

(2.2)
$$z_{rr} + \frac{n-1}{r} z_r + z^{p_1} \le \frac{2K^{-1}}{T-t} \int_t^T \frac{u_t(K^{-1/2}\alpha^{-1}(s)r, s)}{u(0, s)^{p_1}} ds.$$

We can estimate the right-hand side of (2.2) as follows.

Lemma 2.2. For all $r \in [0, K^{1/2}\alpha(t)R)$ and all $t \in (0, T)$, we have

$$\int_{t}^{T} \frac{u_{t}(K^{-1/2}\alpha^{-1}(s)r, s)}{u(0, s)^{p_{1}}} ds \le \frac{p_{1}}{p_{1} - 1} u^{1 - p_{1}}(0, t).$$

Proof. First we set a function

$$\beta(t) := u(K^{-1/2}\alpha^{-1}(t)r, t).$$

Since $u_t \geq 0$ and $u_r \leq 0$, we obtain

$$\beta'(t) = u_t(K^{-1/2}\alpha^{-1}(t)r, t) - \frac{K^{-1/2}\alpha'(t)r}{\alpha(t)^2} u_r(K^{-1/2}\alpha^{-1}(t)r, t)$$

$$\geq u_t(K^{-1/2}\alpha^{-1}(t)r, t).$$

Since $u_r \leq 0$, $\beta(t) \leq u(0,t)$. For $\tau \in (t,T)$, integrating by parts gives

$$\int_{t}^{\tau} \frac{u_{t}(K^{-1/2}\alpha^{-1}(s)r, s)}{u^{p_{1}}(0, s)} ds \leq \int_{t}^{\tau} \frac{\beta'(s)}{u^{p_{1}}(0, s)} ds
= \left[\frac{\beta(s)}{u^{p_{1}}(0, s)}\right]_{t}^{\tau} + p_{1} \int_{t}^{\tau} \frac{\beta(s)u_{t}(0, s)}{u^{p_{1}+1}(0, s)} ds
\leq \frac{\beta(\tau)}{u^{p_{1}}(0, \tau)} + p_{1} \int_{t}^{\tau} \frac{u_{t}(0, s)}{u^{p_{1}}(0, s)} ds
\leq u^{1-p_{1}}(0, \tau) - \frac{p_{1}}{p_{1}-1} \left[u^{1-p_{1}}(0, s)\right]_{t}^{\tau}
\leq \frac{p_{1}}{p_{1}-1} u^{1-p_{1}}(0, t).$$

By letting $\tau \to T$, the lemma follows.

From Lemma 2.2 and (2.2), we obtain that z satisfies

(2.3)
$$z_{rr} + \frac{n-1}{r} z_r + z^{p_1} \le \frac{2p_1 K^{-1}}{p_1 - 1} \frac{1}{T - t} u^{1 - p_1}(0, t).$$

We now prove a nonexistence result as follows. The case n = 1 is already given in [12] by a different proof.

Lemma 2.3. Let $p > 1, \varepsilon > 0, R > 0$. Assume that (n-2)p < n+2. Then there exist two positive constants R_0 and ε_0 depending only on p such that there is no solution $z \in C^2([0,R])$ to the problem

$$\begin{cases} z_{rr} + \frac{n-1}{r} z_r + z^p \le \varepsilon, & 0 < r < R, \\ z \ge 0, & z_r \le 0, & 0 < r < R, \\ z(0) = 1, & z_r(0) = 0, \end{cases}$$

if $R \geq R_0$ and $\varepsilon \leq \varepsilon_0$.

Proof. Recall from [7] that the solution to the initial value problem

(2.4)
$$w'' + \frac{n-1}{r}w' + w^p = h, \ 0 < r < R,$$

$$(2.5) w'(0) = 0, w(0) = 1.$$

is decreasing in r and becomes negative at R_1 for some large R_1 (depending on p), if h = 0 and (n-2)p < n+2. Here it is realized that $w^p := |w|^{p-1}w$ for any $w \in \mathbf{R}$. It follows from the theory of continuous dependence on parameter for the initial value

problem that there exists a positive constant ε_0 such that the same property holds for the solution of (2.4)-(2.5) whenever $|h| \leq \varepsilon_0$.

