
BLOWUP RATE ESTIMATES FOR THE HEAT EQUATION
WITH A NONLINEAR GRADIENT SOURCE TERM

JONG-SHENQ GUO AND BEI HU

Abstract. The gradient blowup rate of the equation ut = ∆u + |∇u|p,
where p > 2, is studied. It is shown that the blowup rate will never match
that of the self-similar variables. In the one space dimensional case when as-
sumptions are made on the initial data so that the solution is monotonically
increasing in time, the exact blowup rate is found.

1. Introduction

In this paper, we study the following initial boundary value problem for the

heat equation with a nonlinear gradient source term:

ut = ∆u + |∇u|p for x ∈ Ω, t > 0,(1.1)

u(x, t) = g(x) for x ∈ ∂Ω, t > 0,(1.2)

u(x, 0) = u0(x) for x ∈ Ω,(1.3)

where p > 2, g is a bounded smooth function, Ω is a smooth domain (not

necessarily bounded) in Rn, and

(1.4) u0 ∈ BC2(Ω), u0(x) = g(x) for x ∈ ∂Ω.

The space BC2 is the set of all functions with bounded and continuous deriva-

tives up to order 2. Here p is assumed to be > 2, since |∇u| is always bounded

for any finite time interval when 0 ≤ p ≤ 2 (cf. [24]). Note that by the

maximum principle u is uniformly bounded.
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When Ω 6= Rn (which implies that ∂Ω 6= ∅), it is known that under certain

conditions |∇u| blows up in a finite time t = T , i.e.,

lim sup
t→T−

{sup
x∈Ω

|∇u(x, t)|} = ∞.

For example, in the one space dimensional case with Ω = (0, 1), if u0(x) ≥ 0,

g(0) = 0, and g(1) = M with M > Mc := (p − 2)−1(p − 1)(p−2)/(p−1), then all

solutions are uniformly bounded, but their gradients blow up in a finite time

(cf. [1]). We shall call such phenomenon as gradient blowup. This is different

from the usual blowup in which the L∞ norm of the solution tends to infinity

as t → T−.

Finite time blowup phenomena have attracted a lot of attention in the past

years. Many studies have concentrated on the blowup of solution itself. These

include blowup criteria, blowup locations, blowup rates, and blowup profiles.

In particular, for the classical semilinear heat equation

(1.5) ut = ∆u + up,

we refer the reader to, e.g., [9, 11, 23, 8, 15, 16, 17, 18, 26].

For the gradient blowup, most previous works were about the blowup crite-

ria, i.e., when the gradient blowup occurs. See, for example, [1, 6, 10, 2, 4, 27,

3, 28, 7]. Little is known about the blowup rates. The main purpose of this

paper is to investigate the blowup rate of the gradient for the model problem

(1.1)-(1.3).

It has been known for years that the blowup rates are usually determined

by the so-called self-similar rates. For example, it is (T − t)−1/(p−1) for the

equation (1.5) for 1 < p < (n + 2)/(n − 2)+. This self-similar rate is indeed

related to the scaling invariance of the equation.

For our problem, assuming |∇u(0, T−)| = ∞, we have the following self-

similar transformations:

u(x, t) := (T − t)αw(y, s), α :=
p − 2

2(p − 1)
,

y :=
x√

T − t
, s := − ln(T − t).

Then the equation (1.1) is transformed into the equation

(1.6) ws = ∆yw − 1

2
y · ∇yw + αw + |∇yw|p.
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In this case, assuming that |∇yw(0, s)| is bounded from above and below, then

the self-similar rate of the gradient blowup is given by

(1.7) |∇u(0, t)| ∼ (T − t)−(1/2−α) as t → T−.

It is quite surprising that this will never be the case, since we shall show in the

next section that there exists a positive constant c0 such that

(1.8) sup
x∈Ω, 0≤τ≤t

|∇u(x, τ)| ≥ c0(T − t)−1/(p−2).

Note that 1/(p − 2) > 1/[2(p − 1)] = 1/2 − α for all p > 2.

