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Abstract. In this paper, we study the blowup rate estimate for a system of semilinear para-
bolic equations. The blowup rate depends on whether the two components of the solution of
this system blow up simultaneously or not.
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1. Introduction

We consider the Cauchy problem for the following system of semilinear parabolic

equations:

(1.1)

{
ut = ∆u + up1vq1 in Rn × (0, T ),
vt = ∆v + up2vq2 in Rn × (0, T )

with the initial condition

(1.2)

{
u(x, 0) = u0(x) in Rn,
v(x, 0) = v0(x) in Rn,

where we assume that T > 0, all powers pi, qi, i = 1, 2, are positive, and initial data u0

and v0 are positive bounded smooth functions.

In this paper, we always assume that the solution (u, v) of (1.1) blows up at the finite

time T in the sense that

lim sup
t→T

{ sup
x∈Rn

u(x, t) + sup
x∈Rn

v(x, t)} = ∞.

It is well known that there exist solutions (u, v) of (1.1) that blow up at finite time T

under certain conditions on the exponents p1, p2, q1, q2. We refer to [4] for more details.

For a blowup solution (u, v) of (1.1), the sup norm of one of the components must

tend to infinity as t tends to the blowup time T . In this paper we always assume that

the sup norm of the component u tends to infinity as t tends to T . The case when u

blows up and v remains bounded is called non-simultaneous blowup. We shall call the

case when both components u and v blow up at the same time as simultaneous blowup.
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The purpose of this paper is to obtain the blowup rate estimates for both simultaneous

and non-simultaneous blowup cases.

First, we shall assume the initial data satisfy the following conditions:

u0 = u0(r), v0 = v0(r), u
′
0(r), v

′
0(r) ≤ 0 for r ≥ 0, r := |x|,(1.3)

∆u0 + up1

0 vq1

0 ≥ 0, ∆v0 + up2

0 vq2

0 ≥ 0 in Rn.(1.4)

Under these assumptions, we obtain the following upper bound estimate.

Theorem 1.1. Let (u, v) be a blowup solution of (1.1)-(1.2) such that (1.3) and (1.4)

hold. Suppose that p1 > 1 and (n − 2)p1 < n + 2. Then there exists a positive constant

C depending only on n, v0, p1, q1 and T such that

(1.5) u(x, t) ≤ C(T − t)−1/(p1−1) ∀x ∈ Rn, t ∈ (0, T ).

We remark that the estimate (1.5) for the system (1.1) is the same as that for the scalar

equation ut = ∆u + up1 , under the same assumption on p1. In the non-simultaneous

blowup case, since u blows up in finite time T and v remains bounded, we also have the

lower bound estimate

u(0, t) ≥ c(T − t)−1/(p1−1) for t ∈ (0, T )

for some positive constant c. Indeed, this lower bound estimate follows from

ut(0, t) ≤ ∆u(0, t) + Lq1u(0, t)p1 ≤ Lq1u(0, t)p1

and an integration, where L is an upper bound for v. This gives the blowup rate estimate

with exponent 1/(p1 − 1) for the blowup component u.

Indeed the upper bound estimate (1.5) is given in [11] without a detailed proof. We

are not sure whether the classical method of Giga-Kohn [6] is applicable to this estimate.

Here we provide a detailed proof by using a different approach. In [11], they shown that

p1 > p2 + 1 (which implies p1 > 1, since p2 ≥ 0) is a sufficient condition for the non-

simultaneous blowup for (1.1) for some initial data. The proof of this result depends on

the estimate (1.5). It is also shown in [11] that p1 > p2 + 1 is a necessary condition for

the non-simultaneous blowup for (1.1).

Next, we consider the simultaneous blowup case. For this case, we assume that

(1.6) (p1 − 1)(q2 − 1) − p2q1 6= 0

and define the components

α :=
q2 − q1 − 1

(p1 − 1)(q2 − 1) − p2q1

, β :=
p1 − p2 − 1

(p1 − 1)(q2 − 1) − p2q1

.