On the other hand, multiplying (2.4) by r^{n-1} and integrating it from 0 to s, we obtain

$$s^{n-1}w'(s) = -\int_0^s r^{n-1}w^p(r)dr + hs^n/n \le hs^n/n, \quad s > 0,$$

and so $w'(s) \leq hs/n$ for all s > 0. It follows that

$$w(R) \le 1 + hR^2/(2n) < 0$$
, if $h \le -\varepsilon_0$ and $R > \sqrt{2n/\varepsilon_0}$.

Therefore, the lemma follows by taking $R_0 = \max\{R_1, \sqrt{2n/\varepsilon_0} + 1\}$.

Note that z(0,t) = 1, $z_r(0,t) = 0$ and $z_r \le 0 \le z$. Applying Lemma 2.3 with $R = R_0$, we obtain from (2.3) that

$$\frac{2p_1K^{-1}}{p_1-1}\frac{1}{T-t}u^{1-p_1}(0,t) > \varepsilon_0,$$

where ε_0 , R_0 are the constants defined in Lemma 2.3. Therefore, we obtain the estimate

$$u(0,t) \le \left(\frac{2p_1}{\varepsilon_0(p_1-1)}\right)^{1/(p_1-1)} K^{-1/(p_1-1)} (T-t)^{-1/(p_1-1)}.$$

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

In this section, we shall give a proof of Theorem 1.2.

Proof of Theorem 1.2. Following [5] (see also [13]), we consider the functions

$$G := u_t - \varepsilon u^{p_1} v^{q_1}$$
 and $J := v_t - \varepsilon u^{p_2} v^{q_2}$.

Then these functions satisfy following identities

$$\begin{cases} G_t - \Delta G = p_1 u^{p_1 - 1} v^{q_1} G + q_1 u^{p_1} v^{q_1 - 1} J + \varepsilon p_1 (p_1 - 1) u^{p_1 - 2} |\nabla u|^2 v^{q_1} \\ + \varepsilon q_1 (q_1 - 1) u^{p_1} |\nabla v|^2 v^{q_1 - 2} + 2\varepsilon p_1 q_1 u^{p_1 - 1} v^{q_1 - 1} \nabla u \cdot \nabla v \\ J_t - \Delta J = p_2 u^{p_2 - 1} v^{q_2} G + q_2 u^{p_2} v^{q_2 - 1} J + \varepsilon p_2 (p_2 - 1) u^{p_2 - 2} |\nabla u|^2 v^{q_2} \\ + \varepsilon q_2 (q_2 - 1) u^{p_2} |\nabla v|^2 v^{q_2 - 2} + 2\varepsilon p_2 q_2 u^{p_2 - 1} v^{q_2 - 1} \nabla u \cdot \nabla v. \end{cases}$$

Since u and v are radial and decreasing in |x|, we have $\nabla u \cdot \nabla v = u_r v_r \ge 0$. Using this positivity and $p_i, q_i > 1$, we obtain

(3.1)
$$\begin{cases} G_t - \Delta G \ge p_1 u^{p_1 - 1} v^{q_1} G + q_1 u^{p_1} v^{q_1 - 1} J, \\ J_t - \Delta J \ge p_2 u^{p_2 - 1} v^{q_2} G + q_1 u^{p_2} v^{q_2 - 1} J. \end{cases}$$

Also, $G(x,0) = \Delta u_0 + u_0^{p_1} v_0^{q_1} - \varepsilon u_0^{p_1} v_0^{q_1} \ge 0$ and $J(x,0) = \Delta v_0 + u_0^{p_2} v_0^{q_2} - \varepsilon u_0^{p_2} v_0^{q_2} \ge 0$, by the assumption (1.7). By the maximum principle, we obtain that G and J are non-negative. Therefore, u and v satisfy

(3.2)
$$u_t \ge \varepsilon u^{p_1} v^{q_1}, \quad v_t \ge \varepsilon u^{p_2} v^{q_2} \quad \text{in } \mathbf{R}^n \times (0, T).$$

By (1.3), one can show that 0 is the unique maximum point for both u and v. Hence $\Delta u(0,t)$ and $\Delta v(0,t)$ are non-positive. Therefore, we obtain that

(3.3)
$$u_t(0,t) \le u^{p_1}(0,t)v^{q_1}(0,t) \text{ and } v_t(0,t) \le u^{p_2}(0,t)v^{q_2}(0,t)$$

By (3.2) and (3.3), we deduce that

(3.4)
$$\varepsilon v^{q_1-q_2}(0,t)v_t(0,t) \le u^{p_2-p_1}(0,t)u_t(0,t) \le \frac{1}{\varepsilon}v^{q_1-q_2}(0,t)v_t(0,t).$$