For the equation (1.5) with

n ≥ 11 and p > p∗ := 1 +
4

n − 4 − 2
√

n − 1
,

Herrero and Velazquez [19, 20] have constructed blowup radial solutions with

blowup rates different from the self-similar rate. We call such type of blowup

as Type II blowup; see also [25]. Indeed, this type II singularity is also found in

the dead-core problem (cf. [12]). An important feature of Type II singularity is

that the rates are not unique. This can be seen in the construction of solutions

with different rates in [19, 20, 25, 13].

We note that (1.8) has been proved by Conner and Grant [5] in one space

dimensional case with Ω = (0, 1), under the assumption u′
0 > 0 in (0, 1) so

that the solution is monotonically increasing in x. It should be noted that

the estimate in [5] is more precise than (1.8) (only t level is used, not the

supremum over [0, t]); in the case the solution is monotone increasing in t, then

these estimates coincide (cf. Lemma 3.2 and Theorem 2.1). Our proof here

is completely different and much simpler. It works for any space dimensions.

Also, we do not need the additional assumption u′
0 > 0 in (0, 1). On the other

hand, based on some numerical simulations, Conner and Grant [5] observed

that (T − t)−1/(p−2) should be the exact gradient blowup rate for the one

dimensional problem. In this paper, we shall provide a rigorous proof of this

result under the assumption that the solution is monotonically increasing in

t. It should be very interesting to see if, without the assumption on the initial

data so that the solution is monotonically increasing in t, this is the only

gradient blowup rate. We leave it here as an open problem. Also, for the

upper bound estimate for gradient blowup rate in higher space dimensional

cases, it is still open.

In this paper, we shall establish:
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(i) the lower bound of the blowup rate is always (T − t)−1/(p−2) for any space

dimensions;

(ii) in the one space dimensional case, the upper bound of the blowup rate

is also (T − t)−1/(p−2) under the additional assumption on the initial data so

that the solution is monotonically increasing in t, therefore the blowup rate is

proportional to (T − t)−1/(p−2) in this case.

From the proof we can also find that, rather than the usual y = x/
√

T − t,

the appropriate change of variables is y = x/(T − t)(p−1)/(p−2). In fact, letting

u(x, t) = (T − t)v(y, s), s =
p − 2

p
(T − t)−p/(p−2),

the equation (1.1) is transformed into

vs = ∆yv + |∇yv|p −
p − 2

p
s−1

(
− v +

p − 1

p − 2
y · ∇yv

)
.

Note that in the one dimensional case when the solution is monotone in t,

this is the correct scale of transformation, since, by our estimates vy(y, s) is

bounded from above and below. This means that the equation in the new

variable is nearly invariant, modulo some small terms as t → T− (or s → ∞).

This paper is organized as follows. In Section 2, we derive the gradient

blowup rate lower bound estimate. In Section 3, we first quote a result from

[29]. This implies that gradient blowup must occur on the boundary. In-

deed, more general results than Theorem 3.1 (below) are well-known already.

More results can be found in, e.g., [29]. Then we show that, for t close to

T , supx∈Ω |∇xu(x, t)| is monotonically increasing if u(x, t) is monotonically

increasing in t. For the one space dimensional case, the blowup rate upper

bound estimate is proven in Section 4, with an additional assumption on the

initial data so that the solution is monotonically increasing in time. Finally,

in Section 5 we describe the asymptotic behavior in the one space dimensional

case as an application of our blowup rate estimates. See also Theorem 1.1 of

[5]. It should be noticed that we do not need the assumption u′
0 > 0 in (0, 1)

throughout this paper.

2. Gradient blowup rate lower bound: non-self-similar blowup

Assuming that the gradient blowup occurs at a finite time t = T , we shall

derive the following lower bound estimate which exclude the self-similar blowup

rate. If we compare with the equation ut = ∆u+up, where self-similar blowup
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is referred as type I, this case could be called a type II blowup. However, we

shall resist the temptation from doing so, since, the type I blowup never exists,

by the following theorem.