Moreover, in addition to the assumption (1.3), we assume there exists a positive constant

ε such that the initial data satisfy

(1.7) ∆u0 + (1 − ε)up1

0 vq1

0 ≥ 0, ∆v0 + (1 − ε)up2

0 vq2

0 ≥ 0 in Rn.

Then we have the following theorem on the blowup rate estimate.
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Theorem 1.2. Let (u, v) be a blowup solution of (1.1)-(1.2) such that (1.3), (1.6) and

(1.7) are in force. If pi, qi > 1 (i = 1, 2), p2 − p1 +1 > 0 and q1 − q2 +1 > 0, then u and

v blow up simultaneously. Moreover, there exist positive constants c and C depending

only on p1, p2, q1, q2, u0 and v0 such that

c(T − t)−α ≤ u(0, t) ≤ C(T − t)−α, c(T − t)−β ≤ v(0, t) ≤ C(T − t)−β

for all t ∈ [0, T ).

Note that Theorem 1.2 gives a sufficient condition for simultaneous blowup. We also

remark that a similar blowup rate estimate was obtained by Wang [13] for the initial

boundary value problem for the same system (1.1). For some of the recent studies of

blowup for parabolic systems, we refer the reader to, e.g., [1, 2, 3, 9, 10, 14, 15, 16, 17, 18].

We organize this paper as follows. In Section 2, we study the blowup rate estimate

for the non-simultaneous blowup case. We shall derive the upper bound estimate for

the blowup rate and give a proof of Theorem 1.1. Then, in Section 3, we give a proof

of Theorem 1.2 for the blowup rate estimate in the simultaneous blowup case. Finally,

in Section 4, we discuss the criteria for simultaneous and non-simultaneous blowup for

the corresponding ODE system.

2. Non-simultaneous Blowup Rate

In this section, we shall prove Theorem 1.1 for the blowup rate estimate in the case

of non-simultaneous blowup.

Since the solution is positive, it is easy to derive the following linear estimate (cf. [8]).

Lemma 2.1. (Linear estimate) Let (u, v) be a solution of the system (1.1) with positive

initial data u0 and v0. Then there exists a positive constant C depending only on n, u0

and v0 such that

u(x, t) ≥ C(1 + t)−n/2 exp

(
−|x|2

2t

)
,

v(x, t) ≥ C(1 + t)−n/2 exp

(
−|x|2

2t

)
for all t > 0.

By this linear estimate, Lemma 2.1, we obtain the following inequality:

ut ≥ ∆u + Cq1(1 + T )−nq1/2 exp

(
−q1|x|2

2t

)
up1

in (x, t) ∈ Rn × (0, T ). Using assumptions (1.3) and (1.4), it follows from the maximum

principle that

ur, vr ≤ 0 and ut, vt > 0

in R × (0, T ). Therefore, (0, t) is the maximum point of u(x, t) and v(x, t).
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We set a positive constant K := C(1+T )−nq1/2 exp{−q1R
2/(2t1)}, where R and t1 < T

are some positive constants. Then we have the following uniform lower bound for v:

v(x, t) ≥ K1/q1 in (x, t) ∈ BR × (t1, T ),

where BR is the open ball of radius R centered at the origin in Rn. Hence u satisfies

ut ≥ ∆u + Kup1

in BR × (t1, T ).

Now, we define a function

w(y, t) :=
u(K−1/2α−1(t)y, t)

u(0, t)
for (y, t) ∈ BK1/2α(t)R × (t1, T ),

where α(t) = u(0, t)(p1−1)/2. Then

∆w + wp1 = K−1 ∆u(K−1/2α−1(t)y, t)

u(0, t)p1
+

u(K−1/2α−1(t)y, t)p1

u(0, t)p1
.

Note that w is radial and decreasing with respect to r := |y|, since u is radial and

decreasing with respect to r. Therefore, we can easily get the following inequality

(2.1) wrr +
n − 1

r
wr + wp1 ≤ ut(K

−1/2α−1(t)r, t)

u(0, t)p1
K−1.