From the second inequality in (3.4), we have

$$\frac{u(0,t)^{p_2-p_1+1}}{p_2-p_1+1} \le \frac{v(0,t)^{q_1-q_2+1}-v_0(0)^{q_1-q_2+1}}{\varepsilon(q_1-q_2+1)} + \frac{u_0(0)^{p_2-p_1+1}}{p_2-p_1+1}.$$

Since we always assume that u blows up at T, we have $u(0,t) \to \infty$ as $t \to T$. Then v must tend to ∞ as $t \to T$, because $p_2 - p_1 + 1 > 0$ and $q_1 - q_2 + 1 > 0$. So, u and v blow up simultaneously and there exists a positive constant C_1 such that

$$(3.5) u^{p_2 - p_1 + 1}(0, t) \le C_1 v^{q_1 - q_2 + 1}(0, t), \quad 0 < T - t \ll 1.$$

Similarly, we can show that there exists a positive constant C_2 such that

(3.6)
$$v^{q_1 - q_2 + 1}(0, t) \le C_2 u^{p_2 - p_1 + 1}(0, t), \quad 0 < T - t \ll 1.$$

By (3.2), (3.5) and (3.6), we obtain

$$u_t(0,t) \ge C_3 u^{(\alpha+1)/\alpha}(0,t), \quad v_t(0,t) \ge C_4 v^{(\beta+1)/\beta}(0,t).$$

By integrating the above inequalities, we obtain the following upper bound estimates

$$u(0,t) \le C(T-t)^{-\alpha}, \ v(0,t) \le C(T-t)^{-\beta}, \ 0 < T-t \ll 1,$$

where C is a positive constant depending only on ε , p_1 , p_2 , q_1 , q_2 , u_0 and v_0 . Similarly, by (3.3), (3.5) and (3.6), we can obtain the lower bound estimates

$$u(0,t) \ge c(T-t)^{-\alpha}, \ v(0,t) \ge c(T-t)^{-\beta}, \ 0 < T-t \ll 1,$$

where c is a positive constant depending only on ε , p_1 , p_2 , q_1 , q_2 , u_0 and v_0 . This completes the proof of Theorem 1.2.

4. Criteria for ODE System

In this section, we consider the initial value problem with positive initial data for the corresponding ODE system to (1.1):

$$(4.1) u_t = u^{p_1} v^{q_1},$$

$$(4.2) v_t = u^{p_2} v^{q_2},$$

where $p_1, p_2, q_1, q_2 \ge 0$. Then we have the following theorem on the criteria of simultaneous blowup.

Theorem 4.1. Suppose that the solution (u, v) of (4.1)-(4.2) with positive initial data (u_0, v_0) blows up in finite time. Then simultaneous blowup occurs if and only if either

$$(4.3) p_1 \le p_2 + 1 and q_2 \le q_1 + 1,$$

or

$$(4.4) p_1 > p_2 + 1, q_2 > q_1 + 1 and \frac{u_0^{p_2 - p_1 + 1}}{p_2 - p_1 + 1} = \frac{v_0^{q_1 - q_2 + 1}}{q_1 - q_2 + 1}.$$

Proof. By assumption, the solution (u, v) of (4.1)-(4.2) must be positive for all $t \geq 0$ and is increasing in t. Then, by integrating the identity

$$u^{p_2 - p_1} u_t = v^{q_1 - q_2} v_t$$

from 0 to t for some t > 0, we obtain

(4.5)
$$[u(t)^{p_2-p_1+1} - u_0^{p_2-p_1+1}]/(p_2 - p_1 + 1) = [v(t)^{q_1-q_2+1} - v_0^{q_1-q_2+1}]/(q_1 - q_2 + 1),$$
 if $p_2 - p_1 + 1 \neq 0$ and $q_1 - q_2 + 1 \neq 0$;

(4.6)
$$[u(t)^{p_2-p_1+1} - u_0^{p_2-p_1+1}]/(p_2 - p_1 + 1) = \ln v(t) - \ln v_0,$$
 if $p_2 - p_1 + 1 \neq 0$ and $q_1 - q_2 + 1 = 0$;

(4.7)
$$\ln u(t) - \ln u_0 = [v(t)^{q_1 - q_2 + 1} - v_0^{q_1 - q_2 + 1}]/(q_1 - q_2 + 1),$$

if $p_2 - p_1 + 1 = 0$ and $q_1 - q_2 + 1 \neq 0$;

$$(4.8) \quad \ln u(t) - \ln u_0 = \ln v(t) - \ln v_0, \quad \text{if } p_2 - p_1 + 1 = 0 \text{ and } q_1 - q_2 + 1 = 0.$$

First, suppose that $p_2 - p_1 + 1 \ge 0$ and $q_1 - q_2 + 1 \ge 0$. If u blows up at T, then v must blow up at the same time T, by using (4.5)-(4.8). Similarly, if v blows up at T, then u must blows up at the same time T.