Theorem 2.1. Under the assumption (1.4), if the gradient blowup occurs at

a finite time t = T , then there exists c0 > 0 such that

(2.1) sup
x∈Ω, 0≤τ≤t

|∇xu(x, τ)| ≥ c0(T − t)−1/(p−2).

Proof. Under the assumption (1.4), we can easily establish

|u(x, t)| ≤ ‖u0‖L∞(Ω) for x ∈ Ω, 0 < t < T,(2.2)

|ut(x, t)| ≤ C1 for x ∈ Ω, 0 < t < T,(2.3)

where C1 := supx∈Ω |∆u0(x) + |∇xu0(x)|p|. Let

(2.4) m(t) := sup
x∈Ω, 0≤τ≤t

|∇xu(x, τ)|.

It is clear that v := ut satisfies the equations

vt = ∆xv + p|∇xu|p−2∇xu · ∇xv for x ∈ Ω, 0 < t < T,(2.5)

v(x, t) = 0, x ∈ ∂Ω, 0 < t < T.(2.6)

Given t∗ ∈ (0, T ). Let

φ(y, s) := v(λy, λ2s + t∗), λ :=
1

mp−1(t∗)
.

Then φ satisfies

φs − ∆yφ = ~b(y, s) · ∇yφ for y ∈ Ωλ := {y; λy ∈ Ω}, −t∗

λ2
< s ≤ 0,

where ~b(y, s) = λp|∇xu|p−2∇xu is clearly bounded by p, and by (2.3), (2.6),

|φ| ≤ C1 for y ∈ Ωλ,
−t∗

λ2
< s ≤ 0,

φ = 0 for ∂Ωλ,
−t∗

λ2
< s ≤ 0.

Although Ωλ becomes unbounded as λ → 0, its boundary is approaching to a

hyperplane as λ → 0, and therefore ∂Ωλ is uniformly in C2, independently of

λ as λ → 0. Denote BR(y∗) the ball centered at y∗ with radius R.

If y∗ ∈ ∂Ωλ, we can apply the W 2,1
p interior and interior-boundary estimates

[24] in the domain (Ωλ ∩ B1(y
∗)) × [−1, 0] to obtain

‖φ‖W 2,1
p (Ωλ∩B1(y∗))×[−1,0]) ≤ C, C is independent of y∗, λ.
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By Sobolev’s embedding theorem [24], if we choose p > n + 2, then

‖∇yφ‖L∞(Ωλ∩B1(y∗))×[−1,0]) ≤ C, C is independent of y∗, λ.

If B1(y
∗) ⊂ Ωλ, then we can repeat the above procedure by applying the

interior W 2,1
p estimates and Sobolev’s embedding theorem to obtain

‖∇yφ‖L∞(Ωλ∩B1/2(y∗))×[−1,0]) ≤ C, C is independent of y∗, λ.

Since the balls {B1(y
∗); y∗ ∈ ∂Ωλ} and {B1/2(y

∗); B1(y
∗) ⊂ Ωλ} cover the

entire Ωλ, we conclude that

(2.7) sup
y∈Ωλ

|∇yφ(y, 0)| ≤ C,

where the constant C is independent of t∗ and λ.

Since the supremum of a family of uniformly Lipschitz functions is Lipschitz

continuous (by the inequality | supβ aβ−supβ bβ| ≤ supβ |aβ−bβ|), the function

m(t) is Lipschitz continuous for δ ≤ t ≤ T − δ for any small δ > 0. It follows

that m is absolutely continuous, m′ exists almost everywhere, and satisfies the

Fundamental Theorem of Calculus.

Let T/2 ≤ t < s < T . For any τ ∈ [t, s] and x ∈ Ω, it follows from the

mean-value inequality and (2.7) that

|∇xu(x, τ) −∇xu(x, t)| ≤ (τ − t) sup
Ω×[t,τ ]

|∇xut| ≤ C(τ − t)mp−1(τ);

hence

|∇xu(x, τ)| ≤ |∇ux(x, t)| + C(τ − t)mp−1(τ) ≤ m(t) + C(τ − t)mp−1(τ).