Next, we define a function

z(r, t) :=
1

t̄ − t

∫ t̄

t

w(r, s)ds,

where t̄ = (t + T )/2, for t1 < t < T and 0 ≤ r < K1/2α(t)R. By Hölder’s inequality, we

obtain

z(r, t) ≤ 1

t̄ − t

(∫ t̄

t

1ds

)(p1−1)/p1
(∫ t̄

t

w(r, s)p1ds

)1/p1

=
1

(t̄ − t)1/p1

(∫ t̄

t

w(r, s)p1ds

)1/p1

.

Integrating (2.1) over (t, t̄), we obtain

(2.2) zrr +
n − 1

r
zr + zp1 ≤ 2K−1

T − t

∫ T

t

ut(K
−1/2α−1(s)r, s)

u(0, s)p1
ds.

We can estimate the right-hand side of (2.2) as follows.

Lemma 2.2. For all r ∈ [0, K1/2α(t)R) and all t ∈ (0, T ), we have∫ T

t

ut(K
−1/2α−1(s)r, s)

u(0, s)p1
ds ≤ p1

p1 − 1
u1−p1(0, t).
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Proof. First we set a function

β(t) := u(K−1/2α−1(t)r, t).

Since ut ≥ 0 and ur ≤ 0, we obtain

β′(t) = ut(K
−1/2α−1(t)r, t) − K−1/2α′(t)r

α(t)2
ur(K

−1/2α−1(t)r, t)

≥ ut(K
−1/2α−1(t)r, t).

Since ur ≤ 0, β(t) ≤ u(0, t). For τ ∈ (t, T ), integrating by parts gives∫ τ

t

ut(K
−1/2α−1(s)r, s)

up1(0, s)
ds ≤

∫ τ

t

β′(s)

up1(0, s)
ds

=

[
β(s)

up1(0, s)

]τ

t

+ p1

∫ τ

t

β(s)ut(0, s)

up1+1(0, s)
ds

≤ β(τ)

up1(0, τ)
+ p1

∫ τ

t

ut(0, s)

up1(0, s)
ds

≤ u1−p1(0, τ) − p1

p1 − 1

[
u1−p1(0, s)

]τ

t

≤ p1

p1 − 1
u1−p1(0, t).

By letting τ → T , the lemma follows.

From Lemma 2.2 and (2.2), we obtain that z satisfies

(2.3) zrr +
n − 1

r
zr + zp1 ≤ 2p1K

−1

p1 − 1

1

T − t
u1−p1(0, t).

We now prove a nonexistence result as follows. The case n = 1 is already given in [12]

by a different proof.

Lemma 2.3. Let p > 1, ε > 0, R > 0. Assume that (n − 2)p < n + 2. Then there

exist two positive constants R0 and ε0 depending only on p such that there is no solution

z ∈ C2([0, R]) to the problem zrr + n−1
r

zr + zp ≤ ε, 0 < r < R,
z ≥ 0, zr ≤ 0, 0 < r < R,
z(0) = 1, zr(0) = 0,

if R ≥ R0 and ε ≤ ε0.

Proof. Recall from [7] that the solution to the initial value problem

w′′ +
n − 1

r
w′ + wp = h, 0 < r < R,(2.4)

w′(0) = 0, w(0) = 1.(2.5)

is decreasing in r and becomes negative at R1 for some large R1 (depending on p), if

h = 0 and (n − 2)p < n + 2. Here it is realized that wp := |w|p−1w for any w ∈ R.

It follows from the theory of continuous dependence on parameter for the initial value
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problem that there exists a positive constant ε0 such that the same property holds for

the solution of (2.4)-(2.5) whenever |h| ≤ ε0.

On the other hand, multiplying (2.4) by rn−1 and integrating it from 0 to s, we obtain

sn−1w′(s) = −
∫ s

0

rn−1wp(r)dr + hsn/n ≤ hsn/n, s > 0,

and so w′(s) ≤ hs/n for all s > 0. It follows that

w(R) ≤ 1 + hR2/(2n) < 0, if h ≤ −ε0 and R >
√

2n/ε0.