Next, suppose that $p_2 - p_1 + 1 < 0$ and $q_1 - q_2 + 1 < 0$. Then, using (4.5), it is easy to show that u and v blows up simultaneously if and only if the condition

$$\frac{u_0^{p_2-p_1+1}}{p_2-p_1+1} = \frac{v_0^{q_1-q_2+1}}{q_1-q_2+1}$$

holds.

Conversely, it follows from (4.5)-(4.8) that simultaneous blowup occurs only if either (4.3) or (4.4) holds. This completes the proof of the theorem.

The following criteria for non-simultaneous blowup is a direct consequence of Theorem 4.1.

Corollary 4.1. Suppose that the solution (u, v) of (4.1)-(4.2) with positive initial data (u_0, v_0) blows up in finite time. Then non-simultaneous blowup occurs if and only if one of the following statements holds:

- (1) $p_1 \le p_2 + 1$ and $q_2 > q_1 + 1$;
- (2) $p_1 > p_2 + 1$ and $q_2 \le q_1 + 1$;
- (3) $p_1 > p_2 + 1$, $q_2 > q_1 + 1$ and $(u_0^{p_2 p_1 + 1})/(p_2 p_1 + 1) \neq (v_0^{q_1 q_2 + 1})/(q_1 q_2 + 1)$.

References

- [1] C. Brandle, F. Quiros and J.D. Rossi, Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary, Comm. Pure Appl. Anal. 4 (2005), 523-536.
- [2] Q. Chen, Z. Xiang and C. Mu, Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system, Comm. Pure Appl. Anal. 5 (2006), 435-446.
- [3] L. Du, C. Mu and Z. Xiang, Global existence and blow-up to a reaction-diffusion system with nonlinear memory, Comm. Pure Appl. Anal. 4 (2005), 721-733.
- [4] M. Escobedo and H. A. Levine, Critical blow-up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal. 129 (1995), 47-100.
- [5] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiand Univ. Math. J. 34 (1985), 425-447.
- [6] Y. Giga and R.V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.
- [7] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241-269.
- [8] O.A. Ladyženskaja, V.A. Solonnikov, and N.N. Ural'ceva, *Linear and quasi-linear equations of parabolic type*, Amer. Math. Soc., Providence, 1968.
- [9] H. Li and M. Wang, Blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions, J. Math. Anal. Appl. **304** (2005), 96-114.
- [10] H. Lia and M. Wang, Properties of blow-up solutions to a parabolic system with nonlinear localized terms, Discrete Continuous Dynamical Systems 13 (2005), 683-700.
- [11] F. Quirós and J.D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. angew. Math. Phys. **52** (2001), 342-346.
- [12] P. Souplet and S. Tayachi, Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities, Colloq. Math. 88 (2001), 135-154.
- [13] M. Wang, Blowup estimates for a semilinear reaction diffusion system, J. Math. Anal. Appl. 257 (2001), 46-51.
- [14] M. Wang, Blow-up rate estimates for semilinear parabolic systems, J. Diff. Equations 170 (2001), 317-324.
- [15] M. Wang, Blow-up rate for a semilinear reaction diffusion system, Computers Math. Appl. 44 (2002), 573-585.
- [16] M. Wang, Blow-up rates for semilinear parabolic systems with nonlinear boundary conditions, Applied Math. Letters 16 (2003), 543-549.
- [17] Z. Xiang and C. Mu, Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux, Comm. Pure Appl. Anal. 6 (2007), 487-503.
- [18] S. Zheng and L. Qiao, Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux, Comm. Pure Appl. Anal. 6 (2007), 1113-1129.

DEPARTMENT OF MATHEMATICS, NATIONAL TAIWAN NORMAL UNIVERSITY, 88, S-4, TING CHOU ROAD, TAIPEI 11677, TAIWAN; AND NATIONAL CENTER FOR THEORETICAL SCIENCES, TAIPEI OFFICE, TAIWAN

Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677, Taiwan

Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677, Taiwan