Taking supremum for (x, τ) over Ω × [t, s], we get

0 ≤ m(s) − m(t) ≤ C(s − t)mp−1(s),

which implies

(2.8) m′(t) ≤ Cmp−1(t) a.e. t ∈ [T/2, T ).

Dividing (2.8) by mp−1(t) and integrating (2.8) over t∗ ∈ [t, Tj] on a sequence

Tj → T− such that m(Tj) → ∞, we obtain the conclusion.

Remark 2.1. In general, the lower bound estimate is a result of regularity of

the parabolic equations. This is the case for the equation (1.5). It is also the

case for equations with boundary heat source, cf. [22, 21, 14]. In our case, the

lower bound (2.1) is also derived by parabolic estimates.
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3. Blowup set: no interior blowup

The gradient blowup cannot occur in the interior of the domain, by the

regularity estimates:

Theorem 3.1 ([29], Theorem 3.2). For any compact subset K ⊂ Ω,

sup
0<t<T

‖∇xu‖L∞(K) < C dist(K, ∂Ω)−1/(p−1).

Thus the gradient blowup must occur on the boundary. We next show that,

for t close to T , supx∈Ω |∇xu(x, t)| is actually monotonically increasing under

the additional assumption on the initial data so that u(x, t) is monotonically

increasing in t. Assume

(3.1) ∆xu0(x) + |∇xu0(x)|p ≥ 0 for x ∈ Ω.

In this case we can easily establish, by the maximum principle, that

(3.2) 0 < ut(x, t) < sup
x∈Ω

{∆xu0(x) + |∇xu0(x)|p} for x ∈ Ω, 0 < t < T.

Lemma 3.2. Let Ω be a bounded domain. If 0 < T − t ¿ 1, then

sup
x∈Ω

|∇xu(x, t)|

is monotonically increasing, and the maximum in (2.4) is actually taken on

the boundary at time t, i.e.,

m(t) = sup
x∈∂Ω

|∇xu(x, t)|.

Proof. It is clear that v = |∇xu|2/2 satisfies the equation

(3.3) vt = ∆xv + p|∇xu|p−2∇xu · ∇xv −
∑
i,j

(uxixj
)2 for x ∈ Ω, 0 < t < T.

Therefore, the maximum of v can only be achieved at the parabolic boundary of

the domain. Thus if we take 0 < T−t ¿ 1 such that m(t) > maxx∈Ω |∇xu0(x)|,
then the maximum of v must be achieved at the boundary ∂Ω, and hence

(3.4) m(t) = sup
x∈∂Ω, 0≤τ≤t

|∇xu(x, τ)|.

Since u(x, t) ≥ u0(x) for x ∈ Ω and by the compatibility condition (1.4),

u(x, t) = g(x) = u0(x) for x ∈ ∂Ω, we have

(3.5) ∇xu(x, t) · ~n ≤ ∇xu0(x) · ~n for x ∈ ∂Ω,
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where we use ~n to denote the exterior unit normal vector on the boundary ∂Ω.

Therefore, at any point x∗ ∈ ∂Ω, t∗ ∈ (0, T ) where ∇xu(x∗, t∗) ·~n ≥ 0, we have

|∇xu(x∗, t∗)| =
√

|∇xu(x∗, t∗) · ~n|2 + |∇xu(x∗, t∗) · ~τ |2

=
√

|∇xu(x∗, t∗) · ~n|2 + |∇xu0(x∗) · ~τ |2(3.6)

≤
√

|∇xu0(x∗) · ~n|2 + |∇xu0(x∗) · ~τ |2 = |∇xu0(x
∗)|,

where we use ~τ to denote the unit tangential vector on the boundary ∂Ω.

Since we have assumed m(t) > supx∈Ω |∇xu0(x)|, the maximum in (3.4) must

be achieved at a point (x∗, t∗) where ∇xu(x∗, t∗) · ~n < 0, x∗ ∈ ∂Ω.

Since ut = 0 on ∂Ω and ut > 0 in Ω, we have, by the strong maximum

principle,

(3.7) ∇xut(x, t) · ~n < 0 for x ∈ ∂Ω, 0 < t < T.