Therefore, the lemma follows by taking R0 = max{R1,
√

2n/ε0 + 1}.

Note that z(0, t) = 1, zr(0, t) = 0 and zr ≤ 0 ≤ z. Applying Lemma 2.3 with R = R0,

we obtain from (2.3) that

2p1K
−1

p1 − 1

1

T − t
u1−p1(0, t) > ε0,

where ε0, R0 are the constants defined in Lemma 2.3. Therefore, we obtain the estimate

u(0, t) ≤
(

2p1

ε0(p1 − 1)

)1/(p1−1)

K−1/(p1−1)(T − t)−1/(p1−1).

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

In this section, we shall give a proof of Theorem 1.2.

Proof of Theorem 1.2. Following [5] (see also [13]), we consider the functions

G := ut − εup1vq1 and J := vt − εup2vq2 .

Then these functions satisfy following identities
Gt − ∆G = p1u

p1−1vq1G + q1u
p1vq1−1J + εp1(p1 − 1)up1−2|∇u|2vq1

+εq1(q1 − 1)up1 |∇v|2vq1−2 + 2εp1q1u
p1−1vq1−1∇u · ∇v

Jt − ∆J = p2u
p2−1vq2G + q2u

p2vq2−1J + εp2(p2 − 1)up2−2|∇u|2vq2

+εq2(q2 − 1)up2 |∇v|2vq2−2 + 2εp2q2u
p2−1vq2−1∇u · ∇v.

Since u and v are radial and decreasing in |x|, we have ∇u · ∇v = urvr ≥ 0. Using this

positivity and pi, qi > 1, we obtain

(3.1)

{
Gt − ∆G ≥ p1u

p1−1vq1G + q1u
p1vq1−1J,

Jt − ∆J ≥ p2u
p2−1vq2G + q1u

p2vq2−1J.

Also, G(x, 0) = ∆u0 + up1

0 vq1

0 − εup1

0 vq1

0 ≥ 0 and J(x, 0) = ∆v0 + up2

0 vq2

0 − εup2

0 vq2

0 ≥ 0,

by the assumption (1.7). By the maximum principle, we obtain that G and J are

non-negative. Therefore, u and v satisfy

(3.2) ut ≥ εup1vq1 , vt ≥ εup2vq2 in Rn × (0, T ).
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By (1.3), one can show that 0 is the unique maximum point for both u and v. Hence

∆u(0, t) and ∆v(0, t) are non-positive. Therefore, we obtain that

(3.3) ut(0, t) ≤ up1(0, t)vq1(0, t) and vt(0, t) ≤ up2(0, t)vq2(0, t)

By (3.2) and (3.3), we deduce that

(3.4) εvq1−q2(0, t)vt(0, t) ≤ up2−p1(0, t)ut(0, t) ≤
1

ε
vq1−q2(0, t)vt(0, t).

From the second inequality in (3.4), we have

u(0, t)p2−p1+1

p2 − p1 + 1
≤ v(0, t)q1−q2+1 − v0(0)q1−q2+1

ε(q1 − q2 + 1)
+

u0(0)p2−p1+1

p2 − p1 + 1
.

Since we always assume that u blows up at T , we have u(0, t) → ∞ as t → T . Then v

must tend to ∞ as t → T , because p2 − p1 + 1 > 0 and q1 − q2 + 1 > 0. So, u and v

blow up simultaneously and there exists a positive constant C1 such that

(3.5) up2−p1+1(0, t) ≤ C1v
q1−q2+1(0, t), 0 < T − t ¿ 1.

Similarly, we can show that there exists a positive constant C2 such that

(3.6) vq1−q2+1(0, t) ≤ C2u
p2−p1+1(0, t), 0 < T − t ¿ 1.

By (3.2), (3.5) and (3.6), we obtain

ut(0, t) ≥ C3u
(α+1)/α(0, t), vt(0, t) ≥ C4v

(β+1)/β(0, t).

By integrating the above inequalities, we obtain the following upper bound estimates

u(0, t) ≤ C(T − t)−α, v(0, t) ≤ C(T − t)−β, 0 < T − t ¿ 1,

where C is a positive constant depending only on ε, p1, p2, q1, q2, u0 and v0. Similarly, by

(3.3), (3.5) and (3.6), we can obtain the lower bound estimates

u(0, t) ≥ c(T − t)−α, v(0, t) ≥ c(T − t)−β, 0 < T − t ¿ 1,

where c is a positive constant depending only on ε, p1, p2, q1, q2, u0 and v0. This completes

the proof of Theorem 1.2.

4. Criteria for ODE System

In this section, we consider the initial value problem with positive initial data for the

corresponding ODE system to (1.1):

ut = up1vq1 ,(4.1)

vt = up2vq2 ,(4.2)

where p1, p2, q1, q2 ≥ 0. Then we have the following theorem on the criteria of simulta-

neous blowup.
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Theorem 4.1. Suppose that the solution (u, v) of (4.1)-(4.2) with positive initial data

(u0, v0) blows up in finite time. Then simultaneous blowup occurs if and only if either

(4.3) p1 ≤ p2 + 1 and q2 ≤ q1 + 1,

or

(4.4) p1 > p2 + 1, q2 > q1 + 1 and
up2−p1+1

0

p2 − p1 + 1
=

vq1−q2+1
0

q1 − q2 + 1
.

Proof. By assumption, the solution (u, v) of (4.1)-(4.2) must be positive for all t ≥ 0

and is increasing in t. Then, by integrating the identity

up2−p1ut = vq1−q2vt

from 0 to t for some t > 0, we obtain

[u(t)p2−p1+1 − up2−p1+1
0 ]/(p2 − p1 + 1) = [v(t)q1−q2+1 − vq1−q2+1

0 ]/(q1 − q2 + 1),(4.5)

if p2 − p1 + 1 6= 0 and q1 − q2 + 1 6= 0;

[u(t)p2−p1+1 − up2−p1+1
0 ]/(p2 − p1 + 1) = ln v(t) − ln v0,(4.6)

if p2 − p1 + 1 6= 0 and q1 − q2 + 1 = 0;

ln u(t) − ln u0 = [v(t)q1−q2+1 − vq1−q2+1
0 ]/(q1 − q2 + 1),(4.7)

if p2 − p1 + 1 = 0 and q1 − q2 + 1 6= 0;

ln u(t) − ln u0 = ln v(t) − ln v0, if p2 − p1 + 1 = 0 and q1 − q2 + 1 = 0.(4.8)

First, suppose that p2 − p1 + 1 ≥ 0 and q1 − q2 + 1 ≥ 0. If u blows up at T , then v

must blow up at the same time T , by using (4.5)-(4.8). Similarly, if v blows up at T ,

then u must blows up at the same time T .

Next, suppose that p2 − p1 + 1 < 0 and q1 − q2 + 1 < 0. Then, using (4.5), it is easy

to show that u and v blows up simultaneously if and only if the condition

up2−p1+1
0

p2 − p1 + 1
=

vq1−q2+1
0

q1 − q2 + 1

holds.

Conversely, it follows from (4.5)-(4.8) that simultaneous blowup occurs only if either

(4.3) or (4.4) holds. This completes the proof of the theorem.

The following criteria for non-simultaneous blowup is a direct consequence of Theo-

rem 4.1.

Corollary 4.1. Suppose that the solution (u, v) of (4.1)-(4.2) with positive initial data

(u0, v0) blows up in finite time. Then non-simultaneous blowup occurs if and only if one

of the following statements holds:

(1) p1 ≤ p2 + 1 and q2 > q1 + 1;

(2) p1 > p2 + 1 and q2 ≤ q1 + 1;

(3) p1 > p2 + 1, q2 > q1 + 1 and (up2−p1+1
0 )/(p2 − p1 + 1) 6= (vq1−q2+1

0 )/(q1 − q2 + 1).
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