Since ut(x, t) ≡ 0 for x ∈ ∂Ω, its tangential derivative vanishes on ∂Ω. Hence

∇xut(x, t) = [∇xut(x, t) · ~n]~n for x ∈ ∂Ω.

Therefore, at any point (x∗, t∗), x∗ ∈ ∂Ω, where the maximum in (3.4) is

reached, we have

(3.8)
∂

∂t
|∇xu|2

∣∣∣
(x∗,t∗)

= 2∇xu · ∇xut

∣∣∣
(x∗,t∗)

= 2(∇xu · ~n)(∇xut · ~n)
∣∣∣
(x∗,t∗)

> 0.

As noted in the proof of Theorem 2.1, the function m(t) is Lipschitz continuous

and therefore m′ exists almost everywhere. This implies that m′(t) > 0 a.e.

for 0 < T − t ¿ 1. The lemma follows.

4. Gradient blowup rate upper bound: One dimensional case

We now consider the special one space dimensional case with Ω = (0, 1). In

this case the equations can be written as

ut = uxx + |ux|p for 0 < x < 1, t > 0,(4.1)

u(0, t) = 0, u(1, t) = M for t > 0,(4.2)

u(x, 0) = u0(x) for 0 ≤ x ≤ 1,(4.3)

where p > 2 and M is a constant. Throughout this section we assume that

u0 ∈ C2[0, 1], u0(0) = 0, u0(1) = M,(4.4)

u′′
0(x) + |u′

0(x)|p ≥ 0 for 0 ≤ x ≤ 1.(4.5)
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In this case we can easily establish, by the maximum principle, that

|u(x, t)| ≤ ‖u0‖L∞(0,1) for 0 < x < 1, 0 < t < T,(4.6)

0 < ut(x, t) < sup
0≤x≤1

{u′′
0(x) + |u′

0(x)|p} for 0 < x < 1, 0 < t < T.(4.7)

In this section we shall establish

Theorem 4.1. Let the assumptions (4.4)–(4.5) be in force and 2 < p < ∞. If

the gradient blowup occurs at a finite time t = T , then there exists a constant

C0 > 0 such that

(4.8) max
0≤x≤1

|ux(x, t)| ≤ C0(T − t)−1/(p−2).

Remark 4.1. First note that there always exist initial data satisfying (4.4)–

(4.5) (e.g., u0(x) = Mx). In the case (4.4) and (4.5) are satisfied (i.e., we only

look for solutions increasing in time), the necessary and sufficient condition

for a finite time gradient blowup is

|M | > Mc := (p − 2)−1(p − 1)(p−2)/(p−1).

Note that if |M | > Mc, then a finite time gradient blowup occurs (cf. [1], [3]).

On the other hand, the condition is necessary. Indeed, the arguments in

Section 5 show that, if the blowup occurs at x = 0, then u(·, T−) is bigger than

the stationary solution with boundary condition f(0) = 0 and f(1) = Mc, and

thus M = u(1, t) > f(1) = Mc for 0 < T − t ¿ 1. Similarly, one must have

M < −Mc if the blowup occurs at x = 1.

Proof of Theorem 4.1. For convenience, we define

L[φ] := φt − φxx − p|ux|p−2uxφx.

Then it is clear that

(4.9) L[ut] ≡ 0, L[ux] ≡ 0.

By Theorem 3.1,

sup
1/3<x<2/3, 0<t<T

|ux(x, t)| < ∞.

Moreover, the gradient blowup will only occur at x = 0, or x = 1, or both.

If the gradient blowup occurs at x = 0, we let

(4.10) m(t) = max
0≤x≤1/2, 0≤τ≤t

|ux(x, τ)|.
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Take 0 < σ < 1 and set

w =
(
1 +

1

mσ(t)

)(
1 − ux

m(t)

)
, x ∈ Ω := (0, 1/2).

Since u0(x) < u(x, t), we deduce that u′
0(0) ≤ ux(0, t), so that Lemma 3.2

(the same proof is valid for this truncated domain, since ux is bounded on

x = 1/2) implies that, for 0 < T − t ¿ 1,

(4.11) m(t) = max
x∈Ω, 0≤τ≤t

|ux(x, τ)| = max
x∈∂Ω

|ux(x, t)| = ux(0, t).

Take 0 < T − t ¿ 1 so that m(t) ≥ 1. Then a direct computation shows

that

(4.12) L[w] = − σm′

mσ+1

(
1 − ux

m

)
+

(
1 +

1

mσ

) uxm
′

m2
.

Recalling that m′ > 0 a.e. by the proof of Lemma 3.2, we have, in case

|ux(x, t)| < σ
σ+2

m1−σ(t),

L[w] =
m′

mσ+1

(
− σ + (σ + 1)

ux

m
+

ux

m1−σ

)
≤ m′

mσ+1

(
− σ + (σ + 2)

|ux|
m1−σ

)
(4.13)

≤ 0 for 0 < T − t ¿ 1.

On the other hand, if |ux(x, t)| ≥ σ
σ+2

m1−σ(t), then by (2.8), (4.12), and

Lemma 3.2, we have

(4.14)
L[w] ≤

(
1 +

1

mσ

) |ux|m′

m2
≤ 2|ux|

Ĉmp−1

m2

≤ 2Ĉ

m

(σ + 2

σ

)(p−2)/(1−σ)

|ux|(p−1−σ)/(1−σ),

where we use Ĉ to denote the constant from (2.8) (note that the proof of (2.8)

is still valid for Ω = (0, 1/2) since the solution u and its derivative ux are

uniformly bounded in a neighborhood of x = 1/2, which imply that x and t

derivatives of any order are bounded near x = 1/2, by the standard parabolic

estimates). Combining the inequalities (4.13) with (4.14) we find that (4.14)

is actually valid in both cases.

We now choose σ = 1/(p − 1) so that

p − 1 − σ

1 − σ
= p.
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Thus, for 0 < T − t ¿ 1 and C∗ = 2Ĉ
(

σ+2
σ

)(p−2)/(1−σ)
, we have

(4.15) L[w + u] ≤ C∗

m
|ux|p − (p − 1)|ux|p = |ux|p

(C∗

m
− (p − 1)

)
< 0.

We take t0 such that 0 < T −t0 ¿ 1 and (4.15) holds for t ∈ [t0, T ). Clearly,

for any constant C > 0,

w(0, t) + u(0, t) = 0 = Cut for t0 < t < T.

By the strong maximum principle, for any x0 ∈ Ω,

inf
t0≤t<T

ut(x0, t) > 0, uxt(0, t0) > 0.

By parabolic estimates, u and ux are uniformly bounded on Γ, where

Γ := {x = x0, t0 ≤ t < T} ∪ {0 ≤ x ≤ x0, t = t0}.

We can take a positive constant C such that (w + u)(x, t) ≤ Cut(x, t) on

Γ. Thus we can apply the maximum principle to w + u − Cut in the region

(0, x0) × (t0, T ) to obtain w + u < Cut for 0 < x < x0, t0 < t < T . This

implies that, for t0 < t < T ,

(4.16)
wx(0, t) = lim

x→0+

w(x, t)

x
≤ lim

x→0+

w(x, t) + u(x, t)

x

≤ lim
x→0+

C
ut(x, t)

x
= Cuxt(0, t).

A direct computation shows

wx(0, t) = −
(
1 +

1

mσ(t)

)uxx(0, t)

m(t)

=
(
1 +

1

mσ(t)

) |ux(0, t)|p

m(t)

≥ mp−1(t).

Thus (4.16) implies

mp−1(t) ≤ Cm′(t) for t0 < t < T.

This inequality implies |ux(0, t)| ≤ C0(T − t)−1/(p−2). The proof is the same if

the gradient blowup up occurs at x = 1.
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5. Asymptotic behavior

It is established in [1] (see also [3]) the following estimate

Lemma 5.1. Let C1 = max0≤x≤1{u′′
0(x)+|u′

0(x)|p} and the assumptions (4.4)–

(4.5) be in force. If the gradient blowup occurs at x = 0, then for 0 < T−t ¿ 1,

0 < ux(x, t) − {[ux(0, t)]
1−p + (p − 1)x}−1/(p−1) < C1x, 0 < x < 1.(5.1)

Proof. For reader’s convenience we include the simplified proof from [3] here.

From (4.7), for each fixed t ∈ (0, T ),

0 < uxx(x, t) + |ux(x, t)|p < C1 for 0 < x < 1.

By the strong maximum principle, uxt(0, t) > 0. Furthermore, since |ux(0, t)| →
∞ as t → T−, we must have ux(0, t) ≥ 1 for 0 < T − t ¿ 1.

Clearly, f(x) = {[ux(0, t)]
1−p + (p − 1)x}−1/(p−1) satisfies

fx + fp = 0 for 0 < x < 1, 0 < T − t ¿ 1.

Since ux(0, t) = f(0), by comparison principle, we derive that ux(x, t) > f(x)

for 0 < x < 1 and 0 < T − t ¿ 1.

Similarly, for 0 < T − t ¿ 1, f̃(x) = f(x) + C1x satisfies

f̃x + f̃p > C1 + fx + fp ≥ C1 for 0 < x < 1, f̃(0) = ux(0, t),

so that ux(x, t) < f̃(x) for 0 < x < 1. This proves (5.1).

As a corollary it is clear that in this case ux(x, t) > 0 for 0 < x < 1,

0 < T − t ¿ 1. In particular, 0 < ux(1, t) ≤ u′
0(1), since u(x, t) > u0(x).

Thus x = 1 cannot be a blowup point. Letting t → T− in (5.1), we also have

ux(x, T−) ≥ {(p−1)x}−1/(p−1), and the strict inequality holds for 0 < x < 1 by

the strong maximum principle. Integrating over (0, 1), we find that M > Mc :=

(p − 2)−1(p − 1)(p−2)/(p−1) in this case. As indicated in the introduction, the

finite time gradient blowup must occur in this case ([1, 3]). Similar argument

can be made in the case gradient blowup occurs at x = 1. Therefore, under

the assumptions (4.4)–(4.5), (i) the gradient ux blows up at x = 0 if and only

if M > Mc, in this case x = 0 is the only point where ux(·, t) is unbounded;

(ii) the gradient ux blows up at x = 1 if and only if M < −Mc, in this case

x = 1 is the only point where ux(·, t) is unbounded.

The estimate in Lemma 5.1, together with our blowup rate estimates, is

enough for us to establish the asymptotic behavior of the solution. We consider
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the function

(5.2) g(y, s) := [s + (p − 1)y]−1/(p−1), 0 ≤ s < ∞, 0 ≤ y < ∞.

Note that, for any s ≥ 0, g satisfies the equation

gyy(y, s) + [gy(y, s)]p = 0 for 0 < y < ∞,

Set

y :=
x

(T − t)(p−1)/(p−2)
, c(t) := [ux(0, t)(T − t)1/(p−2)]1−p.(5.3)

Then it follows from (5.1) that

(5.4) 0 < ux(x, t)(T − t)1/(p−2) − g(y, c(t)) < C1x(T − t)1/(p−2),

for all x ∈ (0, 1) and t ∈ (0, T ). Thus we obtain the uniform convergence of

ux(x, t)(T − t)1/(p−2) to g(y, c(t)) over x ∈ [0, 1] as t → T−.

Note that, by (2.1) and (4.8), c(t) is bounded from above and below by

positive constants.

We state it as a theorem:

Theorem 5.2. Let the assumptions (4.4)-(4.5) be in force. If the gradient

blowup occurs at x = 0, then for all 0 < x < 1 and 0 < T − t ¿ 1

0 < ux(x, t)(T − t)1/(p−2) − g
( x

(T − t)(p−1)/(p−2)
, c(t)

)
< C1x(T − t)1/(p−2),

where g(y, s) and c(t) are given in (5.2) and (5.3). Moreover, the function c(t)

satisfies, for some constants C0 > c0 > 0,

0 < C1−p
0 ≤ c(t) ≤ c1−p

0 for 0 < T − t ¿ 1.
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